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Abstract: During the charging and discharging process of a lithium-ion power battery, the intercala-
tion and deintercalation of lithium-ion can cause volume change in the jellyroll and internal stress
change in batteries as well, which may lead to battery failures and safety issues. A mathematical
model based on a plane strain hypothesis was established to predict stresses in both the radial and
hoop directions, with the hoop stress of each winding layer of the jellyroll obtained. Displacements of
the steel case, the jellyroll, and the core of the battery during the charging and discharging processes
were also analyzed, with the effect of lithium-ion concentration and the battery size discussed. The
research results can explain well the wrinkling and fracture of the jellyroll.

Keywords: lithium-ion battery; swelling; wrinkling; lithium-ion concentration; radial stress; hoop stress

1. Introduction

With the rapid growth of electric vehicle holdings, an increasing number of battery-
related accidents is reported. The reasons for the failure of batteries are many and com-
plex [1]. In order to improve the safety of electric vehicles, lithium-ion power batteries, the
main power source currently used, needs to be further studied.

The operating principle of the lithium-ion power battery is back and forth movement
of lithium-ion between the cathode and the anode during the charging and discharging
process. Diffusion-induced stresses in the battery are caused by volume changes during
lithiation and delithiation in the active materials, leading to various failure modes [2],
including wrinkling of the inner jellyroll and fracture of the outer jellyroll, as shown in
Figure 1 [3–5]. Battery failures caused by diffusion-induced stress are an active research
topic [6].

In terms of experimental research, transmission electron microscope (TEM) and com-
puted tomography (CT) are two powerful tools to investigate the battery inside. TEM
usually was used to in situ observe the microstructure evolution and the electrochemical
lithiation/delithiation behaviors of active material particles in the nanoscale [7,8], whereas
CT was used to observe the interior of the battery in the microscale [3–5]. By then, the inner
structure of the battery is exposed non-destructively.

A number of theoretical analyses have been seen in the effort to obtain the stress state
inside the battery. Chen [9] looked at a partial molar volume of the electrode material
to calculate diffusion-induced stresses caused by the volume change. Mei [10] applied a
variation rule of the volume change rate of electrode material with the local state of charge
(SOC). Zhang [11] used the lithiation expansion coefficient α of the electrode material
to obtain diffusion-induced stresses. Christensen et al. [12] established a mathematical
model that calculates volume changes and concentrations, and stress profiles of a spherical
particle of the electrode material during intercalation and deintercalation of lithium-ion.
Peng et al. [13,14] discussed the effects of the diffusion coefficient, Young’s modulus, and
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the partial molar volume on the stress field in a cylindrical electrode and established a
mathematical model considering the expansion rate of the medium. These studies can
provide the stress state of a single electrode or active material particles under different
conditions well, but they cannot predict the stress state of the battery on a cell scale due
to no case and steel core included in their mathematical models. As a result, these studies
cannot explain the wrinkle and fracture of a battery cell.
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Figure 1. The CT diagram of deformation of jellyroll: (a,b) wrinkling of inner jellyroll [3]. Reprinted 
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Figure 1. The CT diagram of deformation of jellyroll: (a,b) wrinkling of inner jellyroll [3]. Reprinted
with permission from Ref. [4]. 2018, Elsevier.; (c) fracture of outer jellyroll. Reprinted with permission
from Ref. [5]. 2020, Elsevier.

This paper presents the stress analysis in the charging and discharging process of the
whole cell of a cylindrical lithium-ion power battery. Firstly, the constitutive models of the
battery cell under a plane strain state were established to analyze stresses in the radial and
hoop directions, and displacements of the steel core, the jellyroll, and the case. Secondly,
the effects of the cell size and lithium-ion concentration on the stresses and displacements
were discussed. Finally, the hoop stress of every layer of the cathode, the separator, and the
anode of jellyroll was obtained, providing a better understanding of the potential failures
of lithium-ion power batteries.

2. Geometric Modeling

As shown in Figure 2, the cylindrical battery cell has three main components, i.e., the
core, the jellyroll, and the case. The core and the case are typically made of steel shells
with a certain wall thickness. The jellyroll is laminated and wound with four thin layers
of components in the order of the separator, the anode, the separator again, and the
cathode. Generally, the electrode is composed of metal substrates and active material
particles. The anode consists of a copper current collector and active particles such as
carbon, silicon, or others with adhesive composition, and the cathode is made of an
aluminum current collector and active material particles, i.e., LMO, LFO, LCO, or others,
with adhesive composition.

