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Abstract 

The proportion of older adults in Western populations is increasing and there is, 

therefore, a need to define factors affecting the maintenance of physical and cognitive 

health in old age. Klotho, an FGF-23 co-receptor, has been shown to increase the 

lifespan in mice and there are numerous reports of common variants at the Klotho gene 

locus, particularly those that make up the KL-VS haplotype, being associated with age-

related phenotypes. However, these reports are based on small sample sizes and are 

consequently under-powered. The work described in this thesis uses a candidate gene 

association approach to evaluate the previously reported associations between common 

genetic variants at the Klotho gene locus and age-related phenotypes in the UK 

Biobank, a large prospective cohort study of half a million participants. There was 

preliminary evidence for the following associations: rs2283368 and rs9536338 with 

longevity; rs495392 with HbA1c; rs141113969, rs2227122 and rs676046 with memory; 

and rs71436501 and rs78425544 with melanoma survival. However, none of these 

associations could be adequately replicated and are likely to be unreliable. These 

results show that the previous reports of associations between Klotho variants and 

longevity, cognitive function, cardiometabolic disease and cancer are likely to be false 

positives, which leads to two overall conclusions: one, there is insufficient evidence that 

common variation at the Klotho gene locus is associated with age-related phenotypes; 

and two, there is a need for well-powered replication studies. 
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Glossary of terms 

The Hardy-Weinberg principle states that genotype and allele frequencies in a 

population will remain constant from one generation to the next in the absence of other 

factors (e.g. nonrandom mating). If this is true, then 

𝑝2 + 2𝑝𝑞 + 𝑞2 =  1, 

where p is the frequency of one allele at a particular locus and q is the frequency of the 

other allele at that same locus. Deviations from this equilibrium in a sample of 

genotyped individuals can indicate genotyping errors. 

Imputation, in the context of genetics, refers to predicting the genotype of an 

individual at a locus that has not been genotyped by using genotyped variants and a 

reference panel. 

Linkage disequilibrium is when two alleles at two different loci are more likely to be 

inherited together than would be expected by chance. 

Mendelian randomisation is a method that uses genetic variants associated with an 

exposure of interest, but not with any confounders, to assess the causal effect of the 

genetically predicted exposure on an outcome. 
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1 Introduction 

The work described in this thesis consists of a series of studies carried out to ascertain 

whether genetic variation at the Klotho gene locus is associated with ageing, as 

measured through longevity, as well as by traits and diseases associated with old age, 

including cognitive function, cancer and cardiometabolic diseases. This chapter: 

summarises the currently-available evidence supporting the idea that genetic factors 

might play a role in human ageing; and explains the reasons why identifying factors 

associated with healthy ageing and longevity is becoming ever more important. 

1.1 The ageing population 

In the UK, much as in the rest of the developed world, the proportion of older adults is 

increasing. In 2009, 16.2% of the UK population was aged 65 years or more and by 

2039, this is expected to increase to 23.9%. At the same time, due to declining birth 

rates, the proportion of the population aged under 16 years is expected to decrease: in 

2009, individuals aged under 16 years made up 18.9% of the population; and by 2039, 

this is expected to decrease to 16.9% [1] - please see figure 1.1 for an additional 

illustration of this point [2]. This will put further strain on our health systems and is very 

likely to also affect economic growth. Generally, as people grow older, the incidence of 

several diseases tends to increase. These include, but are not limited to, dementia, 

cardiovascular disease and cancer: please see figures 1.2 and 1.3 [3]. In addition to the 

human suffering experienced by the patients and their families and friends, there are 

economic consequences: healthcare costs rise because the prevalence of age-related 

diseases increases (because there are more older people); and there are proportionately 

fewer people in the population who are able to work and/or care for the elderly, so it 

becomes increasingly difficult to meet the aforementioned increases in healthcare 

costs. 
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Figure 1.1 UK population by age group 

Population estimates, Principal population projections, 2016-based, Office for National 

Statistics [2]. 
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Figure 1.2 Incidence of age-related diseases in the UK (men) 

Incidence per 100,000 of neoplasms, ischaemic heart disease, stroke, type 2 diabetes 

and dementia in men [3]. 
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Figure 1.3 Incidence of age-related diseases in the UK (women) 

Incidence per 100,000 of neoplasms, ischaemic heart disease, stroke, type 2 diabetes 

and dementia in women [3]. 
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It is also important to note that many older people are still very much able to contribute 

economically both through paid employment and voluntary work (including unpaid 

childcare) and in 2017, the value of these contributions was estimated to be about £160 

billion [4]. However, older people can only work if they are physically and mentally 

healthy enough to do so. 

1.2 Measures of ageing in humans 

One approach to mitigate the predicted economic and social costs of ageing is to 

identify factors that affect how well people age. To do this, one would need one or more 

universal measures of ageing and a possible starting point could be to determine some 

so-called hallmarks of ageing (Figure 1.4), proposed by López-Otín et al. [5]. Briefly: 

• Genomic instability refers to the accumulation of DNA damage and the declining 

ability of an ageing organism to be able to repair this damage. There are many 

lines of evidence that suggest that genomic instability plays a role in ageing, e.g. 

mutations in the WRN gene that encodes a DNA repair protein cause Werner’s 

syndrome (a progeroid syndrome where patients manifest the same symptoms 

that would be expected as one gets older) [6] and increased expression of 

BubR1, an enzyme that contributes to accurate chromosome segregation [7], 

extends healthy lifespan in mice [8]. 

• Telomere attrition is where the regions at the end of chromosomes, called 

telomeres, become progressively shorter with each cell cycle because DNA 

polymerases lack the ability to replicate the ends of linear DNA molecules and 

the cells lack telomerase (an enzyme whose function it is to do exactly this). 

Telomerase shortening and damage are known causes of cellular senescence 

(another hallmark) and ageing [9]. 

• Epigenetics, in simple terms, is how cells regulate the expression of genes and 

genomic regions without alterations to the DNA sequence itself. These 

mechanisms include DNA methylation, post-translational modification of 

histones and chromatin remodelling and there is evidence of epigenetics playing 

a role in ageing and longevity across multiple organisms and it is thought that 

the dysregulation of gene expression that is likely to occur as a result of these 

epigenetic changes contributes to the other hallmarks described here [10]. 



 

17 

• Proteostasis refers to various molecules and pathways within cells that prevent 

proteins from misfolding or aggregating and promote the clearance of damaged 

or dysfunctional proteins. As organisms age, the ability of their cells to maintain 

proteostasis decreases. A good example of how a loss of proteostasis leads to 

age-related disease is Alzheimer’s disease [11]. 

