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Abstract—Finite inverted Beta mixture model (IBMM) has been proven
to be efficient in modeling positive vectors. Under the traditional varia-
tional inference framework, the critical challenge in Bayesian estimation
of IBMM is that the computational cost of performing inference with
large datasets is prohibitively expensive, which often limits usages of
Bayesian approaches to small datasets. An efficient alternative provided
by the recently proposed stochastic variational inference (SVI) framework
allows for efficient inference upon large datasets. Nevertheless, when
using the SVI framework to tackle non-Gaussian statistical models, the
evidence lower bound (ELBO) cannot be calculated explicitly due to the
intractable moment computation. Therefore, the algorithm under the SVI
framework cannot directly utilize stochastic optimization to optimize the
ELBO and an analytically tractable solution cannot be derived. To address
this problem, we propose an extended version of the SVI framework
with more flexibilities namely the extended SVI (ESVI). This framework
can be employed to many non-Gaussian statistical models. Firstly, some
approximation strategies are applied to further lower the ELBO to avoid
intractable moment calculation. Then, stochastic optimization with noisy
natural gradients is used to optimize the lower bound. The excellent
performance and effectiveness of the proposed method is verified in real
data evaluation.

Index Terms—Extended stochastic variational inference; Mixture models;
Bayesian estimation; Text categorization; Network traffic classification;
Misuse intrusion detection.

1 INTRODUCTION

Positive vectors [1] emerge naturally in a wide range of
real applications, such as text categorization [2], anomaly
intrusion detection [3]-[5], object detection [6], software
modules classification [1], and human action recognition
[7]. Therefore, positive vectors modeling has become a
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vital research topic and gained increasing attention over
the past years. Finite mixture modeling based on several
non-Gaussian components has proven to be flexible and
useful in modeling positive vectors, which are supposed
to be drawn from homogenous populations. Such typical
mixture models are finite Watson mixture model (WM-
M) [8], finite von-Mises Fisher Mixture Model (VFMM)
[9], finite Beta mixture model (BMM) [2], finite Dirichlet
mixture model (DMM) [10], finite Beta-Liouville mixture
model (BLMM) [11], finite inverted Dirichlet mixture (ID-
MM) [1], finite inverted Beta mixture model (IBMM) [2],
finite generalized Gamma mixture model (GGaMM) [12],
and finite inverted Beta-Liouville mixture model (IBLMM)
[13]. A great number of studies have shown that these
mixtures are capable of providing much better modeling
capabilities and performances than the commonly used
finite Gaussian mixture model (GMM) in processing pos-
itive vectors. For instance, DMM, BLMM, and BMM have
been proven to be much more efficient in modeling the
proportional data [10], [11]. IDMM, IBMM, IBLMM, and
GaMM have shown their advantages in modeling positive
vectors [1], [2], [6], [13]. WMM and vFMM have demon-
strated their advantages in modeling axially symmetric
data. The IBMM, among others, is capable of providing
high flexibility and easy application for modeling posi-
tive vectors [1]. IBMM has been extensively applied for
text categorization [2], human action recognition [7], and
image categorization [14].

Model learning is a significant issue in finite mixture
modeling, which refers to the task of both estimating
the model parameters and determining the number of
mixture components. A number of approaches have been
proposed to deal with this issue and they can be split into
two groups namely deterministic and Bayesian methods.
Deterministic methods generally adopt the conventional
expectation-maximization (EM) algorithm [15] to maxi-
mize the data log-likelihood function and to optimize the
model parameters. However, deterministic methods have
some shortcomings, such as dependency on initialization,
over-fitting, etc, and they alone fail to determine the
optimal component number. They need to integrate some
model selection criteria, such as Akaike information crite-
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rion (AIC) [16], Bayesian information criterion (BIC) [17],
minimum description length (MDL) [18], etc, to determine
the optimal component number. Nevertheless, these ap-
proaches demand multiple evaluations of the selection
criterion regarding diverse component numbers, which
normally yields a heavy computational burden. Moreover,
it is worth noting that for the maximization likelihood
estimation of most non-Gaussian mixtures, there exists no
analytically intractable solution for the model parameter
estimation [19], [20]. Hence, iterative numerical computa-
tion (e.g., Newton-Raphson methods) is commonly used to
deal with this problem, which increases the computational
cost further.

Bayesian methods overcome the weaknesses of deter-
ministic methods, which determine the posterior densi-
ties through combining the observed data and the prior
knowledge of the model’s parameters using Bayes” rule.
Because the computation of these posteriors often in-
volves high dimensional integrations, it is generally com-
putationally intractable. To address this issue, Bayesian
methods [21] have considered the two most prominent
strategies: MCMC sampling and variational inference to
approximate the true posterior densities. However, a ma-
jor shortcoming of MCMC methods is that their conver-
gence can be hard to be diagnosed, which often limits
their usage to small-scale problems. Variational inference
offers an excellent alternative to computationally demand-
ing sampling-based methods, which casts the inference
problem as optimization and has been extensively applied
in a wide range of applications including finite mixture
models learning. Nevertheless, with the conventional vari-
ational inference framework, a closed-from solution to the
Bayesian estimation of non-Gaussian mixture models can-
not be obtained due to the intractable moment calculation.
This problem can be solved elegantly through our recently
proposed extended variational inference (EVI) framework
[2], [4], [22]. However, the aforementioned approximation
inference strategies require analyzing the whole dataset in
each iteration and thus scale poorly on massive datasets.

Recently, SVI has gained considerable popularity in
tackling the aforementioned issue [23], which aims at
finding excellent posterior approximations of probabilistic
models with massive datasets and has been successfully
employed in a wide range of settings, such as topic
models [23]-[25], hidden Markov models [26], Bayesian
time series models [27], etc. The major idea behind the SVI
framework is to utilize noise of the gradient based upon
minibatches of data, which avoids an expensive gradient
calculation on the entire dataset. Supposing the data are
independent and identically distributed and the mini-
batches are appropriately scaled, the stochastic gradient
is a noisy (but unbiased) estimate of the actual gradient.
Nevertheless, its application to most of the non-Gaussian
statistical models is fairly understudied due to difficulty
in carrying out the intractable moment calculation.