In our modeling, each layer of the jellyroll (including the anode and cathode) is
assumed to be macroscopically isotropic. The basic components of the jellyroll (separator–
anode–separator–cathode) are taken as a representative volume element. A cylindrical
coordinate system is adopted, with the z-axis as the axial direction, the θ-axis as the hoop
direction, and the r-axis as the radial direction.
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Figure 2. (a) The CT image of cross-section of as-received battery; (b) the equivalent model of battery.

3. Mechanical–Electrochemical Model

The loading capacity and the safety threshold of the whole battery structure can
be determined by testing the mechanical properties of the battery at the macroscopic
scale [15–17]. Meanwhile, the constitutive model of the battery needs to be established, as
shown in the following sections, to study the deformation mechanism of the battery.

3.1. The Fundamental Equations of the Battery

Due to the strong constraint of the external case, the influence of the top and bottom
ends of the battery cell can be ignored during the process of charging and discharging on
the deformation of the jellyroll, and the analysis can thus be simplified as a plane strain
(axisymmetric) problem. The radial displacement of the battery is denoted by u, and the
radial and hoop stress by σr and σθ , respectively. The subscripts I, J and O are used to
denote the steel core, the jellyroll and the case, respectively. Only stresses and strains in the
linear elastic stage are considered. Young’s modulus is denoted by E, the Poisson’s ratio
by ν, the molar volume by Ω, and the lithium-ion concentration by c. r1, r2, r3 and r4 are,
respectively, the radius of the boundary of the steel core, the jellyroll block, and the case as
shown in Figure 2.

3.1.1. The Fundamental Equations of the Steel Core and Case

For the steel core and the case, their constitutive equations, geometric equations, and
equilibrium equations are identical, but with different dimensions.

The constitutive equations under the plane strain state are,εri =
1−ν2

i
Ei

(
σri − νi

1−vi
σθi

)
εθi =

1−ν2
i

Ei

(
σθi − νi

1−vi
σri

) ; i = I, O, (1)

The stresses can be derived as,

σri =
Ei

(1+νi)(1−2νi)
[(1 − νi)εri + νiεθi]

=
Ei/(1−ν2

i )

1−
(

νi
1−νi

)2

(
εri +

νi
1−νi

εθi

)
σθi =

Ei
(1+νi)(1−2νi)

[(1 − νi)εθi + νiεri]

=
Ei/(1−νi

2)

1−
(

νi
1−νi

)2

(
εθi +

νi
1−νi

εri

)
; i = I, O, (2)
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Under the assumption of small deformation, the geometric equations are as follows:{
εri =

dui
dr

εθi =
ui
r

; i = I, O, (3)

Ignoring the body force, the equilibrium Equation [18] can be derived into Equation (4).

dσri
dr

+
σri − σθi

r
= 0; i = I, O, (4)

Combining the constitutive equations, the geometric equations and the equilibrium
equation, the following closed form solutions can be deduced,

ui = Air +
Bi
r

; i = I, O (5)

σri =
Ei/
(
1 − νi

2)
1 −

(
νi

1−νi

)2

[(
1 +

νi
1 − νi

)
Ai −

(
1 − νi

1 − νi

)
Bi
r2

]
; i = I, O (6)

σθi =
Ei/
(
1 − νi

2)
1 −

(
νi

1−νi

)2

[(
1 +

νi
1 − νi

)
Ai +

(
1 − νi

1 − νi

)
Bi
r2

]
; i = I, O (7)

where Ai and Bi are undetermined coefficient.

3.1.2. The Fundamental Equations of the Jellyroll

The constitutive equations of the jellyroll under plane strain state are as follows,
εri =

1−ν2
i

Ei

(
σri − vi

1−vi
σθi

)
+ (1 + vi)

Ω·c
3

εθi =
1−ν2

i
Ei

(
σθi − vi

1−vi
σri

)
+ (1 + vi)

Ω·c
3

; i = J, (8)

The stresses are then expressed as,

σri =
Ei/(1−ν2

i )

1−
(

νi
1−νi

)2

(
εri +

νi
1−νi

εθi

)
− Ei/(1−ν2

i )
1− νi

1−νi

(1 + νi)
Ω·c

3

σθi =
Ei/(1−ν2

i )

1−
(

νi
1−νi

)2

(
εθi +

νi
1−νi

εri

)
− Ei/(1−ν2

i )
1− νi

1−νi

(1 + νi)
Ω·c

3

; i = J, (9)

The format of the geometric equations and equilibrium equations of the jellyroll are
identical to those of the case and the steel core.

