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ABSTRACT 
 
 

Numerical solutions to a class of two dimensional harmonic mixed 

boundary value problems defined on rectangular domains and containing 

singularities are obtained using conformal transformation methods. 

These map the original problems into similar ones containing no 

singularities, and to which analytic solutions are known. Although 

the mapping technique produces analytic solutions to the original 

problems, these involve elliptic functions and integrals which have 

to be evaluated numerically, so that in practice only approximations 

can be obtained. Results calculated in this manner for model 

problems compare favourably with those obtained previously by other 

methods. On this evidence, and because of the ease with which the 

method can be adapted to different individual problems, we strongly 

recommend the transformation technique for solving problems of this 

class. 
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1. INTRODUCTION 
 
 

The slow convergence with decreasing mesh size of finite-difference            

and finite-element solutions to the true solutions of harmonic mixed           

boundary value problems containing boundary singularities has caused           

such problems to be much studied, and special applications of these           

standard methods have been proposed, (see Fix [5], and Whiteman and 
Webb [18]). In addition several numerical techniques based on analytic  

methods have been given for particular problems, Whiteman [13] and             

Fox and Sankar [6]. As Laplace's equation is invariant under                   

conformal transformation, another attractive technique is that in              

which the original harmonic problem is mapped into another containing          

no singularities. When mapping the region in which the original                

problem is defined, the user of the conformal transformation has two           

choices. He can either apply a simple transformation and accept                

the, usually complicated, resulting region, as for example in [13],            

or he can devise a transformation which leads to a previously                  

chosen simple region.  The latter course is adopted here to solve              

numerically several harmonic mixed boundary problems defined on                

rectangular regions. The method involves a new application of a                

well known technique (see Bowman [2], Chapter VII), and is used                

to produce accurate solutions to a number of model problems; in                

particular to one which has been the subject of much interest                  

recently, [8], [10] and [12] - [19]. 
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In all the problems considered here the function u(x,y) satisfies 
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In (l) the l and m are constants, ∆  is a Laplacian operator, R is an  

open domain with a rectangular boundary S, where S =USi, i = 1 ,2 ,3,4 , 

Si and Si+1 being adjacent sub arcs of S, and v∂
∂  is the derivative in 

the direction of the outward normal to the boundary. The application of 

two Schwarz-Christoffel transformations, with an intermediate bilinear 

transformation, maps the region G = RUS in the w = x + iy plane into the 

region in the plane, where  = 'G ηξ iW +=' 'G ( ){ },0,10:,' HG ≤≤≤≤= ηξηξ   

and H is a known constant. The original problem is thus transformed  

into the problem 
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which has solution 
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Thus if ( ) GyxP ∈= ,  is mapped into ( ) ,, '' GP ∈= ηξ it follows that 

u(P)=v(P'), and so from (3) the solution of (1) at P is known  

immediately if the real co-ordinate of the point P' is found. In practice 

the transformations are performed numerically, thus introducing both  

rounding and truncation errors, and so only an approximation U(P) to  

u(P) is obtained. 

 
 





 
3. 

 
2.  TRANSFORMATIONS 

 
2.1  Bounded Rectangular Domains 

We consider the general problem of type (1) where G≡BCDE is the 

rectangle ,0, byax ≤≤≤  as in Figure 1, and where the four 

distinct end points L, M, N, P of the sub arcs Sj, can be taken anywhere 

on S. In this problem the boundary conditions on adjacent 's are one 

Diriohlet and the other Neumann,

iS

WG∈ -plane, and L,M,N,P are 

respectively  

the points w1, w2, w3 and w4. 

Figure 1. 

 

 

The transformations used and their effects are 
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where sn denotes the Jacobian elliptic sine, and 
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is the complete elliptic integral of the first kind with modulus k.  





4. 
 