Motivated by the powerful and flexible modeling ability
of IBMM and the excellent performance achieved by the
SVI framework in recent years, this paper focuses on the
Bayesian estimation of IBMM with the SVI framework.

However, it is infeasible to derive an analytically tractable
solution by SVI, due to the fact that the moment in
the ELBO that involves functional forms of log-gamma
function in their arguments is computationally intractable.
To tackle this issue, we propose a novel extended stochas-
tic variational inference (ESVI) framework to develop
an analytically tractable alternative for stochastic varia-
tional learning of IBMM. This framework is particularly
suitable for non-Gaussian statistical models with large-
scale datasets. The basic idea behind this approach is
that some lower-bound approximations subject to certain
constraints are firstly introduced to the original ELBO
within the conventional variational inference framework,
such that it can be further lower bound in order to avoid
the intractable moment evaluation. Then, we can apply
stochastic optimization with noisy natural gradients to
optimize the lower bound of the ELBO rather than the
original ELBO. The effectiveness of the proposed ESVI
framework to learn the IBMM is evaluated through real
datasets which are generated from real-world challenging
applications.

The key contributions of this paper can be summarized
in the following three-folds:

o We propose a fairly efficient and attractive ESVI
framework to derive an analytically tractable solu-
tion to the Bayesian estimation of the non-Gaussian
statistical models, that lets us apply these models
to analyze large-scale data. More importantly, this
framework is able to be generalized to many settings.

o We develop an analytically tractable algorithm for
IBMM with the proposed ESVI framework, which
can achieve comparable performances compared to
the one under the EVI framework for IBMM (EVI-
IBMM) [2], and performs much better in terms of
computational cost under the setting of the large data
modeling.

o We apply the proposed ESVI-based IBMM to three
real-life challenging applications, which consists of
text categorization, network traffic classification, and
misuse intrusion detection. The effectiveness and
excellent performance have been validated through
extensive comparisons.

The remainder of this paper is structured as follows:
In Section 2, we give a brief overview of IBMM. In
Section 3, we propose an efficient ESVI framework for
non-Gaussian statistical models, and then apply it to the
Bayesian estimation of IBMM. In Section 4, we report the
experimental results obtained with real data. Conclusions
and future works are drawn in the final section.

2 FINITE INVERTED BETA MIXTURE MODEL

This section provides a concise introduction to IBMM [2].
Let X={x1,--- ,xn} denote a set of observations, which
are drawn independently from an IBMM with M mixture
components with the probability density function (PDF):

M D
p(x,|U, V,II) = Z Tm H iBeta(znd|Umds Uma), (1)
m=1 d=1
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where x,, = [2,1,--,2,D]|T, U={u;q} and V={v,,q}
denote parameter sets, II = [mq,--- ,m)" denotes the
mixing weights, which satisfies the following constraints:

M
0<mym<1l and > m,=L )

m=1
Moreover, iBeta(z|u,v) is the inverted Beta distribution
defined by [21]
Du+o)
X
I'(w)I'(v)
where I'(-) represents the Gamma function defined as

a) = [y s* te~*ds. The likelihood of the observations
X is given by

iBeta(z|u,v) = M4+2)™ " 2>0, (3)

p(X|U,V,II)

H Z T H iBeta(Tpna|tmd, Vma)- (4)

n=1m=1

The observations X are regarded as the incomplete da-
ta. To provide a proper complete data configuration for
the IBMM, we introduce a label indicator vector z, =
[Zn1,-++ ,znm]T over each observation x,, with z,, €
(0,1) and such that z,,, =1 if x,, is viewed as generated
by the mth mixture component, z,, = 0 otherwise.
Therefore, the latent variable model of the IBMM can be
specified as follows:

N M
p(zim) = [T [ =&, ®)
n=1m=1
N M Fnm
px.z[u,v) =[] [] HlBeta TndlUmds Vma) |
n=1m=1 Ld=1
(6)

where Z = [z1,--- ,zy] denotes the set of label indicator
vectors. Note that the mixture model in (3) can be recov-
ered by marginalizing (6) over z,.,, weighted by the prior
).

To follow a SVI method for learning the IBMM, we need
to impose prior distributions over the parameters U and
V. Since the inverted Beta distribution is a member of
the exponential family, it has a formal conjugate prior.
However, it cannot be applied in the SVI framework,
because it is still defined with an integration expression
that makes the closed form of the posterior distribution
analytically intractable [2], [28]. We thus specify conjugate
Gamma priors upon U and V, as suggested in [6], by
assuming that the Gamma parameters are statistically
independent

=
S

m=1d=1
M D

p(V)=G(VIP,Q) = [ [ Gwmalpma:ama), ~ (®)
m=1d=1

where G={gma}, H={hma}, P={pma}, and Q={qy.q} de-
note the positive hyperparameters. Note that the mixing
weights II are treated as parameters rather than random
variables in our case; thus, no prior is imposed on II. The

joint distribution of all the random variables is given in
(10). Note that in (9) Z represents local hidden variables
(i.e., a variable corresponding to each observation x,,) and
® = {U,V} denotes the set of global hidden variables
(i.e., variables that are coupled to the entire set of observa-
tions). Fig. 1 illustrates a directed graphical representation
of this model.

g

ND MD

Fig. 1: Graphical representation of the Bayesian mixture
model of the inverted Beta distributions. Nodes denote
random variables, edges denote possible dependence, and
plates indicate replication.

3 MODEL LEARNING

In this section, we describe a stochastic variational
Bayesian learning approach for IBMM. Compared to batch
learning algorithms, such as MCMC, variational inference,
expectation propagation [21], [29], etc, stochastic algo-
rithms are more effective in dealing with massive datasets
[23], [24], [26], [27].

3.1 Extended Stochastic Variational Inference

The major purpose of Bayesian inference is to compute
the posterior distribution of the latent variables. For most
of the interesting mixture models, the computation of the
posterior is intractable and approximation is required. VI
is an optimization-based approach that approximates the
intractable posterior p(Z,®|X) with a variational distri-
bution ¢(Z, ®) within a simpler family. Typically, a mean-
field approximation is considered:

N
= q(®N) [ a(zalepn), (10)

n=1

q(Z,©)

where A and ¢,, denote the global and local variational
parameters respectively. These parameters are optimized
to maximize the ELBO:

N
LA, @) = Z {Eq Inp(xn, 2 |[IL, ©)] — Eq [Ing(z,,)]} 1)
n=1
+Eq [Inp(©)] — Eq [Ing(©)].

