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Abstract—This paper proposes a simple sparse imaging scheme
of using a linear sparse aperiodic array and a new fast
Fourier transform (FFT) matched filtering algorithm for a THz
multistatic multiple-input and multiple-output (MIMO) imaging
system. The simple linear sparse aperiodic array and mutlipass
interferometric synthetic aperture focusing technique are used
to achieve a fast sampling, low system cost and high imaging
performance. Unlike a traditional generalized synthetic aperture
focusing technique (GSAFT) for multistatic MIMO imaging,
which is time consuming and exhibits increased reconstruction
time with increased data volume, the proposed FFT matched
filtering (FFTMF) image reconstruction algorithm is capable of
providing comparable image quality but significantly reducing
the reconstruction time. For example, we show that for an image
of 300 mm × 320 mm with a pixel size of 0.75 mm × 0.83 mm,
the reconstruction time is reduced from about 1.50 minutes to
0.25 s in the 220 GHz 5-pass synthetic imaging experiments. The
proposed imaging algorithm uses an internal zero padding, a
multipass interferometric synthetic aperture focusing technique
and a wideband imaging technique to improve the imaging
performance under a low-cost, sparse sampling scheme. It shows
a strong anti-noise ability and a high tolerance to target focusing
distance. In addition, integrated with a algorithm of principal
component pursuit by alternating directions method (PCPADM),
sparse imaging is available to further save system cost and
sampling data without a loss of image quality while the novel
use of error matrix provides an additional detection capability
for imaging systems.

Index Terms—3D Fast Fourier transform matched filtering,
GSAFT, low rank matrix recovery (LRMR), MIMO, PCPADM,
sparse synthetic aperture imaging, sparse periodic array (SPA).

I. INTRODUCTION

M ICROWAVE up to Terahertz (THz) imaging has been
greatly improved in last two decades for radar, sens-

ing, personnel screening/security detection and non-destructive
testing [1]–[5]. There is of great significance to conduct
personnel screening in public areas such as airport, train
stations and gathering buildings. Imaging systems fall into
different categories if using different categorizing methods, for
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example, passive imaging system [6], active imaging system
[7], Quasi-optical imaging system [8], continuous wave system
[9], synthetic aperture radar (SAR) system [10], [11], linear
and planar array electronic scanning imaging system [11]–
[16]. These categories are not excluded and one imaging
system may fall into two or more categories because of
its working principle or scanning approach. Active imaging
systems leveraging the synthetic aperture focusing technique
is superior on image signal-to-noise ratio and exhibit high
image contrast compared to passive ones. The drawback of
long sampling time resulting from the need to scan large
aperture area can be potentially solved by electronic scanning
of an array in which the transmitters are sequentially turned on
by electronic switches in microseconds, and all the receivers
record the echoes at the same time. However, traditional
monosatic uniform arrays and most multistatic uniform/sparse
MIMO arrays use sampling spacing on the order of λ/2 or
being released to λ in practice by Nyquist sampling criterion
to avoid aliasing. This will increase the data acquisition time
due to a large number of sampling points required and system
cost because of consequent channels especially at millimeter-
wave (mm-wave) and THz bands. For example, there are a
total of 736 transmitter (Tx) antennas and 736 receiver (Rx)
antennas used in a planar imaging system working at 72-
80 GHz [15]. We have investigated the feasibility of using a
linear sparse periodic array (SPA) with large sampling spacing
for 220 GHz imaging and applied a multipass interferometric
synthetic aperture focusing technique to improve image quality
for detecting more challenging targets without increasing hard-
ware complexity [17]. The demonstrated imaging performance
with a low cost system setup is promising to security target
detection and non-destructive testing. However, the image
reconstruction based on GSAFT is time consuming because
of iterative superposition. Moreover, the multistatic MIMO
topology of the SPA makes it impossible to apply fast Fourier
transform (FFT)-based reconstruction techniques. Although
there are some researches on FFT-based multistatic MIMO
imaging, they mainly focus on low frequency bands, dense
sampling, single-pass synthetic aperture scanning, uniform
MIMO arrays [11]–[16], [18], [19]. Therefore, in this paper a
novel multipass synthetic aperture imaging algorithm based on
FFT matched filtering technique compatible with multistatic
MIMO setups (SPA used in experiments) is proposed for
THz sparse imaging. Compared to conventional FFT matched
filtering approach, the internal padding of zeros is proposed
to achieve a denser image pixel and improved image quality
so the large sampling spacing or fewer array elements can be
used [16], [20], [21]. The multipass interferometric imaging
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technique is incorporated to improve image quality but it does
not increase the hardware complexity of system. With the
proposed FFT-based imaging approach the image reconstruc-
tion time reduces significantly and it becomes independent
to data volume. Furthermore, wideband imaging operation
can be used to achieve a range resolution and reconstruct
3D target images of the scene [22]. The proposed FFT-based
3D image reconstruction approach is time efficient compared
to wavenumber domain algorithms without need of a stolt
interpolation of wavenumbers in spatial frequency domain
and the performance including the sparse imaging has been
successfully verified with simulated data [23], [24].