Combining the constitutive equations, geometric equations and equilibrium equation,
the following equations can be deduced.

uJ = AJr +
BJ

r
, (10)

σrJ =
EJ /(1−νJ

2)

1−
(

νJ
1−νJ

)2

[(
1 + νJ

1−νJ

)
AJ −

(
1 − νJ

1−νJ

)
BJ
r2

]
− EJ /(1−νJ

2)
1−

νJ
1−νJ

(
1 + νJ

)Ω·c
3

, (11)
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σθ J =
EJ /(1−νJ

2)

1−
(

νJ
1−νJ

)2

[(
1 + νJ

1−νJ

)
AJ +

(
1 − νJ

1−νJ

)
BJ
r2

]
− EJ /(1−νJ

2)
1−

νJ
1−νJ

(
1 + νJ

)Ω·c
3

(12)

where AI , BI , AJ , BJ , AO and BO in the above Equations (5)–(7) and (10)–(12) are undeter-
mined coefficient, and can be calculated with the introduction of the boundary conditions.

3.2. The Boundary Conditions

For the boundary conditions about σrI , there are three possible cases.

I. In the first case, the three components of the battery interact with each other. Then,
the displacement and radial compressive stress on the steel core can be obtained,
σrI(r1 ≤ r ≤ r2) < 0 Therefore, the boundary conditions are as follows:

σrI(r = r1) = 0
uI(r = r2) = uJ(r = r2)
uJ(r = r3) = uO(r = r3)
σrO(r = r4) = 0
σrI(r = r2) = σrJ(r = r2)
σrJ(r = r3) = σrO(r = r3)

, (13)

II. In the second case, σrI(r1 ≤ r ≤ r2) > 0. In this case, the steel core is under tension
in radial direction and the steel core expands radially. Physically, this situation can
be regarded as nonexistence.

III. The third case is σrI(r1 ≤ r ≤ r2) = 0. There is no interaction between the steel core
and the jellyroll, namely the stress at the contact region is 0. Then, the boundary
conditions are as follows:

σrJ(r = r2) = 0
uJ(r = r3) = uO(r = r3)
σrO(r = r4) = 0
σrJ(r = r3) = σrO(r = r3)

, (14)

3.3. Analysis of Hoop Stress, Radial Stress, and Displacement

In the first case, Equation (13) is taken into the radial displacement equations and
radial stress equations of the steel core, jellyroll, and case of the battery. Then, rela-
tional expressions with unknown parameters of Ai and Bi, i = I, J, O, can be obtained in
Equations (15)–(20).

AI = (M3 − M4 − M5)M7/[(M1 + M2)(M4 + M5)− M6M3], (15)

AO = (M1 + M2 − M6)M7/[(M4 + M5)(M1 + M2)− M3M6], (16)

BI =
1

1 − 2νI
· r1

2 · AI , (17)

BO =
1

1 − 2νO
· r4

2 · AO, (18)

AJ =
r3

2 + 1
1−2νO

r4
2

r32 − r22 · AO −
r2

2 + 1
1−2νI

r1
2

r32 − r22 · AI , (19)

BJ =

(
r2

2 +
1

1 − 2νI
r1

2
)

r3
2

r32 − r22 · AI −
(

r3
2 +

1
1 − 2νO

r4
2
)

r2
2

r32 − r22 · AO, (20)
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where

M1 =
EI/

(
1 − νI

2)
1 −

(
νI

1−νI

)2 · 1
1 − νI

(
1 − r1

2

r22

)
,

M2 =
EJ/

(
1 − νJ

2)
1 −

(
νJ

1−νJ

)2 ·
r2

2 + 1
1−2νI

r1
2

r32 − r22

[(
1 +

νJ

1 − νJ

)
+

(
1 −

νJ

1 − νJ

)
r3

2

r22

]
,

M3 =
EJ/

(
1 − νJ

2)
1 −

(
νJ

1−νJ

)2 · 2
r3

2 + 1
1−2νO

r4
2

r32 − r22 ,

M4 =
EJ/

(
1 − νJ

2)
1 −

(
νJ

1−νJ

)2 ·
r3

2 + 1
1−2νI

r4
2

r32 − r22

[(
1 +

νJ

1 − νJ

)
+

(
1 −

νJ

1 − νJ

)
r2

2

r32

]
,

M5 = −
EO/

(
1 − νO

2)
1 −

(
νO

1−νO

)2 · 1
1 − νO

(
1 − r4

2

r32

)
,

M6 =
EJ/

(
1 − νJ

2)
1 −

(
νJ

1−νJ

)2 · 2
r2

2 + 1
1−2νI

r1
2

r32 − r22 ,

M7 =
EJ/

(
1 − νJ

2)
1 − νJ

1−νJ

·
(
1 + νJ

)Ω · c
3

,

In the third case, the boundary condition (14) is put into the radial displacement
equations and the radial stress equations of the jellyroll and case. Then, Equations (21)–(24)
are obtained as,