• Nutrient sensing refers to how anabolic signalling (i.e. the somatotroph growth 

hormone/insulin-like growth factor (GH/IGF1) axis and downstream effectors 

such as mTOR) and nutrient sensing proteins such as AMPK and sirtuins affect 

ageing in organisms. Generally speaking, the evidence suggests that anabolic 

signalling accelerates ageing, but upregulation of proteins such as AMPK and 

SIRT1 (i.e. proteins which are upregulated in low-energy states that occur during, 

for example, caloric restriction) appears to be associated with longevity [12]. 

• Mitochondria are responsible for generating energy in the form of ATP and can 

be considered as cells within cells that have their own quality control 

mechanisms. However, over time, mitochondria become damaged and are less 

able to repair that damage, much like the cells in which they reside. This in turn 

disrupts and damages their host cells and contributes to the loss of proteostasis, 

for example [13]. 

• Cellular senescence is when a cell is no longer able to divide due to a variety of 

factors including, but not limited to, telomere shortening and DNA damage 

(which are both hallmarks of ageing themselves). Whilst cellular senescence has 

protective effects (e.g. tumour suppression), there is evidence that suggests the 

ability of an ageing organism to replace senescent cells declines with age and 

these senescent cells create a pro-inflammatory environment (sometimes 

referred to as the senescence-associated secretory phenotype) that drives 

disease processes associated with ageing [14]. 

• Stem cells are cells that are able to differentiate into many different specialised 

cell types. The body has pools of stem cells that are important for the 

replacement of damaged cells (e.g. red and white blood cells) and tissues. 

However, as the organism ages, these pools of stem cells become smaller, which 

contributes to various age-related diseases and phenotypes, such as a weakened 

immune system and muscle loss. The reasons for a reduction in these stem cell 

pools are likely to be caused by both an accumulation of damage (e.g. DNA 
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damage and loss of proteostasis) as well as an extracellular environment that is 

pro-inflammatory and pro-senescent [15]. 

• In addition to the changes within cells, there are changes in the extracellular 

environment and intercellular communication. For example, the presence of 

senescent cells promote senescence in neighbouring cells both through the 

senescence-associated secretory phenotype and through processes involving 

ROS and gap junction-mediated cell-cell contacts [16]. 

However: these hallmarks of ageing are difficult to measure in humans on a large scale. 

Therefore, studies undertaken to understand factors that affect human ageing often use 

proxy measures and these will be discussed in this section. 
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Figure 1.4 The hallmarks of ageing 

The hallmarks of ageing. Obtained from López-Otín et al. [5]. 
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Lifespan is sometimes used as a measure of ageing. However, the pursuit of longevity 

(which can be defined as above-average lifespan) as an aim in and of itself for the 

purposes of mitigating the social and economic impact of ageing assumes that people 

who live longer also spend less time in a state of ill health - there is published evidence 

to support this assumption. For example: a 2018 review of available epidemiological 

evidence by Qiu et al. [17] suggests that, despite the marked increase of dementia with 

age, dementia is not an inevitable fact for those who live past 100 years; and Pavlidis et 

al. [18] found that cancer incidence reduces significantly after 90 years of age and that 

cancers that occur in people who are extremely old are less likely to be life-threatening. 

There is also evidence that centenarians experience morbidity at later age [19]. 

Together, this suggests that studying long-lived individuals is a valid approach to 

identifying factors that affect how well people age and this was one of the reasons for 

use of Newcastle 85 Plus study data for the work described in Chapter 3. 

At present, however, there are relatively few individuals who have reached ages of 100 

years or more. Therefore, it is useful to look at other possible markers of ageing, such 

as: healthspan, which is often defined as the number of years an individual is free from 

age-related diseases; clinically-measured biomarkers, such as lipid levels and markers 

of inflammation, kidney and liver function, and indices that combine these measures; 

and phenotypes that measure the functional ability of a person, including cognitive 

function, gait speed and measures of frailty. The work described in chapters 4, 5 and 6 

explores the association of Klotho variants with cardiovascular disease and its risk 

factors, measures of cognitive function and cancer risk and survival, respectively. 

1.3 Genetics of human ageing 

Human ageing is affected by both genetic and environmental factors and their 

interaction. Here, the evidence pertaining to genetics being a contributory factor in 

human ageing is summarised. 

If genetics plays a role in ageing, it follows that at least some portion of the variation 

seen in lifespan and susceptibility to age-related disease between individuals must be 

heritable. Studies using twins and families with a centenarian have yielded estimates 

that over 20% of the variation seen in lifespan is heritable [20,21]. Furthermore, studies 
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of age-related diseases such as type 2 diabetes, dementia and cardiovascular disease 

have produced heritability estimates in excess of 40% [22-24]. 

Further evidence of genetics influencing the ageing process comes from the existence 

of progeroid syndromes inherited in a classical Mendelian fashion. Two well-

characterised progeroid syndromes are Hutchinson-Gilford progeria syndrome and 

Werner syndrome, which are caused by mutations in the LMNA and WRN genes, 

respectively, and these syndromes manifest the same symptoms that would be expected 

as one gets older [6]. 

In addition, there is a large body of evidence from model organisms such as 

roundworms [25], fruit flies [26] and mice [27] that implicates a wide variety of different 

genes as being involved in the ageing process. Klotho, the subject of the work described 

in this thesis, was also first discovered in a mouse model (see Section 1.5.1 for 

description). 

1.4.1 Candidate gene association studies 

The aforementioned studies inspired numerous candidate gene association (CGA) 

studies in humans. The purpose of these CGA studies was to examine whether genetic 

variants located within and/or near genes previously implicated in ageing in model 

organisms are associated with longevity or other proxy measures of ageing. Numerous 

authors have used this CGA approach to obtain evidence for an association between 

Klotho variants and age-related phenotypes and this evidence will be reviewed in the 

relevant chapters. 

However, despite a large number of these CGA studies suggesting that Klotho variants 

are associated with age-related phenotypes, there are limitations, some specific to CGA 

studies and others that are perhaps applicable to other approaches and even fields. 

Association studies of Klotho have been carried out in a variety of age ranges and 

population groups and all use relatively small sample sizes, so one cannot be sure that 

the finding will be applicable to the general population. 