Sparse imaging including compressive sensing is a promis-
ing technique to break the Nyquist sampling condition. This
reduces the sampling time and system cost in particular [21],
[25], [26]. In order to apply sparse imaging, two key conditions
should be fulfilled. One is a hardware implementation like
sparse arrays to achieve a sparse sampling pattern, and the
other one is an effective algorithm to recover the data. In this
regard, random binary matrices are widely used to generate a
sparse sampling pattern in simulation studies of sparse imaging
(compressive sensing). However, there is very little research
about how to design a sparse sampling pattern, not to mention
the practical implementation because of complexity. A 2D
pseudorandom spiral-sampling pattern for sparse imaging is
proposed for a monostatic configuration while one transceiver
with a raster scanning scheme is used in the experiments [27].
One 2D SPA and two 2D sparse aperiodic arrays, which are
multistatic configurations, are proposed for near-field UWB
imaging in [28]. However, the synthesized 2D virtual arrays
are not suitable for large aperture sampling and image recon-
struction approach based on modified Kirchhoff migartion is
too complex. In this paper a simple designed linear sparse
aperiodic array is used for random sparse sampling.

Regarding the target image reconstruction in sparse imag-
ing, the algorithm based on low rank matrix recovery (LRMR)
technique with principal component pursuit by alternating
directions method (PCPADM) has been investigated in this pa-
per. Compared to emergent deep learning based image recon-
struction approach, image reconstructions based on low rank
matrix completion (LRMC) or LRMR exempt from training
stage with use of large amount of data [29]–[31]. Moreover,
the network is only valid for one specific imaging model after
trained [31]. Compared to random sparse imaging based on
compressive sensing (CS), LRMC or LRMR using the low-
rank constraint is superior because of its robustness against
basis-mismatch, lower demand on computing resources and
simplicity of exempting from the sparse representation [27],
[32]–[34]. LRMC has gained significant interest in various
applications such as W-band 0.4m-SAR imaging for target
detection [27], remote SAR imaging [35], [36] and multipass
interferometric synthetic aperture imaging at 220 GHz for
detecting a more challenging target at 1.4 m [17]. Different
from LRMC, LRMR, also known as sparse and low-rank
matrix decomposition, robust principle component analysis
(RPCA) and rank-sparsity incoherence in different applications
assumes a large data matrix M decomposed as a sum of
low rank matrix L0 and sparse noise/error matrix S0. It aims

to recover L0 from corrupted data M . In some applications,
however, some of the entries in M may be missing so LRMC
problem can be solved as a particular case of LRMR problem
[34]. Unlike classical principle component analysis (PCA)
applications, the novelty is to make use of error matrix S0

solely and together with L0 for image reconstructions. This
significantly improves the capability of target detection and the
noise susceptibility analysis shows a strong anti-noise ability.

In conclusion, the main contributions of the work presented
in this paper are as follows:

- A fast image reconstruction algorithm has been proposed
for multipass synthetic aperture THz imaging of multi-
static MIMO scenarios. It achieves a high time efficiency
because of using 2D FFT and removing stolt inter-
polations in traditional wavenumber domain algorithms
for 3D SAR imaging. Also, it uses zero paddings to
compensate the missing data in large sampling scheme
and multipass synthetic aperture focusing technique to
improve image quality, providing a potential solution to
reducing hardware complexity and cost of THz imaging
systems.

- A simple sparse imaging scheme with a linear sparse
aperiodic array has been verified, providing a practical
and cost-effective solution to large aperture imaging
applications. The PCPADM algorithm based on LRMR
technique is integrated with the aforementioned image
reconstruction algorithm for multistatic MIMO sparse
imaging. Its novel use of error matrix from LRMR data
recovery in image reconstruction and target identification
provides additional capabilities for imaging systems.

The rest of this paper is organized as follows. Section II
presents the fundamental theory including the low rank matrix
recovery for sparse imaging, monostatic approximation for
multistatic scenario, zero padding preparing for FFT metheod
compatible data and proposed multipass interferometric FFT
matched filtering image reconstruction algorithm with/without
sparse imaging. Section III provides the experimental setup,
measured data and results. Section IV demonstrates wideband
imaging for 3D target reconstruction with the simulated data
and proposed 2D FFT matched filtering approach. Section V
presents the concluding remarks.

