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ABSTRACT

Numerical solutions to a class of two dimensional harmonic mixed
boundary value problems defined on rectangular domains and containing
singularities are obtained using conformal transformation methods.
These map the original problems into similar ones containing no
singularities, and to which analytic solutions are known. Although
the mapping technique produces analytic solutions to the original
problems, these involve elliptic functions and integrals which have
to be evaluated numerically, so that in practice only approximations
can be obtained. Results calculated in this manner for model
problems compare favourably with those obtained previously by other
methods. On this evidence, and because of the ease with which the
method can be adapted to different individual problems, we strongly
recommend the transformation technique for solving problems of this

class.

We express our thanks to Drs. E.L. Wachspress and W.B.Jordan for their
initial suggestion of this approach to elliptic problems containing
boundary singularities. Some of the work for this report was done
during the period September 1968 - June 1970 whilst Dr.Whiteman was
at the University of Texas, and was supported in part by Army Research
Office (Durham) Grant DA-ARO(D) - 31 - 124 - G1050, and the National
Foundation Grant GP - 8442 awarded to the University of Texas at Austin.






1. INTRODUCTION

The slow convergence with decreasing mesh size of finite-difference
and finite-element solutions to the true solutions of harmonic mixed
boundary value problems containing boundary singularities has caused
such problems to be much studied, and special applications of these

standard methods have been proposed, (see Fix [5], and Whiteman and
Webb [18]). In addition several numerical techniques based on analytic

methods have been given for particular problems, Whiteman [13] and
Fox and Sankar [6]. As Laplace's equation is invariant under
conformal transformation, another attractive technique is that in
which the original harmonic problem is mapped into another containing
no singularities. When mapping the region in which the original
problem is defined, the user of the conformal transformation has two
choices. He can either apply a simple transformation and accept

the, usually complicated, resulting region, as for example in [13],
or he can devise a transformation which leads to a previously

chosen simple region. The latter course is adopted here to solve
numerically several harmonic mixed boundary problems defined on
rectangular regions. The method involves a new application of a

well known technique (see Bowman [2], Chapter VII), and is used

to produce accurate solutions to a number of model problems; in
particular to one which has been the subject of much interest

recently, [8], [10] and [12] - [19].






In all the problems considered here the function u(x,y) satisfies

Alu(x,y)]1=0, (x,y)eR,
u(X1y):€’ (X1y) 6821

%ﬂ, (X,y) €S,, (1)
U(X’y):m! (X,y) GSS’

W:O, (x,y) €S,.

In (1) the / and m are constants, A 1is a Laplacian operator, R is an

open domain with a rectangular boundary S, where S =US;, 1 =1 ,2 ,3,4 ,
Si and Sj+1 being adjacent sub arcs of S, and 9%& is the derivative in
the direction of the outward normal to the boundary. The application of

two Schwarz-Christoffel transformations, with an intermediate bilinear

transformation, mapsthe region G =RUS in thew=x + iyplane into the

region G'in the W =&+inplane, where G = G'={¢&,7):0<&<1,0<np<HY,
and H is a known constant. The original problem is thus transformed

into the problem

AIV(£,m)]1 =0, 0<&<1,0<n<H,
v(E0) _ov(gH)
N - o =0,0<& <], (2)

v(o,7) = /,v(Ly) =m,0<n<H,

which has solution
V(g m)=(m-1}e+— L. (3)
m-—/

Thus if P=(x,y)eG is mapped into P‘:(én)eG',it follows that
u(P)=v(P'), and so from (3) the solution of (1) at P is known
immediately if the real co-ordinate of the point P' is found. In practice
the transformations are performed numerically, thus introducing both
rounding and truncation errors, and so only an approximation U(P) to

u(P) is obtained.






2. TRANSFORMATIONS

2.1 Bounded Rectangular Domains

We consider the general problem of type (1) where G=BCDE is the
rectangle ‘X‘ <a0<y<Db, as in Figure 1, and where the four
distinct end points L, M, N, P of the sub arcs Sj, can be taken anywhere
on S. In this problem the boundary conditions on adjacent S's are one

Diriohlet and the other Neumann, GeW -plane, and L,M,N,P are
respectively

the points wi, wy, w3 and wy.

du
p 9y P c
.
2u_ g w sy
ax
y N
| @-:O
I'T Ix
u= U,
B u=uy M U =9 B > x
dy
Figure 1.
The transformations used and their effects are
, Gew-plane = G, e z— plane,(z = a +if),
) p L2 plane,(z = a +if) "

z:sn(MN,k}
a

where sn denotes the Jacobian elliptic sine, and

K=K(=[—2

e o)

is the complete elliptic integral of the first kind with modulus k.






