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Abstract: When casting aluminum alloy billets, high shear melt conditioning (HSMC) technology
refines the resulting grain size, reduces the number of defects, and improves mechanical properties
without the need to add polluting and expensive chemical grain refiners. These resultant improve-
ments spring from the high shear rates that develop in the rotor–stator gap and the stator holes
facing the leading edge of the rotor. Despite the growing literature on rotor–stator mixing, it is
unclear how the different rotor–stator parameters affect the performance of high shear treatment. To
upscale this technology and apply it to processes that involve large melt volumes, an understanding
of the performance of the rotor–stator design is crucial. In this paper, we present the results of
computational fluid dynamics (CFD) studies of high shear melt conditioning in continuous and batch
modes with different rotor designs. These studies build upon our earlier work by studying the effect
of rotor variation in a stator design consisting of rows of small apertures at different rotor speeds
spanning from 1000 to 10,000 revolutions per minute. While no clear-cut linear pattern emerges for
the rotor performance (as a function of the design parameters), the rotor geometry is found to affect
the distributive mixing of microparticles, but it is insignificant with regards to their disintegration.

Keywords: high shear melt conditioning; aluminum; melt treatment; mixing; computational
fluid dynamics

1. Introduction

Because light weighing reduces CO2 emissions and increases fuel efficiency, this prac-
tice is important for the automotive and aerospace industries. These industries therefore use
light alloys (based on aluminum and magnesium), which can provide both high strength
and light weight [1]. However, they also need cast billets with the fewest possible defects
and a homogenous composition. During the casting of these light alloys, inclusions, such
as gas (bubbles) and oxides, conventionally worsen the melt quality and, in turn, that of
the resulting cast [2].

Various technologies are used to treat the melt, refine the as-cast microstructure, and
reduce the defects in the cast billet, thereby improving the mechanical properties and
increasing the performance of the resulting components. Treatment methods using external
fields include ultrasonic melt treatment using a sonotrode [3,4], which has been proven on
the industrial scale to be effective for degassing, filtration, and grain refinement of light
ally melts [5]. More recent research exploits the resonance frequencies of containing vessels
for contactless acoustic treatment using a top electromagnetic coil, paving the way for the
treatment of reactive melts, such as titanium [6,7].

High shear melt conditioning technology [8,9] proposes an efficient melt alternative
by using “harmful” oxides and other inclusions to strengthen the resulting cast upon treat-
ment [10–12]. Intensive mixing deagglomerates the metallic inclusions and redistributes
them throughout the melt, thereby reducing the defects in the resulting cast [13,14]. Melt
conditioning also modifies the flow pattern in the sump of direct-chill (DC) casting with
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the increased heat transfer and temperature homogenization around the rotor–stator mixer
resulting in finer, equiaxed grains [13,15]. These beneficial effects and the concomitant im-
provement of thermomechanical properties all occur without chemical inoculation, thereby
increasing the recyclability of the cast or wrought alloy. A successful application of HSMC
is the deironing of highly contaminated aluminum alloy melts, where intensive shearing
reduces the sedimentation time and leads to faster iron removal [16–18].

The mechanism behind high shear melt conditioning is deceivingly simple: a high-
speed rotor rotates at speeds of ~1000–10,000 RPM inside a stator. The rapid revolutions
of the rotor blades entrain fluid into the stator volume and, due to fluid continuity, eject
this entrained fluid back into the liquid bulk. Deagglomeration of solid inclusions occurs
within the rotor–stator clearance—the small gap between the rotor and the stator—and
the large velocity gradients developing on the stator hole walls that face the leading edges
of the rotor [19]. The power number of batch rotor–stator mixers is independent of the
Reynolds number in the turbulent flow regime that is of interest for HSMC [20]. Despite
this operational simplicity, the flow pattern around mixers is complicated, and a universal
scaling law for mixers still eludes researchers [21].