Maximizing this bound is equivalent to minimizing the
KL divergence between p(Z,®|X,II) and ¢(Z, ®) [21].
Within the VI framework, the local parameters ¢ and
the global parameters A are updated alternately. Note
that the sum over all NV datapoints in equation(11) means
that the VI algorithm requires an entire pass through the
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dataset for each update of the global parameters. This
becomes prohibitively demanding computationally when
the size of the dataset becomes large.

To deal with the limitation, SVI leverages the stochastic
optimization (a.k.a Robbins-Monro algorithm) to optimize
the ELBO via stochastic gradient ascent. Unfortunately, for
most of the non-Gaussian mixture models, such as IDMM,
GaMM, IBMM, and IBLMM, L(A, ¢) is unavailable in a
closed form, since it involves evaluation of intractable
moments E, [In p(x,,, z,|II, ®)]. One remedy for this issue
is to further bound the lower bound L(A, ¢).

With a help function p(x,,, z,|II, ®) that satisfies

Eq Inp(xy,2,|IL ©)] > Eq [In p(x,, 2,11, ©)],  (12)
and substituting (12) into (11), we can obtain a lower

bound of L(\, ¢) as follows:

N
Z{E [In 5(x, 2, |11, ©)]

—Eq In.g(zn)]} — Eq[ng(©)].

The reader is referred to [2], [30]-[32] for the detailed
strategy about how to choose a proper p(xy,z,|II, ©)
. If a single observation index s is sampled uniformly
s ~ Unif(1, N), the lower bound corresponding to
(xs,25) as if it was replicated N times is given by

L P) > LN, (13)

ZS(A=¢S) =N {Ey[Inp(xs, z[I1, ©)] — E¢[Ing(zs)} (14)
+Eq[Inp(@®)] — Eg[lng(O)].
Since E[Ls(X, ¢s)] = L(\ ¢), the natural gradient of

Ly(X, ¢,) regarding each global variational parameter A
is an unbiased noisy estimator of the natural gradient of
L(X, @) [23]. This process-sampling one single datapoint
and then calculating the natural gradient of £;(, ¢5)-will
provide cheaply computed noisy gradients, which enables
stochastic optimization to scale to massive datasets.

Even though L(A,¢) cannot be optimized directly
through the stochastic optimization, its optimum value
can still be reached asymptotically by optimizing the
lower bound of L(A,¢). We refer to this method as
the extended stochastic variational inference (ESVI). At each
iteration ¢ of the ESVI algorithm, we sample a data
point x, from the dataset X and then calculate its local
variational parameter ¢} via the current estimate of global
variational parameters A*(*), which is specified by the
local variational distribution as

In q;(zs|¢§) = <lnﬁ(xs7zs|1_[, @)>;éz5 + Cst, (15)

—

=

T H H md )umdgmd—le—hmdumd 9)

where the notation ()., denotes an expectation w.r.t.
the ¢ distributions over all random variables except for
variable z; and “Cst” denotes the normalization constant.
The intermediate global variational parameters A*®) for
the fth iteration based on N replicates of the sampled
datapoint x, are specified by the intermediate global
variational distribution as

In g (X" M) =N (In (x5, 2,1, ©)) L (16)
+ (Inp(®)) g + Cst.

The aforementioned global variational parameters for the
tth iteration can then be computed as

A*(t) _ )‘*(t—l) + pt(X*(t) _ )‘*(t—l)). (17)

Here p; is the step size at iteration ¢. According to [23],
we can set the step-size at iteration ¢ as follows

pe=(t+mn)"" (18)

In the above, the forgetting rate k € (0.5, 1] controls how
fast old information is forgotten and the delay n > 0
downweights early iterations. According to [23], the con-
vergence of the ESVI algorithm is theoretically guaranteed
if the step size is subject to the following conditions:

Y =00, p} <0 (19)
t t

In the next section, the proposed ESVI framework will be
applied to learn the aforementioned IBMM.

3.2 ESVI for the Optimal Posterior Distributions

The expectation of the joint distribution’s logarithm is
computed as

M D
(In p(x,,, 2, |11, 0)) = Z (Znm) {hlﬂ'm Z md

m=1

+({(tma) — 1) Inzpg — ((uma) + <Umd> 1 (1 + 2na)l}
M D
+ Z Z 9md — 1 1numd> _hmd<umd>]
m];l d;l
+ 3> [(Pma = 1) (N 0na) —Gma(vma)] + Cst,
m=1d=1 (20)
where R,,q is defined by
o n F(umd + vmd)
R = (i pimonts ) 2!
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It is noteworthy that (20) is not analytically tractable
as it involves intractable moment R,,4. To use (15) and
(16) explicitly compute the optimal local and intermediate
global posterior distributions, respectively, we need to
introduce a help function R, which meets the condition
Rom > Rom. Following [2], R, can be selected as

~ T (Uma + Uma)

Rimd = 1n m + [V (Tma + Oma) — Y (Tma)]
X (<1Il umd> —In ﬁmd)ﬂmd + [\I/(l_l,md + ﬁmd) — \If(’L_)md)]
X (<1n Umd> —1In ﬁmd)ﬁmd;
(22)

where Umg = (Umd), Imd = (Uma), P(-) is the Digamma
function defined as ¥(a) = mn—r(“)

Substituting (22) back into (20) we can further lower
the exact lower bound (In p(x,,z,|II, ®)) as

M D _
Z (2nm) {ln T + Z [Rmd

(In p(xp,, 2, |11, ©)) =

m=1 d=1
+({(tma) = 1) Zpg — (tma) + (Vna)) 0 (1 + 2na)]}
M D
+ 3 [(gma — 1) (I thna) —hama(tma)]
m;l d;l
+ 3 [(Pma — 1) (100na) —Gma(vma)] + Cst.
m=1d=1

(23)

Then, we sample a datapoint at each iteration to form
noisy estimations of the natural gradient of the ELBO.
Specifically, at iteration f, we sample a point uniformly
at random with s ~ Unif(1, N). Then, with (23)
and the aforementioned ESVI framework, we are able to
obtain the analytically tractable solutions for the local,
intermediate global and global variational distributions.
We now consider each of these in more detail:

