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1 | INTRODUCTION
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Abstract

In this paper, a deep learning integrated reinforcement learning (DLIRL) algorithm is
proposed for comprehending intelligent beamsteering in Beyond Fifth Generation (B5G)
networks. The smart base station in B5G networks aims to steer the beam towards appro-
priate user equipment based on the acquaintance of isotropic transmissions. The foremost
methodology is to optimize beam direction through reinforcement learning that delivers
significant improvement in signal to noise ratio (SNR). This includes alternate path find-
ing during path obstruction and steering the beam appropriately between the smart base
station and user equipment. The DLIRL is realized through supervised learning with deep
neural networks and deep Q-learning schemes. The proposed algorithm comprises of an
online learning phase for training the weights and a working phase for carrying out the pre-
diction. Results confirm that the performance of the B5G system is improved considerably
as compared to its counterparts with a spectral efficiency of 11 bps/Hz at SNR = 10 dB
for a bit error rate performance of 107>, As compared to reinforced learning and deep
neural network with a deviation of +3° and +5°, respectively, the DLIRL beamforming
displays a deviation of +2°. Moreover, the DLIRL can track the user equipment and steer
the beam in its direction with an accuracy of 92%.

The increased usage of wireless communication-based appli-
cations and the huge demand for data rates have resulted in
the development of B5G networks. These future networks
are required to meet the demands of high data rates and
enhanced user experience. In this paper, Artificial Intelligence
(Al) is incorporated with beamforming and millimetre Wave
(mmWave) enabling intelligent beamsteering based on Chan-
nel State Information (CSI), thus enabling a high data rate
and better user experience. The novel deep learning integrated
reinforcement learning (DLIRL) algorithm is proposed for the
beamforming solution to overcome the problems associated
with mmWave like blockage impacting the coverage, reliability
of highly mobile links, latency overheads associated with high-
speed mobile devices in dense mmWave scenarios that require
frequent hand-offs [1, 2]. From the research gap, it can be visual-

ized that most of the works for beamforming for B5G networks
were carried out employing the conventional schemes, but the
employed schemes ate not effective enough to steer the beam
based on the user locations [12]. Also, the works in [20, 21] for
beam direction estimation based on vehicle motion were carried
out on a single domain considering only the vertical direction.
But implementing the B5G networks for the real time scenario,
it is important to consider beam direction from 3D point of
view [11].

To have an enhanced beamforming for the real time sce-
nario based B5G networks, we are proposing in this paper an
Al-based novel DLIRL efficient beamforming scheme. The
proposed scheme is trained via pilot symbols received at the
coordinated integrated access and backhaul (IAB) nodes with
negligible training overheads. These symbols represent the foot-
prints of pilot information communication with the nearby
scenarios. Utilizing this information for training the DLIRL to
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produce the efficient beamforming is the idea behind this work.
In this implemented coordinated beamforming system, the UE
performs a transmission of an upstream pilot arrangement,
which is cooperatively acknowledged by the organizing IAB
nodes. The acknowledged information carties valuable statistics
regarding the nearby scenarios because of their communication
to the nearby scenarios. Through deep learning, the prototype
studies enhances the beamforming vector at IABs by means of
the statistics so as to improve the signal to interference noise
ratio at user equipment.

The DLIRL constructed beamforming acquires the use of
principal patterns to envisage the ideal beamforming vectors in
IABs. Here, the beamforming vector through DNN exploita-
tion of isotropic communication from UE devices is arranged
in a lattice over the exposed region. The estimated impulse
response at each of the IAB receiver functions acts as input
data to a DNN model and acquires state space for reinforce-
ment learning (RL). The RL steers accurate and adaptive beams
through its experienced learning, This projected method affords
an inclusive solution for high mobile B5G scenarios with
improved network connectivity, reduced latency, and minimized
training overheads.

The long short-term memory (LSTM) based hotspot pre-
diction in small cell 5G networks has been discussed in [25].
Here, adaptive beamforming is carried out to adjust the beam
towards the small cell for traffic aggregation between the small
cell and macro-cell. The requirement to adjust narrow beams in
mmWave communication by leveraging machine learning and
using concurrent and multiarmed bandit techniques to estab-
lish robust links has been explored in [26]. The requirement of
deep learning techniques for 5G systems at the physical layer,
network layer and applications layer to process information and
automate decisions has been detailed in [27]. The requirement
of deep learning in channel estimation for cooperative beam-
forming in massive multiple input multiple output (MIMO) 5G
systems has been discussed in [28].