Numerical modeling has been extensively used in the literature to understand and
assess the operation of rotor–stator devices [22,23]. Numerical studies of the stator geom-
etry have determined that a larger fraction of energy dissipation occurs in smaller stator
openings compared with larger ones [24,25]. Stator geometries that maximize the volume
of the pseudo-cavern have also been studied [26]. The authors’ earlier numerical study
specifically assessed the efficacy of the different stator designs that are used in high shear
melt conditioning [25] in batch mode. This stator study followed earlier CFD work on
the pseudo-cavern in melt conditioning using Reynolds-Averaged Navier–Stokes (RANS)
turbulence models [27]. The study revealed that the degradation in shearing performance
upon changing the operation of mixers with small stator holes from batch to continuous
mode is less severe than that occurring when enlarging the stator holes.

In this study, the influence of the rotor geometry on the flow pattern, turbulence
dissipation, shear rate, volume flow rate, and power draw are analyzed. The mixers run in
batch mode—in a closed bottom cylinder—and in continuous (or inline) mode—with melt
flowing through the cylindrical domain at an average speed of 0.1 m s−1, corresponding
to a ‘bulk’ Reynolds number of 8000. The stator geometry is fixed and corresponds to the
42 mm diameter stator (Mixer A) from an earlier study [25]; the mixer head consists of four
rows, each with 18 small round holes of a diameter of 2.5 mm each. The predicted fields
are discussed, and their implication for rotor design is outlined in the following sections.

2. Method
2.1. Numerical Method

The open-source computational fluid dynamics (CFD) software library OpenFOAM
7 [28] was used to solve the continuity and momentum conservation equations using the
finite volume method. The 2003 version of the k–ω shear stress transport (SST) model [29]
was used to provide turbulence closure:

∂k
∂t

+∇ · (uk) = ∇ · (Dk∇k) + G− 2
3

k(∇ · u)− β∗ωk + Sk (1)

∂ω

∂t
+∇ · (uω) = ∇ · (Dω∇ω) +

γG
ν
− 2

3
γω(∇ · u)− βωω2 − (F1 − 1)CDkω + Sω (2)

where k is the turbulent kinetic energy; ω is the dissipation rate, and the default model
coefficients are retained [29].

An implicit Euler first-order differencing scheme was used for time discretization.
Convective terms were treated with the second-order linear-upwind scheme. The selected
implementation of the pressure–velocity coupling was the PIMPLE algorithm, which is
a combination of the PISO [30] and SIMPLE [31] algorithms, with the SIMPLE algorithm
being used within every time step and the iterations being outer corrections. For numerical
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stability, an adaptive time step was used, where a maximum Courant number of 1.0 was
enforced. An additional constraint on the time step size was the imposition of a maximum
of a 1 degree turn of the rotor; this restriction was required as the more liberal condition of
1/30th of the rotation time reported elsewhere [23] led to a divergence in the numerical
solution. These restrictions resulted in a maximum time step of 0.32 ms in the case of
1000 RPM. Each simulation was run for a minimum of 65 full revolutions of the rotor mesh
zone before the results could be analyzed, as the flow was fully developed by then.

2.2. Geometry

This paper assesses the performance of the three rotor designs that are shown in
Figure 1. All rotors are of a height of 21 mm and a diameter of 30 mm. Rotor A consists
of four blades of a width of 7 mm. Rotor B consists of two blades of a width of 7 mm.
Rotor C has a petal design made from cutting four cylinders of a diameter of 10 mm from a
larger cylinder of a diameter of 30 mm. Rotors A and C were chosen for this CFD study as
they are available for future water validation experiments in our laboratory. Rotor B is the
first design of a planned parametric study assessing the effect of the number of blades on
shearing performance.
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Figure 1. Rotor designs used in this study. The feature edges of the stator are in the top row of figures.
The origin O denotes the coordinate (0, 0, 0). The bottom of the mixer is at z = 0 mm, with the z axis
coincident with the axis of the rotor.