AJ =

 EJ

(
1

r2
2 − 1

r3
2

)[
(1 − 2νO)

r3
r4

2 +
1
r3

]
−EO · 1+νJ

1+νO
· 1

r3

(
1

r4
2 − 1

r3
2

) 
 EJ

1+νJ

(
1

r2
2 − 1

r3
2

)[
(1 − 2νO)

r3
r4

2 +
1
r3

]
− EO

1+νO
·
(

1
r4

2 − 1
r3

2

)[(
1 − 2νJ

) r3
r2

2 +
1
r3

]  · Ω · c
3

, (21)

BJ =
EO · 1+νJ

1+νO
·
(

r3
r4

2 − 1
r3

)
 EJ

1+νJ

(
1

r2
2 − 1

r3
2

)[
(1 − 2νO)

r3
r4

2 +
1
r3

]
− EO

1+νO
·
(

1
r4

2 − 1
r3

2

)[(
1 − 2νJ

) r3
r2

2 +
1
r3

]  · Ω · c
3

, (22)

AO =
EJ · (1 − 2νO)

(
1

r2
2 − 1

r3
2

)
r3
r4

2 EJ
1+νJ

(
1

r2
2 − 1

r3
2

)[
(1 − 2νO)

r3
r4

2 +
1
r3

]
− EO

1+νO
·
(

1
r4

2 − 1
r3

2

)[(
1 − 2νJ

) r3
r2

2 +
1
r3

]  · Ω · c
3

, (23)

BO =
EJ ·

(
1

r2
2 − 1

r3
2

)
· r3 EJ

1+νJ

(
1

r2
2 − 1

r3
2

)[
(1 − 2νO)

r3
r4

2 +
1
r3

]
− EO

1+νO
·
(

1
r4

2 − 1
r3

2

)[(
1 − 2νJ

) r3
r2

2 +
1
r3

]  · Ω · c
3

, (24)
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4. Stress Analysis and Calculation Cases
4.1. Computational Analysis of 18650 Battery

Taking 18,650 cylindrical lithium-ion power battery as an example, the battery dimen-
sion details are r1 = 2.3 mm, r2 = 2.5 mm, r3 = 8.98 mm and r4 = 9.18 mm. The materials
of steel for the core and the case are identical, with the elastic modulus, yield strength,
tensile strength, and Poisson’s ratio being EI = EO = 207 GPa, σ

y
I = σ

y
O = 205 MPa,

σt
I = σt

O = 275 MPa, and νI = νO = 0.3. The steel core and the case are circular cylinders
with a wall thickness of 0.2 mm. The jellyroll material data are shown in Table 1.

Table 1. Material properties of components of jellyroll. Reprinted with permission from Ref. [19].
2016, Elsevier [20,21].

Component of Jellyroll Elastic Modulus E (MPa) Poisson’s Ratio ν

Separator (PP) Ese = 262.2 νse = 0.3
Anode Ean = 5372 νan = 0.3

Cathode Eca = 2940 νca = 0.3

Jellyroll In-plane Ep = 500 νp = 0.15
Axial direction Et = 1500 νpt = 0.1 νtp = 0.3

The first boundary condition case σrI(r1 ≤ r ≤ r2) < 0 can be obtained by using the
data in Table 1, following Equation (13) in Section 3.3. The displacement, radial stress, and
hoop stress of steel core, jellyroll, and case are obtained as follows:

uI =
(
−0.0030 · r − 0.0401 mm2/r

)
· Ω · c,

uJ =
(

0.0461 · r − 0.3473 mm2/r
)
· Ω · c,

uO =
(

0.0116 · r + 2.4391 mm2/r
)
· Ω · c,

σrI =
(

6.3811 mm2/r2 − 1.2063
)
· Ω · c × 103 MPa,

σrJ =
(

1.5101 mm2/r2 − 2.0944
)
· Ω · c × 102 MPa,

σrO =
(

4.6086 − 3.8838 × 102 mm2/r2
)
· Ω · c × 103 MPa,

σθ I =
(
−6.3811 mm2/r2 − 1.2063

)
· Ω · c × 103 MPa,

σθ J =
(
−1.5101 mm2/r2 − 2.0944

)
· Ω · c × 102 MPa,

σθO =
(

4.6086 + 3.8838 × 102 mm2/r2
)
· Ω · c × 103 MPa,

It can be seen that displacements and stresses in the battery change linearly with
the partial molar volume and the lithium-ion concentration during the charging and
discharging process, but they are distributed nonlinearly over the radius.