1) Solution to the local variational distribution

Considering z., as the variable and including all terms
independent of z,,, into a constant term, we can rewrite
(15) as

M
In q* (Zsm) = Z Zsm In Psm + Cst, (24)
m=1
where
In pgm =7t~ 1)+Z{ @ 1)+( (t Y- DInzgy
d= (25)

_( ( )+U(t 1))1H$sd:|
where @', " = (u{l7"), 507" = (WUY).
By taking exponential of both sides of (24), ¢*(zs) is
recognized to be a categorical density

M
* * * z * psm
q (ZS|Tsm) = H (Tsm) Sm77‘sm - =M (26)
m=1 Zm:l Psm
where ¥, denotes the local Varlational parameter, ¥,
satisfies: rsm € {0 1} and Z 1 "sm = 1. From (26), we
have (zgm) = 1%,

2) Solutions to the intermediate global distributions
Now considering u,,q4 as the global variable, we rewrite
(16) by including all terms which do not involve u,q4 into
a constant term as
G —

md

CIAION

In ¢ (u ()): Dinw, ', — b, md—|—Cst (27)

where

Gind) = Gmao N [W(alg +00Y) — w(@ly)] aly”.
(28)

R = Bygy — Nrgm N2 — In(1+ 244)],  (29)

where gj,fd) and ﬁfrs d) represent the intermediate global

variational parameters.
Taking exponential of both sides of (27), we recognize
GO (u, ® ;) as a Gamma density

(U H Hg WG B, (30)

m=1d=1

Considering v,,q as the global variable and absorbing
any terms independent of v,,4 into the additive constant,
we can rewrite (16) as

g ® () = (3 —
(t

@) _ =)

Dnv, —q.,4 md—i—Cst (31)

+(t)

where p_; and ¢,/ are given by

Praid = Pt + N7 [ W@l + 305 ) — 0@ ™) 70,

(32)

Gnid = iy — NIn(1+ 250), (33)

Taking exponential of both sides of (31), we recognize
(")) as a Gamma density

70w = [T [T ot

m=1d=1

~* (t) ~* t)) (34)

Prnd > 9nd

3) Solutions to the global variational distributions

With the above obtained intermediate global variational
distributions and by applying (17), we can calculate the
global variational distributions as follows:

¢ (U H Hg lgn hit)), (35)
m=1d=1

¢V H Hg o @), (36)
m=1d=1

where the global variational parameters are given by

Q:n(il) = gmd (gmd g:;f; 1))a (37)
bl = W+ (B = ), (38)
ol =iy (pZiZ) —me ), (39)
) =gl 1)+/0( — gy, (40)

Finally, the mixing coefficients IT can be updated as
follows:

7 = (1= p)rl™ + Npiram. (41)
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The expected values in all the above formulas are given
as follows:

Ty = i /s (ugt) = o) — (i), (42)

m m md

70 = pr D gt (o) = wpr?)) —n(gl).  @3)

md md md

The ESVI of the IBMM is summarized in Algorithm 1.

Algorithm 1 Algorithm for ESVI-based Bayesian IBMM
1: Set the initial number of components M and the initial
values for hyperparameters gmaday, Amdg, Pmdo, aNd @mdy -

2: Initiate the values of rs,, by K-means algorithm.

3: Set the step-size p; appropriately using (19).

4: while TRUE do

5:  Sample a data point x,, uniformly from the dataset:
s ~ Unif(l,...,N).

6: Optimize the local variational parameter r;,, using
(26).

7. Calculate intermediate global parameters as though
X, is replicated IV times using (28), (29), (32), and (33).

8: Update the current estimate of the global variational
parameters using (37)-(40).

9: Update the current solutions for IT using (41).

10: end while

4 EXPERIMENTS AND RESULTS
4.1 Experimental Setup

This section presents numerous experimental results to
assess the effectiveness and performance of the proposed
approach on real positive vectors, generated from three
real-life challenging applications namely text categoriza-
tion, network traffic classification and misuse intrusion
detection. The first purpose is to investigate how the
mini-batch size S influences the algorithms. The second
purpose is to compare ESVI to the traditional batch EVI
algorithm. The third purpose is to assess the approaches of
these applications by considering the comparable mixture-
based approaches. Note that the evaluation of diverse
methods is not our main concern and is out of the scope
of this paper.

In the initialization stage of all our experiments, the
number of components M (with equal mixing weights )
is set as M = 10. The initial values of hyperparameters
Gmdy, Pmd, Of the Gamma priors are set to 1, and hy,q,,
dmd, are set to 0.5. The parameters 7 and & of the learning
rate are set to 32 and 0.6, respectively. Moreover, the
initial settings for the baseline models in this paper are
same as that in their original papers. It is noteworthy
that these specific choices were based on our experiments
and were found convenient and effective in our case.
When the proposed algorithm stops, the posterior means
are adopted as parameter estimates in the IBMM. To
make a fair comparison, all the simulation experiments
are conducted using MATLAB (2018a) on a computer with
Inter(R) Core(TM) i7-75600U CPU 2.40 GHz, 16 GB of
RAM.

4.2 Performance Metrics

In order to compare classification effectiveness of each
approach, we adopt three widely applied performance
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measures namely precision, recall, and F1 score [33] defined
as follows:

M
TP,
Precision = —3; Lm=1 , (44)
Yomey (TP, + FPy,)
M
TP,
Recall = —; Lm=1 , (45)
>me1 (TPm + FNp)
Fy — score= 2Precision - Recall (46)

Precision + Recall’

where TP, is the number of true positives, T N,, is the
number of true negatives, F'P,, is the number of false
positives, and FN,, is the number of false negatives.
In order to remove the randomness influence upon the
results, we conducted 100 rounds of simulations for each
experiment and compute the average precision, recall, and
F1 score across all classes, based on macro and micro
averaging [33], [34]. It is noteworthy mentioning that the
macro-average and micro-average scores of these metrics
are equal for the balanced datasets. For ease of the rep-
resentation, we denote macro-averaged recall, precision,
and F1 as well as micro-averaged recall, precision, and F1
as MacroR, MacroP, MacroF1, MicroR, MicroP, and MicroF1,
respectively. Moreover, the training time for building the
classifier is also adopted to measure the efficiency of
diverse methods.