An adaptive hybrid beamforming for 5G MIMO mmWave
networks has been detailed in [29]. Here, to teduce the signalling
overhead and blocking probability, analogue-digital beamform-
ing approach is used to generate beams based on the traffic
demands. The exploration of narrow beamwidths and adap-
tive steering of signals to reduce interreference and energy
consumption has been discussed in [30]. The importance of
beamforming for enhanced signal quality, improved network
capacity, frequency reuse, mitigation of multipath effects, esti-
mation of angle of arrival and tracking of mobile devices have
been explored [31]. The requirement of machine learning algo-
rithms to track communication scenarios and handle big data in
5G MIMO systems has been discussed in [32]. Here, machine
learning based classification models have been developed for
beam selection.

The deep learning framework to allocate resources for
TV multimedia service in 5G scenario has been detailed in
[33]. Hete, an LSTM-based deep learning model has been
developed to model the traffic pattern for resource allocation
under Quality of Service (QoS) requirements. A learning-based
adjustable beam number training (LABNT) algorithm has been

developed in [34] for optimal beam direction and reduced train-
ing overhead. The trade-off between beam alignhment accuracy
and spectral efficiency in beamforming training for non-line-of-
sight mmWave systems has been demonstrated. The concept
of deep transfer learning to explore the beamforming vector in
massive MIMO systems has been explored in [35]. Here, the
trade-off between the number of training data and uncertainty
of real-time channel has been discussed. Further, the require-
ment of an effective deep learning model to train 5G system
with less overhead and latency has been highlighted.

2 | RESEARCH GAP

From the literature, it can be inferred that effective schemes
have been developed for beamforming [1-3]. The proposed
algorithm in [1] is an initial work on adaptive beamforming. In
the proposed scheme, several sensors are considered to obtain
correlation. However, it is not practical to mount too many
sensors on the user equipment. In [2], user location-based trans-
mit and receive beamforming is proposed considering only the
Line of Sight (LoS) condition, which is not always feasible for
a real-time operation in real environments where the LoS path
may be blocked due to human activity. Moreover, the proposed
work is considered only for the known user locations. In addi-
tion, ref. [4] proposed robust beamforming with an assumption
that Angle of Arrival (AoA) and CSI is known. Nevertheless,
considering known AoA and CSI is complicated and often
untealizable [3].

In [5], hybrid beamforming with gradient iterative algorithm
is proposed considering instantaneous CSI. However, the pro-
posed gradient algorithm is prone to get stuck at local optima
solutions instead of global optima [10]. Beamforming consider-
ing unknown user location and instantaneous CSI is proposed
in [6]. The major challenge in [0] is the huge training overhead
associated with large array beamforming vectors. To tackle the
problem of training overheads, authors in [7] proposed deep
learning-based beamforming. Deep learning-based predictive
beamforming is also proposed in [8] considering location aware-
ness. Employing recurrent Long Short-Term Memory (LSTM)
has inefficient exploration hampering its prediction abilities [9].
The work in [10] proposed a promising RL with QQ learning for a
joint optimized beamforming scheme. However, the work con-
sidered known optimized beamform vectors and user locations,
which are unattainable in a real scenario.

The deep learning-based beamforming scheme is an effective
way of achieving efficient beamforming [11]. The DL scheme
is also a fast way of beamforming for the mmWave channels
[12]. However, the existing DL network requires a huge amount
of training data to achieve a good performance via beamform-
ing. Moreover, this DL network is based on mete learning and
thus it is not easy to comprehend the output [13]. Therefore, in
this work, we propose a DL plus RL network for beamform-
ing capable of getting trained with fewer data. The proposed
scheme is not merely based on the training of the DL net-
work but also on the experience provided by the RL network
in improving the beamforming performance. Recently, RL for
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multimedia data segregation has been investigated for health-
care sector using fuzzy algorithms to improve the quality of
service in fog computing [22]. Alternatively, multimedia data
segregation using k-fold random forest has been developed for
reducing the latency from Internet of Things (IoT) devices
in healthcare environments [23]. Further, Ant Colony Opti-
mization (ACO) algorithm has been utilized to offload data in
resource constrained IoT scenarios [24].

