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Abstract
Aims/hypothesis Higher maternal BMI during pregnancy is associated with higher offspring birthweight, but it is not known
whether this is solely the result of adverse metabolic consequences of higher maternal adiposity, such as maternal insulin
resistance and fetal exposure to higher glucose levels, or whether there is any effect of raised adiposity through non-metabolic
(e.g. mechanical) factors. We aimed to use genetic variants known to predispose to higher adiposity, coupled with a favourable
metabolic profile, in a Mendelian randomisation (MR) study comparing the effect of maternal ‘metabolically favourable adipos-
ity’ on offspring birthweight with the effect of maternal general adiposity (as indexed by BMI).
Methods To test the causal effects of maternal metabolically favourable adiposity or general adiposity on offspring birthweight, we
performed two-sample MR. We used variants identified in large, published genetic-association studies as being associated with either
higher adiposity and a favourable metabolic profile, or higher BMI (n = 442,278 and n = 322,154 for metabolically favourable
adiposity and BMI, respectively). We then extracted data on the metabolically favourable adiposity and BMI variants from a large,
published genetic-association study of maternal genotype and offspring birthweight controlling for fetal genetic effects (n = 406,063
with maternal and/or fetal genotype effect estimates). We used several sensitivity analyses to test the reliability of the results. As
secondary analyses, we used data from four cohorts (total n = 9323 mother–child pairs) to test the effects of maternal metabolically
favourable adiposity or BMI on maternal gestational glucose, anthropometric components of birthweight and cord-blood biomarkers.
Results Higher maternal adiposity with a favourable metabolic profile was associated with lower offspring birthweight (−94
[95% CI −150, −38] g per 1 SD [6.5%] higher maternal metabolically favourable adiposity, p = 0.001). By contrast, higher
maternal BMI was associated with higher offspring birthweight (35 [95% CI 16, 53] g per 1 SD [4 kg/m2] higher maternal BMI,
p = 0.0002). Sensitivity analyses were broadly consistent with the main results. There was evidence of outlier SNPs for both
exposures; their removal slightly strengthened themetabolically favourable adiposity estimate andmade no difference to the BMI
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estimate. Our secondary analyses found evidence to suggest that a higher maternal metabolically favourable adiposity decreases
pregnancy fasting glucose levels while a higher maternal BMI increases them. The effects on neonatal anthropometric traits were
consistent with the overall effect on birthweight but the smaller sample sizes for these analyses meant that the effects were
imprecisely estimated. We also found evidence to suggest that higher maternal metabolically favourable adiposity decreases
cord-blood leptin while higher maternal BMI increases it.
Conclusions/interpretation Our results show that higher adiposity in mothers does not necessarily lead to higher offspring
birthweight. Higher maternal adiposity can lead to lower offspring birthweight if accompanied by a favourable metabolic profile.
Data availability The data for the genome-wide association studies (GWAS) of BMI are available at https://portals.broadinstitute.
org/collaboration/giant/index.php/GIANT_consortium_data_files. The data for the GWAS of body fat percentage are available
at https://walker05.u.hpc.mssm.edu.

Keywords Adiposity . ALSPAC . BiB . BMI . EFSOCH . Glucose . HAPO . Insulin . Mendelian randomisation . UKB

Abbreviations
ALSPAC Avon Longitudinal Study of Parents and Children
BiB Born in Bradford
d.f Degrees of freedom
EFSOCH Exeter Family Study of Childhood Health

EGG Early Growth Genetics
GWAS Genome-wide association studies
HAPO Hyperglycemia and Adverse Pregnancy Outcomes
IVW Inverse variance weighted
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MAGIC Meta-Analysis of Glucose and Insulin-related
traits Consortium

MR Mendelian randomisation
SEM Structural equation modelling
UKB UK Biobank
WLM Weighted linear model

Introduction

Higher maternal BMI, an index of general adiposity, is strong-
ly associated with higher offspring birthweight [1]. Mendelian
randomisation (MR) studies support these associations as
causal [2, 3]. High birthweight is associated with adverse peri-
natal and neonatal outcomes [4].

A likely mechanism for the association of higher maternal
BMI with higher offspring birthweight is via its adverse meta-
bolic consequences. For example, higher maternal BMI

results in greater maternal insulin resistance and consequently
higher maternal circulating glucose levels. As glucose crosses
the placenta via facilitated diffusion, this results in increased
insulin secretion by the fetus (maternal insulin cannot cross
the placenta [5]). Insulin acts as a growth factor (i.e. higher
fetal insulin secretion leads to increased fetal skeletal growth
and fat deposition), resulting in higher birthweight [6].