 

22 

In addition to the limitation specific to CGA studies, it could be argued that there is a 

replication problem in genetics [28]. This has two causes: first, since CGA studies are 

hypothesis-driven, they may be based on a body of literature that contains insufficient 

contributions that seek to replicate previous findings and is therefore biased; and 

second, there are almost no attempts to replicate CGA studies in large sample sizes 

using a CGA approach [29]. These two factors, in combination with publication bias 

(which favours positive findings), mean that there is an urgent need to confirm the 

results of even widely-reported association studies, including of the KL gene. 

1.4.2 Genome-wide association studies 

A genome-wide association study (GWAS) uses a hypothesis-free approach and 

examines (up to) millions of common variants across the genome for an association 

with a phenotype of interest. Whilst this approach does not suffer from hypotheses 

formed from evidence that is subject to publication bias, it does have drawbacks. Firstly, 

a GWAS involves around a million independent statistical tests and subsequent 

correction for these tests (see Section 2.8) means that most associations are assumed 

to be a chance finding and are not subject to downstream analyses. Secondly, due to the 

scale of a GWAS, only an additive genetic model is typically considered (see Section 

2.9) and the possibility of variants having different effects in different sub-populations is 

typically not tested. CGA studies are much smaller, which lowers the multiple testing 

burden and allows for more extensive downstream analyses. These limitations warrant 

the use of the CGA approach to investigate the relationship between common KL 

variants and age-related phenotypes. 

Although not available at the start of this project, two GWASs of parental lifespan 

[29,30], published in 2019, do provide some interesting insight into the genetics 

associated with ageing. Firstly, KL is not identified as a locus of interest, but this may be 

due to the limitations described in the above paragraph. Secondly, the genes located on 

or near the statistically significant associations appear to be associated with age-

related diseases (see Table 1.1); this suggests that the associations between variants 

and lifespan are driven by associations between these variants and age-related disease. 
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Table 1.1 Genes mapped to variants associated with parental lifespan 

Variants associated with parental lifespan in both Timmers et al. and Wright et al. 

[29,30]. Adapted from Melzer et al. [31]. 

Variant Mapped genes Gene name 
Variant 
position 

Associated disease 

rs429358 APOE Apolipoprotein E Missense Cardiometabolic, dementia 

rs10455872 LPA Lipoprotein A Intronic Cardiometabolic 

rs8042849 CHRNA3/5 
Cholinergic receptor nicotinic α3/5 
subunit 

Intronic Smoking related 

rs142158911 LDLR Low-density lipoprotein receptor Intergenic Cardiometabolic 

rs11065979 
SH2B3, 
ATXN2 

SH2B adaptor protein 3, ataxin 2 Intergenic 
Cardiometabolic, cancer, 
autoimmunity 

rs1556516 CDKN2B-AS1 CDKN2B antisense RNA 1 Intronic Cardiometabolic, cancer 
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1.5 Klotho 

1.5.1 Discovery of Klotho 

The first evidence of Klotho potentially playing a role in ageing was uncovered 

serendipitously by Kuro-o et al. [32], who found that disruption of a gene in mice (which 

the authors named Klotho, or kl, after Κλωθώ, who is one of the Three Fates in Greek 

mythology that is said to spin the thread of life) resulted in a shortened lifespan and 

other age-related phenotypes (e.g. sarcopenia, thin skin, osteoporosis and vascular 

calcification), but that these kl deficient mice did not differ substantially from wildtype 

mice during their first few weeks of life, suggesting a role in ageing process. 

It was later discovered that the fgf23-knockout mouse has a similar phenotype to the 

aforementioned kl deficient mouse, suggesting that perhaps the two proteins interacted 

in some way to perform a function. This prompted further studies that provided 

evidence that Klotho was a co-receptor for FGF23 (fibroblast growth factor 23, which is 

a bone-derived hormone that suppresses phosphate reabsorption and vitamin D 

hormone synthesis in the kidney) [33,34]. Phosphate levels have been associated with 

lifespan in fruit flies and in mammals [35,36]. There is an 86% homology between 

mouse and human forms of Klotho protein [37]. 

1.5.2 Klotho is an FGF23 co-receptor 

In humans, the Klotho gene is located on chromosome 13 (position 33,590,571 to 

33,640,282 using build GRCh37.p13) and encodes an FGF-23 co-receptor (see below). 

It has five exons (see Figure 1.5) [38]. The full-length Klotho protein consists of two 

domains, KL1 and KL2. There are two truncated forms of Klotho, referred to as soluble 

Klotho, one of which is produced by enzymatic cleavage and the other is produced via 

alternative splicing (see Figure 1.6) [39]. 
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Figure 1.5 Klotho gene structure 

Structure of the Klotho gene with positions of rs1207568, rs9536314 and rs564481 

shown. Obtained from Riancho et al. [38]. 
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Figure 1.6 Klotho protein domains 

Klotho protein domains. Adapted from Kinoshita and Kawai [39]. 
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Klotho is an FGF23 co-receptor. FGF23 has a weak binding affinity for FGFR1c 

(fibroblast growth factor receptor 1c isoforms). Klotho acts to stabilise the binding 

between FGF23 and FGFR1c. These FGF23–FGFR1c–Klotho complexes then form dimers 

dependent on heparan sulphate (a polysaccharide found in animals that binds to a wide 

array of extracellular proteins) and allow FGF23 signalling to take place [40]. 

There are several downstream effects of FGF23 signalling in the kidney - please see 

figure 1.7 [41]. Activation of MAPK-ERK signalling results in suppression/internalisation 

of NPT2A/C sodium phosphate co-transporters [42,43], which in turn reduces 

phosphate reabsorption [44]. In addition, CYP27B1 (an enzyme that converts vitamin D 

into its active form, 1,25-dihydroxyvitamin D3) is suppressed [45] and CYP24A1 (an 

enzyme that catabolises vitamin D) is upregulated [46]. Since vitamin D is involved in 

dietary phosphate uptake and in phosphate reabsorption (via PTH), the overall effect of 

Klotho-dependent FGF23 signalling is to reduce phosphate concentrations in the blood. 

In addition, FGF23 signalling promotes the reabsorption of sodium chloride by 

regulating the abundance of NCC at the membrane [47] and also promotes the 

reabsorption of calcium due to an increased abundance of TRPV5 (the epithelial 

calcium channel Transient Receptor Potential Vanilloid-5) at the membrane [48]. 
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Figure 1.7 FGF23 signalling in the kidney 

FGF23 signalling in the kidney. Obtained from Agoro et al. [41]. 
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It should also be noted that there is another form of Klotho, referred to as soluble 

Klotho, which is generated when the extracellular domains of the full-length Klotho 

protein are cleaved by ADAM10/17 proteases [49]. However, the function of this form is 

unclear. 