During the process of charging, the anode expands due to lithiation, and the cathode
contracts due to delithiation. Considering the effect of both anode and cathode on the
deformation of the battery, the value of Ω · c of the jellyroll needs the thickness of each
component (separator(1)–anode(2)–separator(3)–cathode(4)) for the whole winding as
shown in Figure 3. The set of the thickness of each component is as follows [19],

tse = 0.018 mm, tan = 0.165 mm, tca = 0.159 mm,
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where the subscripts se, an, and ca refer to separator, anode, and cathode, respectively.
Therefore, the anode and cathode volume ratio can be calculated as follows:

Van% =
tan

tan + 2tse + tca
, Vca% =

tca

tan + 2tse + tca
.
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Note that for graphite and lithium manganate [22–25], the values of the parameters
involved in the calculations are,

Ωgraphite = 3.56 × 10−6 m3/mol, cgraphite,max = 2.53 × 104 mol/m3.

ΩLMO = 3.5 × 10−6 m3/mol, cLMO,max = 2.29 × 104 mol/m3.

In order to obtain the value of Ω · c of the jellyroll, the law of mixture of composite
material should be considered. Consequently, the values of the parameters about expansion
are obtained according to the formula as follows,

Ωjellyrollcjellyroll,max = Ωgraphitecgraphite,maxVan% − ΩLMOcLMO,maxVca%

Ωjellyrollcjellyroll,max = 0.00588158.

For the case of saturated concentration, the values of the displacement, the hoop stress, and
the radial stress in a fully charged state are calculated and shown in Figures 4–6, respectively.
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The following conclusions can be obtained from Figures 4–6.

• The radial stress generated by charging is all compressive. As the radius increases
from the inner radius to the outer radius, the radial compressive stress of the steel
core and jellyroll increases gradually, while the radial compressive stress of the case
decreases until it reaches zero.

• The hoop stress of the steel core and jellyroll under charging are all compressive, and
its value decreases with the increase in the radius. Meanwhile the hoop stress of the
case generated by charging is tensile, which decreases with the increase in radius. It
should be noted that the stress distribution of the electrode in Figure 6 is not constant,
and the magnitude decreases marginally.

• For the fully charged battery, the displacement of the steel core shows negative values
for contraction inwards. The displacement of the case shows positive values for
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expansion outward. The displacement of the jellyroll is zero at r2 = 2.7447 mm The
value near the steel core is negative and the value near the case is positive. Therefore,
we can conclude that the jellyroll deforms both inward and outward and is constrained
by the steel core and the case.

The above conclusions show that the jellyroll is subjected to compressive stresses.
With excessive battery degradation, the deformation can reach to the extent until buckling
occurs, and consequently wrinkle appears. These would have adverse effects on the health
condition of the battery. The stress and displacement analyses developed can help to
provide a detailed explanation for the damage phenomenon.

It is generally considered that the compressive hoop stress is the main reason for
the failure of electrode materials [11,26–30]. The active material on the electrode has the
smallest yield strength among battery component materials except the separator, so the
failure of electrode materials is an important cause for battery aging and deterioration.

4.2. Stress Comparison of Batteries at Different Sizes after Charging

For lithium-ion power batteries of different models, only size and dimension details
change in the stress analyses as shown in Table 2, with other data remaining the same.
Figures 7–9 show the displacement and stress curves of the core, the jellyroll, and the case
in terms of the radius, respectively.

Table 2. The geometric parameters of four types of batteries.