Common genetic variants provide a useful tool to investi-
gate the relationship between maternal adiposity and offspring
birthweight. Genetic variants have been identified where one
allele is associated with higher insulin resistance and with
distributions of metabolic and adiposity traits that are consis-
tent with a ‘metabolically obese’ phenotype (i.e. higher triac-
ylglycerols and higher visceral/subcutaneous adiposity ratio)
[7]. These associations are consistent with the ‘tissue expand-
ability’ hypothesis, which states that population-level differ-
ences in the association between adiposity and type 2 diabetes
are due to differences in the ability of adipocytes to absorb
additional fatty acids from circulation, and people with either

Two-sample Mendelian randomisation

Main analysis

Sensitivity analyses

Extract SNP associations of 

maternal genetic effect on offspring 

birthweight from the WLM analyses

Extract SNP 

associations
Harmoniseb

Cochran’s Q test

I
2 test

MR-Egger

Weighted-median

Radial MR

SEM (UKB only)

SNP data:

GWAS of metabolically favourable 
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GWAS of BMIa: n = 339,224
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n = 100,716
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(total)

Pooled wald ratios

Fig. 1 Diagram summarising the key data sources and analysis steps for
the primary analyses. aThe GWAS data used came from Ji et al. [9]
(favourable adiposity), Locke et al. [11] (BMI), Lu et al. [10] (body fat

percentage) and Warrington et al. [2] (birthweight). bThe SNP associa-
tions were harmonised to the exposure-increasing allele [34]
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fewer adipocytes or adipocytes that are less able to increase in
size (i.e. less ‘expandable’ adipose tissue) store greater fat in
the visceral organs, leading to insulin resistance. The opposite
allele at each of the identified genetic variants is associated
with a ‘metabolically favourable adiposity’ phenotype linked
to higher body fat percentage and a lower risk of type 2 diabe-
tes [8]. In an expanded set of such variants, the metabolically
favourable adiposity alleles were also associated with higher
subcutaneous adipose tissue and lower ectopic liver fat [9].

It is unknownwhether themetabolically favourable adipos-
ity alleles in pregnant women affect offspring birthweight.
Lack of a positive association between maternal metabolically
favourable adiposity alleles and offspring birthweight would
be compatible with the hypothesis that the effect of maternal
BMI on birthweight is driven by the metabolic consequences
of general adiposity and not by adiposity per se.

Our aim was to determine the effect of metabolically
favourable adiposity on birthweight and to compare this with
the effect of maternal general adiposity on birthweight. In our
primary analysis, we used alleles associated with higher
maternal metabolically favourable adiposity as genetic instru-
ments to measure the effect of maternal adiposity on
birthweight when coupled with ‘favourable’metabolic effects,
using data from large genome-wide association studies
(GWAS) [2, 9]. We hypothesised that higher maternal meta-
bolically favourable adiposity would either not associate with
birthweight or would associate with lower birthweight if it
resulted in lower maternal circulating glucose levels. In a
secondary (exploratory) study, we used available individual-
level data onmothers and babies to explore potential effects of
maternal favourable vs general adiposity on birthweight-
related metabolic (e.g. maternal glucose, cord insulin) and
anthropometric (e.g. head circumference, skinfold thickness)
traits.

Methods

To estimate the causal effect of maternal metabolically
favourable adiposity or BMI (exposures) on offspring
birthweight (outcome), we used two-sample MR with
GWAS summary statistics. In this method, estimates of
SNP–exposure associations are first obtained for a set of
SNPs that are robustly associated with the exposure (metabol-
ically favourable adiposity or BMI). Second, associations
between the same SNPs and outcome (birthweight) are
extracted from existing GWAS datasets. For each SNP, the
SNP–outcome association is then divided by the SNP–
exposure association. These ratios are then pooled to give an
estimate of the causative effect of the exposure on the
outcome.

The study design and different data sources are summarised in
Fig. 1 and electronic supplemental material (ESM) Fig. 1. Ethical

approval and informed consent from participants were obtained
in all of the studies included in this research.

Data sources

Genetic predictors of metabolically favourable adiposity
Metabolically favourable adiposity SNPs were identified from
the most recent GWAS (N = 442,278) [9]. The GWAS of meta-
bolically favourable adiposity uses a composite phenotype
characterised by increased body fat percentage and a metabolic
profile related to a lower risk of type 2 diabetes, hypertension and
heart disease (see ESM Methods: Deriving metabolically
favourable adiposity phenotype and genetic variants, and Ji
et al. [9] for more details); 14 SNPs associated with higher body
fat percentage and a ‘favourable’ metabolic profile were identi-
fied at p < 5 × 10−8 and replicated [9]. To facilitate the inter-
pretation of our results we weighted these SNPs by the effect
estimates of their association with body fat percentage using the
latest GWAS of body fat percentage [10].