1.5.3 Common variants at the Klotho gene locus 

Several common genetic variants at the Klotho gene locus have been identified (the 

location of some of these is shown in Figure 1.5). The evidence for their potential 

functional consequences on Klotho function is summarised in this section and the 

evidence for their association with age-related phenotypes is reviewed elsewhere. 

KL-VS is the haplotype that is used to refer to two common variants, rs9536314 and 

rs9527025, that are in complete linkage disequilibrium with each other. Linkage 

disequilibrium is when two alleles at two different loci are more likely to be inherited 

together than would be expected by chance. Data from the LDlink database [50] shows 

that there are no individuals who carry the minor allele for one variant without carrying 

the minor allele for the other. 

The rs9536314 variant results in a phenylalanine to valine substitution at position 352 

and the rs9527025 variant results in a cysteine to serine substitution at position 370 

[51]. Based on previously published evidence, the KL-VS variants appear to affect FGF23 

signalling [52] but also the amount of soluble Klotho in the blood and in the 

cerebrospinal fluid [53-55], though the evidence for the effect of KL-VS on soluble 

Klotho concentration is contradictory [56]. 

G395A (rs1207568) is a promoter variant (MAF = 0.16). Carrying the A allele is 

reportedly associated with increased Klotho expression based upon a luciferase 

reporter assay [57]. However, a study of human vascular tissue samples revealed that 

carrying the A allele reduces Klotho expression [58], so the direction of effect is still 

unclear. 
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1.6 Aims and Objectives 

Much of the evidence for associations between common Klotho variants and age-

related phenotypes described by previous authors is contradictory and based on 

relatively small sample sizes. Positive results, reviewed in subsequent chapters, have 

encouraged researchers to prioritise Klotho as a target for anti-ageing therapies. As 

described above, however, there have been methodological limitations in previous CGA 

studies (including poor power). Therefore, it is necessary to explore these associations 

in a larger sample size. The work described in this thesis was predominately carried 

using data from the UK Biobank (UKB), which is a prospective cohort study consisting of 

over 500,000 participants recruited between 2006 and 2010 from across the UK (see 

Section 2.2 for further details). 

The main aim of this work was to use the candidate gene association approach in the 

UK Biobank, leveraging the greatly increased power to evaluate whether or not Klotho is 

a solid candidate for further investigation in anti-ageing research. To achieve this aim, 

the following steps were undertaken: 

• the genetic and phenotypic data available as part of the UKB study were used to 

attempt to replicate, in British Caucasians, previously-reported associations 

between the Klotho KL-VS haplotype and longevity, cognition, cancer and 

cardiometabolic phenotypes; 

• the CGA approach was then used to search for novel associations between other 

variants, both directly-genotyped and imputed, at the Klotho gene locus and 

phenotypes related to the four areas above; 

• and, where suggestive evidence was found for novel associations, explorations of 

other datasets and resources were undertaken (in silico) to generate hypotheses 

of how any newly-associated variants might affect the relevant phenotype(s).  
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2 Participants and Methods 

2.1 Introduction 

The aim of this chapter is to introduce the UK Biobank (UKB) resource and to describe 

the statistical methods that will be referred to in subsequent chapters. If a particular 

aspect of the UKB data and/or a particular statistical model is relevant only to the work 

in a specific chapter, it will be described within that chapter. 

2.2 The UK Biobank 

The UK Biobank (UKB) is a large prospective cohort study consisting of over 500,000 

participants recruited from across the UK between 2006 and 2010. The participants 

were aged between 40 and 69 years at the time of recruitment and were invited to one 

of 22 assessment centres where they provided blood, urine and saliva samples and 

underwent physical measurements, touchscreen questionnaires and tasks and verbal 

interviews. A subset of the participants (about 25,000) were invited for reassessment 

and approximately 100,000 participants have undergone or will undergo MRI (magnetic 

resonance imaging), ultrasound and DXA (dual-energy X-ray absorptiometry) imaging. 

Genetic data is available in around 488,000 participants. The ethical approvals and 

quality control (QC) of the genetic data are detailed in this chapter. The phenotypes 

used and how they were prepared for analysis will be described in the relevant chapter. 

In addition, participants have been, and will continue to be, followed up by linkage to 

national cancer and death registries and to NHS health records. UKB provides 

summarised data consisting of diagnoses of each participant and the corresponding 

dates on which they were diagnosed. In addition, UKB provides additional information 

on participants who have been diagnosed with cancer, e.g. histology data. 

2.3 Ethics Approval 

UKB has ethical approval from the North West Multi-centre Research Ethics Committee 

(16/NW/0274). The work described in this thesis was carried out under UKB application 
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19968 and was approved by the College of Health and Life Sciences Research Ethics 

Committee on 29 November 2017 (7689-LR-Nov/2017- 8873-1). 

2.4 UK Biobank genetic data 

The UKB genetic data contains genotypes for 488,377 participants. The term genotype 

will be used in this thesis to describe the combination of alleles that a given participant 

carries at a particular genetic locus. 

DNA was extracted from blood samples obtained from the participants during their visit 

to a UKB assessment centre. Affymetrix Research Services Laboratory genotyped 

49,950 samples at 807,411 markers in 11 batches using the UK BiLEVE (UK Biobank 

Lung Exome Variant Evaluation) Axiom Array [59] and genotyped 438,427 samples at 

825,927 markers in 95 batches using the UK Biobank Axiom Array. After an initial QC by 

Affymetrix [60], genotypes for 488,377 unique participants at 812,428 variants were 

used by UKB to generate QC metrics [61]. 

2.4.1 Summary of UKB marker-based quality control metrics 

UKB identified poorly-genotyped variants that are not suitable for analyses by 

comparing the genotype frequencies between experimental factors (i.e. batch effects, 

plate effects, sex effects, and array effects). If a genetic variant has been genotyped 

correctly, then the genotype frequencies of each variant should remain consistent 

across batches, plates and genotyping arrays, and the genotype frequencies of each 

variant located on the autosomes should remain consistent between males and females. 

Before performing any QC on the genetic variants, participants who did not have 

European ancestry were removed. This is because genotype frequencies at a particular 

genetic variant can differ between individuals of different ethnic ancestries. Fisher’s 

exact test was used to compare genotype counts for each genetic variant in each batch 

with genotype counts for the same genetic variant in the whole sample (i.e. all batches). 

A p-value of 10-12 or smaller was considered to be sufficient evidence to reject the null 

hypothesis that the genotype counts at a particular genetic variant in a given batch were 

not different from the genotype counts across all batches for that genetic variant. The 
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same approach was used to compare genotype counts between plates, genotyping 

arrays, and sexes. 