This transformation is the inverse of a Schwarz-Christoffel 

transformation, and, if the modulus k is chosen so that 
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equation (4) maps G onto ≡ a the upper half z-plane. 1G

In particular under this transformation, 

  

w-plane z-plane 

  

(0,0)  →  (0,0), 

)0,( a±   → )0,1(± , 

),( ba±   → )0,/1( k± , 

(0,b)  → (∞,0) , 

 and 

  

w-plane

 

z-plane 

  

L ≡ w1    → (α1,0) ≡ L1 , 

M ≡ w2    → (α2,0) ≡ M1 , 

N ≡ w3    → (α3,0) ≡ N1 , 

P ≡ w4    → (α4,0) ≡ P1 , 
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Further details of transformations of this type can be found in          

Bowman [2], and Markushevich [9]. 
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This bilinear transformation maps G1 onto G2 ≡ the upper half 



 



5. 

 
 
t - plane , with 
  

z-plane 
 

t-plane 

  
L 1 ≡ (α1,0) → (0,0)  ≡ L2 , 
 
M1 ≡ (α2,0)  → (∞,0)  ≡ M2 , 
 
N1 ≡ (α3,0)  → (g1,0) ≡ N1 , 
 
P
 
1 ≡ (α4,0)  →  (1,0) ≡ P1 , 

where 
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where K(m) is the complete elliptic integral of the first kind           

with modulus ( )2
1

1/1 gm = . Note that, since g1> 1, the condition             
0<m<1 for the modulus m is satisfied. The Schwarz-Christoffel            
transformation (7) maps G2 onto the rectangle 
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in the w'-plane, with 
 

t-plane 
 

w’-plane 

  
L 2  ≡ (0,0) → (0,0) ≡ L 3 , 
M2   ≡ (∞,0) → (0,H) ≡  M3 , 
N2  ≡ (g1,0) → (g1,0) ≡ N3 , 
P2  ≡ (1,0)  →  (1,0) ≡ P3 , 
 

 
The combined effect of (4), (6) and (7) is to transform the 
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original problem in G into a problem of type (2) in G' , as in 
Figure 2, which has the solution 
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     Figure 2. 

 

 

We note that the bilinear transformation is not unique,and in 
fact four such suitable transformations exist. For example,               
(6) can be replaced by 
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The half place G1 is again mapped on to G2 but now 
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Where 
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Transformation (4) followed by this bilinear transformation, and then 

(7) with m = ( )2
1

2g/1 , transform the original problem into a problem 
of type (2) with solution 
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The two remaining bilinear transformations are given for 
reference. 
These are 
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Use of (10) in place of (6) with the modulus 
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in (7), produces a problem in G' with solution (8).  
Similarly (l1) with 
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produces a problem with solution (9). 
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2.2       Unbounded Rectangular Domains 
 
A technique similar to that of Subsection 2.1 is used transform 
problems of type (1) in which G is a semi-infinite strip into 
problems of type (2). In this case the only change necessary 
is that (4) must be replaced by a transformation mapping the 
strip onto the upper half z-plane. As an illustration we consider 
the following mixed boundary value problem in which u(x,y) satisfies 
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so that  The transformation ( ){ .0y,ax0:y,xG ≥≤≤= }
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Thus, ,,1,2/1,2/1 4321 ∞=α−=α−=α=α  and (6) becomes 
 

     ,
1z2
1z2t

+
−

=         (14) 

 

where . Hence  (13), (14), and (7) with m = l/3g1 = 3  
map (12) into a problem of type (2), as in Figure 2, with solution (8). 
  
2.3 Numerical Algorithms. 
 
Details of the methods for implementing the transformations are now 
given. For the bounded domain problems the first transformation, 
the elliptic sine (4), is found from a series expansion, Copson [3] p.412, 
so that 
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whereas for problems in unbounded domains equation (13) is used          
directly.  In both cases the bilinear transformation which follows       
gives immediately the image (g,h) 2G∈  of ( ) .G, 1∈βα  
In order that the solutions (8) and (9) may be used, the real            
co-ordinaie ξ of the image ( ) 'G,'w ∈ηξ≡  of (g,h) 2G∈  must be             
found. For this the following analysis is necessary.  Equation (7)       
gives 
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and, when K(m)w' = p+ iq, the expressions for the absolute               
 