Genetic predictors of BMI We used 76 BMI SNPs as instru-
ments for general adiposity from the most recent GWAS of
BMI that did not include the UK Biobank (UKB) sample (N
= 322,154), with their weights being extracted from the same
GWAS [11]. We did not use the more recent GWAS that did
include UKB [12], as that would have resulted in an overlap
between sample 1 (genetic instruments-BMI) and sample 2
(genetic instruments-birthweight), which could result in
overfitting of the data, and bias towards confounded associa-
tions, in the presence of weak instruments [13]. Additional
details of the metabolically favourable adiposity and BMI
GWAS are provided in ESM Table 1 and the characteristics
of the SNPs used in our MR analyses are shown in ESM
Table 2.

Genetic associations with offspring birthweight We used the
latest GWAS of offspring birthweight from the Early Growth
Genetics (EGG) consortium. A total of 406,063 participants
contributed to the weighted linear model (WLM) analyses
(see below), of which 101,541 were UKB participants who
reported their own birthweight and birthweight of their first
child, 195,815 were UKB and EGG participants with their
own birthweight data, and 108,707 were UKB and EGG
participants with offspring birthweight data. Further details
are given in Table 1, and ESM Methods: Study Descriptions
and ESM Methods: Defining offspring birthweight for
GWAS (which also includes details of participant consent
and ethics approval) [2].

Birthweight was standardised within UKB and each of the
EGG cohorts so that SNP effect sizes are in SD units (1 SD of
birthweight ≈484 g, the median SD for birthweight in 18 stud-
ies in an early birthweight GWAS [14]).
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Genetic associations with other outcomes Four birth cohorts
were used to perform secondary analyses on birth anthropo-
metric and cord-blood outcomes, including the Avon
Longitudinal Study of Parents and Children (ALSPAC) [15,
16], Born in Bradford (BiB) [17], the Exeter Family Study of
Childhood Health (EFSOCH) [18] and Hyperglycemia and
Adverse Pregnancy Outcome (HAPO) study [19] (maximum
N = 9323 mother–child pairs).

We used published GWAS summary statistics from the
Meta-Analyses of Glucose and Insulin-related traits
Consortium (MAGIC) to investigate the effects of the meta-
bolically favourable adiposity and BMI SNPs on fasting
glucose. The MAGIC consortium GWAS reported data from
46,186 White European adults (including men and non-
pregnant women) on fasting glucose from 17 population
cohorts and four case–control studies in the discovery dataset
(there were 122,743 adults in the total dataset) [20]. We
checked the consistency of these associations with those for
pregnancy fasting glucose in BiB, EFSOCH and HAPO
(pregnancy fasting glucose data was not available for
ALSPAC).

Further information on these cohorts and their contribution to
the study can be found in Table 2, ESMTable 3 and ESMFig. 1.
For the cohort descriptions and additional information on partic-
ipant consent, ethics approval and data extraction, see ESM
Methods: Study descriptions. For additional information on
how ethnicity was defined for each study, see ESM Methods:
Selecting participants of European ancestry. For additional infor-
mation on genotyping, see ESMMethods:Genotyping. For addi-
tional information on phenotype assessment, see ESMMethods:
Measuring cord-blood outcomes in selected birth cohorts for
secondary analyses; and ESM Methods: Measuring pregnancy
glucose outcomes in selected cohorts for secondary analyses.

Data analyses

Our primary analysis was to study the effect of maternal meta-
bolically favourable adiposity and BMI on offspring
birthweight in the UKB and EGG meta-analysis. In addition,
we undertook exploratory analyses on the effects of metabol-
ically favourable adiposity and BMI on other outcomes (see
Table 2 and ESM Fig. 1).