Battery
Model

Winding
Turns (n)

Internal Radius of
Steel Core (mm)

Internal Radius of
Winding (mm)

External Radius of
Winding (mm)

External Radius of
Case (mm)

18650 18 2.3 2.5 8.98 9.18
21700 22 2.3 2.5 10.42 10.62
26650 29 2.3 2.5 12.94 13.14
32650 37 2.3 2.5 15.82 16.02
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Figure 7 shows that the displacement, radial compressive stress, and hoop compressive
stress at any point of the steel core decrease with the increase in the cell size. This means
that the bigger the cell size, the smaller the displacement, the radial stress and the hoop
stress of steel core. It also can be found that the displacement and the hoop stress of steel
core are more sensitive to cell size than the radial stress. It also can be seen that for the steel
core, the displacement is small, and stresses are far lower than strength of steel.
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Figure 8. Displacements and stresses of jellyroll of four types of lithium-ion power batteries on a
fully charged state: (a) displacements; (b) radial stresses; (c) hoop stresses.

As can be seen from Figure 8, the radial displacement of jellyroll increases with
the increase in cell size, and the displacement of jellyroll has both negative values and
positive values, with negative values representing expanding inwards and positive values
representing expanding outward. There is a position that the value of displacement is
0 in the jellyroll. Meanwhile as the external radius of the battery increases, the constant
displacement of the jellyroll moves inwards, with the inward expansion displacement of
jellyroll gradually decreasing and the outward expansion displacement of jellyroll gradually
increasing. In addition, the jellyroll is subjected to radial compressive stress and hoop
compressive stress anywhere, and the values of radial compressive stress decreases with the
increase in battery size as well as hoop compressive stress. It also can be seen for batteries
of all sizes that the hoop stresses of jellyroll decrease rapidly and then slowly, while radial
stress increases rapidly and then slowly. The rapidly decreasing hoop stress means that the
part of jellyroll close to the steel core is most prone to wrinkle. The hoop stress of the inner
jellyroll next to steel core is not sensitive to size of the battery.

It can be seen from Figure 9 that the displacement of the case increases with the
increase in the external radius of the battery. With the increase in external radius of battery,
the radial compressive stress of the case decreases slowly while the hoop tensile stress
increases. Due to small thickness of the case, the radial stresses, varying from certain
value to zero, have very high stress gradient and keep almost same for batteries of all sizes.
The displacement and hoop stress are more sensitive to cell size than radial stress like in
Figure 7. The bigger the cell size, the more dangerous the case is. Although hoop stresses of
case are growing fast, the rate of growth is slowing down with cell size, because the hoop
stress is proportional to r−2 as shown in formula of σθO in Section 4.1.

Comparing Figures 7–9, the cell size has no effect on the variation tendency of dis-
placement and stresses of all of the steel core, jellyroll, and case, but values except the radial
stress of the case.
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4.3. Effect of Lithium-Ion Concentration on Mechanical Properties of Battery

The intercalation [31,32] and deintercalation of lithium-ion can cause a volume change
in the jellyroll. The lithium-ion battery expands and contracts under charging and discharg-
ing, respectively. The volume change is related to the movement of lithium-ion between the
cathode and the anode in the process. The change varies with the amount of charging or the
lithium-ion concentration. To understand the effect, lithium-ion saturation concentration
in Model 18650 is taken at 0.5, 0.8, 1.5, 2 and 3 times of that of the jellyroll, with other
parameters remaining unchanged. Among these values, 0.5 and 0.8 times can also be
considered as corresponding to 50% and 80% of state of charge of the graphite anode and
lithium manganate cathode, respectively. For ease of calculation, 1.5, 2 and 3 times can
also be considered as corresponding to the values of the parameters involved in inflation
of other anode materials. For example, silicon has highest theoretical specific capacity
of 4200 mAh/g, which is about ten times that of the graphite anode materials. Different
silicon content in anode could result in different saturation concentration.

Figures 10–12 shows the trend of the displacement, the radial stress and the hoop
stress in Model 18650 at different lithium-ion concentrations in terms of the radius. It can
be seen that the larger the lithium-ion concentration, the larger the displacement as well as
the radial and hoop stresses.

There are constraints to the jellyroll by the steel core and the case, and the component
materials of the jellyroll are different so the properties of these materials determine the
maximum expansion degree that the battery can sustain. If the lithium-ion concentration
of the battery is too high, the expansion may become large, resulting in crushed jellyroll
near the steel core and the case, and even fracture of the case [33].
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5. Layer Analyses of the Jellyroll
5.1. Calculation of the Hoop Stress of Each Jellyroll Component

For the purpose of obtaining stresses inside the jellyroll, the jellyroll is analyzed
layer by layer by considering the four components of the jellyroll (separator(1)–anode(2)–
separator(3)–cathode(4)) for the whole winding. The set of the thickness of each component
is as follows [19],

tse = 0.018 mm, tan = 0.165 mm, tca = 0.159 mm,

where the subscripts se, an, and ca refer to separator, anode, and cathode, respectively.
It is assumed that the jellyroll has n layers of windings, each winding has a radial

thickness of t and an axial length of h. As shown in Figure 2, the internal radius of the
jellyroll is set as r2, and the external radius is set as r3; hence, we have r3 = r2 + n · t. Each
winding is composed of a layer sequence of separator–anode–separator–cathode, and the
radial thickness of the four layers is assumed to be t1, t2, t3, t4, respectively.