In addition to the aforementioned tests, UKB identified genetic variants whose allele 

frequency distributions differed significantly (p ≤ 10-12) from Hardy-Weinberg 

equilibrium, a principle that states that genotype and allele frequencies in a population 

will remain constant from generation to generation in the absence of factors such as 

non-random mating, migration and mortality and, in the case of experiments such as 

the UKB, genotyping errors. Furthermore, control samples from the CEU (Utah Residents 

with Northern and Western European Ancestry) group of the 1000 Genomes project 

were included in each plate. It is expected that the genotype at each variant should be 

the same for each control sample replicate. The genotypes from these control samples 

were, therefore, used to compute a discordance metric, d, and variants with a d ≥ 0.05 

were not part of the released dataset. 

If a variant failed one or more of the aforementioned tests in a given batch, genotype 

calls for that variant were set to missing for participants genotyped in that batch in the 

data release. UKB provided a text file listing each genotyped variant and whether or not 

that variant failed one or more QC tests in any of the batches. 

2.4.2 UKB sample-based quality control metrics and analyses 

It is necessary to remove samples (i.e. individuals) if they are likely to have been 

genotyped poorly. Then related pairs of participants must be identified and a 

quantitative measure of the ancestral background of each participant needs to be 

generated based on the genetic data. 

To carry out the QC and analyses to achieve the aforementioned aims, only SNPs that 

were genotyped on both arrays and passed QC across all batches were used by UKB. 

Heterozygosity (the number of heterozygous genotypes an individual has divided by the 

total number of genotyped variants) and sample-level missingness are used to identify 

samples that are of poor quality. However, these metrics are affected by the ancestry of 

an individual and the UKB is an ancestrally heterogenous sample. Principal components 

analysis (PCA) was carried out on a subset of unrelated individuals (using KING) [62] to 
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provide a quantitative measure of the ancestral background of each participant, and the 

heterozygosity and missingness values for each participant were adjusted for their 

ancestry. These adjusted values were used to identify participants who were outliers for 

heterozygosity and missingness and were flagged in the sample QC file provided by 

UKB. 

UKB also flags individuals who are likely to have sex chromosome aneuploidies. This 

was done by comparing the intensities of markers on the Y and X chromosomes. 

UKB also provide a list of related pairs, generated using KING software [62]. The SNPs 

selected for inferring relatedness between samples had small loads on the first 3 

genetic PCs to minimise relatedness estimates being artificially high due to admixture 

(i.e. the presence of DNA from a distantly related ethnic group). Furthermore, individuals 

flagged as outliers for heterozygosity and missingness were also excluded. 

The PCA of the genetic data was repeated, this time excluding poorly-genotyped 

individuals as well as related pairs. The first 40 PCs are provided by UKB as part of the 

data release, which are used to adjust for population stratification that may be present 

within one ethnic group. The White British subset was defined by UKB as the intersect 

of self-reported ethnic background and the results of the PCA. 

2.4.3 Imputation 

SHAPEIT3 [63] was used by UKB to estimate haplotypes (phasing), i.e. determining 

which allele is on which chromosome, using variants that passed QC for all batches. The 

accuracy of the phasing was assessed by using the mother-father-child trios in the UKB. 

A modified version of the IMPUTE2 program [64] was used by UKB to impute (i.e. 

predict the genotype of an individual at a locus that has not been genotyped by using 

genotyped variants and a reference panel) about 96 million variants. The genotypes at 

some variants are predicted more reliably than others and UKB provides an information 

score for each imputed variant as a measure of this reliability. A variant imputed in a 

sample of 100,000 individuals with an information score of 0.8 is the same as that 

variant being perfectly genotyped in a sample of 80,000 individuals. 
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The data release provides a set of three probabilities per variant for each individual, and 

each probability represents the likelihood that the individual has a particular genotype 

at a particular variant. These genotypes are converted into dosages. For example, say 

that an individual can have one of three genotypes at a particular variant (TT, GT, and 

GG) and that the probability of that individual having these genotypes are 0.01, 0.97, 

and 0.02. The genotypes would ordinarily be coded as 0, 1 and 2 (see Section 2.8). 

However, to take the uncertainty of imputation into account, a dosage is calculated by 

weighting the three genotypes by their respective probabilities and obtaining a mean. 

This dosage is used as a predictor variable (see Section 2.7). In this example, the 

dosage is: 

 

2.5 Selection of variants for analysis 

Variants that failed the previously-described QC tests for any batch that they were 

genotyped in were excluded. In addition, variants with a missingness of >1% and/or a 

minor allele frequency (MAF) of <0.01 were also excluded. For imputed variants, all 

variants with an INFO score of <0.8 were excluded. The KL gene is located at position 

33,590,571 to 33,640,282 on chromosome 13 (GRCh37.p13) and 247 variants passed 

QC within ±5 Kb of KL. These were selected for the subsequent analyses. 

In chapters 3, 4 and 6, due to a small number of cases, variants with a MAF of <0.05 

were excluded. It should also be noted that KL-VS is always tested separately. For these 

reasons, the number of variants being tested in each chapter may be less than 247. 

2.6 Selection of participants for analysis 

Samples were excluded from the analysis if they were determined to be outliers for 

missingness and/or heterozygosity and/or if they had any sex chromosome aneuploidies 

as well as if the genetically inferred sex differed from the reported sex. Samples which 

did not have a genetically-determined White British ancestry were also excluded. A list 
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of related individuals was also provided by UK Biobank and one individual from each 

related pair was excluded at random. 