2.1 | Motivation

Achieving high capacities is currently being considered with
multiuser MIMO and MASSIVE multi-user MIMO schemes.
However, these schemes will require a very high number of
antennas at the base station to meet capacity requirements.
This paper focuses on beam steering toward users, which can
enable the use of communication resources effectively while
keeping the number of antennas at the base stations at manage-
able levels. In this paper, investigations to the question whether
the efficient beamforming and beamsteering can be performed
using DNN and RL is answered. We proved with the simu-
lations that the performance of the DNN for beam forming
and beamsteering can be improved with the expert learning of
the RL. With the proposed DLIRL it is possible to attain bet-
ter pointing of beams with the user movement and enhanced
beamsteering with spectral efficiency as compared to [11, 12].
Also, the main motivation behind this paper is that to the best
of our knowledge till now no work has been done on uti-
lizing machine learning for beamsteering. Therefore, there is
the need to incorporate an efficient machine learning scheme
for the beamsteering that is capable of learning based on the
environments.
Hence the prime contribution of this work involves:

1. A novel DLIRL-based beamsteering scheme is implemented,
which is capable to steer the beamform with the user
movement.

2. The proposed scheme combines the performance of the DL
and RL. The DL is used for preparing the optimized beam-
form codebook and RL is used for selecting the best beam
out of the optimized beamform codebook based on the user
movements.

3. The training of the DLIRL is carried out based on the chan-
nel information without requiring the user’s location. Thus,
reducing the training overheads.

4. A novel way of combining the DL with the RL and
employing it for beamsteering applications.

5. The proposed scheme is trained in the offline mode for a
particular environment simulated using the MATLAB site
viewer. The trained model is then employed successfully
for the beamsteering. Furthermore, the proposed scheme
is sufficiently flexible for getting trained to any provided
environment.

The rest of this paper is arranged as follows. In Section 3, the
system modelling and the problem formulation are elaborated.
We implemented the end-to-end DLIRL based beamforming in

Section 4, comprising DNN architecture, its training and work-
ing period combined with the IRL. The performance analysis of
the DLIRL is investigated in Section 5 with respect to spectral
efficiency (SE), bit error rate (BER), and beamform.

Notations: The bold letters represent vectors and matrices
for the lower and the upper case respectively. The conjugate
transpose is denoted as ()7, ||||i indicates Frobenius norm
squate, Cis the indication for the complex number and IV,
indicates complex normal distribution.

3 | SYSTEM MODELLING AND
PROBLEM FORMULATION

3.1 | System modelling

The proposed work is designed for mmWave-based wireless
communication networks. The considered system model com-
prises of / number of IAB nodes termed as IABs serving a UE
fitted with the single isotropic antenna as shown in Figure 1.
The IAB node is connected to the B5G core via an IAB donot.
The B5G core carries the brain for the intelligent and adaptive
beamforming in the form of a DLIRL network. Fach IABs
are equipped with N7 antennas communicating information
symbol X € C for the K subcarrier here K = 1...., 4 Each
IAB has baseband precoder vector for each K” subcarrier f[éB

€ C™¥! and for RF precoder frp € CN'X1 The RF precoder
for the /” TAB at #/ antenna element can be modelled as a
phase shifter network which is mathematically represented as
6] = 1/VNT /%" here ¢'is quantized angle [15]. The
downlink transmission for the transmitted data symbol can be
represented as y = f/RF fl];BxK. Here E[X(X) = PX/k, P s
the power associated with the K subcarrier and 4 is the total
number of subcarriers. The constraint in the total transmission
power of IAB should be ||FRFf§B||‘;ZE =1, K=12,..,k

Here, Fp = blkdiag(fl. ... .., £,,)€ C'*/. The channel
vector between the /2 TAB and the UE for the K™ subcarrier is
denoted as h;x€ CN'*1 Then the received data stream x; x by
the UE from the /” TAB during the downlink at K" subcarrier
can be written as in Equation (1) [14]:

_ H ¢.K /K K
XK=/ Pazgh/,](fJRFfBB K+ nK,/ @
whete P, is the average received power at the UE. The ng ) ~

N,(0,02) is the K” subcartier noise at the UE. The symbol
notation involved in the system modelling is represented in the
Nomenclature list.

3.2 | Channel modelling

The channel between IABs and the UE is considered as a wide-
band mmWave channel with ¢ = 1,...C clusters contributing to
one ray of time delay as 7,, AoA as ¢, and 6, for azimuth and ele-
vation angles, respectively. The channel path loss between UE
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FIGURE 1 B5G system model

and the 7 TAB over K” is represented as L. The antenna array
response vector between // TAB and the UE for the K subcat-
tier is represented as a, x (0,, $,). Mathematically the channel
can be modelled for the K” subcartier as shown in Equation (2)

[14]:
e
N[
hy g = \/ﬂ Y Bax©.8.), )
=1

Here 3, is the complex gain associated with the tresolv-
able path ¢ The considered channel model is assumed to
remain constant over coherence time 7; as it is a block fading
channel.