4.3 Text Categorization

The amount of text documents in electronic form has
grown exponentially over the past few decades, due to the
fast growth of the internet and intranets. When carrying
out efficient analysis for text in a manual way, it will
cost huge manpower to organize and process the text
documents. Hence, it is very important to develop efficient
techniques to label the textual content with one or more
predefined categories automatically, what is known as
automatic Text Categorization (TC). A number of machine
learning algorithms have been proposed to deal with
this challenging task by formulating it as a classification
problem [35]-[38]. Among these methods, Bayesian sta-
tistical model-based approaches have gained considerable
attention in recent years [2], [36], [39], [40].

We report on the results of employing the proposed
Bayesian IBMM with ESVI (ESVI-IBMM) to TC upon two
publicly available datasets, that have been widely applied
in literature for performance evaluation. The first dataset
is the WebKB dataset [41], that contains seven categories
of Web pages and 8,282 documents in total. However,
following the previous works in literature [42] on this
dataset, we applied only four categories in our experi-
ments: course (930 documents), faculty (1124 documents),
project (504 documents), and student (1641 documents),
with a total of 4199 documents; therefore, it is an imbal-
anced dataset. The second dataset is the 20 Newsgroups
(20NG) dataset [43], that is composed of 13,998 documents
taken from the Usenet newsgroups. These documents
are evenly distributed over 20 classes with 700 articles
in each class; therefore, it is a balanced dataset. Each

Pa%e6of15
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categorization of these two datasets was randomly split
into two equal parts, one part for training and the other
part for testing. Following the previous works in [44], we
apply the Porter’s Stemming algorithm [45] to reduce the
words to their basic forms. Moreover, we remove from
documents all words that occur less than 3 times or is
shorter than 2 in length, such that each document in the
dataset is then represented as a positive feature vector.

In our case, the categorization process is based on
two steps involving the training and testing. The train-
ing step allows the representation of each class as a
statistical model. The testing stage assigns each testing
document to the predefined category with the well-known
Bayes classification rule. We first investigate how the
mini-batch size influences the categorization performance,
when ESVI-IBMM, Bayesian IBLMM with ESVI (ESVI-
IBLMM), Bayesian GaMM with ESVI (ESVI-GaMM), and
Bayesian IDMM with ESVI (ESVI-IDMM) are applied as
classifiers. We varied the numbers of minibatch sizes S to
be 1, 5, 10, 20, 30, ---, 100. Figs. 2 and 3 show the mean
results of the proposed method in terms of the MacroP,
MacroR, MacroF1, MicroP, MicroR, and MicroF1 (percent)
based upon 100 runs, for the WebKB and 20NG datasets,
respectively, as a function of the number of minibatch
sizes. From these figures, it can be seen that too small
batch sizes (e.g., S=1, 5, 10) can influence performance and
large batch sizes are preferred. However, the difference in
performance is very small once the batch size is set high
enough (e.g., =50, 60).

Next, we compare the ESVI framework with the batch
EVI framework. To do so, we compare the performance
of four ESVI-based methods involving the ESVI-IBMM,
ESVI-IBLMM, ESVI-GaMM, and ESVI-IDMM with the
performance of other four EVI-based methods involving
the EVI-GaMM [6], Bayesian IBLMM with EVI (EVI-
IBLMM) [46], Bayesian IBMM with EVI (EVI-IBMM) [2],
and Bayesian IDMM with EVI (EVI-IDMM) [6] on the TC
task. We fixed the batch size to 60 for both the WebKB
and 20NG datasets. Table 1 gives the mean results of
the tested methods in terms of computational time as
well as MacroP, MacroR, MacroF1, MicroP, MicroR, and
MicroF1 based upon 100 runs. As shown in the table, the
algorithms under the ESVI framework are able to achieve
comparable performance in terms of MacroP, MacroR,
MacroF1, MicroP, MicroR, and MicroFl, compared to
the algorithms under the EVI framework. However, the
ESVI-based algorithms are much more computationally
efficient with much less computational time. This fact
demonstrates the superiorities of applying ESVI over EVI
when tackling massive non-Gaussian datasets. Another
noticeable observation from Table 1 is that IBLMM and
IDMM perform little better than IBMM and GaMM un-
der both the EVI and ESVI frameworks, which can be
explained by the fact that the text features obtained above
are dependent and both IBLMM and IDMM are more
proper than IBMM and GaMM to fit the underlying
distributions of the relevant positive feature vectors. The
categorization performance distributions on the WebKB
and 20NG datasets are shown in Figs. 4 and 5, respectively.

4.4 Network Traffic Classification

Network traffic classification has an extensive variety of
applications in network management and security, such as
security monitoring, QoS control, and intrusion detection
[47], [48]. With the exponential growth of network users
and the emergence of new network services, network traf-
fic classification has attracted considerable attention from
both industry and academia over the past few decades
[49]-[51]. A great number of methods have been proposed
and applied to carry out traffic classification tasks. Among
these methods, machine learning methods based upon
flow statistical features have been the most popular class
of methods. Much of their popularity is due to the fact
that they can be achieved via applying supervised or
unsupervised classification algorithms [51]-[53].

Here, we report the experimental results by applying
the proposed ESVI-IBMM as a classifier for the task of
network traffic classification upon the publicly available
UNIBS Anonymized 2009 Internet Traces [54], that con-
tains 9209 flows distributed imbalance over 4 categories:
Web (6173 flows), Mail (653 flows), BitTorrent (215 flows),
and EMule (1628 flows). Each categorization is divided
into two equal parts, one part for training and the other
part for testing. Following the work in [55], four features
are extracted from these flows, containing the size of the
first packet payload sent from client to server, size of
the first packet payload sent from server to client, size
of the second packet payload sent from server to client
and the port of each packet. All the features are integer
values. Note that, since these four features are on quite
different scales; therefore, we need to normalize each of
these features into the range of [0,1] such that one feature
would not dominate the others.