2.7 Statistical Methods 

MULTIPLE LINEAR REGRESSION 

A multiple linear regression allows one to estimate how many units the continuous 

response variable changes by for each unit increase in a predictor variable (i.e. beta) 

assuming that all other predictor variables are kept constant. The method assumes the 

following: the relationship between each predictor variable and the response variable is 

linear; the residuals (i.e. the difference between the actual value of the response variable 

and the predicted value of the response variable) are consistent for all values of the 

predictor variable (homoscedasticity); the predictor variables are normally distributed - 

this does not make much of a difference at large sample sizes; [65] and the predictor 

variables are not strongly correlated to each other. 

phenotype =  𝛽0  +  𝛽1genotype + 𝛽2age + 𝛽3sex + 𝛽4PC1 + 𝛽5PC2 + 𝛽6PC3 +  𝛽7PC4 

+ 𝛽8chip +  ε 

MULTIPLE LOGISTIC REGRESSION 

A multiple logistic regression is used when the response variable is binary (i.e. case-

control). It allows one to estimate the change in log odds (i.e. ln(OR), where OR = p/(1-p), 

where p = probability of observing a case) for each unit increase in a predictor variable 

assuming that all other predictor variables are kept constant. The assumptions made in 

a logistic regression are similar to those made in a linear regression. 

ln (
𝑝

1 − 𝑝
) = 𝛽0  +  𝛽1genotype +  𝛽2age +  𝛽3sex +  𝛽4PC1 +  𝛽5PC2 + 𝛽6PC3 + 𝛽7PC4 

+ 𝛽8chip 
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COX PROPORTIONAL HAZARDS MODELS 

The Cox proportional hazards model is used to estimate the effect of a given predictor 

on the rate of a particular event happening at a particular point in time. This effect is 

known as a hazard ratio. The model assumes that the hazard ratio is constant over time. 

𝐻(𝑡) = 𝐻0(𝑡) + 𝑒(𝛽0 + 𝛽1genotype + 𝛽2age + 𝛽3sex + 𝛽4PC1+ 𝛽5PC2+ 𝛽6PC3+ 𝛽7PC4 + 𝛽8chip) 

2.8 Multiple testing 

The statistical models used throughout this thesis produce a p-value, which is the 

probability of observing a test statistic that is equally or more extreme (i.e. further away 

from zero) than the test statistic that has been observed under the assumption that the 

null hypothesis is true, and a p-value equal to or less than 0.05 is considered to be 

sufficient evidence to reject the null hypothesis. However, the analyses described in 

subsequent chapters consist of attempts to find associations between multiple variants 

and multiple phenotypes, which requires many statistical tests. The more independent 

statistical tests that are performed, the higher the chance of incorrectly rejecting the 

null hypothesis. This means that if, for example, 20 statistical tests that are not 

dependent on each other are performed and a p-value of 0.05 (i.e. 1 in 20) is 

considered sufficient evidence to reject the null hypothesis, then, by chance alone, one 

of those statistical tests is likely to provide sufficient evidence to reject the null 

hypothesis (because there are 20 tests). 

To correct for this multiple testing problem, the p-value is divided by the number of 

independent statistical tests, which varies, so the actual correction is described within 

the section that it is applied. In order to determine the number of independent 

statistical tests, it is necessary to determine the number of independent genetic 

variants (if multiple genetic variants are being tested) and to determine the number of 

independent phenotypes. These are then multiplied to calculate the number of 

independent tests. 

In this thesis, genetic variants are considered to be independent for the purposes of 

multiple testing if they are not in strong linkage disequilibrium. To determine the 
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number of independent variants, all pairs of variants within the locus (see Section 2.5) 

with R2 > 0.1 were listed, one variant from each pair was removed and this process was 

repeated until there were no pairs of variants remaining. This was implemented using 

the --indep-pairwise 60 kb 1 0.1 flag in PLINK 2.0 [66]. Although the 247 

variants referred to in section 2.5 can be adequately represented by 2 variants based on 

the results of the analyses described in this paragraph, all 247 variants are tested 

regardless; the results of the --indep-pairwise flag are used purely for the purposes 

of determining the number of independent tests to correct for multiple testing. 

To determine the number of independent phenotypes, a principal components analysis 

(PCA) is carried out. The aim of PCA is to see whether a large number of likely 

correlated variables can be represented by a smaller number of uncorrelated variables 

(referred to as principal components). Each principal component represents a certain 

amount of variation in the original data, with the first PC representing the highest 

amount of variation, the second PC representing the second highest amount of variation 

and so on. It is assumed that the minimum number of PCs required to represent >90% 

of the variation in the original data represents the number of independent phenotypes. 

It should be noted that the principal component analyses described here are used 

specifically for the purposes of determining the number of independent phenotypes and 

that all phenotypes are always tested regardless. 

2.9 Genetic models 

In this thesis, the genotype of an individual is coded using either the additive model or 

the dominant model or the recessive model. The additive model assumes that if carrying 

one copy of a minor allele produces a change in a trait, then carrying a second copy of 

the minor allele produces an additional change in the same trait of the same 

magnitude. The dominant model assumes that if carrying one copy of a minor allele 

produces a change in a trait, then carrying a second copy of the minor allele does not 

produce a further change. The recessive model assumes that carrying two copies of the 

minor allele produces a change in a trait whereas carrying one copy does not. The 

rs9536314 variant will be used to explain how the additive, dominant and recessive 

models are implemented. An individual can carry up to two copies of either the T 

(thymine) allele or the G (guanine) allele at the rs9536314 variant. 
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If G is the effect allele and an additive model is being used, then individuals with the 

TT, GT, and GG genotypes are coded as 0, 1 and 2, respectively, and these recoded 

genotypes are used as a predictor variable in the statistical models described earlier 

(see Section 2.7). If, for example, individuals who carry one copy of the G allele have a 

hip circumference that is 0.01 cm lower in comparison to those who carry no copies of 

the G allele then, under the additive model, individuals who carry two copies of the G 

allele would have a hip circumference that is 0.02 cm lower in comparison to those who 

carry no copies of the G allele and would have a hip circumference that is 0.01 cm lower 

in comparison to those who do carry one copy of the G allele. 

If G is the effect allele and a dominant model is being used, then individuals with the 

TT, GT, and GG genotypes are coded as 0, 1 and 1, respectively. Under the dominant 

model, individuals who carry either one or two copies of the G allele would have a hip 

circumference that is 0.01 cm lower than those with no copies of the G allele. 

If G is the effect allele and a recessive model is being used, then individuals with the 

TT, GT, and GG genotypes are coded as 0, 0 and 1, respectively. Under the recessive 

model, individuals who carry two copies of the G allele would have a hip circumference 

that is 0.01 cm lower in comparison to both those who carry no copies of the G allele 

and those who carry one copy of the G allele. 
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3 Klotho and Longevity 

3.1 Introduction 

In Section 1.2, the advantages of measuring ageing through longevity are discussed. 

Briefly, it is possible that individuals who live to extreme old age have unique biological 

traits [67] that GWASs of lifespan (briefly reviewed in section 1.4.2) may not detect. In 

this chapter, we use genetics to examine the evidence that Klotho is related to longevity 

(as opposed to lifespan). If Klotho is a valid target for anti-ageing research, then one 

might expect genetic variants that are located in and around the Klotho gene locus to 

be over- or under-represented in an elderly population in comparison to a younger 

control population. In this chapter, reports of previous studies that have used this 

approach are reviewed. This is followed by a discussion of the results of work carried out 

using this same approach, incorporating data from the Newcastle 85 Plus study. 