II. FUNDAMENTAL THEORY

As illustrated in Fig. 1, a 2D scanning to sample the
echo data can be achieved by either a raster scanning with
one transceiver or a fully electronic scanning planar array of
transceivers [15]. In order to save scanning time in the former
scheme or system cost in the latter scheme, a linear sparse
aperiodic array is used to achieve the electronic scanning along
the horizontal direction and the process is repeated when the
array moves Ny times along the vertical direction. Therefore,
sparse imaging with a random sampling pattern illustrated
in white in Fig.1 will be achieved. Multipass such as N -
path phase correlated datasets can be recorded to improve
the image quality without increasing the system hardware
complexity [37]. In this imaging scheme multiple scans of
a target aperture with a path step ds along the horizontal
direction are conducted as illustrate in Fig. 1.
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The sparse aperiodic array is simply designed from a cor-
responding linear SPA consisting of full Nt Tx elements and
Nr Rx elements. The SPA is a properly designed multistatic
MIMO array (dr = dt · Nt/2 when Tx elements are located
at two ends where dt and dr are Tx and Rx element spacing),
so the side lobes of its effective point spread function are
minimised [38]. Tx array and Rx array are separated in two
lines when necessary [39] as shown in Fig. 2(a). Aperiodic
array and sampling pattern can be obtained with few elements
in SPA removed. For example, an aperiodic array consisting of
7 Tx and 7 Rx elements are shown in Fig. 1. Consequently, a
FFT-based image reconstruction algorithm for sparse imaging
is desired.

Fig. 1. Proposed multipass interferometric sparse imaging (n indicates nth
path sampling aperture and N is the total number of paths).

A. Low Rank Matrix Recovery

According to robust principal component analysis theory,
a low-rank matrix data L0 can be recovered from highly
corrupted measurements M = L0 +S0. Unlike the small noise
term N0 in classical PCA (M = L0 + N0), the entries in
error matrix S0 can have arbitrarily large magnitude, and their
support is assumed to be sparse but unknown [34]. Inspired
by this theory, a novel sparse imaging approach using robust
principal components analysis is proposed with a particular
use of error matrix in target image reconstruction. The nth
pass echo data from the target are sampled at NtNr × Ny
scanning positions leading to Sn

full = Sn
NtNr×Ny thereafter

abbreviated as Sfull for brevity. It can be either fully measured
or recovered/approximated as Ŝfull from its few observations
Sobs - random sampled data - by the proposed sparse imaging
technique,

Sobs(i, j) = PΩobs
·Sfull =

{
Sfull(i, j), (i, j) ∈ Ωobs

0, (i, j) /∈ Ωobs

(1)

where PΩobs
is a random matrix consisting of 0 (black)

and 1 (white) to deploy the random sampling and Ωobs

indicates a space of samples measured. Only active samples
and associated channels will be implemented in a practical
system. According to related theory [32], [40], the missing
echo data can be completed by solving the following nuclear
norm minimization optimization problem,

minimize ‖Lfull‖∗ + λs ‖Serror‖1
subject to PΩobs

· (Lfull + Serror) = Sobs

(2)

where λs is a scalar. ‖Lfull‖∗ is the nuclear norm of com-
ponent matrix Lfull ∈ C(NtNr)×Ny abbreviated as L matrix
below for brevity, which is the sum of its singular values [40],
and ‖Serror‖1 refers to the l1-norm of sparse error matrix.
Principal component pursuit by alternating directions is used
to solve (2) [34]. Unlike the classical PCA to recover L
matrix data from measurements, the recovered Ŝfull for sparse
imaging can be Lfull, Serror or their sum Lfull + Serror.

B. Monostatic Approximation and Central Zero Padding

Since we are dealing with a multistatic imaging scenario,
the separation between transmitter and receiver is too large
to be approximated with their center when calculating the
round-trip phase. It is impossible to apply FFT-based image
reconstruction technique directly, generalized synthetic aper-
ture focusing technique was thereby used [37], [39]. Thus, we
first use an effective monostatic approximation for the captured
raw data [16], [18]. By using this approximation, the received
data phase of each Tx-Rx interaction is modified according to
the position of the physical antennas and the corresponding
virtual element [20]. Suppose (x, y, 0) is the position of phase
center corresponding to the transmitter element at (xt, yt, 0)
and the receiver element at (xr, yr, 0). The multistatic data set
can be converted to an effective monostatic form by

s̃x,y = s(xt, yt, xr, yr)
so(x, y)

so(xt, yt, xr, yr)
(3)

where s(xt, yt, xr, yr) is the entry of fully measured
Sfull or recovered Ŝfull if LRMR is used, so(x, y) and
so(xt, yt, xr, yr) correspond to the monostatic and multistatic
reference signals, respectively. The above conversion provides
a mathematical approximation of an equivalent monostatic
topology. The converted data is referred to as as S̃(x, y) ∈
C(NtNr)×Ny .

As shown in Fig. 2(a), due to one gap in the center of the
equivalent virtual (monostatic) sampling data when using a
linear SPA, the converted data S̃ is not yet readily compatible
with Fourier-based image reconstruction technique. This is
padded with zero in this paper. The consequent data is called
S̄(x, y) ∈ C(NtNr+1)×Ny .