In the ith winding, the hoop forces of the four layers are F1
i , F2

i , F3
i , and F4

i , re-
spectively. Denoting the whole hoop force of the ith winding as Ftotal

i , we then have

Ftotal
i =

∫ r2+i·t
r2+(i−1)·t σθ J · h · dr. Noting that the whole hoop force of the ith winding is equal

to the sum of the hoop forces of the four layers (separator–anode–separator–cathode), we
thus have,

Ftotal
i = F1

i + F2
i + F3

i + F4
i , (25)

where 
F1

i = σθ Jse · t1 · h = Eseεθ J1 · t1 · h

F2
i = σθ Jan · t2 · h = Eanεθ J2 · t2 · h

F3
i = σθ Jse · t3 · h = Eseεθ J3 · t3 · h

F4
i = σθ Jca · t4 · h = Ecaεθ J4 · t4 · h

, (26)

It can be assumed that the four layers have the identical hoop strain, εθ J1 = εθ J2 =
εθ J3 = εθ J4 = εθ J , where εθ J is the hoop strain of the winding, and εθ J , εθ J2, εθ J3, and εθ J4
are the hoop strains of the four individual layers in the winding, respectively.
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By applying the parameters in Table 2 and the radial thickness of the four-layer
winding, it can be obtained that F1

i : F2
i : F3

i : F4
i = 1 : 187.808 : 1 : 99.047. Based on

Equation (25), we can obtain the following,

F1
i = F3

i = 0.0035Ftotal
i , F2

i = 0.6502Ftotal
i , F4

i = 0.3428Ftotal
i ,

Hence, 
σθ Jse =

0.0035Ftotal
i

t1·h = 0.1944 Ftotal
i
h /mm

σθ Jan =
0.6502Ftotal

i
t2·h = 3.9406 Ftotal

i
h /mm

σθ Jca =
0.3428Ftotal

i
t4·h = 2.1560 Ftotal

i
h /mm

.

Additionally,

Ftotal
i =
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After integration, it gives,

Ftotal
i =

h ·


EJ /(1−νJ

2)

1−
(

νJ
1−νJ

)2

[(
1 + νJ

1−νJ

)
AJ · t +

(
1 − νJ

1−νJ

)
BJ ·

(
1

r2+(i−1)·t −
1

r2+i·t

)]
− EJ /(1−νJ

2)
1−

νJ
1−νJ

(
1 + νJ

)Ω·c
3 · t


and

σθ Ji1 = 0.1944 /mm ·


EJ /(1−νJ

2)

1−
(

νJ
1−νJ

)2

 (
1 + νJ

1−νJ

)
AJ · t+(

1 − νJ
1−νJ

)
BJ ·

(
1

r2+(i−1)·t −
1

r2+i·t

) 
− EJ /(1−νJ

2)
1−

νJ
1−νJ

(
1 + νJ

)Ω·c
3 · t



σθ Ji2 = 3.9406 /mm ·


EJ /(1−νJ

2)

1−
(

νJ
1−νJ

)2

 (
1 + νJ

1−νJ

)
AJ · t+(

1 − νJ
1−νJ

)
BJ ·

(
1

r2+(i−1)·t −
1

r2+i·t

) 
− EJ /(1−νJ

2)
1−

νJ
1−νJ

(
1 + νJ

)Ω·c
3 · t



σθ Ji3 = 0.1944 /mm ·


EJ /(1−νJ

2)

1−
(

νJ
1−νJ

)2

 (
1 + νJ

1−νJ

)
AJ · t+(

1 − νJ
1−νJ

)
BJ ·

(
1

r2+(i−1)·t −
1

r2+i·t

) 
− EJ /(1−νJ

2)
1−

νJ
1−νJ

(
1 + νJ

)Ω·c
3 · t



σθ Ji4 = 2.1560 /mm ·


EJ /(1−νJ

2)

1−
(

νJ
1−νJ

)2

 (
1 + νJ

1−νJ

)
AJ · t+(

1 − νJ
1−νJ

)
BJ ·

(
1

r2+(i−1)·t −
1

r2+i·t

) 
− EJ /(1−νJ

2)
1−

νJ
1−νJ

(
1 + νJ

)Ω·c
3 · t



,



Energies 2022, 15, 8244 19 of 22

σθ Ji1 and σθ Ji3 are the hoop stress of the two separators in the ith winding, respectively.
In addition, σθ Ji2 and σθ Ji4 are the hoop stress of the anode and the cathode in the same
winding, respectively.