Multiple studies have been carried out to explore the relationship between genetic 

variants at the KL gene locus and longevity. These have mostly been focused on a pair 

of functional genetic variants, in complete linkage disequilibrium, that result in F352V 

(rs9536314) and C370S (rs9527025) substitutions, first reported by Arking et al. [68], 

and referred to as the KL-VS haplotype. 

Arking et al. [68] went on to report that KL-VS heterozygotes were more common in 

Bohemian Czechs aged ≥75 years than in newborn controls, and also found that KL-VS 

heterozygotes became more common with age in Ashkenazi Jews aged ≥79 years [69]. 

Invidia et al. [70] also reported that KL-VS heterozygotes were more common in elderly 

Italian individuals (mean age 78 years) in comparison to younger controls (mean age 53 

years). 

However, other studies were not able to replicate the aforementioned longevity 

advantage reported in KL-VS heterozygotes. Arking et al. [68] were not able to replicate 

their findings from Bohemian Czechs in either Baltimore-based Caucasians or in 

Baltimore-based African-Americans, though it should be noted that participants defined 

as long-lived were only ≥65 years old as opposed to ≥75 years old. Novelli et al. [71] 
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compared US participants aged between 99 and 111 years old to controls aged <35 

years and Flachsbart et al. [72] compared German centenarians to younger controls (60-

75 years old), but neither group found evidence of a difference in allele and/or genotype 

frequencies between long-lived cases and younger controls. 

These conflicting reports indicate that, at a population level, the relationship between 

the KL-VS haplotype and longevity remains unclear. We aim to explore this area further 

by comparing long-lived individuals from the Newcastle 85 Plus study with middle-aged 

Newcastle-based controls from the UK Biobank to test whether or not variants at the KL 

gene locus are over- or under-represented in older individuals. 

3.2 The Newcastle 85 Plus study 

We obtained data from long-lived cases from the Newcastle 85 Plus (N85+) study which, 

in 2006, recruited 1042 participants born in 1921 regardless of their health status 

(excepting those with late-stage terminal illness), including those with cognitive 

impairment (for whom careful procedures were followed to secure proxy consent, where 

appropriate). All individuals who met the recruitment criteria and were not suffering 

from a terminal illness were eligible. The N85+ study was approved by the Newcastle 

and North Tyneside 1 research ethics committee (reference number 06/Q0905/2) [73]. 

N85+ participants had been genotyped using Illumina Omni genotyping arrays. The 

details of the QC carried out on the genetic data from the N85+ study are available in 

Deelen et al. [74]. In addition to this QC, all variants with an INFO score of <0.8 were 

excluded for the work described in this study. 

3.3 Statistical Analyses 

We used R 4.0.2 [75] to carry out analyses, unless stated otherwise. We used qctool [76] 

and GTOOL [77] to convert both the UKB and the N85+ imputed data to hardcalls, using 

a posterior probability threshold of 0.9. 

We used the chi-squared (χ2) test to compare genotype counts between Newcastle UKB 

participants (i.e. UKB participants who attended the Newcastle assessment centre aged 
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≥45 years and <65 years) and N85+ participants. We used the Z test of proportions, as 

implemented in the prop.test(…,correct=FALSE) function in R, to compare the proportion 

of rs9536314 carriers and rs9536314 heterozygotes between the two aforementioned 

groups. For rs9536314, we tested four different genotype models (additive, dominant, 

recessive and heterozygous), so the multiple-testing corrected p-value threshold we 

used was 0.05/4 = 0.0125. 

If the genotype distribution at any variant (except rs9536314, where all genotype 

models were tested regardless) was found to differ significantly between the N85+ 

cohort and the Newcastle UKB cohort, we identified the underlying genetic model and 

then used 2×2 contingency tables to compare the proportion of N85+ participants (the 

“event”) between the two genotype/allele groups (the “exposed” and “unexposed” 

groups). Odds ratios and the corresponding 95% confidence intervals and p-values 

were generated as described by Szumilas [78]. 

To replicate any positive results, we separated the non-Newcastle UKB participants by 

the assessment centre location that they attended at baseline (UKB field 54) to account 

for population stratification, compared the proportion of UKB participants aged ≥80 

years (as of April 26, 2020) between two genotype/allele groups and meta-analysed the 

results using the Mantel-Haenszel method as implemented in the 

metabin(…,sm=“OR”,method=“MH”) function from the “meta” package in R [79]. 

3.4 Results 

After QC, there were 642 N85+ participants (60.6% female) and 18,295 Newcastle UKB 

participants (54.9% female) remaining. There are no statistically significant 

associations between KL variants and sex across the UKB (Supplementary Table 3.1). 

Since the two variants making up the KL-VS haplotype are well-characterised functional 

KL variants in humans, we investigated whether or not their genotype distributions 

differed significantly between N85+ participants and Newcastle UKB participants (Table 

3.1). We found no significant difference in the genotype distribution for rs9536314 

between the two cohorts (TT, TG, GG: [69.5%, 27.6%, 3.0%] vs. [70.4%, 27.1%, 2.5%], p 
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= 0.74). It should be noted that only the results for rs9536314 are provided because 

rs9536314 and rs9527025 are in complete linkage disequilibrium (R2 = 1). 
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Table 3.1 Allele/genotype distribution at rs9536314 in N85+ and UKB 

Distribution of alleles and genotypes at rs9536314 Newcastle 85 Plus (N85+) 

participants and middle-aged Newcastle-based UK Biobank (N_UKB) participants. 

  N85+ N_UKB 
Genotype 
TT 446 69.5% 12880 70.4% 
TG 177 27.6% 4954 27.1% 
GG 19 3.0% 461 2.5% 
Additive 
T 1069 83.3% 30714 83.9% 
G 215 16.7% 5876 16.1% 
Dominant 
TT 446 69.5% 12880 70.4% 
TG/GG 196 30.5% 5415 29.6% 
Recessive 
TT/TG 623 97.0% 17834 97.5% 
GG 19 3.0% 461 2.5% 
Heterozygous 
TT/GG 465 72.4% 13341 72.9% 
TG 177 27.6% 4954 27.1% 
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It has been suggested that KL-VS heterozygotes are at an advantage when it comes to 

longevity. We therefore compared the proportion of rs9536314 heterozygotes between 

N85+ participants and Newcastle UKB participants, but found no difference (27.6% vs 

27.1%, p = 0.79). We also compared the proportion of rs9536314 GG homozygotes and 

rs9536314 G carriers between the two cohorts, but again did not find any differences 

(3.0% vs. 2.5%, p = 0.49; and 30.5% vs. 29.6%, p = 0.61). The allele frequencies were 

also similar (16.7% vs 16.1%, p = 0.51). The results are summarised in Table 3.1. 