C. Internal Zero Padding and Proposed Multipass FFTMF
Imaging Algorithm

Aforementioned monostatic approximation and central zero
padding comply with the standard FFT matched filtering
approach [21], [41]. The data spacing in S̄ might be much
larger than the λ/2 required by Nyquist sampling criterion,
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which are dv at y-mechanical scanning direction and dt/2 at
x-electronic scanning direction under the scheme. It is found
from our study that a finer discretization is helpful to improve
the target image quality, we therefore propose the internal
zero padding on S̄ to achieve a denser echo data so resulting
in a finer target image discretization. The padding along the
electronic scanning direction is illustrated in Fig. 2(b) where
only half data of left part is shown for brevity.The consequent
data is referred to as S̄′(x, y).

(a)

(b)

Fig. 2. (a) Positions of SPA and its initial virtual samples (b) samples zoomed
in on the left half of (a) and zero padding.

On the basis of FFT matched filtering and multipass inter-
ferometric synthetic aperture imaging, a 2D target reflectivity
function G(x, y, z0) at a fixed distance z0 can be reconstructed
by

G(x, y, z0) =
N∑

n=1

〈
FT−1

2D

{
FT2D

[
S̄′
]
FT2D

[
H∗z0

]}〉
(4)

where H∗z0 is the matrix of h∗z0(x, y) = ej2k
√

(x−n·ds)2+y2+z2
0

that is the conjugate of system response evaluated at the
focusing point (x, y, z0). FT2D and FT−1

2D are 2D fast Fourier
transform and inverse fast Fourier transform, respectively.
Unlike the tradiational FFT mached filtering, newly introduced
n ·ds depicts the improved multipass FFTMF with an interfer-
ometric imaging technique. When wideband imaging is used, a
3D target reflectivity function G(x, y, z) can be reconstructed
by

G(x, y, z) =

Nf∑
nf=1

N∑
n=1

〈
FT−1

2D

{
FT2D

[
S̄′
]
FT2D

[
H∗z,nf

]}〉
(5)

where the entry of matrix H∗z,nf is h∗nf (x, y, z) =

ej2knf

√
(x−n·ds)2+y2+z2 that is the conjugate of system re-

sponse of knf wave at the focusing point (x, y, z). The internal
padding is not used when S̄′(x, y) is replaced by S̄(x, y). In

addition, it implies sparse imaging used if S̄′(x, y) or S̄(x, y)
are derived from the recovered Ŝfull rather than the exact
measured Sfull. The proposed 3D image reconstruction of (5)
is simplified to a 2D Fourier transform only and it is time-
efficient because it does not require a stolt interpolation in
spatial frequency domain [23], [24]. Thus we conclude the
proposed multipass interferometric FFTMT image reconstruc-
tion algorithm with PCPADM for multistatic MIMO sparse
imaging in Table I [34].

TABLE I
PROPOSED FFTMF ALGORITHM FOR MULTISTATIC MIMO

INTERFEROMETRIC SYNTHETIC APERTURE IMAGING

Input: Sparse sampling matrix P , measured matrix data Sfull ∈
C(NtNr)×Ny or its sparse samples Sobs, scalar λs, tolerance ε, threshold
µ , maximum iteration count kmax [34]
Output: 2D reconstruction G(x, y, z0) or 3D reconstruction G(x, y, z)

1. If sparse imaging is not used, Ŝfull = Sfull and go to step 6, else
start from step 2
2. Set S0 = Y0 = 0, µ > 0,M = Sobs

3. for k = 1 to kmax
while not converge do
if k > 1 & ‖P · (M − Lk+1 − Sk+1)‖F / ‖M‖F ≤ ε then break
Compute Lk+1 = D1/µ(M − Sk + µ−1Yk)

Compute Sk+1 = Sλs/µ(M − Lk+1 + µ−1Yk)

Compute Yk+1 = Yk + µP · (M − Lk+1 − Sk+1)

end while
4. end
5. Set Ŝfull = Lk+1, Sk+1 or Lk+1 + Sk+1

6. Apply monostatic approximation on Ŝfull with (3) to get S̃NtNr×Ny
7. Get S̄NtNr×(Ny+1) by using central zero padding
8. Get S̄′ by using internal zero padding
9. Reconstruct image with (4) or (5) for 2D or 3D reconstructions,
respectively

For a matrix X, Sτ denotes the shrinkage operator
Sτ (X) = sgn(X) ·max(|X| − τ, 0)

Dτ (X) denotes the singular value thresholding operator
[U,Σ, V ] = SV D(X)

Dτ (X) = USτ (Σ)V ∗

* sgn and max indicate the sign function and maxima function, SVD
represents singular value decomposition, Σ is a diagonal matrix with
singular values σ1, σ2, σ3, · · ·

D. Metrics of Image Quality

Image entropy (IE) and image contrast (IC) are adopted
to quantitatively evaluate the image quality. Entropy can be
used to measure the smoothness of a distribution function. The
smoother a distribution function is, the larger the entropy is.
This usually includes rich details. A sharper image results in
a smaller entropy [42]. IC represents the color richness of the
image. And high IC indicates a high difference in brightness
between light and dark areas of an image.