3.3 | Problem formulation

The challenges associated with 5G standards are to reach the
goals of higher data rate, lower latency, better coverage, and high
mobility. To achieve this, it is important to have the most flexible
and controlled beamforming scheme. The existing beamform-
ing techniques [1-0] tried to achieve flexibility and control via
dedicated transmit/receive for each element. Considering mas-
sive MIMO-based wireless communication systems, building
this type of architecture is highly difficult due to extensive cost,
power, and space-based limitations [12], thus, hindering the
design budget. With this motivation, this work is dedicated to
utilising an effective Al training scheme based on DL and RL
combinedly termed DLIRL for the beamforming strategy.
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To quantify the goals achieved by the proposed scheme,
the performance is evaluated by considering the beamform-
ing system that can maximize effective spectral efficiency for
mmWave-based wireless communication applications at UE.
For that purpose, the achievable rate at UE for the considered
hybrid beamformer, system, and channel model are evaluated as
per Equation (3):

2

21og2 1+YNRZh/KRFBB NC)

Here, /s the total IABs considered. SIVR represents the sig-
nal to noise ratio at UE denoted as (Rug/#0?). The objective
of this work is to create an effective beamforming design and
channel training so as to maximize the achievable rate at UE.
The final optimization problem can be deduced as:

1 &
( RF,fBB ) = argmaxzkz

2
!
xlog, | 1+ SNR| Y bl fre | |
/=1
/,K 2
st |fresin | =1 (4)

4 | PROPOSED SCHEME: DLIRL-BASED
BEAMFORMING

The proposed scheme comprises deep learning integrated
with reinforcement learning for the beamforming design. The
employed techniques make use of the learning strategy by
performing mapping between beamforming weights and the
environmental setup, channel estimates, AoA, and Time Differ-
ence of Arrival (TDoA). The proposed DLIRL employs a pilot
signal transmitted from UE to the IAB’s to learn about the chan-
nel condition and predict the optimal beamform weights. The
pilot signals received at IABs are the result of the interaction of
the signal with the environment during its propagation. These
reflected and diffracted waves are jointly received at different
IABs and carries the thumbprint of the environmental fac-
tors and channel conditions. The Environmental Thumbprint
(ET) carried by these pilot signals is employed for training. The
DLIRL has two periods: working and training. The DLIRL ini-
tiates with the training period. During this, DLIRL receives
pilot sequences transmitted from the predefined UEs posi-
tions. The UE transmission is omniditectional and it cattries ET.
The DLIRL then maps the received sequence with the training
process and learns it.

The working period marks the prediction scheme of the
DLIRL and performs prediction of the optimal beamform
without any need for additional training. Multiple advantages
achieved via the proposed scheme are that it does not requite
additional resources for learning during the working period.

- Uplink pilot trainin;
sequence
| Downlinkdata

Tf=Frame Period

r——

Tc-Beam Coherence
Time

Omnidirectional uplink ~ Downlinkdata
pilottrainingsequence  transmission
—

™

FIGURE 2 Beam coherence time interval during training process

Moreover, the proposed scheme employs an omnidirectional
UE pilot sequence for the training period. Therefore, it has min-
imal overheads during the training period. Also, the proposed
scheme can be trained for any environment including LoS and
Non-Line of Sight (NLoS).

4.1 | Training period

In this period DNN observes the environment and trains the
deep neural network. We consider a beam coherence time 7,
a concept introduced in [15] for mmWave-based wireless com-
munication systems also shown in Figure 2. It can be defined as
the period over which the beams are unchanging, Considering
1" as the channel training period of the first 7 time instants of
the 7, then Equation (4) can be re-written as in Equation (5).

r
‘Ye(f/RF,féif) <l - %) arg max — z log,

K 1

I/
x |1+ SNR Z

RFf BB )

Figure 1 depicts the training period for deep neural network-
based learning, In each 7, UE transmits pilot matrix Slf €

cN'xt repeatedly, here K = 1,23,...£4 The received pilot
sequence at /" 1AB is as in Equation (6):

x) o =hy i SK +ng, ©)

The combined beamforming strategy starts with feeding the
received pilot signals from all IABs to the Fusion Centre (FC)
comprising DLIRL. The FC first selects the RF beamform
vectors for the IABs downlink as:

2
£ 7
fi{F = argmax Z log, |1+ SNR Zh/K , @
£l EXRE Y/ K= /=1
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FIGURE 3 The DLIRL beamforming system model

Here, xgp is the RF beamform codebook. The FC then
applies baseband precoder calculated as [14]:

W Fgp)
_ (MPre) , VK ®)

T e

The DNN is fed with the pilot symbols x‘f x 2s the input
for the training model. The spectral efficiency for every RF and
baseband beamform vector acts as the output shown in Equa-
tion (5). The DNN is trained duting this period and learns the
correlation between received pilot symbols at each IABs and the
ET. Post-training the DNN moves to the working model where
it performs the prediction. The detailed DNN architecture is
explained in Section 4.2.

4.2 | DNN architecture

We propose a multilayer DNN structure for training the pro-
posed model and getting adapted to the scenario. The inputs to
the model are the channel impulse response (CIR), AoA, and
TDoA. The CIR, AoA, and TDoA are obtained via received
pilot symbols at / IABs. The DNN structure comprises four
hidden layers. The first layer has 12 nodes and the remaining 3
layers have 10 nodes each. The DNN is trained end to end as
a supervised learning class [16]. The DNN input is normalized
based on the training dataset. The DNN architecture employed
Rectifier Linear Unit (ReLU) as the activation function
[17,18].

\ Downlink Intelligent

‘} Pilot transmission

™ n
¢ <
< ¢
UE Locations, |AB | se— « ( O 0'sa)
transmit power. s : 3
Optimized — : X 0 g6
Beamform ‘ ¢
Vectors S e Hua
L )
l I Update
weights
Selected Optimal Beam Steering
D
ot
i
i
P Ee
4.3 | Working period

Based on the estimated channel, the RF and the Baseband pre-
coding beamform codebook kg, kgp is respectively formed
using Equations (7) and (8). The objective of the DNN is to
maximize the S, <fi{F’ ng) for each IABs. The regression-based
learning model is adapted such that for each /* TAB, the error
difference between the DNN’s predicted output Sf P and
the desired Sj i output is minimum. Here, p = 1,2,.... T i,
the T,,, is the number of RF and the baseband beamform-
ing vectors. Mathematically DNN is trained to minimize the
error function e(w) for the set of different weight values of
the DNN. The e(w) for the // TAB can be written as in
Equation (9):

Train
6@ =Y M,(
=1

des,p,l - pred,p,]
S ), )

des,p,l - pred,p,l .
Here Mm(jeer‘b ,S;M ’ ) is the mean square error (MSE)
des,p,/

between the predicted output Sgp "2 and the desired S,
output. The optimal RF and the baseband precoding vectors
get updated in the beamform codebook kgg, Xgp respectively.
From this stage onwards, the work of the Integrated RL (IRL)
begins. The IRL employs the deep Q network for fine-tuning
the beamform. The IRL goes through the optimized RF and
baseband beamform codebook to further fine-tune the beam-
form vectors and steer the beam more precisely to the user
location. The deep RL network employed in this work is shown
in Figure 3.
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The objective of the IRL network is to maximize the received
UE’s SNR for the given beamform vectors. The received power
at UE for the time instant # from the /” TAB can be denoted as:

2
B () = Py ()| 0] (D (DF (1)) (10)

Here Powl/ Ap () is the transmitted power associated with the r
IAB at time instant # Now the received UE’s SNR for the signal
from the 7 TAB can be written as:

2
Po”/I/AB(f ) th(f)f/RF(t)ng Q)

: 11
= 1

SNR' (1) =

The maximization problem for the IRL is as shown in Equa-
tion (12) such that the transmission power of each IAB should
be within the total permissible power of each IAB i.e. Tvtal,,,,,.

maximize SNR' (1),
By () 1=123.N

g s (1)

/
s.t. Hm/I AB

frr ()fpp (1) € KR, Kpp, (12)

(f ) € Eld/pou/er’

In this paper, an effort is made to fine-tune beam steering
via DRL fed with the DNN optimized beamform vectors, UE
location, and IAB transmit power to jointly control them to
maximize Equation (12). The IRL is an efficient deep learning
Q network. The state-space T associated with the IRL are Jz‘dfe{
indicating the transmission power of the # TAB, sz‘az‘eé, which
is the beamform vectors associated with the // TAB. The J”Z‘dl‘(?é
indicates the deployed UE locations employed in the training.
Action space A involves regulation in the transmission power
and beamform vectors from the codebook xgg,xgp of the
respective IABs.