The rotor–stator mixer was immersed in a cylindrical pipe of diameter 80 mm filled
with fluid. The boundary conditions are listed in Table 1. Only the inlet boundary conditions
differ between the batch and inline cases. For the batch case, the prescribed velocity at the
inlet was 0 m s−1, identical to a wall no-slip boundary. For the inline mode, an inbound
flow of 0.1 m s−1 normal to the inlet surface was prescribed. Standard outflow conditions
(zero normal gradient for velocity and fixed pressure value) were imposed at the outlet.
The mesh density was fine enough at the walls to employ the selected turbulence models.
The liquid properties were set to those of water with a density of ρ = 1000 kg m−2 and a
kinematic viscosity of ν = 1.0× 10−6 m2 s−1. Turbulence was prescribed using an estimate
of the turbulence intensity and a mixing length obtained from the wetted diameter of
the pipe.
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Table 1. Boundary conditions for both batch and inline simulations.

Variable Inlet Outlet Walls and Stator Rotor Blades

Velocity u

Dirichlet boundary condition
with a fixed value of
Batch mode: (0, 0, 0) m s−1

Inline mode: (0, 0, 0.1) m s−1

Neumann boundary
condition (zero
normal gradient

No slip boundary
u = 0 m s−1

Moving wall velocity
set to 0 m s−1 relative
to the rotating frame
of reference

Pressure p Neumann boundary
condition

Dirichlet boundary
condition with a fixed
value of 0 Pa

Neumann boundary
condition

Neumann boundary
condition

Turbulent kinetic
energy k Turbulent intensity I = 4% Neumann boundary

condition
Neumann boundary
condition

Neumann boundary
condition

Turbulent dissipation
rate ω

Mixing length l = 0.0056 m Neumann boundary
condition ω wall function [29] ω wall function

Turbulent viscosity
ratio νt

Calculated (not prescribed) Calculated (not
prescribed) νt wall function [28] νt wall function [28]

The liquid properties were set to those of water, as water is a good physical analogue
to aluminum [32,33] and the flow can be readily visualized in experiments. The cases
were run with a rotor speed of 1000 RPM. The unstructured meshes were generated with
the finite element mesher SALOME 9.4 [34]. The sliding mesh method [35] was used to
implement the rotation of the rotor mesh volume.

3. Results and Discussion
3.1. Mesh Independence

According to a previous RANS study from Utomo et al. [23], doubling the grid
size from 500,000 to 1 million cells (together with time step refinement from 1/30 to
1/60 rotor revolution time) does not significantly improve the flowrate and time-averaged
jet radial velocity predictions for a 25 mm mixer. This claim has been used as justification
in subsequent CFD studies of rotor–stator designs using the same RANS model (the k-ε
model) [24,36]. This effect was investigated in this study using the k-ω SST model in the
present cases using the meshes shown in Figure 2. As shown in Table 2, the predicted power
number does not deviate significantly across the studied grid sizes. Therefore, meshes of a
few million cells are considered as converged for this study.
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Figure 2. Zoom on the rotor–stator mixer meshes that were used for the grid independence analysis.
The slice corresponds to z = 13 mm (confer Figure 1 for the frame of reference).
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Table 2. Comparison of predicted power number and volume flow rates with rotor A for three
different grid sizes computed in inline mode with rotor speed 1000 RPM.

Mesh Size (Number
of Cells) Power Number (Po) Power Number

Standard Deviation
Melt Flow Rate

Through Mixer (kg s−1)
Melt Flow Rate

Standard Deviation

2,008,777 0.394 6 × 10−3 0.336 0.006

3,845,058 0.386 4 × 10−3 0.386 0.004

8,558,627 0.387 0.03 0.386 0.006

3.2. Validation with Experimental Data

The methodology that was used in this paper was validated by comparing its predic-
tions with the measured power number of Padron [37] for an L4RT square head mixer with
4 blade rotors and 4 alternate stator holes rows, each having 23 holes. In this validation
study, the rotor speed was 4000 RPM, and the rotor diameter D was 28.2 mm. The operating
fluid was water. The power number Po was calculated using [38]