IE = −
m∑
i=1

n∑
j=1

|gi,j |2

‖G‖2F
ln
|gi,j |2

‖G‖2F
(6)

IC =

√√√√ mn

‖G‖4F

m∑
i=1

n∑
j=1

|gi,j |4 − 1 (7)
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where gi,j and ‖G‖F are the entry and Frobenius norm of
target image matrix G.

III. EXPERIMENT AND MEASURED RESULTS

A schematic of the experimental imaging system in the lab
is shown in Fig. 3. A Keysight PNA-X-N5244A is connected
to OML WR-03 extension modules for transmitting and receiv-
ing the THz signal. They move to each position of Tx and Rx
elements so as to imitate the Tx and Rx sub-arrays in a SPA,
respectively. Since the linear scanning stages are fixed, the
target is mounted on a NSI-MI planar near field measurement
system of PNF-XYV-0.9 m × 0.9 m, moving vertically to
inversely imitate a relatively mechanical scanning of the SPA
to a fixed target. The photographs of whole imaging system
and linear scanning stages are shown in Fig. 4(a) and Fig.
4(b) in which the Tx sub-array and Rx sub-array is separated
by 181 mm along the vertical direction in the experiments
because of the size of WR-03 extension modules. A pure
metallic target and a dielectric target with metallic patterns
under test are shown in Fig. 4(c) and 4(d). The experimental
setup is summarized in Table II. The target distances of both
kinds of experiments are 1.4 m. Two array elements of horns
utilized in the experiment are WR3 (220 ∼ 325 GHz) standard
pyramidal horns with a peak gain of about 23.81 dB at 220
GHz and the typical output power from the THz frequency
extension head at 220 GHz is -13 dBm (0.05 mW) [39]. We
noted that increasing the dt value in a SPA will increase
the array aperture size, thus, theoretically, a superior spatial
resolution can be obtained. However, it will also cause artifacts
in the image. Also, we found that the spatial space period
of ghost images is also related to the spacing dt and target
distance [39]. In order to meet desired imaging demands,
the synthesized full SPA consists of Nt = 8 and Nr = 8
elements, Tx element spacing dt is 6 mm so the electronic
sampling spacing is 3 mm and the real aperture length is 216
mm. The mechanical scanning length of imaging the metallic
target is 0.3 m with a step of 4 mm. The pass step ds is 20 mm
and 4-pass datasets are collected. The mechanical scanning
length of imaging the dielectric target is 0.4 m with a step of
2.5 mm. The pass step ds is 10 mm and 5-pass datasets are
collected. Accordingly, the single-pass sparsity rates are 3.87%
and 4.65% while the multipass sparsity rates are 15.50% and
23.24%. Single-pass sparsity rate (SSR) is defined as the ratio
of single-pass sampling data with the full SPA to Nyquist half
a wavelength sampling data. Multipass sparsity rate (MSR)
is equal to the SSR multiplied by the number of passes. It
is shown that even though the random sparse imaging with
a aperiodic array is further used, the proposed SPA imaging
scheme has already reduced the sampling data significantly.

A. Effect of Zero Padding

There are 10 holes within the pure metallic target (145
mm × 120 mm × 5 mm) ranging from 5 to 7 mm in
diameter. The reconstructed 4-pass interferometric synthetic
aperture focusing images are compared in Fig. 5. Fig. 5(a)
shows the reconstructed image with central padding of zeros
only so the data spacing along x and y-axis are 3 mm and

TABLE II
EXPERIMENTAL SETUP PARAMETERS: TARGET DISTANCE 1.4 M

Target Mechanical Spacing Pass Step ds SSR
( Size / mm × mm × mm ) ( Length ) ( Number ) ( MSR )

Metal-Fig.4(c) 4.0 mm 20 mm 3.87%

( 145 × 120 × 5 ) ( 0.3 m ) ( 4 ) 15.50%

Dielectric-Fig.4(d) 2.5 mm 10 mm 4.65%

( 260 × 180 × 1.6 ) ( 0.4 m ) ( 5 ) 23.24%

TABLE III
IE AND IC OF METALLIC TARGET IMAGES IN FIG. 5

Metrics Fig.5(a) Fig.5(b) Fig.5(c) Fig.5(d)

Image Pixels 52 × 150 208 × 328 208 × 328 208 × 328
Image Entropy 7.288 10.060 10.059 10.120
Image Contrast 1.481 1.480 1.477 1.428

4 mm. Fig. 5(b) shows the reconstructed image with central
padding and internal padding of zeros so achieving 0.75 mm
and 1 mm data spacing along x and y-axis. Fig. 5(c) shows
the sparse imaging output with an aperiodic array of 7 Tx
& 7 Rx elements (49 sampling points along x-axis). Fig.
5(d) shows the image reconstructed by 4-pass interferometry
GSAFT without any data padding as a reference. Comparing
Fig. 5(a) to Fig. 5(b), it is seen that the contours of holes are
improved after using both central and internal padding of zeros
because of denser image pixels. This agrees with a higher
IE improving from 7.288 to 10.060 and the image contrast
stays stable of 1.48 as summarized in Table III. The sparse
imaging output shown in Fig. 5(c) with the reconstruction
approach of PCPADM-FFTMF and zero padding has achieved
the aim of reducing the number of transceivers/sampling
data without compromising on image quality verified as little
decreases in IE and IC in comparison with Fig. 5(b). Thus, the
proposed FFT matched filtering reconstruction approach shows
comparable image quality in comparison with the reference of
Fig. 5(d) reconstructed by a GSAFT approach.