4.4 | Deep IRL model
The deep IRL involves training of the Q Neural Network (NN)
as shown in Figure 3. For the policy po the value of the state s
and action « is given as 0y, (s, a). For converging to the optimal
state-action value Q;0<J, a) we employed the NN architecture.
The NN is defined by its weight values as we, for each time step
t. The vec(we,) is represented as we,. The state action value in
terms of NN weights can be represented as 0, (s,a : we;) as
shown in Algorithm 1.

The NN architecture of the deep IRL has the activator in the

F— [10]. Here the objec-
exXp -

tive function for the NN of the IRL is to minimize the mean
square error (MSE) represented as:

form of sigmoid function as y —

min Frr(we,) =€,,[(0 = Oy(s,a : we))’], 13)

we,

ALGORITHM 1 Deep learning integrated reinforcement learning

1. Parameter Initialization: T, j, s, a
Input: UEs” SNR
Output: Beamform steering weights

For (j=1;/< T; j++)

AR

Current s observation
6. Choose exploitation (exi) or exploration (exo) based on s
if exo

8.  Select an a randomly from the set of 4,

9. else

10.  Obtain a = argmaxQy,(s,a * we,)

11. end

12. Compute Reward

13. Obtain SINR

14. if obtained S/NVR < threshold

15. Abort

16. end

17. Next sis observed

18. Estimate

19. o, = €lreward, y , + discount * max,/”QP”(;r’, d T we, )y, a))

20. Perform DL training

21. Estimate and update weights of the DLIRL

22. Estimate the Mean Square Error:

23, min Err(we,) =€,,[(, = Qplosa : we)]
:

24. Calculate SINR

25. HEstimate reward based on the SINR

26. end

Here,

0; = €lreward, g , + discount * maxa/DQ]m(,r', d T we,_)l|s,a],

(14)

The reward, s , is the reward for the agent post taking the

58" a
)

action # and moving from state s at time 7 to state 5. The
represents the next action to be taken. The weights of the NN
are updated based on the gradient descent as:

we, 1 = we, — stepVErr(we,), (15)

Here, szep indicates the step size has a value between 0 and
1. In the proposed IRL, the value QZO(J, a) is estimated based
on the approximation 0,,(s, : we,) that minimizes the MSE
Err(we;). The proposed scheme is implemented corresponding
to the downlink scenario. Here, IABs are separated at an esti-
mated distance, and user equipment is positioned at a specific
geographical location within the coverage of IABs. Also, these
UEs move at a particular velocity. In this work, it is fixed at 20
mph. The reward function for the IRL is estimated based on
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TABLE 1 Simulation parameters

TABLE 2  SE performance evaluation

S. no. Parameter Specification

1 TABs/IAB count (V) 4

2 IAB antenna array Uniform planar array

3 IAB Antenna Specification 32X 8

4 User equipment (UE) setup Deployed in a rectangular grid

of dimension 40 m X 60 m,

resolution 0.1 m

DNN activation unit

ul

RelL.U (Rectified Linear Unit)

6 DNN dropout rate 0.5%

7 DNN batch size 100

8 Python Libraries Keras with Tensorflow
backend

9 System bandwidth 0.5 GHz

10 OFDM subcarriers 1024

1112 Sampling FactorMultipaths 17

the performance of an action on meeting the threshold SZNR.
The maximum reward at a unit time step is assigned to the agent
having the best performance.

5 | RESULTS AND DISCUSSION

The beamforming is implemented for the downlink scenario
for the data transmission from IAB to UE. The simulation
environment is first configured and then the proposed DLIRL
beamforming is executed. The simulation parameters employed
in this work are as shown in Table 1. The data set of the
channel model and the channel parameters for the simulation
is generated via MATAB 2021 site viewer-based ray trac-
ing. The Shooting and Bouncing Ray (SBR) based ray-tracing
model is employed for the LoS and NLoS communication. The
orthogonal frequency division multiplexing (OFDM) system is
employed for symbol transmission. The considered OFDM size
is 1024.