Table 2 Characteristics of the studies used for the secondary analyses

Characteristic ALSPAC BiB EFSOCH HAPO 1a HAPO 2a

Participants (n) 7411 3308 1022 1052 815

Country UK UK UK USA USA

Offspring year of birth 1991–1993 2007–2011 2000–2004 2001–2006 2000–2006

Maternal age at birth of child (years) 28.5 (4.8) 27.1 (6.0) 30.4 (5.3) 32.1 (5.1) 29.9 (5.4)

Maternal pre-pregnancy BMI (kg/m2) 22.9 (3.8) 26.6 (5.9) 24 (4.4) 24.2 (4.6) 24.6 (5.3)

Gestational age at delivery (weeks) 39.6 (1.7) 39.7 (1.8) 39.9 (1.5) 40.0 (1.2) 40.0 (1.2)

Offspring sex (% male) 49.8 51.6 51.6 47.9 50.9

Mothers smoking (%) 17.2 33.1 13.3 12.9 15.1

Birthweight (g) 3495.0 (470.6) 3438.9 (481.8) 3513.2 (475.5) 3542.5 (509.1) 3539.5 (431.1)

Birth length (cm) 50.9 (2.2) NA 50.3 (2.1) 50.5 (2.2) 51.8 (2.5)

Birth ponderal index (kg/m3) 26.4 (2.7) NA 27.7 (2.6) 27.4 (3.3) 25.4 (3.3)

Birth head circumference (cm) 35.0 (1.4) 34.7 (1.4) 35.2 (1.3) 34.9 (1.6) 34.9 (1.4)

Birth triceps skinfold thickness (mm) NA 5.2 (1.1) 4.9 (1.1) 4.1 (0.8) 4.1 (0.9)

Birth subscapular skinfold thickness (mm) NA 4.9 (1.1) 4.9 (1.2) 4.6 (1.0) 4.3 (1.0)

Sum of birth skinfold thickness (mm) NA 10.1 (2.1) 9.7 (2.1) 13.1 (2.5) 12.3 (2.4)

Cord-blood C-peptide (nmol/l)b NA NA NA 0.3 (0.2–0.4) 0.3 (0.2–0.4)

Cord-blood insulin (pmol/l)b NA 24.3 (15.0–41.0) 37.6 (26.0–60.0) NA NA

Cord-blood leptin (μg/l)b NA 7.3 (4.0–13.1) NA NA NA

Cord-blood adiponectin (μg/ml)b NA 33.3 (26.3–42.7) NA NA NA

Fasting glucose (mmol/l) NA 4.40 (0.42) 4.35 (0.38) 4.58 (0.37) 4.51 (0.34)

2 h post-load glucose (mmol/l) NA 5.43 (1.30) NA 6.02 (1.20) 6.06 (1.19)

Data are presented as mean (SD) or median (interquartile range), unless otherwise stated
a For HAPO 1, genetic data was stored and analysed at the Northwestern University Feinberg School of Medicine, Chicago (IL, USA). For HAPO 2,
genetic data was stored and analysed at the University of Exeter (Exeter, UK). These were non-overlapping samples of mothers and babies of European
ancestry
b Since cord-blood outcomes have a non-standard distribution, the median and interquartile ranges are presented

NA, not applicable (characteristic was not measured in cohort)
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Adjusting for the fetal genotype To avoid violating the third
assumption of MR due to fetal genetic effects, we needed to
adjust for the effects of the fetal genotype on the outcomes
(see ESMMethods: Potential violation ofMR assumptions by
the fetal genotype).

For the primary analyses, to ensure our analyses considered
only the effect of the maternal genotype and not the correlated
fetal genotype, we used the maternal genetic effect on offspring
birthweight that had been estimated using a WLM [2]. The
WLM is a linear approximation of a structural equation model-
ling (SEM) technique that was developed to combine data from
disparate study designs to estimate independent maternal and
fetal genetic effects, equivalent to conditional analysis in
mother–child pairs. The WLM/SEM method combines studies
with own genotype data available in addition to own birthweight
and offspring birthweight data, with data from studies with only
their own birthweight or offspring birthweight.

Further details about WLM/SEM, and methods used to
confirm that we obtained similar causal effect estimates with
both the WLM- and SEM-adjusted summary statistics for
birthweight, are given in ESM Methods: Structural equation
modelling (SEM) and weighted linear modelling theory and
ESM Methods: Extracting own birthweight data in UK
Biobank (see also [2, 21]).

For the secondary analyses, the maternal genotype effects
on offspring outcomes were directly adjusted for the fetal
genotype, as both mother and offspring genotypes were avail-
able for the four cohorts used.

MR analysis For the primary analyses, we performed two-sample
MR using Wald ratios [22], which were calculated by dividing
each SNP’s effect on offspring birthweight (maternal genetic
effect estimated using WLM) by the same SNP’s effect on the
exposure (maternal metabolically favourable adiposity or BMI).
Standard errors were calculated by dividing the WLM/SEM-
defined standard error of the SNP’s effect on offspring
birthweight by each SNP’s effect on the exposure.