B. Investigation on Sparse Data Recovery with PCPADM

In addition, the target of metallic patches etched on the
dielectric substrate (260 mm × 180 mm × 1.6 mm) as shown
Fig. 4(d), which is more challenging because the contrast
between metal to dielectric is smaller, has been tested. The
reconstructions of using L matrix and Serror matrix solely

Fig. 3. Schematic of the experimental imaging system in the lab.
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(a) (b)

(c) (d)

Fig. 4. Photographs of experimental (a) whole imaging system (b) MIMO
linear scanning stages (c) pure metallic target (d) dielectric target with metallic
pattern [17].

(a) (b)

(c) (d)

Fig. 5. Reconstructed 4-pass interferometric synthetic aperture focusing
images (units: dB) of metallic target with FFT matched filtering (a) central
padding of zeros (b) central padding and internal padding of zeros (c) same
padding as (b) but with sparse imaging of an aperiodic array of 7 Tx & 7 Rx
elements (d) with interferometry GSAFT as reference (no zero padding).

have been investigated in Fig. 6. Fig. 6(a) and 6(b) show the
reconstructed images with L matrix and Serror matrix solely in
which an aperiodic array of 6 Tx and 6 Rx elements is used,
respectively. The reconstructions of using L matrix reveal a
full view of the target and a light shadowing of metallic
patterns. This shows a lower IC of 1.440 and a higher IE
of 11.069 because different properties of targets are included,
as summarized in Table IV. In contrast, the reconstructions

TABLE IV
IE AND IC OF CHALLENGING DIELECTRIC TARGET IMAGES WITH SAME

IMAGE PIXELS OF 390 × 408

Metrics Fig.6(a) Fig.6(b) Fig.7(a) Fig.6(c) Fig.6(d) Fig.7(b)

IE 11.069 10.924 11.062 11.049 10.798 11.025
IC 1.440 2.039 1.500 1.477 2.338 1.558

Metrics Fig.7(c) Fig.7(d) Fig.8(a) Fig.8(b) Fig.8(c) Fig.8(d)

IE 11.007 11.039 11.066 11.103 11.150 11.329
IC 1.588 1.570 1.544 1.829 1.504 1.442

of using Serror matrix suppress the view of substrate layer
and consequently the view of metallic patterns is enhanced.
This agrees with an increasing IC of 2.039 and a lower IE
of 10.924. Both kinds of reconstructions are complementary
to each other. Same trends are found in Fig. 6(c) and 6(d)
reconstructed with L matrix and Serror matrix solely in which
an aperiodic array of 7 Tx and 7 Rx elements is used. Besides,
an improved image quality is obtained because more data are
sampled for the image reconstruction.

In order to incorporate both advantages, reconstructions
with Ŝfull = Lfull + Serror are compared in Fig. 7(a) and
Fig. 7(b) in which aperiodic arrays of 6 Tx & 6 Rx elements
and 7 Tx & 7 Rx elements are used. Compared with Fig. 6(a)
and Fig. 6(c), the ICs increase in Fig. 7(a) and Fig. 7(b) so the
targets become clear and they are more likely to be recognised.
Meanwhile, details become more visible in comparison with
Fig. 6(b) and Fig. 6(d), which is verified by higher IEs. In
addition, the reconstructions of using a full sampling with
the proposed FFTMF approach and GSAFT as a reference
are shown in Fig. 7(c) and Fig. 7(d). Compared with the
most accurate reconstruction based on GSAFT, the proposed
FFTMF reconstruction approach with full sampling data offers
similar image quality with IC increasing from 1.570 to 1.588
and IE decreasing from 11.039 to 11.007, which agrees with
the visual evaluation that no visible differences can be found.
Moreover, the proposed FFTMF sparse imaging is capable of
proving equivalent image quality as the FFTMF full imaging
in both the visible evaluation and quantitative evaluations of IE
and IC. In summary, the full matrix reconstruction is proposed
for imaging differentiating from classical PCA applications.
Besides, the reconstruction of using Serror matrix is helpful
to identify the metallic pattern. Thus, it is proposed to be a
complementary reconstruction/detection in addition to the full
matrix reconstruction.