Po =
P

ρN3D5 , (3)

where the power P that is required to maintain the rotor rotation was calculated as

P = 2πNT, (4)

where T is the torque on the total rotor surface, and N is the rotor speed in revolutions
per second. The results were also compared with other CFD simulations using the k-ε
model [24] and an LES model [36], for which the water mass flow rate through the mixer was
also available. The results are presented in Table 3. The power number and the mass flow
rates are in good agreement with the other CFD studies from the literature. The predicted
power number is also in very good agreement with the experimental work of Padron [37].
These results therefore validate the numerical approach followed in this manuscript.

Table 3. Comparison of predicted power number and volume flow rates for an L4RT square
head mixer.

Case Power Number (Po) Mass Flow Rate through Mixer (kg s−1)

Experimental work [37] 2.3 Not available

k-ε model [24] 2.05 0.389

LES model [36] 2.2 0.418

Present methodology 2.1 ± 0.1 0.35 ± 0.01

3.3. Flow Field

Figure 3 shows instantaneous snapshots of the flow field around the mixers after
65 full rotor revolutions. Figure 4 shows a closer view of the rotor–stator region and the
pseudo-cavern for each case. The velocity magnitude contours are colored using the same
scale. The flow gradient is similar for rotor designs A and C, with the largest velocity
gradients confined to the volume within the stator cup in both cases. However, rotor design
B with fewer blades shows the largest difference with a large flow gradient developing
inside the empty area within the stator cup. The fluid is also forced out at a higher speed
outside the mixer with rotor designs A and B; however, for design C, the exit jets were
almost indiscernible in this contour scale. This could be a consequence of the large outer
surface area of each rotor blade overlapping three stator holes at a time.
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Figure 3. Velocity contours along the plane cutting through the third row of holes in the mixer,
corresponding to z = 13 mm (confer Figure 1 for the frame of reference) for a rotor speed of 1000 RPM
predicted using the k-ω SST turbulence model. The top row of contours corresponds to batch mode
and the bottom row to continuous mode. The rotor moves anticlockwise.
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Figure 4. Quarter plot of the velocity contours along the plane z = 13 mm, zooming onto the
rotor–stator mixer and surrounding area. The arrows represent the direction of the flow field.

While strong jets are desirable for enhanced mixing, they can result in a larger recircu-
lation zone below the mixer as shown in Figure 5; this is disadvantageous for DC casting
as the large rotary flow along the mould axis leads to the emergence of a segregation ring
at the center of a cast billet [15]. In this case, a design such as rotor C would be preferable
provided it provides an acceptable shear rate.
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Figure 5. Velocity contours and arrows along a slice 1 mm below the mixer, corresponding to
z = −1 mm.

3.4. Turbulence Kinetic Viscosity

Figure 6 shows the corresponding kinetic turbulent viscosity ratio for each case. This
ratio was obtained by dividing the kinetic turbulent viscosity field by the laminar vis-
cosity of the fluid and shows where distributive mixing is expected to occur. Two main
observations arise from these contours: (a) As in the previous mixer design study [25], the
overall mixing effect is not severely degraded by operating the mixer in inline mode as the
turbulent viscosity values between both operating modes are comparable; this shows that
a continuous melt treatment of slow-moving melt is possible, and the melt conditioning
technology can readily be transferred to launders or conduits of melt following the tundish.
(b) The effect of the rotor choice is more consequential on the mixing performance that any
degradation that would arise by switching melt conditioning from a batch treatment mode
to a continuous treatment mode.

Crystals 2022, 12, 1299 8 of 11 
 

 

 

Figure 6. Kinematic turbulent viscosity ratio contours along the plane z = 13 mm. 