The resulting effect estimates from our MR analyses are
reported as the mean difference in offspring birthweight per 1

SD higher maternal body fat percentage (1 SD of body fat
percentage = 6.5%; see ESMMethods: Defining a 1 SD increase
in body fat percentage) for metabolically favourable adiposity,
and the mean difference in offspring birthweight per 1 SD
increase in maternal BMI (1 SD of BMI = 4 kg/m2 [3]) for BMI.

For the secondary analyses, we used fixed effect pooled
Wald ratio analysis to determine the effect of maternal
metabolically favourable adiposity and BMI on offspring
outcomes in each of these studies and compared the pooled
result of that with the same result in our main analyses of
effects on birthweight.

Sensitivity and additional analysis For both the primary and
secondary analyses, we performed additional sensitivity anal-
yses to assess the validity of the genetic instrumental vari-
ables. This mostly included methods to test the assumptions
of two-sampleMR (such as Cochran’sQ and I2, leave-one-out
analyses [23], MR-Egger [24], weighted-median [25] and
Radial MR [26]). To further explore the hypothesis that
glucose mediates the effect of BMI on birthweight, we
performed a multivariable MR analysis [27] for adjusting the
effect of BMI on birthweight. This could not be done for
metabolically favourable adiposity, due to the fact that it is a
composite trait in which insulin resistance is one of the defin-
ing features. Further details are provided in the following
ESMMethods sections: Overview of tests to explore potential
violations of two-sample Mendelian randomisation;
Sensitivity analyses to explore horizontal pleiotropy and addi-
tional sources of invalid instruments; BMI SNP validation;
Collider bias test; Cross exposure analyses; Testing potential
confounders and mediators; Multivariable MR analyses for
potential confounders and mediators; and Multivariable MR
analyses for glucose mediation.

Results

The associations between the SNPs analysed in the primary
study and UKB + EGG birthweight are shown in ESM

Wald ratio estimate

MR−Egger estimate

MR−Egger intercept

Weighted-median estimate

Method

−94 (−150, −38)

−

Change in birthweight

(95% CI)

−55 (−355, 246)

−1 (−7, 5)

−120 (−207, −33)

0−400 400

Fig. 2 Causative effect estimates
for maternal metabolically
favourable adiposity on offspring
birthweight. The methods (Wald
ratio, MR-Egger and weighted-
median analysis) used WLM-
adjusted estimates to account for
offspring genotype. The x-axis
shows the change in birthweight
(g) per 1 SD increase in body fat
percentage (6.5%)
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Table 4 and the association between the same SNPs and all the
outcomes analysed for the secondary study (fasting glucose,
pregnancy fasting glucose, pregnancy 2 h glucose, cord insulin,
cord C-peptide, cord leptin, cord adiponectin, birthweight, birth
length, ponderal index, head circumference, triceps skinfold
thickness, subscapular skinfold thickness and sum of skinfold
thickness) are shown in ESM Tables 5–7.

Maternal metabolically favourable adiposity and
maternal general adiposity, indexed by BMI, have
opposite effects on offspring birthweight

We found evidence that higher maternal metabolically
favourable adiposity causes lower offspring birthweight
(Fig. 2). The main estimate (−94 g [95% CI −150, −38]) of
difference in mean birthweight per 1 SD (6.5%) higher

maternal metabolically favourable body fat percentage (p =
0.001) was consistent with both the MR-Egger and weighted-
median estimates (Fig. 2). There was evidence of heterogene-
ity between the Wald ratios across the SNPs (Cochran’s Q =
33.46 [degrees of freedom (d.f.) =13], I2 = 61.1%, p = 0.001),
yet results were consistent across leave-one-out analysis
(ESM Fig. 2). Using the SEMmethod to adjust for fetal geno-
type effects also gave very similar results (ESM Fig. 3).

The two-sample MR estimates for BMI are consistent with
higher maternal general adiposity leading to higher offspring
birthweight (Fig. 3). The mainMR estimate was 35 g (95%CI
16, 53) of difference in mean birthweight per 1 SD (4 kg/m2)
higher maternal BMI (p = 0.0002). MR-Egger (20 g [95% CI
−52, 92], p = 0.576) and weighted-median (14 g [95% CI
−20, 48], p = 0.424) estimates were directionally the same,
though smaller than themain estimate (Fig. 3). In this analysis,

Wald ratio estimate

MR−Egger estimate

MR −Egger intercept

Weighted-median estimate

Method

35.0 (16.0, 53.0)

20.0 ( −52.0, 92.0)

0.5 ( −1.6, 2.5)

14.0 ( −20.0, 48.0)

Change in  birthweight

(95% CI)