C. Analysis on Noise Susceptibility

It is known that error matrix in PCA correlates with noise.
Therefore, the noise susceptibility of the proposed imaging
approach has been investigated on basis of Fig. 7(b). The
white Gaussian noise is added on the measured (sparse) data
to achieve 9 dB and 3 dB signal-to-noise ratios, respectively.
It is worth differentiating this additional noise from the experi-
mental noise which has already been included in the measured
data. The reconstructions of a sum matrix and a error matrix
with 9 dB SNR are shown in Fig. 8(a) and 8(b). In comparison,
Fig. 8(c) and 8(d) show the reconstructions of a sum matrix
and a error matrix with 3 dB SNR. Comparing Fig. 8(a) and
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(a) (b)

(c) (d)

Fig. 6. Reconstructed 5-pass interferometric synthetic aperture focusing
images (units: dB) of the dielectric target with the proposed FFTMF approach
and sparse sampling data. Aperiodic array of 6 Tx & 6 Rx elements and
reconstructions of (a) L matrix only or (b) Serror matrix only, aperiodic
array of 7 Tx & 7 Rx elements and reconstructions of (c) L matrix only or
(d) Serror matrix only.

(a) (b)

(c) (d)

Fig. 7. Reconstructed 5-pass interferometric synthetic aperture focusing
images (units: dB) of the dielectric target using the proposed FFTMF approach
and an aperiodic array of (a) 6 Tx & 6 Rx elements (b) 7 Tx & 7 Rx elements
(c) a full SPA of 8 Tx& 8 Rx elements and (d) reference of using mutlipass
interferometric GSAFT with the full SPA sampling data.

8(c) with Fig. 7(b), we can see the deterioration of image
quality with the decease of SNR but the impact is very small,
which is further verified by little decrease in IC from 1.558 to
1.544 and 1.504. Therefore, it is still feasible to achieve the
imaging and target detection successfully even when SNR is
reduced as low as 3 dB. Regarding the reconstruction of using
an error matrix only, compared Fig. 8(b) with Fig. 8(a), an
improved image contrast is obtained and the metallic pattern

can be recognised more clear, as revealed before. When the
SNR decreases to 3 dB, although the recognition of metallic
pattern is still clear, the image contrast drops because of too
much noise in the surroundings/background. Therefore, the
proposed imaging/detection approach making use of this error
matrix shows a strong anti-noise ability.

(a) (b)

(c) (d)

Fig. 8. Reconstructed 5-pass interferometric synthetic aperture focusing
images (units: dB) of Fig. 7(b) with 9 dB SNR and reconstruction of (a)
full matrix (b) Serror matrix and with 3 dB SNR and reconstruction of (c)
full matrix (d) Serror matrix.

D. Tolerance to Target Focusing Distance
THz imaging is thought to be sensitive to focusing distance

because a small distance error will incur significant phase
errors with respect to such a short wavelength. Therefore,
the reconstructed images with the proposed sparse imaging
(same configuration as Fig. 7(b)) with a range of target
distances from 1.38 m to 1.50 m are compared in Fig. 9.
In comparison, the reconstructed images with the GSAFT
approach (same configuration as Fig. 7(d)) at different fo-
cusing distances are shown in Fig. 10. The proposed sparse
imaging approach demonstrates equivalent capacity as the
most accurate GSAFT approach. In addition, the measured
distances in the experiments from the target to input plan
and output plane of horn antennas are 1.47 m and 1.40 m,
respectively. It is reasonable to find a little improvement on
contour of metallic patches in the center and right bottom areas
of Fig. 9(c) and Fig. 9(d) when focusing target distances are
1.46 m and 1.50 m. However, such tiny differences are seen
in reconstructions within such a wide distance range, which
shows an unexpected stability of successful target detection to
target focusing distance error.

E. Comparison of Image Reconstruction Time
Another key metric for imaging/detection is imaging frame

rate which is desired to be as fast as possible, up to few sec-
onds per frame for real time detection. Therefore, the statistic
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(a) (b)

(c) (d)

Fig. 9. Reconstructed 5-pass interferometric synthetic aperture focusing
images (units: dB, same configurations as Fig. 7(b)) with the proposed sparse
imaging at a varying target distance of (a) 1.38 m (b) 1.42 m (c) 1.46 m (d)
1.50 m.

(a) (b)

(c) (d)

Fig. 10. Reconstructed 5-pass interferometric synthetic aperture focusing
images (units: dB, same configurations as Fig. 7(d)) with full sampling and
GSAFT approach at a varying target distance of (a) 1.38 m (b) 1.42 m (c)
1.46 m (d) 1.50 m.

image reconstruction time with 30 independent attempts of
dielectric target in different schemes has been investigated as
shown in Fig. 11 and Table V. The platform under test is
MATLAB on a desktop with windows 10 Enterprise, Intel
Core I7-10700 and random access memory of 16 GB. The
FOV is 192 mm × 400 mm and the target reconstruction
area is 300 mm × 320 mm. GSAFT-A1 and A2 represent the
images are reconstructed by multipass interferometric GSAFT
[17] but the image is discretized into 4 mm and 2 mm grids,

respectively. The latter image computation is fourfold so the
reconstruction time increases to 15.72 s from 3.72 s. Therefore,
it is approximated about 1.5 minutes if the pixel size is reduced
to 0.75 mm × 0.83 mm. However, the time reduces signifi-
cantly when the proposed FFTMF is used. The full sampling
data of 8 Tx and 8 Rx elements are used in FFTMF-B1