5.2. Hoop Stress Distribution in the Winding

With the hoop stress of each layer in the jellyroll winding, the distribution of the hoop
stress in the jellyroll can be obtained as shown in Figure 13 for battery Model 18650.
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Figure 13. Comparison of the total and layered hoop stresses in the jellyroll of 18650 battery on a
fully charged state.

As can be seen from Figure 13, the hoop stress of each layer of the jellyroll changes in
a stepped distribution due to the layered winding. The separator lies between the cathode
and the anode, with the purpose of physical isolation between them to prevent the short
circuit inside the battery. Since most lithium-ion power batteries are packaged with a
steel case of a high strength, the strain caused by the expansion of electrode materials
during the charging process of lithium-ion power batteries mostly acts on the jellyroll of the
battery [34]. It should be mentioned that the radial stress of every layer varies continuously
due to the balance requirement of radial forces even if jellyroll was taken as different
layer structures.

Failures of the separator, which is weaker mechanically with a lower yield strength
than that of the cathode and the anode, will cause damage to the battery with potential
thermal runaway inside the battery. Therefore, the minimum stress critical value of the
jellyroll in the process of charging and discharging depends on the separator. Lithiation
and delithiation will cause volume changes with active materials expanding and shrinking
alternately. The cyclic deformation may lead to crack initiation and fatigue failure of active
materials, which will lead to attenuation of the battery capacity. In extreme cases, splintered
anode and cathode materials can puncture the separator, resulting in local short-circuiting
and thermal runaway of the battery.

6. Conclusions

1. Displacement of the jellyroll near the steel core is negative and the value near the case
is positive, which means the positive part of the jellyroll expands outward and the
negative part contracts inward. There is a zero displacement point in the jellyroll and
the point moves inwards towards the core with the increase in the size of the battery.

2. The radial stress of the case, jellyroll, and steel core is compressive stress. The radial
stress of the jellyroll and the steel core increase with respect to the radius, while the
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radial stress of the case decreases with the increase in radius. The hoop stresses in
the steel core and the jellyroll are compressive, and decrease with the increase in
the radius, while the case has tensile hoop stress, which also decreases gradually
with the increase in radius. The hoop stress of each layer of winding changes in a
stepped pattern.

3. With the increase in battery size, the displacement, the radial compressive stress,
and the hoop compressive stress of the steel core decrease, and the radial and the
hoop stresses in the jellyroll decrease. The displacement of the case increases with
the increase in the external radius of the battery. The case is subjected to radial
compression stress, and the stress value decreases with the increase in the external
radius. Meanwhile, it is subjected to hoop tension stress, the stress value increases
with the increase in the cell size.

4. The lithium-ion concentration has obvious effects on the mechanical properties of the
battery, the larger the lithium-ion concentration, the larger the displacement as well
as the radial and hoop stresses.

7. Discussions

In order to ensure effective insulation, several layers of separators are wound onto
the steel core at the beginning of the winding, and the winding ends with several layers of
separators. Because of the lower compression strength of the separator material compared
to that of the steel core and the case, it means that a very thin and soft cushion exists
between the electrode layer and the steel core and between the jellyroll and the case as well.
This means the soft boundary condition exist there. The outermost of the jellyroll could
bear hoop tensile stress, which could bring in fracture of the jellyroll as shown in Figure 1c.

Excessive lithium-ion concentration could result in the wrinkling of the inner jellyroll
and fracture of the outer jellyroll, sometimes fracture of the case. Further study on this
aspect is needed for better understanding of potential failure modes of lithium-ion batteries.

Charging rate is a very influential factor to stress distribution and safety of the battery.
Faster charging will result in larger local stresses, which will bring a large stress gradient in
the battery and cause the fracture of the electrode. This paper focus on the displacement
and stresses of batteries under low charging rates or in the steady state. The effects of
charging rate on displacement and stresses are not considered in this paper. The effect of
charging rate should be taken into account to give a more complete picture of safety of
battery under changing and discharging in further research.
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