This transformation 1s the inverse of a Schwarz-Christoffel

transformation, and, if the modulus k is chosen so that

K{(l—kz)i} ) 2 | .

equation (4) maps G onto G,= a the upper half z-plane.

In particular under this transformation,

w-plane | z-plane

(0,0) - (0,0),
(xa,0) - (£10),

(xta,b) - (£1/k,0),
(0,0) - (=,0) ,

and

w-plane | z-plane
L = w; - (01,0) = L,
M= w, - (02,0) = M,
N = w3 - (a3,0) = Np,
P = wy — (0(410) = P,

1 ]

Where ¢« =sn —kw, K |, i=1234.
a

Further details of transformations of this type can be found in

Bowman [2], and Markushevich [9].
G, ez - plane— G, et — plane, (t =g +ih),
(11) (6)
to a, =0, | (-0 |
a, —a -,

This bilinear transformation maps G; onto G, = the upper half







t - plane , with

z-plane t-plane

L 1= (01,0) - (0,0) = Ly,
M = (02,0) - (~,0) = My,
Nl = (0(31 O) - (91, O) = Nl ’
P = (og,0) - (1,0) = Py,
where
g, = Xy =% || F—H | o 4
Y lay e ) \ay —a,
G, et—plane>G ew —plane,(w':§+i77)
(1id) 1 1 ) (7)
W=—--snt(t2,m),
K(m)

where K(m) is the complete elliptic integral of the first kind

1
with modulus m=(l/g,) . Note that, since g;> 1, the condition

0<m<1l for the modulus m is satisfied. The Schwarz-Christoffel
transformation (7) maps G, onto the rectangle

G = (é,n):OSLfsl,osnsK{(l—rr]Z)z}

=H
K(m)
in the w'-plane, with

t-plane w'—plane

L2E(OIO)_’(OIO)EL3I
M2 = (OOIO) g (O/H) = M3 14
N2 = (9110) - (9110) = N3 ’
p, = (1,0) - (1,0) = P3,

The combined effect of (4), (6) and (7) is to transform the






original problem in G into a problem of type (2) in G' , as in

Figure 2, which has the solution

T ©

n % (1,1)

Av = O ¥ =y

L,(0,0) 2, Py (1,0)

Figure 2.

We note that the bilinear transformation is not unique,and in
fact four such suitable transformations exist. For example,

(6) can be replaced by
(o o, —a, Z-a, |
o, —a, Z-a,

The half place G; is again mapped on to G, but now

z—phm|t—phm

1
£
=)

\2
8
N2

1






Where

o, — o, —o
gzz( 1 Sj ( 2 4} > 1
OLl—OL4 (XZ—Ots

Transformation (4) followed by this bilinear transformation, and then

1
(7) withm = (/g,)2, transform the original problem into a problem
of type (2) with solution

V(&,n)=(uo—ul){é+ = J (9)

U, — Uy

The two remaining bilinear transformations are given for
reference.
These are

O, —OL Z—Q
tz[ : 1}- 2 (10)
o — 0, Z—a

tz(%_a“j-(z_%j. (11)
o, — 0 z-a,

Use of (10) in place of (6) with the modulus

1
2
O, — O a, —a
m = 3 1 . 4 2

in (7), produces a problem in G' with solution (8).