The DNN architecture has a total of 6 interconnected lay-
ers including 4 hidden layers and 1 input and an output layer.
The DNN has a total /X4 number of inputs and 7,,;, number
of outputs. The considered data has a set size of two hundred
thousand samples and a batch size of two hundred. To have a
comparative analysis of the proposed algorithm with the exist-
ing conventional beamforming techniques, we have used SE and
the BER as the metrics. Figures 4 and 5 show the SE for differ-
ent SNR values received at UE. The simulations were carried
out for 30 runs comprising 1000 iterations each. The depicted
graph values are averaged values obtained in the simulation envi-
ronment. For the simulation environment, the IABs are installed
on the buildings played in the x—y plane of the 3D environment.
The IAB’s antenna is facing the street on the y-z plane. The
antenna transmit power is considered at 30 dBm. The UEs are
mobile and are installed with a single antenna. For each beam
coherence time, the UE locations are updated in the x—y plane.

SE (bps/Hz) at

Beamforming Technique SNR =10 dB

DLIRL beamforming 11

Analog beamforming 5

MSE digital beamforming 8

Kalman-hybrid precoding 5.7

Minimum mean squared error (MMSE) hybrid 5.1
beamforming

Zero forcing hybrid beamforming 4.2

During the training period, the UE uplink transmit power is set
at 30 dB m.

From Figure 4, it is visualized that the DLIRL beamforming
has achieved better spectral efficiency as compared to the exist-
ing conventional beamformers in [19]. As seen from the curves,
the spectral efficiency with analogue beamforming is found
to be around 2 bps/Hz, and close convergence is observed
between ZF hybrid precoding, MMSE hybrid precoding, and
Kalman hybrid precoding techniques. However, the MSE-based
fully digital precoding displays improved spectral efficiency as
compared to the above-mentioned precoding techniques. For
an SNR of 5 dB, the DLIRL based beamforming technique dis-
plays an improvement of 77.5%, 60%, 50%, 50%, and 33.3%
as compared to the analogue beamforming, ZF hybrid precod-
ing, MMSE hybrid precoding, Kalman hybrid precoding, and
MSE-based fully digital precoding techniques, respectively. The
spectral efficiency is achieved for the multipath scenario con-
sidering both LoS and NLoS, total multipath considered for
evaluation of Figure 4 is 10 and total IAB antenna elements are
256.

Moreover, as the antenna size increases the performance of
DLIRL gets better as compared to the DNN and RL beam-
former. Figure 5 shows the comparison between DNN, RL, and
DLIRL-based beamformers for different transmitting antenna
elements. For instance, for the number of IAB antenna ele-
ments equal to 10, the increase in spectral efficiency employing
DLIRL-based beamforming is found to be 53.33% and 51.66%
more efficient as compared to DNN- and RL-based beamform-
ing techniques, respectively. The effect of BER for IAB with 4
transmit antenna elements has been displayed in Figure 6. Here,
the performance of the system for different MIMO schemes is
compared with DLIRL-based beamforming scheme. For a BER
of 107, the proposed DLIRL-based beamforming techniques
require an Eb/Nj of 7 dB. Alternatively, the system without
diversity, Alamouti, and OSTBC schemes require an Eb/N, of
10 dB, 13.3 dB, and beyond 20 dB, respectively.

The quantitative analysis of the proposed scheme concern-
ing SE and BER is presented in Tables 2 and 3 respectively.
There is a drastic improvement in the SE and BER using DLIRL
beamforming studied at SNR = 10 dB shown in both the tables.

To answer the question of whether the proposed scheme can
learn the beamforming, we have simulated Figures 7 and 8. The
simulation graphs in Figures 7 and 8 are also the report of the
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average value for the 30 runs with 1000 iterations each. The
proposed scheme can project the beam towards the UE posi-
tioned at 100 degtrees in the northwest direction of the antenna
placement. From Figures 7 and 8, it is estimated that the DLIRL
based beamformer is better than its counterparts DNN and RL