0−100 100

Fig. 3 Causative effect estimates
for maternal BMI on offspring
birthweight. The methods (Wald
ratio, MR-Egger and weighted-
median analysis) used WLM-
adjusted estimates to account for
offspring genotype. The x-axis
shows the change in birthweight
(g) per 1 SD increase in maternal
BMI (4 kg/m2)

Exposure

General fasting glucose (mmol/l)

Favourable adiposity

BMI

Pregnancy fasting glucose (mmol/l)

Favourable adiposity

BMI

Pregnancy 2 h glucose (mmol/l)

Favourable adiposity

BMI

Change in 

glucose (95% CI)

-0.100 (-0.202, 0.002)

0.087 (0.053, 0.120)

-0.129 (-0.343, 0.085)

0.095 (0.031, 0.160)

-0.737 (-1.479, 0.005)

0.121 (-0.101, 0.343)

No. of

studies 

1
1

4
4

3
3

No. of

participants

122,743
122,743

5360
5360

5060
5060

Fig. 4 Causative effect estimates for maternal BMI and metabolically favourable adiposity on maternal pregnancy glucose outcomes. The x-axis shows
the change in glucose outcomes per 1 SD increase in body fat percentage (6.5%) and BMI (4 kg/m2)
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there was also evidence of heterogeneity between the Wald
ratios for each SNP (Cochran’s Q = 178.42 (d.f. = 75), I2 =
58%, p = 2 × 10−10), yet again results were consistent across
leave-one-out analysis (ESM Fig. 4). Using the SEM method
to adjust for fetal genotype gave very similar results (ESM
Fig. 5).

Using Radial MR, we identified four MR-Egger outlier
SNPs for the metabolically favourable adiposity effect (ESM
Fig. 6, ESMFig. 7) and 18 outlier SNPs for BMI (ESMFig. 8,
ESM Fig. 9). In both cases the Radial MR results were consis-
tent with the main results with the outliers removed.

Secondary study results

Higher metabolically favourable adiposity resulted in lower
fasting glucose inmen and non-pregnant women, while higher
maternal BMI resulted in higher fasting glucose (Fig. 4). The
relationship between maternal metabolically favourable
adiposity or BMI and fasting glucose in pregnancy were
consistent with this, as was 2 h postprandial glucose in preg-
nancy (Fig. 4). The point estimate for the effect of metaboli-
cally favourable adiposity on 2 h postprandial glucose was
greater than that for fasting glucose but the CIs were wider
(Fig. 4).

Higher maternal metabolically favourable adiposity consis-
tently resulted in lower neonatal anthropometric measures, in
particular lower infant head circumference (Fig. 5). In
contrast, evidence suggested that maternal BMI consistently
resulted in higher neonatal anthropometric measures (Fig. 5).

Higher maternal metabolically favourable adiposity
showed suggestive evidence of causing lower cord-blood
leptin levels and, in contrast, there was strong evidence of
higher maternal BMI resulting in higher cord-blood leptin
levels (ESM Fig. 10). There was no detectable effect of mater-
nal metabolically favourable adiposity or BMI on cord-blood
insulin, C-peptide or adiponectin levels, though the small
sample sizes made these results imprecise (ESM Fig. 10).

Validity of the genetic instrumental variables

The BMI SNPs were positively and consistently associated
with pregnancy BMI across all of the cohorts used for our
secondary analyses (ESM Fig. 11).

There was no evidence that collider bias influenced the
results of maternal metabolically favourable adiposity on
outcomes (ESM Table 8 and ESM Fig. 12), and the effect
was directionally consistent irrespective of which adiposity
exposure weights were used (ESM Fig. 13, ESM Fig. 14).

The metabolically favourable adiposity genetic score was
not associated with maternal smoking or maternal education
level in UKB, ALSPAC, EFSOCH or BiB but it was associ-
ated with lower female educational level in HAPO (ESM
Table 9). The BMI genetic score was associated with a higher
prevalence of current smoking status in women in UKB and
pregnancy smoking status in ALSPAC and with lower female
educational level in UKB (ESM Table 9). Given these find-
ings, we undertook further analyses using multivariable MR
to see whether maternal education and smoking status
confounded the association. Results from the multivariable

Outcome

Favourable adiposity

Birthweight

Birth length

Ponderal index

Head circumference

Triceps skinfold

Subscapular skinfold

Sum of skinfolds

Sum of skinfolds

BMI

Birthweight

Birth length

Ponderal index

Head circumference

Triceps skinfold

Subscapular skinfold

-1.5 1.50

Change in outcome 

in SD units 

per 1 SD increase in 

exposure (95% CI) 

-0.70 (-1.16, -0.24)