Similarly (11) with
"2
o, — A o, —d
m = 2 I I ! 3
oL, — 0, o, —0o,

produces a problem with solution (9).

and







2.2 Unbounded Rectangular Domains

A technique similar to that of Subsection 2.1 is used transform
problems of type (1) in which G is a semi-infinite strip into
problems of type (2). In this case the only change necessary
is that (4) must be replaced by a transformation mapping the
strip onto the upper half z-plane. As an illustration we consider
the following mixed boundary value problem in which u(x,y) satisfies

Au=0, 0<x<ay>0,
a 2a

y o XS_1 =01

003 3 y

au(x,0)
oy

u=u,, X=a,y>0,

IA

u=u

=0, 0<x<2, ﬁ<x<a,
3 3

Uu—>u, as y—ow, 0<x<a,

ouo,y) _ 0,

>0,
OX y

so that G ={(x,y):0<x<a,y>0}. The transformation

maps G ontoG,=the upper half z-plane with

w—phm|z—me

N=(a0) —(-10) =N,,






Thus, 0(121/2, a, =-1/2, 0;=-1 0,=% and (6) becomes

. 2z-1
2z+1

where g,=3. Hence (13), (14), and (7) with m = l/\ﬂg
map (12) into a problem of type (2), as in Figure 2, with solution (8).

2.3 Numerical Algorithms.

Details of the methods for implementing the transformations are now
given. For the bounded domain problems the first transformation,
the elliptic sine (4), is found from a series expansion, Copson [3] p.412,
so that

» —nb n+1 2
Cayes anl(n+2))
n-0
a+i5:sn(ﬂkj:i (15)

a k o —nbm? !
1+Z[(—1)"e a [Wﬂ
2 ~ a

whereas for problems in unbounded domains equation (13) is used
directly. 1In both cases the bilinear transformation which follows
gives immediately the image (g,h) e G, of (a,B)e G,.

In order that the solutions (8) and (9) may be used, the real
co-ordinaie § of the image w'=(¢,n)e G' of (g,h) e G, must be
found. For this the following analysis is necessary. Equation (7)
gives

s?(k(mw',m) =t =g+ih ,

so that
cr(K(mw, m) =1-sr?(K(mw', m)
=(@1-g)-ih.
When A and B are defined by
A = [on(K(mw,m)| = {1-g)f +h2], (16)

and

B:‘snz(k(m)w',m)( :{gz+h2}% , (17)






and, when K(m)w' = p+ 1iqgq, the expressions for the absolute
values of the elliptic functions, (Bowman [2], p.41, equations

37 and 38), give

Ao dn(2p, m)+cn(2p, m)dn(2p, m')
dn(2g, m')+dn(2p, mjen(2g, m')

' (18)

and

_ 1-cn(2p,m)on(2q, m)
dn(2g, m')+dn(2p, m)en(2g, m')

(19)

1

The m'zﬁfﬂnzﬁ in (18) and (19) is the complementary modulus,

and dn is the Jacobian elliptic function defined by
1
dn@pm):ﬁ—nﬁmzﬁpmﬁz

1
= f-m?+m2en?(2p,m)f . (20)
Equations (18) and (19) give
A - B dn(2p,m) = cn(2p,m) ,

so that
cn?(sp m) —2Aci2p, m) +A? —B?dn®(2p,m) = 0.

This together with (20) gives
(1-B2m2 jer?(2p, m)—2A cn (20,m) + A2 — B =0, (21)

Equation (21) is a quadratic in on(2p,m) with solutions

A BAM? + (- B2m?) (- m?)f
(1-B?m?)

cn(2p,m) = , (22)

one of which is extraneous. To determine this we note that

under transformation (7) the image of (1,0) e G, is (1,0)eG"






11.

Thus, when g 1 and h=0, ¢ =1 and M= 0 so that w' =1

and cn(2p,m) = cn(2K(m),m) = -1. Again when g = 1 and h 0,
it follows from (17) and (18) that A = 0 and B= 1, and therefore
for these values of A and B the right hand side of (22) must have

value -1. Thus

cn (2p,m) = cn(2k(m) ¢, m)
 A-BAMM? 4 l-Bm?) -m?)f 3
) {-B'm’j

With g and h known, equations (17) and (18) give A and B, and

hence (23) gives cn(2K(m) & ,m). When ¢=CO§%CK2KOD§”?,
it follows from Abramowitz and Stegun [1], Section 17, p. 589,
that

&=F(\a) 2K(m), (24)
where F($)\a) is the incomplete elliptic integral of the

first kind of amplitude ¢ and modular angle a =sin4n1

In (15) the modulus k is determined from (5) to 10 decimal
places either directly from tables [1], Table 17.3, or, for
values of b/a outside the interval [0.3,3], by means of the
iterative method, [1], Ex 6,p.602. The series in (15) are
truncated after N terms. These series converge very rapidly
and, for the model problems solved, 1t is found that the
calculated approximations to the elliptic sine remain constant
for N23. Thus, in all calculations N is taken as 3. Two
algorithms, due to Hofsommer and Van de Riet [7] are used to
calculate respectively the elliptic integrals F(p\a) and

K(m) in (24). The authors of these algorithms claim twelve
accuracy, and this is confirmed by experiments carried out on

an I.C.L. 1903A.