values of the elliptic functions, (Bowman [2], p.41, equations           
 
37 and 38), give 
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and dn is the Jacobian elliptic function defined by 
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A - B dn(2p,m) = cn(2p,m)   , 
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one of which is extraneous.  To determine this we note that              
 
under transformation (7) the image of (1,0)  ( ) .'G0,1isG 2 ∈∈  
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Thus, when g = 1 and h = 0 , ξ = 1 and η = 0 so that w' = 1              
 
and cn(2p,m) = cn(2K(m),m) = -1. Again when g = 1 and h = 0,             
 
it follows from (17) and (18) that A = 0 and B= 1, and therefore         
 
for these values of A and B the right hand side of (22) must have        
 
value -1. Thus 
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With g and h known, equations (17) and (18) give A and B, and                  

hence (23) gives cn(2K(m) ξ ,m).  When              ,),)(2((cos1 mnKcn ξφ −=
it follows from Abramowitz and Stegun [1], Section 17, p. 589,                 
that 

( ) ( ),mK2/\F αφ=ξ       (24) 
where F  is the incomplete elliptic integral of the                  ( αφ \ )
 

first kind of amplitude φ and modular angle a =sin                     .m1−

 
In (15) the modulus k is determined from (5) to 10 decimal               
 
places either directly from tables [1], Table 17.3, or, for              
 
values of b/a outside the interval [0.3,3], by means of the              
 
iterative method,  [1], Ex 6,p.602. The series in (15) are               
 
truncated after N terms. These series converge very rapidly              
 
and, for the model problems solved,  it is found that the                
 
calculated approximations to the elliptic sine remain constant          
 
for N≥3. Thus, in all calculations N is taken as 3.  Two                 
 
algorithms, due to Hofsommer and Van de Riet [7] are used to             
 
calculate respectively the elliptic integrals F ( )αφ \  and                 
 
K(m) in (24). The authors of these algorithms claim twelve               
 
accuracy, and this is confirmed by experiments carried out on            
 
an I.C.L. 1903A. 
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3.  APPLICATIONS TO MODEL PROBLEMS 

AND 
NUMERICAL RESULTS 

 
3.1  Bounded Rectangular Domains 
 
Problem 1 
 
The function u(x,y) satisfies ∆u = 0 in a square region -1 < x, y < 1  

with the slit y=0, 0 < x < 1 and boundary conditions 
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where 0+ and 0- represent respectively the upper and lower arms of  

the slit. Because of the antisymmetry it is sufficient to consider only  

the problem in the upper half region G, where G ( ){ ,1x1;y,x ≤≤−≡   

},1y0 ≤≤  and to add the boundary condition u(x,0) = 500, -1 ≤ x ≤ 0,  

as in Figure 3. This problem is a special case of (1) and has a  

singularity at the origin. 
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The details relevant to Subseotion 2.1 are: 
 

Value of k in (4)  : 1/√2, 
 

Bilinear transformation : ,
z1

z2t
+

=  

Value of m in (7)  : (1/2 + 1/2√2) ,2
1

 
Solution   : u(x,y) = v(ξ ,η) = 500 (ξ+l). 
 

 
The numerical results for the conformal transformation method (CTM) show  

everywhere four figure agreement with those obtained by whiteman [16].         

In the neighbourhood of the singularity the results show at nearly            

all points five figure agreement with those obtained by Whiteman [15].         

The CTM results are given on a mesh of length 2/7 throughout R in              

Table 1, and on a mesh of length 1/28 in the neighbourhood of 0,               

|x| < 1/7, 0 < y < 1/7, in Table 2. Results of [15], [16] and of               

Wait and Mitchell [12] are included for comparison. Execution time            

on the ICL 1903A for the CTM is 15 seconds for the solution of                 

Table 1. 
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16. 
 
In the problems 2-5 that follow G is the rectangle  

G ≡ {(x,y) : |x| 1 ,0  y  1} with interior R. 

 

Problem 2. 