-0.29 (-0.84, 0.25)

-0.32 (-0.91, 0.27)

-0.83 (-1.31, -0.35)

-0.15 (-0.94, 0.65)

-0.18 (-0.97, 0.62)

0.10 (-0.06, 0.26)

0.08 (-0.12, 0.27)

0.10 (-0.12, 0.31)

0.03 (-0.14, 0.20)

0.17 (-0.09, 0.44)

-0.20 (-1.00, 0.60)

0.17 (-0.10, 0.44)

0.17 (-0.09, 0.43)

No. of 

studies

5

5

5

5

4

4

4

5

5

5

5

4

4

4

No. of

genotyped

mother–child 

pairs

8394

5794

5744

7459

3212

3210

3207

8394

5794

5744

7459

3212

3210
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1 SD

value

484 g

2 cm

3 kg/m3

1 cm

1 mm

1 mm

2 mm
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3 kg/m3
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1 mm
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Change in outcome 
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per 1 SD increase in 

exposure (95% CI)

-340 (-562, -118)

-0.58 (-1.68, 0.51)

-0.96 (-2.74, 0.82)

-0.83 (-1.31, -0.35)

-0.15 (-0.94, 0.65)

-0.18 (-0.97, 0.62)

-0.40 (-1.99, 1.19)

48 (-30, 126)

0.15 (-0.24, 0.54)

0.29 (-0.35, 0.93)

0.03 (-0.14, 0.20)

0.17 (-0.09, 0.44)

0.17 (-0.10, 0.44)

0.33 (-0.20, 0.86)

Fig. 5 Causative effect estimates for maternal BMI and metabolically favourable adiposity on other birth anthropometric outcomes, adjusted for
offspring genotype. The x-axis shows the change in outcomes in SDs per 1 SD increase in maternal body fat percentage (6.5%) and BMI (4 kg/m2)

2798 Diabetologia  (2021) 64:2790–2802



adjusted MR analyses were consistent with those from the
unadjusted MR analyses, for both smoking and years of
education, adjusted for individually and when both were
included in the multivariable model (ESM Table 10).

Mediation analysis

In multivariable MR analyses, there was evidence that the
effect of BMI on birthweight is mediated by its effect on
fasting glucose, with the effect of BMI in the main inverse
variance weighted (IVW) analyses (35 g [95% CI 6, 63]
difference in mean birthweight per 1 SD increase in BMI, p
= 0.02), attenuating with adjustment for fasting glucose (14 g
[95% CI −18, 46] difference in mean birthweight per 1 SD
increase in BMI, p = 0.39; ESM Table 11).

Discussion

We have found evidence that higher maternal favourable adipos-
ity lowers offspring birthweight and that higher general adiposity
(BMI) increases birthweight. Our secondary analyses provided
some evidence that higher maternal favourable adiposity causes
lower fasting glucose in contrast to the glucose-increasing effect
of higher BMI. Additional analyses of effects of maternal
favourable vs general adiposity on neonatal anthropometric
measures, including head circumference, were consistent in
direction with those of birthweight but larger sample sizes will
be needed to determine whether effect sizes varied between
measures that capture fat mass (e.g. skinfold thickness) vs lean
mass (e.g. head circumference). There was evidence to suggest
that cord-blood leptin levels are lowered by maternal favourable
adiposity and raised by higher maternal BMI. There was insuf-
ficient power to detect precise effects on cord-blood markers of
fetal insulin response, as the studies used different measures of
this (insulin, C-peptide or adiponectin).

Metabolically favourable adiposity is a composite of indi-
vidual traits, some of which have been found to be causally
associated with birthweight. In particular, higher maternal
fasting glucose (often resulting from insulin resistance, a
component of the metabolically unfavourable adiposity trait)
has consistently been found to be causally associated with
higher offspring birthweight in MR studies [2, 3]. We have
shown higher metabolically favourable adiposity to be tenta-
tively associated with lower fasting glucose, suggesting that
the effect of higher maternal metabolically favourable adipos-
ity on lower offspring birthweight may be mediated by its
effect on fasting glucose levels. Though we have focused on
fasting glucose, metabolically favourable adiposity is also
associated with other exposures, in particular lower triacyl-
glycerol levels [9]. However, MR studies have failed to find
any evidence of an association between maternal circulating
triacylglycerol levels and offspring birthweight [3, 28].