12.

3. APPLICATIONS TO MODEL PROBLEMS
AND
NUMERICAL RESULTS

3.1 Bounded Rectangular Domains

Problem 1

The function u(x,y) satisfies Au = 0 in a square region -1 < x, y < 1

with the slit y=0, 0 < x < 1 and boundary conditions

QKEEQ:ZO ~1<x<1

oy ’

1000,  0<y<1,

U(' )_ {0 -1<y< }
au(—Ly)__o ~1<y<l

OX ’ |
ou(x,0 +) _ ou(x,0-) =0, 0<x<1

oy oy | |

where 0+ and 0- represent respectively the upper and lower arms of
the slit. Because of the antisymmetry it is sufficient to consider only
the problem in the upper half region G, where G ={x,y)-1<x<l,

0<y<1}, and to add the boundary condition u(x,0) = 500, -1 < x < 0,

as in Figure 3. This problem is a special case of (1) and has a

singularity at the origin.

(~1,1) 9y (1,1)
du.o us 1000
ax y
- ’- X
(-1,0) ©=500 u . (1,0)

y
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The details relevant to Subseotion 2.1 are:

Value of k in (4) : 1/N2,
o . 22
Bilinear transformation : t=—,
1+z
1
Value of m in (7) : (1/2 + 1/2N2) 2,
Solution : u(x,y) = vi(& ,mM = 500 (&+1).

The numerical results for the conformal transformation method (CTM) show
everywhere four figure agreement with those obtained by whiteman [16].
In the neighbourhood of the singularity the results show at nearly
all points five figure agreement with those obtained by Whiteman [15].
The CTM results are given on a mesh of length 2/7 throughout R in
Table 1, and on a mesh of length 1/28 in the neighbourhood of 0,

x| < 1/7, 0 <y < 1/7, in Table 2. Results of [15], [16] and of

Wait and Mitchell [12] are included for comparison. Execution time

on the ICL 1903A for the CIM is 15 seconds for the solution of

Table 1.
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In the problems 2-5 that follow G is the rectangle

G = {(x,y) ¢« Ix| 1 ,0 vy 1} with interior R.

Problem 2.

Au =0inR,

u(x,0)=0,-1<x<0,
ou(x,0) _ au(x1)

OX
ou(x1y)
OX

u(x1)=1, —1<x<0

=0, O<y«<]

=0, 0<x<1],
oy

The details relevant to Subsection 2.1 are:

Value of k in (4)

Bilinear transformation

Value of m in (7)

Solution

1/N2 ,

z
1+z

b-w2)

u(x,y) = v(g, n) = ¢.

t =

CTM results for a mesh of length 1/5 are given in Table 3

together with results obtained using finite elements. On the

1903Athe executiontimesare 17 seconds for the CTM, and, with

a square mesh of length 1/20,

finite element method.

2 minutes 45 seconds for the

l6.
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Problem 3

The details relevant to Subsection 2.1

Value of k in

Au=0inR,
u(x,0) = 1,-1<x<0,
M=O, O<x<],

OX
MZO, O0< y<:L
OX

u(x1) =0, —1<x<1.

Bilinear transformation : t

Value of m in

Solution

are:

1/N2 ,

(1+1/V2)(—5—j.
1+z

(3—2/&)2 ,

u(x,vy)

=v(¢ n) =1- ¢.

CTM results obtained on a mesh of length 1/5 are given in

Table 4.

18.






19.