Similar to the TC task, firstly, the influence of minibatch
size on classification performance is explored. Fig. 6 shows
the mean values of the MacroP, MacroR, MacroF1, MicroP,
MicroR, and MicroF1 on the UNIBS dataset based on
100 runs, as a function of minibatch size. As we can
observe from the figure, the classification performance
improves with gradually increased minibatch size number
and hardly improves with minibatch size increasing once
the minibatch size number is large enough. We set the
minibatch size S = 60. We report the average results and
the standard deviations of the tested methods in terms of
number of the MacroP, MacroR, MacroF1, MicroP, MicroR,
and MicroF1, and computational time in Table 2 over
100 trials. As shown in the table, the algorithms under
the prosed ESVI framework give consistently comparable
performance and have much less computational cost, com-
pared to the algorithms under the EVI framework. It also
can be seen that, both IBMM and GaMM outperform the
IBLMM and IDMM, which can be explained again by the
fact that the variables in the feature vectors extracted from
the UNIBS dataset are mutually independent and IBMM
and GaMM are more appropriate to model the indepen-
dent positive feature vectors, compared to both IBLMM
and IDMM. The classification performance distributions
are shown in Fig. 7.
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Fig. 2: Categorization performance of different ESVI-based algorithms versus minibatch size for the WebKB dataset.
(a) MacroR and MicroR. (b) MacroP and MicroP. (c) MacroF1 and MicroF1.

s

2

=
=

— ———

; : 9
/ Q
Sy ;r S “‘ SN f
o o -
| I |
S | g gt |
g | 3
s | é’ nr é |
68F | | 68f |
|
| |
70
6F | 66
|
[ |
|
641 —F— macro-BMM | ] 681 —¥—macro-BMM |1 64F| —¥— macro-IBMM
| 5 macro-GaMM “ &— macro-GaMM | 5 macro-GaMM
oH —%— macro-IBLMM | { | —%— macro-IBLMM oH —%— macro-IBLMM
d macro-IDMM 66 macro-IDMM | " macro-IDMM
) —— L L n n L L L . M L L . L L s s . ) r—— L L n L L L L .
1510 20 3 40 50 60 70 8 90 100 1510 20 30 40 50 60 70 80 90 100 1510 20 3 40 50 60 70 8 90 100
Minibatch size Minibatch size Minibatch size
(a) (b) (©)

Fig. 3: Categorization performance of different ESVI-based algorithms versus minibatch size for the 20NG dataset.
(a) MacroR. (b) MacroP. (c) MacroF1.

TABLE 1: The mean categorization results and the standard deviations on the WebKB and 20NG datasets in terms of
MacroP, MacroR, MacroF1, MicroP, MicroR, and MicroF1 (in %) and computational time (in s) over 100 runs

Dataset || Method |[ESVI-IBMM EVI-IBMM |ESVI-GaMM EVI-GaMM |ESVI-IBLMM EVI-IBLMM |ESVI-IDMM EVI-IDMM
MacroR || 88.33+0.98 89.211+0.52| 88.30£0.65 88.68+0.65| 88.78+0.78 88.961+0.59 | 89.27+0.63 89.31+0.55
MacroP || 87.08+1.12 87.65+0.59| 86.97+£0.65 87.07+0.62 | 87.76+1.03 89.07+0.53 | 87.83+0.69 87.89+0.59
MacroF1 || 87.35+1.12 88.26+0.53| 87.46+£0.63 87.68+0.60 | 88.07+0.91 88.984+0.52 | 88.36+0.66 88.431+0.56

Webkb ||MicroR || 88.91+0.96 89.73+£0.47| 88.91+£0.59 89.20+0.53 | 89.524+0.82 90.29+0.42 | 89.82+0.56 89.87+0.50
MicroP || 89.57+0.69 90.08£0.44| 89.19+£0.58 89.57+0.50 | 89.89+0.63 90.2840.43 | 90.17£0.49 90.1940.47
MicroF1 || 89.00+0.91 89.794+0.47| 88.92+£0.58 89.27+0.52 | 89.554+0.80 90.261+0.43 | 89.88+0.55 89.924+0.50
Runtime|| 0.174+0.02 0.50+0.03 | 0.114+0.02  0.35+0.04 | 0.154+0.02  0.49+0.02 | 0.13+0.02  0.47+0.02
MacroR || 79.52+0.42 80.94+0.36| 78.87£0.45 79.00£0.39 | 79.94+0.37 81.124+0.33 | 79.63+0.36 80.22+0.41

20NG MacroP || 79.57+0.44 80.86+0.37| 79.87£0.36 79.10+£0.39 | 80.20+£0.38 81.15+0.32 | 80.22+0.33 80.20+0.39
MacroF1 || 79.37+0.43 80.81+0.37| 78.96+£0.52 79.00+0.39 | 79.64+0.39  80.831+0.33 | 79.58+0.36 80.024+0.41
Runtime || 2.424+0.18 5.05+£0.10 | 1.05+0.06 2.15+0.12 | 1.66+0.11 3.96+0.09 | 1.514+0.06 3.07+0.06

4.5 Misuse Intrusion Detection

With the explosive growth of network-based services and
sensitive information upon networks, network security
issues have become more and more prominent. Intrusion
detection is one of the most important technologies to
ensure network security, whose purpose is to automate
the process of detecting when intrusions are occurring

in a network [56]-[59]. Current methods detecting intru-
sions can be grouped into two main classes: misuse and
anomaly detection [60], [61]. The goal of misuse detection
is to identify known attacks based upon pre-defined at-
tack patterns and signatures. Anomaly detection discovers
unknown attacks based upon deviations from normal
activities. Misuse detection algorithms have gained a lot
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57 of attention over the past few decades since they have the rate. In this work, the proposed ESVI-IBMM is applied as a
58 advantage that they are fast and have a low false positive classifier to investigate its performance in misuse intrusion
59
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Fig. 6: Categorization performance of different ESVI-based algorithms versus minibatch size for the UNIBS dataset.
(a) MacroR and MicroR. (b) MacroP and MicroP. (c) MacroF1 and MicroF1.