3.5. Strain Rate 

Figure 7 shows the shear rate contours. In all six cases, the shear rates offer the same 

deagglomeration performance with shear rates larger than 105 s−1 inside the rotor–stator 

clearance and the stator holes, an observation consistent with earlier findings [27]. This 

prediction is interesting because it surmises that the rotor design is inconsequential for 

the deagglomeration of solid inclusions. It is therefore possible to use a rotor design that 

is easier to clean, thereby increasing the portability of the rotor–stator mixer unit along 

different processes in a casting plant. Since rotor C does not result in a large rotary flow 

under the mixer, it can potentially be used in DC casting where HSMC will still disinte-

grate particle agglomerations while attenuating any segregation band in the center of the 

billet. 

 

Figure 7. Quarter plot of the shear rate contours along the plane z = 13 mm. 

Figure 6. Kinematic turbulent viscosity ratio contours along the plane z = 13 mm.



Crystals 2022, 12, 1299 8 of 11

3.5. Strain Rate

Figure 7 shows the shear rate contours. In all six cases, the shear rates offer the same
deagglomeration performance with shear rates larger than 105 s−1 inside the rotor–stator
clearance and the stator holes, an observation consistent with earlier findings [27]. This
prediction is interesting because it surmises that the rotor design is inconsequential for
the deagglomeration of solid inclusions. It is therefore possible to use a rotor design that
is easier to clean, thereby increasing the portability of the rotor–stator mixer unit along
different processes in a casting plant. Since rotor C does not result in a large rotary flow
under the mixer, it can potentially be used in DC casting where HSMC will still disintegrate
particle agglomerations while attenuating any segregation band in the center of the billet.
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3.6. Volume Flow Rate

Table 4 shows a comparison of the predicted volume flow rates through each rotor–
stator mixer, given a different rotor design. The volume flow (pumping) rate through the
mixer was affected by the rotor design, with rotor C forcing less melt through the stator
holes. This can be attributed to the smaller interblade volume in this rotor design. The melt
flow rate was not severely degraded by switching from a batch treatment mode to an inline
mode, with the melt flow rates for each design within a standard deviation of each other
for rotors A and B and three standard deviations for rotor C.

Table 4. Comparison of the predicted volume flow rate for the different rotors operating in batch and
inline modes with rotor speed 1000 RPM.

Operating Mode Rotor Melt Flow Rate through
Mixer (kg s−1)

Melt Flow Rate
Standard Deviation

Batch A 0.382 0.004

Inline A 0.386 0.004

Batch B 0.434 0.04

Inline B 0.488 0.02

Batch C 0.238 0.002

Inline C 0.254 0.002

3.7. Power Number

The predicted power number for each rotor design is shown in Table 5. Rotor B,
having the largest power draw (the working fluid, mixer diameter, and rotor speed being
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the same in all cases) to shear the melt is less effective; i.e., it will require more power to
provide the same disintegration rate (shown in Figure 7) as the other designs. As noted
in the volume flow rate section, the power draw of each rotor is not severely affected by
switching between batch and inline modes, with only a slightly significant increase when
switching to inline treatment.

Table 5. Comparison of predicted power number for the different rotors operating in batch and inline
modes with rotor speed 1000 RPM.

Operating Mode Rotor Power Number (Po) Power Number
Standard Deviation

Batch A 0.374 4 × 10−3

Inline A 0.386 4 × 10−3

Batch B 0.47 4 × 10−2

Inline B 0.52 3 × 10−2

Batch C 0.28 2 × 10−3

Inline C 0.29 2 × 10−3

4. Conclusions

A numerical study of three rotor designs was conducted, and their performance for
melt conditioning in batch and continuous modes was assessed. The rotor design occupying
the smallest volume in the stator cup showed the largest variation in flow pattern and
mixing in the mixer zone. However, this design is not recommended for DC casting as
the recirculation that is generated below the mixer will lead to a segregation band in the
middle of the billet. The deagglomeration effect was not altered with any rotor design.
The choice of the rotor is therefore inconsequential for the disintegration of particles but
matters for distributive mixing. This paves the way for the exploration of simpler rotor
designs that can be used in bulk high shear melt conditioning.
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