'G/T = Ywa] yssn ¥ oI0eL
(0'1-) (0'0) (0'1)
60920 | /¥l20| S8TE0| 800YO| ¥9¥SO| 0000T| 0000T| 0000T| 0000T| 0000T 0000'T
v/¥2°0| 20920| 200E0| O0€L€0| 0887°0| 0L£90| GEEL0| 00LL0| 9¥8L0|  L06L°0 72610
68020 | 06TZ0| 66¥20| 820€0| T9L€0| 89GF0| €0ZG0| GIGG0| 99/60| #5850 6,850
GOST'0 | 2/STO| ¥..T0| v0TCO| TESZO| 2862°0| +9E€€0| 929€0| T8LE0| 8S8E0 288€°0
9800 | 6T80°0| /ZT600| €L0T0| 0LT0| Z¥TO| 9S9T°0| 8TZT0| TL8T0| GTI6TO 82610
00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000







Problem 4

Au=0inR,
u(x,0) =1, —1<x<-0.4,
au(x,0)

=0, -04<x<1, F

M:o, O<y<]
OX

u(x1) =0, —1<x<1.

The details relevant to Subsection 2.1 are:

Value of k in (4) : 1/N2,
Bi14 . c c . x/§+1 «/§+z
lllnear ransrormatlion . = . .
«/5—1 ﬁ—z
4
_ _ 2
Value of m in (7) : «JE ! . JE ¢
\/E+1 ﬁ+oc

WhereOl= sn(-0.4K, 1/V2),

Solution : u(x,y) = vi(g, y) = ¢.

CTM results are given in Table 5.

20.
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Problem 5

M:O, 0.2<y<],

Au=0inR,
u(x,0)=1, —1<x<-0.4,
u(-1y)=1 0<y<0.2,

6MK®=OF@A<X<L
oy

6u(1,y)=0 O<y<l1
OX ’ |

OX
u(x1) =0, —1<x<1,

The details relevant to Subsection 2.1 are

Value of k in

Bilinear transformation

Value of m in

Solution

CTM results on a mesh of length

(7)

(4) : 1/N2 ,

o+

o++2

Je it
(o) [z

Where Ol = sn{K(-1+0.21),

u(x,y) = vi(§,

bl
a-+2) la ++2

Where Ol'= sn(-0.4K, 1/42),

1/5 are given in Table 6.

22.
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3.2. Unbounded Rectangular Domains

Problem 6

The CTM is applied to the problem of Subsection 2.2 with
a =1, up= 1 and u;= 2. The numerical results so obtained are
given on a mesh of length 1/6 in the x-direction and 1/12 in the
y-direction in Table 7. These results show at all points four
figure agreement with those obtained by Tranter and Whiteman [11]
using a triple cosine series method. Execution time for the

CTM on the 1903A is 14 seconds.
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4. DISCUSSION

As a technique for solving harmonic boundary problems containing
singularities, the CTM must be compared with two other classes of methods.
These are the "analytic" methods such as the dual or triple series techniques
of [11], [14] and [15], and the "disorete" methods such as finite-differences
and finite elements.Twoobviousadvantages of theCTM, orany other "analytic"
method, over a "discrete" method are firstly that the original problem itself
rather than some approximating problem is solved, and secondly that the same
technique produces the solution at all points right up to the singularities.
The solution can also be obtained at any desired point in the domain without
the need to interpolate between the values at mesh points. The CTM is much
more versatile than the dual and triple series methods, and, for the class of
problems of this report, produces as accurate or more accurate solutions in
equal computation times. Further, itiswell known that finite-difference
tchniques are inadequate near singularities, and, although the CTM has generally
less wide application than these "disorete" methods, it is more suited to the
problems containing singularities considered here, being computationally several

orders of magnitude faster in producing solutions of higher accuracy.

It is important to consider possible extensions of the CTM. Clearly, the
technique of Subsection 2.1 may be used to solve a problem of type (1) defined
on a non-rectangular domain provided that (4) is replaced by a transformation
that maps the domain onto the upper half z-plane. In some cases this
transformation is quite simple, and can be determined analytically; as for
example in the case of a circular region. However, for a general polygonal
region equation (4) must be replaced by the inverse of a Schwarz-Christoffel
transformation which has to be determined numerically. Work is proceeding on
this, and here a method proposed by Cox [4] may be of use. Other possible
extensions include the application of the method to problems with more general
boundary conditions, in particular those with Neumann conditions of the form

QE—= constant # 0, and to eigenvalue problems.
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