TABLE 2: The average classification results and the standard deviations on the UNIBS dataset in terms of MacroP,
MacroR, MacroF1, MicroP, MicroR, and MicroF1 (in %) and computational time (in s) over 100 runs

Method || ESVIIBMM EVI-IBMM | ESVI-GaMM EVI-GaMM | ESVI-IBLMM EVI-IBLMM | ESVI-IDMM  EVI-IDMM
MacroR 93.66+0.69 94.431+0.87 | 94.03+3.47 95.1240.64 91.90£1.13  92.35+0.68 | 92.45+0.91  93.6640.48
MacroP 80.11£2.57 83.32+1.84 | 83.10+4.17  85.46+1.74 | 78.174£2.19  78.95%1.76 | 78.26+1.86 78.82+1.57
MacroF1 || 84.18£2.16 86.89+£1.69 | 87.16+3.90  88.98+1.32 | 83.42+1.83  83.99+£1.58 | 83.75£1.60 84.444+1.28
MicroR 93.87£1.23 95.0564+0.70 | 94.86+£1.35 95.864+0.58 | 91.31+1.63  91.55%1.22 | 92.06+=1.07  92.2540.93
MicroP 95.61+0.69 96.1840.45 | 95.85+0.88  96.56+0.38 | 93.31+0.94  93.24+0.52 | 93.69+0.71  94.014+0.45
MicroF1 || 94.42+1.07 95.39+£0.60 | 95.15+1.22  96.06+0.52 91.87+1.43  92.01+1.00 | 92.51+0.97  92.73+£0.79
Runtime || 0.1740.02  0.91+£0.03 0.1240.02 0.54+0.11 0.1940.03 0.9940.05 0.15£0.02 0.82+0.08
detection. 1999 dataset, when employing ESVI-IBMM, as a function

We employ a commonly-used public dataset, namely
the well-known KDD Cup 1999 dataset !, to evaluate the
effectiveness of the proposed method. Each record in this
dataset denotes a network connection with 41 features in
which 34 are numeric and 7 are symbolic. These records
were obtained from the simulated intrusions and can
be classified as normal or one of four attack categories:
DoS (denial-of-service), R2L. (remote-to-local), U2R (user-
to-root), and Prb (probing). Each class in this dataset
was randomly divided into two separate halves, one for
training and the other for test during evaluations. In the
feature extraction phase, following the work in [62], we
keep 493,965 records containing four categories: Normal
(972,78 records), DoS (391,454 records), Prb (4107 records),
and R2L (1126 records) to design misuse intrusion detec-
tion analysis. Additionally, the symbolic features such as
‘protocol’, “TCP Status flag’ and ‘service type’, are mapped
into binary numeric features, each record is represented
as a 52-D positive feature vector. Then, an ESVI-IBMM
was trained for each category. Finally, a testing record is
categorized to the corresponding category that yields the
highest likelihood score.

Similar to the aforementioned two tasks, we firstly
want to explore the influence of minibatch sizes upon
the detection performance of the ESVI-IBMM classifier in
terms of MacroP, MacroR, MacroF1, MicroP, MicroR, and
MicroF1. The detection performances, for the KDD CUP

1. http:/ /kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

of the number of minibatch sizes, are shown in Fig. 8. As
shown in this figure, too small minibatch sizes influence
the detection performance that will be improved when
more records are subsampled in the training dataset. Nev-
ertheless, the detection performances of these approaches
keep almost unchangeable while the minibatch size is set
high enough. We fix the batch size to 90 records. Table
3 lists the average values and the standard deviations
of the MacroP, MacroR, MacroF1, MicroP, MicroR, and
MicroF1 as well as running time of the KDD CUP 1999
dataset, obtained by different approaches based on 100
runs. For MacroP, MacroR, and MacroF1, the ESVI-based
algorithms perform a little worse than the EVI-based al-
gorithms. But for MicroP, MicroR, and MicroF1, the ESVI-
based algorithms achieve almost identical performance,
compared to the EVI-based algorithms. It can be also
seen that the ESVI-based algorithms run much faster
than the EVI-based algorithms, that further verifies the
superiorities of employing ESVI over EVI when address-
ing the problem of massive non-Gaussian data modeling.
Moreover, it can be seen that IBMM and GaMM perform
better than IBLMM and IDMM under the corresponding
EVI and ESVI frameworks, that can be explained by the
fact that the extracted features from the KDD CUP 1999
are independent. Moreover, IBMM and GaMM are more
efficient than IBLMM and IDMM in fitting the underlying
distributions of the irrelevant positive feature vectors. The
detection performance distributions are shown in Fig. 9.
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52 Fig. 8: Detection performance of different ESVI-based algorithms versus minibatch size for the KDD CUP 1999 dataset.
53 (a) MacroR and MicroR. (b) MacroP and MicroP. (c) MacroF1 and MicroF1.

54
55
56 4.6 Comparison with Deep Learning-Based Methods networks (DNNSs) [63] on the tasks of both the text cat-
57 egorization and network traffic classification. We apply
58 To explore more insights for the ESVI framework, the the fully connected (FC) neural networks with diverse

59 ESVI-IBMM algorithm is further compared to deep neural
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TABLE 3: The average detection results and the standard deviations on the KDD CUP 1999 dataset in terms of MacroP,

oNOYULT D WN =

MacroR, MacroF1, MicroP, MicroR, and MicroF1 (in %) and computational time (in s) over 100 trails

Method ESVI-IBMM EVI-IBMM ESVI-GaMM EVI-GaMM ESVI-IBLMM  EVI-IBLMM | ESVI-IDMM EVI-IDMM

MacroR 89.1943.31 85.974+2.68 80.67+2.74 84.324+2.53 85.77+5.13 88.58+2.16 89.924+1.22 89.244+1.24

MacroP 75.51+2.32 82.134+2.70 70.77+3.68 75.50+4.06 69.19+4.12 70.57+4.80 72.86+4.49 69.64+5.07

MacroF1 80.264+2.10 83.254+2.36 72.474+3.07 78.66+3.00 73.61+4.33 75.784+5.46 78.54+4.35 75.08+5.71

MicroR 98.4540.25 98.9440.28 98.484+0.27 98.7840.14 97.90+0.85 97.16+£2.05 97.68+2.01 96.434+2.32

MicroP 98.7940.06 99.0640.10 98.5740.19 98.98+0.09 98.66+0.11 98.444-0.60 98.33+0.99 98.064+0.17

MicroF1 98.584+0.17 98.984+0.21 98.4740.22 98.8640.10 98.21£0.52 97.704+1.32 97.924+1.58 97.124+1.34

Runtime 12.59+0.91 227.96+18.19 7.85+0.93 59.56+12.99 16.46+2.01 167.76+6.45 11.06+0.84 137.07+1.45
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Fig. 9: Boxplots for comparisons of the intrusion detection performance’s distributions for the KDD CUP 1999 dataset.
The central mark is the median; the edges of the box are the 25th and 75th percentiles. The outliers are marked
individually. (a) MacroR. (b) MacroP. (c) MacroF1. (d) MicroR. (e) MicroP. (f) MicroF1.

numbers (i.e., [) of hidden layers. The previously extracted
4-D features for the Webkb dataset, 20-D features for the
20NG dataset, 4-D features for the UNIBS dataset, and
52-D features for the KDD CUP 1999 dataset are applied
as inputs. The [ is set as 1, 2, and 4, respectively, and
the number of nodes in each hidden layer is the same as
the dimension of the features for these four datasets. The
minibatch size S is set to 32.