and FFTMF-B2 so there is no compromise on image quality.
Moreover, the zero padding is used to achieve 1.50 mm ×
1.25 mm and 0.75 mm × 0.83 mm image pixels, respectively.
The corresponding image reconstruction time are 0.23 s and
0.25 s, respectively, although both image discretizations are
much denser than GSAFT-A2, the achieved reconstruction
speed is promising for real time detection. In addition, the tiny
difference of reconstruction time indicates that the FFTMF
approach is not so sensitive to the target data volume like
GSAFT method. Even though the proposed sparse imaging
technique of 60%, 70% and 80% sampling data are used, the
image quality reconstructed with full matrix will not constrain
the target identification as demonstrated in our previous LRMC
sparse imaging while newly proposed reconstructions with the
error matrix provides additional identification ability [17]. The
image reconstruction time increases to the range of 2.0-3.0 s
with a threshold u1 = 20λs because of full data recovery in
each pass, as shown in FFTMF-B3 to B5. It is worth noting
that lower u will increase the reconstruction time as shown
in FFTMF-B6 to B8 with u2 = 10λs, which ranges from
2.97 s to 4.16 s for a 5-pass synthetic aperture focusing image
reconstruction.

Fig. 11. Image (5 passes in total) reconstruction time with 30 times in each
scheme, the top and bottom lines in each scheme imply the deviation in 30
reconstructions.

IV. WIDEBAND IMAGING FOR 3D TARGET
RECONSTRUCTION

In order to verify the 3D target reconstruction, a simulation
of wideband imaging on a T-shaped target is conducted. The
full SPA is same as the experimental configuration used. The
target distance is 1.1 m. The mechanical scanning length is
200 mm with a step of 2 mm. The bandwidth is 15 GHz with
a center frequency of 220 GHz and the number of frequency
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TABLE V
COMPARISON OF IMAGE RECONSTRUCTION TIME IN FIG. 11

Scheme Sparse Imaging Image Pixel Size(x&y) Mean/Second

GSAFT-A1 NA 4.00 mm & 4.00 mm 3.72
GSAFT-A2 NA 2.00 mm & 2.00 mm 15.72
FFTMF-B1 NA 1.50 mm & 1.25 mm 0.23
FFTMF-B2 NA 0.75 mm & 0.83 mm 0.25
FFTMF-B3 60%/µ1 0.75 mm & 0.83 mm 2.28
FFTMF-B4 70%/µ1 0.75 mm & 0.83 mm 2.75
FFTMF-B5 80%/µ1 0.75 mm & 0.83 mm 2.94
FFTMF-B6 60%/µ2 0.75 mm & 0.83 mm 2.97
FFTMF-B7 70%/µ2 0.75 mm & 0.83 mm 3.65
FFTMF-B8 80%/µ2 0.75 mm & 0.83 mm 4.16

* The percentages in sparse imaging column indicate the proportion of
Sobs/Sfull in 1

samples are 220. Such a bandwidth is capable of providing
a 10 mm range resolution at 1.1 m. The T-shaped target in
simulation consists of 100 × 100 pixels with a grid distance
of 1 mm. The reconstructed images of SPA full imaging and
aperiodic array sparse imaging are shown in Fig. 12(a) and Fig.
12(b). It is shown that 3D target images are both reconstructed
successfully. It is worth mentioning that the effective sampling
spacing of non-zero samples (data) along x-axis and y-axis are
3 mm and 2 mm, respectively. That is much larger than the
λ/2 and even λ. The thickness of 10 mm reveals the range
resolution. There is little deterioration on the surface of target
in sparse imaging but it is acceptable when taking account of
the large sampling spacing used and it does not hinder the
target recognition.

(a) (b)

Fig. 12. Reconstructed 3D images (units: linear) of T-shaped target (a) SPA
full sampling and imaging and (b) sparse imaging of aepridoc arrays with 7
Tx & 7 Rx elements.

V. CONCLUSION

A novel FFT matched filtering reconstruction algorithm has
been proposed for THz multipass synthetic aperture imaging
with a multistatic MIMO configuration. The SPA already saves
sampling data ratio to 5% below in a single-pass imaging
and 25% below in a multipass imaging in the experiments.
The sparse sampling scheme is cost effective and feasible to
implement in practice with a simple design of aperiodic array
originating from the SPA. In addition, the proposed sparse
imaging with the use of a aperiodic array and a robust principal
component analysis algorithm is not only promising for further
saving the number of transceivers or size of the sampling data,
but also contributes to improving the target detection by using

the error matrix in image reconstruction. We showed that the
proposed imaging approach is capable of reconstructing one
5-pass synthetic aperture image in about 0.25 s for an imaging
area of 192 mm × 400 mm when sparse imaging approach is
not used and in about 2.0-4.0 s when sparse imaging approach
is used. Finally, a strong anti-noise ability, a high tolerance to
target focusing distance and a successful 3D target imaging
were demonstrated.
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