in steering the beam towatds the UE placed at 101.5° normal
to the antenna placement of IAB. The proposed DLIRL beam-
forming has Angle of Departure (AoD) towards UE location
with a deviation of +2°, whereas RL has a deviation of +3° and
DNN’s deviation is 5°.
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FIGURE 6 Comparative analysis using BER
TABLE 3 BER performance evaluation TABLE 4  Performance evaluation of the training algorithm
BER at Validation Validation Validation
Diversity scheme SNR =10 dB accuracy accuracy accuracy
— - Epoch Iteration (RL) (DNN) (DLIRL)
No diversity, Single input single output (SISO) 10718
Orthogonal space time block coding (OSTBC), 1 X 4 1073 ! 1 2812% 2812% 46.88%
MIMO transmit diversity 2 10 34.38% 28.12% 59.38%
Alamouti, 2 X 2 MIMO diversity 1074 3 20 40.62% 34.38% 65.62%
DLIRL beamforming, 1 X 4 Transmit diversity 1073 4 30 46.88% 37.50% 75.00%
5 40 46.88% 37.50% 78.12%
7 50 46.88% 40.62% 71.88%
8 60 59.38% 43.75% 81.25%
. . . 9 70 59.38% 43.75% 84.38%
The DLIRL is capable of performing efficient beamform- > ! o !
. . .. . . . g 50, 50, 0,
ing due to the effective training, It is vital to have comparative 1 80 36:25% 43.75% 96.88%
analysis of the DLIRL with existing DNN and RL algorithm 12 90 56.25% 43.75% 96.88%
in terms of training validation accuracy, training loss, number 13 100 56.25% 46.88% 84.38%
of iterations and epochs. Figure 9 sheds light on the validation 14 110 56.25% 46.88% 96.88%
accuracy of th.e proposed (DLIR.L? and existing (DNN and RL) 15 120 56.25% 46.88% 06.88%
training algorithms. For the training we employed 20 epochs,
. . X 17 130 56.25% 50.00% 96.88%
160 iterations, and 100 runs. Each run comprised 20 epochs
. . . . g5 0, 0, 0,
and each epoch have 8 iterations. From the validation accuracy 18 140 59-38% >3.12% 93.75%
as shown in Table 4 and Figure 9 it can be inferred that the pro- 19 150 59.38% 50.00% 84.38%
posed DLIRL due to its optimized amalgamation of DNN and 20 160 59.38% 53.12% 100.00%

RL has better training accuracy as compared to the DNN and
RL. These training accuracy results are clearly reflected in the
beamforming effectiveness as shown in Figures 4-8.
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FIGURE 8 Beamform towards UE using DLIRL

The proposed DLIRL is effective in getting trained in less
number of samples as shown in Figure 9. The SE of DLIRL
is comparable to DNN and RL for very few samples (100) as
visualized in Figure 11. Above the 100 training samples the pet-
formance of the DLIRL is better than its counterparts. Another
important discussion associated with this paper is that the pro-
posed beamforming scheme is adaptive beamforming based on
the UE’s movements. To test the efficacy of the DLIRL beam-
forming, simulation environment considered MATLAB 2021
employing a site viewer. For raytracing, Hongkong Open Street

2 4 6 8 10 12 14 16 18 20
Epoch

FIGURE 9 Training validation accuracy of DLIRL, DNN and RL

(b)

FIGURE 10 (a) Demonstration of DLIRL based adaptive beamforming
using MATLAB raytracing and siteviewer. (b) DLIRL based beamsteering with
user movement

Map (OSM) with the 3D building environment is employed as
shown in Figure 10a, b.

The latitude and longitude associated with an IAB are
22.287495, 114.140706. The initial UE location is 22.287323,
114.140859 latitudes, and longitude respectively. The UE is
moving at a constant speed of 28 kilometres/hour (kph) and
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FIGURE 11  SE versus training samples for DLIRL, RL and DNN

its position changes 22.2874, 114.140859 latitude, and longitude
respectively as seen in Figure 9. From the figure, the proposed
method tracks the user equipment and steers the beam in its
direction with an accuracy of 92%. Accuracy is measured based
on the performance of DNN and RL in minimizing the error
deviation achieved at the UE while moving to a new position
from the initial position.

6 | CONCLUSION

A novel integration of deep neural network and reinforced
learning (DLIRL) based scheme for intelligent beamforming in
massive MIMO wireless communication has been investigated
in this paper. The DLIRL algorithm learns from its surround-
ing environment and trains the network as per the requirement
of B5G system. Such intelligent focusing of beams enhances
the spectral efficiency between downlink integrated access and
backhaul and user equipment data transmission and recep-
tion. As the DLIRL exhibits a narrow deviation as compared
to reinforced learning and deep neural network-based beam-
forming techniques, the DLIRL may track the user equipment
at very high accuracy in B5G networks. Hence, the spectral
efficiency with DLIRL-based beamforming is found to be
53.33% and 51.66% more as compared to deep neural net-
work and reinforced learning-based beamforming techniques,
respectively.

NOMENCLATURE

System model symbol notations

Notations Description
I Number of IAB nodes
N Number transmit antenna elements at an IAB

& Information symbol for K” subcarrier
pp  Daseband precoder matrix for each K” subcarrier
fre  RF precoder vector
P,, Average received power
x;x  The received data stream by the UE from the 7
TAB during the downlink at K™
h;x  Channel vector between the /” 1AB and the UE for

the K™ subcarrier
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