The average values and the standard deviations of the
MacroP, MacroR, MacroF1, MicroP, MicroR, and MicroF1
of the different datasets got by diverse methods over
100 runs are shown in Table 4. On the WebKB dataset,
our presented method can provide comparably good or

better performance, compared to the shallower FC neural
networks (i.e., [=1, 2), and performs better than the deeper
FC neural networks (i.e., [=4) with large gaps. On the
20NG dataset, our presented approach performs a little
bit worse than different FC neural networks. On the
UNIBS dataset, our presented method performs better
than different FC neural networks with large gaps. On
the KDD CUP 1999 dataset, for MacroP, MacroR, and
MacroF1, our presented method performs worse than the
shallower FC neural networks (i.e., =1, 2) with large gaps;
however, for MicroP, MicroR, and MicroF1, our presented
approach performs better than the shallower FC neural
network (i.e., (=1, 2) with large gaps. On the KDD CUP
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1999 dataset, our presented approach performs better than
the deeper FC neural network (i.e., [=4) with large gaps.
Another noticeable observation from Table 4 is that, on
the unbalanced datasets (i.e., WebKB, UNIBS, and KDD
CUP 1999), as the number of hidden layer of the FC
neural networks increases, the performance of the FC
neural networks become worse; however, for the balanced
dataset (i.e., 20NG), the layer of the FC neural networks
has no affect on their performance.

TABLE 4: Comparison of performance (in %) and com-
putational time (in s) between the FC Neural Networks
and the proposed ESVI-IBMM model on the tasks of
TC, network traffic classification, and misuse intrusion
detection. Notice that [ represents the number of hidden
layer of the FC neural networks.

Dataset||Method [[FC (I=1) FC (I =2)
MacroR |[88.53+1.82 87.78+1.53
MacroP |(86.45+2.61 85.93+2.13
MacroF1|(87.29+2.41 86.67+1.93
MicroR |{89.15+£1.60 88.71+1.14
MicroP |(89.25+£1.54 88.83+1.03
MicroF1 |[89.08+£1.69 88.67+1.16
MacroR |(81.34£0.37 81.31+0.36
MacroP |[81.33+0.36 81.27+0.37 81.06+0.35 79.57+0.44
MacroF1|(81.28+0.36 81.23+0.37 81.01+0.35 79.374+0.43
MacroR [[69.65+£0.63 65.46+13.95 69.94+19.96 93.66+3.69
MacroP |[70.62+2.80 68.17+12.76 64.55+18.50 80.114+2.57
MacroF1|(69.64+2.14 66.51+13.41 62.444+19.32 84.18+2.16
MicroR |(93.23+£0.78 90.32+10.98 86.62+15.22 93.87+1.23
MicroP |{94.81+£0.80 93.35+6.04 91.284+8.36 95.61+0.69
MicroF1 |[93.78+0.95 91.54+8.87 88.544+12.29 94.42+1.07
MacroR |{92.65+0.29 90.43+10.74 84.98+13.61 89.19+3.31
MacroP |(80.33£0.71 79.11+£9.59 76.99+11.43 75.514+2.32
MacroF1|(84.72+0.43 83.59+£10.20 79.97+12.40 80.26+2.10
MicroR |(94.53£0.17 94.794+0.41 94.91+0.48 98.454+0.25
MicroP |(94.47+0.08 94.69+0.25 94.784+0.26 98.7940.06
MicroF1 |[94.17+0.11 94.39+0.29 94.46+0.34 98.58+0.17

FC (I=4) ESVIIBMM
73.63E12.75 88.3310.98
75.5348.75 87.08+1.12
74.08410.81 87.35:+1.12
79.7048.40 88.91+0.96
83.1244.93 89.57+0.69
81.00+6.82  89.00-£0.91
81.0920.34 79.52+0.42

Webkb

20NG

UNIBS

KDD

TABLE 5: Comparison of the average computational time
(in s) of different methods based on 100 runs. Note that
[ represents the number of hidden layer of the FC neural
networks.

Dataset & Method| FC (I =1) FC (I=2) FC (I =4) ESVI-IBMM
Webkb 4391056 5041009 647£0.08 0.17%0.02
20NG 15.42+40.82 18.57+1.35 23.79+1.05 2.42-+0.18
UNIBS 9.40-£0.07 11.0840.31 13.98+0.21 0.17+0.02
KDD 554.06+1.62 703.53:£9.69 896.13£18.45 12.59-£0.91

5 CONCLUSIONS

In this paper, we have proposed a fairly efficient ESVI
framework to perform Bayesian inference of IBMM with
closed-form solutions. It is worth mentioning that this
framework is particularly scalable and suitable to attain an
analytically tractable solution for Bayesian estimation of
non-Gaussian statistical models for massive datasets. The
effectiveness of the proposed method is verified through
extensive realistic data evaluations. The research outcomes
show that the proposed approach can not only achieve
comparable performance for three real-world applications
namely text categorization, misuse intrusion detection,
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and network traffic classification, but also is more com-
putationally efficient, compared to the existing batch vari-
ational learning methods and the FC neural networks.
Future work can be devoted to simultaneously dealing
with the problem of parameter estimation, model selection
and feature selection through using the ESVI framework
in order to improve the performance of modeling high-
dimensional positive vectors. Another ongoing work may
focus on the extension of the finite IBMM to the infinite
case.
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