Furthermore, glucose crosses the placenta by facilitated diffu-
sion [29] and directly influences fetal growth; for this reason,
our focus in this study was on maternal fasting glucose. Our
multivariableMR analysis provides some evidence that higher
maternal fasting glucose has a mediating role in the effect of
maternal BMI on offspring birthweight. However, it is not
possible to explore this mediation with metabolically
favourable adiposity because of the composite nature of this
exposure and because metabolically favourable adiposity
SNPs were selected based on their indirect association with
glucose traits (given insulin resistance is one of the defining
features of this composite trait), therefore making the results
difficult to interpret (see ESM Methods: Multivariable MR
analyses for glucose mediation for more details).

The metabolically favourable adiposity phenotype used here
is based on the adipose ‘tissue expandability’ hypothesis. Other
metabolically favourable adiposity phenotypes have been devel-
oped that focus on BMI [30], BMI and WHR [31], or BMI,
WHR and body fat percentage independently [32] rather than
body fat percentage alone. Unlike the metabolically favourable
adiposity phenotype used in this study, those studies used corre-
lation rather than clustering analyses. Of the two studies that
reported the genetic variants they identified, the phenotype
reported by Winkler et al. 2018 [31] overlapped with four of
the 14 loci used in this study (GRB14/COBLL1, VEGFA,
CCDC92/DNAH10 and FAM13A) while Huang et al. 2021
[32] captured all but two of the loci used in this study
(CITED2 and TRIB1/LRATD2). Neither of these have been used
in MR studies of birthweight. The Winkler et al. 2018 [31]
phenotype might not be comparable with our phenotype and
could produce different results compared with this study, though
the broader Huang et al. 2021 [32] phenotype might produce a
similar result. Nonetheless, further studies are needed in future to
test other genetic instruments for metabolically favourable
adiposity phenotypes.

Study strengths and limitations

To the best of our knowledge, this is the first study to use MR
to investigate the effect of maternal metabolically favourable
adiposity on offspring birthweight. We used data from a large
GWAS of birthweight and for the first time examined poten-
tial effects on maternal glucose traits as well as additional
newborn anthropometric and cord-blood measurements in
exploratory analyses. We explored the validity of our genetic
instrumental variables using multiple sensitivity analyses,
including the recently developed Radial MR method [26],
and found that overall results from these sensitivity analyses
were consistent with our main findings. Our BMI genetic
variants explained 2.7% of the variance in BMI in the original
GWAS cohort [11]. As metabolically favourable adiposity is
not a directly measured single trait, it is not possible to
measure how much ‘variance’ is explained by the genetic
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variants. However, for the primary study with birthweight the
MR estimates were precise.

Only 5% of those invited participated in the UKB and
offspring birthweight was reported several years later.
However, the similarity of the UKB results with those from the
four birth cohorts with response rates of at least 70% suggests
that the UKB results are unlikely to be importantly biased. Self-
report of own and first child’s birthweight and the rounding to the
nearest one pound (~0.454 kg, first child’s birthweight only) may
have introduced error in the birthweight measure in UKB, but
this would be randomwith respect to genotype and would not be
expected to substantially bias results. In UKB there is a relatively
lower reported birthweight than in most of the other cohorts used
in this study, likely reflecting secular trends of increasing birth
size over time.

In UKB, genetically instrumented BMI was found to be
associated with both educational attainment and smoking
status. However, results of the multivariable IVW analyses
of maternal BMI on offspring birthweight adjusted for
smoking and years of education were not substantially differ-
ent from the main result, suggesting the association was not
heavily confounded (ESM Table 10).

While there was evidence of between-SNP heterogeneity
of both metabolically favourable adiposity and BMI, results
were directionally consistent across the main estimate, leave-
one-out analyses, MR-Egger and weighted-median analyses.
The Radial MR analyses for both maternal metabolically
favourable adiposity and maternal BMI found evidence of
SNPs with outlier effects (four for maternal metabolically
favourable adiposity, 18 for maternal BMI). However, in both
cases, removal of the outlier SNPs from the analyses resulted
in estimates consistent with the main estimates, suggesting
horizontal pleiotropy is unlikely to be a major source of bias
for our analyses. In our secondary studies we had insufficient
power to undertake these sensitivity analyses.

In conclusion, our results suggest that maternal metabolically
favourable adiposity has the opposite effect on offspring
birthweight to that of maternal BMI. This means that higher
adiposity in mothers does not necessarily lead to higher offspring
birthweight and may result in lower offspring birthweight if
accompanied by a favourable metabolic profile. In the future,
methods to stratify overweight and obese pregnant women by
their metabolically favourable adiposity status could allow for
targeted interventions to achieve healthy birthweight.

Supplementary Information The online version of this article (https://doi.
org/10.1007/s00125-021-05570-9) contains peer-reviewed but unedited
supplementary material.
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