    

( )
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The details relevant to Subsection 2.1 are: 

 Value of k in (4)   :  1/√2 , 

 Bilinear transformation  : t = 
z1

z
+

 

 Value of m in (7)   : ( )2
1

2/11−  , 

 Solution    :  u(x,y) = v(ξ, n) = ξ. 
 

CTM results for a mesh of length 1/5 are given in Table 3                

together with results obtained using finite elements. On the             

1903A the execution times are 17 seconds for the CTM, and, with            

a square mesh of length 1/20, 2 minutes 45 seconds for the               

finite element method. 
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Problem 3 
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The details relevant to Subsection 2.1  are: 

 Value of k in (4)   : 1/√2 , 

 Bilinear transformation  : t = (1+1/√2) .
z1

z
⎟
⎠
⎞

⎜
⎝
⎛
+

 

 Value of m in (7)   : ( )2
1

2/23−  , 

 Solution    : u(x,y) = v(ξ, η) =1- ξ. 

 

CTM results obtained on a mesh of length 1/5 are given in                

Table 4. 
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Problem 4 
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The details relevant to Subsection 2.1  are: 

 Value of k in (4)   : 1/√2, 

 Bilinear transformation  : t = .
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      Whereα = sn(-0.4K, 1/√2), 

 Solution    : u(x,y) = v(ξ, y) = ξ. 

 
 
CTM results are given in Table 5. 
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22. 
 
Problem 5 
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The details relevant to Subsection 2.1  are 

 

 Value of k in (4)  : 1/√2 , 

 Bilinear transformation : t = .
2
2
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        Where  α = sn{K(-1+0.21), 1/√2}, 

 Value of m in (7)  : ,
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        Where  α ’= sn(-0.4K, 1/√2), 

 Solution    :  u(x,y) = v(ξ, η) = ξ. 
 
CTM results on a mesh of length 1/5 are given in Table 6. 
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24. 
 
 
3.2. Unbounded Rectangular Domains  
 
 
Problem 6 
 
 

The CTM is applied to the problem of Subsection 2.2 with 

a = 1, u0= 1 and u1= 2. The numerical results so obtained are 

given on a mesh of length 1/6 in the x-direction and 1/12 in the         

y-direction in Table 7. These results show at all points four          

figure agreement with those obtained by Tranter and Whiteman [11] 

using a triple cosine series method. Execution time for the 

CTM on the 1903A is 14 seconds. 
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4. DISCUSSION 
 

As a technique for solving harmonic boundary problems containing 

singularities, the CTM must be compared with two other classes of methods. 

These are the "analytic" methods such as the dual or triple series techniques 

of [11], [14] and [15], and the "disorete" methods such as finite-differences 

and finite elements. Two obvious advantages of the CTM, or any other "analytic" 

method, over a "discrete" method are firstly that the original problem itself 

rather than some approximating problem is solved, and secondly that the same 

technique produces the solution at all points right up to the singularities. 

The solution can also be obtained at any desired point in the domain without 

the need to interpolate between the values at mesh points. The CTM is much 

more versatile than the dual and triple series methods, and, for the class of 

problems of this report, produces as accurate or more accurate solutions in 

equal computation times. Further, it is well known that finite-difference 

tchniques are inadequate near singularities, and, although the CTM has generally 

less wide application than these "disorete" methods, it is more suited to the 

problems containing singularities considered here, being computationally several 

orders of magnitude faster in producing solutions of higher accuracy. 

It is important to consider possible extensions of the CTM. Clearly, the 

technique of Subsection 2.1 may be used to solve a problem of type (1) defined 

on a non-rectangular domain provided that (4) is replaced by a transformation 

that maps the domain onto the upper half z-plane. In some cases this 
transformation is quite simple, and can be determined analytically; as for 
example in the case of a circular region. However, for a general polygonal 

region equation (4) must be replaced by the inverse of a Schwarz-Christoffel 
transformation which has to be determined numerically. Work is proceeding on 

this, and here a method proposed by Cox [4] may be of use. Other possible 

extensions include the application of the method to problems with more general 

boundary conditions, in particular those with Neumann conditions of the form 

v
u
∂
∂ = constant  0, and to eigenvalue problems. ≠
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