We next sought to compare the genotype distributions between the N85+ participants 

and the Newcastle UKB participants for the remaining 194 KL variants (Supplementary 

Table 3.2). The genotype distributions of rs2283368 and rs9536338 differ between the 

two cohorts (p = 2.1×10-3 and p = 7.5×10-3, respectively). These variants were selected 

for further analysis. 

We found that individuals from the N85+ study were more likely to be present in the 

rarer rs2283368 CC group than the rs2283368 TT/TC group (OR = 2.42, [95% CIs 1.44 

to 4.06, p = 4.0×10-4]), which suggests that the CC genotype could be associated with 

longevity (Table 3.2). However, when we attempted to replicate this result by comparing 

the proportion of UKB participants aged ≥80 years who were present in the rs2283368 

CC group to the proportion who were present in rs2283368 TT/TC group at each 

assessment centre across the UK (Figure 3.1), we found no statistically significant 

difference (random effects model: OR = 1.15 [95% CIs 0.96 to 1.37, p = 0.14]). 
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Table 3.2 Distribution of rs2283368 CC genotypes in N85+ and UKB 

Distribution of rs2283368 CC genotypes amongst Newcastle 85 Plus (N85+) 

participants and middle-aged Newcastle-based UK Biobank (N_UKB) participants. 

  CC TT/TC 
N85+ 16 626 
N_UKB 184 17435 
  200 18061 
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Figure 3.1 Meta-analysis of rs2283368 CC genotype distribution in the UKB 

Meta-analysis of the distribution of rs2283368 CC genotypes amongst long-lived cases 

and younger controls in the UKB. 
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We also found that the rarer rs9536338 G allele is less frequent in N85+ participants 

(OR = 0.81 [95% CIs 0.72 to 0.92, p = 6.3×10-3]), which suggests that the G allele may 

be associated with reduced longevity (Table 3.3). We attempted to replicate this finding 

by comparing the proportion of UKB participants aged ≥80 years who were present in 

the rs9536338 G group to the proportion who were present in the rs9536338 C group 

at each assessment centre (Figure 3.2), but we did not find any evidence to support our 

initial result (random effects model: OR = 1.02 [95% CIs 0.99 to 1.05, p = 0.2]). 
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Table 3.3 Distribution of G and C alleles at rs9536338 in N85+ and UKB 

Distribution of G and C alleles at rs9536338 amongst Newcastle 85 Plus (N85+) 

participants and middle-aged Newcastle-based UK Biobank (N_UKB) participants. 

  G C 
N85+ 352 768 
N_UKB 12785 22697 
  13137 23465 
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Figure 3.2 Meta-analysis of G/C allele distribution at rs9536338 in the UKB 

Meta-analysis of the distribution of G and C alleles at rs9536338 amongst long-lived 

cases and younger controls in the UKB. 
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3.5 Discussion 

In this chapter, we sought to verify previous reports of associations between the KL-VS 

haplotype and longevity and to identify novel variants at the Klotho gene locus that may 

also be associated with longevity, if any. Our data do not support the presence of an 

association between rs9536314, a genetic variant that characterises the KL-VS 

haplotype, and longevity. Although we identified possible associations with the 

rs2283368 and rs9536338 variants, we were unable to replicate these in a second, 

much larger, sample. 

Arking et al. [68] reported an association between rs9536314 and longevity, but we 

could not identify this in our data. A possible reason for this may be that Arking et al. 

[68] compared newborns to elderly participants, which means that the effect they 

observed could be explained by a relationship between rs9536314 and infant mortality 

as opposed to longevity. Indeed, two other studies [71,72], in which adults, rather than 

newborns, were used as controls, also did not provide evidence for an association 

between longevity and rs9536314. 

We were unable to replicate the associations that we found between rs2283368 and 

rs9536338 and longevity, so they are likely to be false positives. However, it is also 

possible that the lack of UKB participants aged ≥85 years and the consequent need to 

re-define long-lived cases as those aged ≥80 years may have reduced the power of our 

replication sample to detect an effect, if present. 

Previous studies have used a variety of age thresholds to define their long-lived cases 

and their younger controls, which makes it difficult to compare them and to establish a 

pattern. We chose to use 85 years as the threshold to define our long-lived cases and 

this seems reasonable given that the pre-pandemic life expectancy in most countries, 

including the UK [80], has not yet exceeded 85 years and previous publications 

frequently consider those aged above 85 years as the oldest old [81]. We defined our 

middle-aged controls as those aged between 45 and 64 years inclusive because this is 

the current MeSH definition of middle-aged [82]. Another approach, used by Invidia et 

al. [83], involves generating population-specific survival curves and defining thresholds 

based upon the ages at which mortality increases or decreases. However, these ages 
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are likely to vary between populations (and therefore will be subject to population-

specific biases) and will be affected by events such as the COVID-19 pandemic [84]. 

There are some potential limitations in our work. Participants in the UKB study are 

reportedly healthier [85] than the average for a person from the UK population. It could 

be argued that individuals who are likely to be long-lived tend to be free of any age-

related morbidities until the very end of their life [86], so the UKB sample may contain a 

higher proportion of individuals who will ultimately be long-lived. The Newcastle UKB 

cohort, which was the control sample in this study, may therefore contain some 

individuals who, in time, would be included as cases in studies such as ours. 

Furthermore, the N85+ Study sought to recruit participants regardless of health status 

(excepting those with late-stage terminal illness), including those with cognitive 

impairment (for whom careful procedures were followed to secure proxy consent, where 

appropriate), which reduces the difference between the long-lived cases and younger 

controls because the maintenance of cognitive independence into very old age is a 

characteristic of longevity. Together, these factors may have reduced the power of our 

discovery sample to detect an effect, if present. 

In conclusion, we did not find sufficient evidence to support the previously reported 

associations between KL-VS and longevity. Once further follow-up data from the UKB 

becomes available as the cohort gets older and some individuals begin to exceed the 

average lifespan, the associations between rs2283368 and rs9536338 and longevity 

should be re-tested. However, despite the novel (albeit unreproduced), associations that 

we describe, the evidence, at least on a population genetics level, remains fragmented. 

Thus, the results described in this chapter do not reliably support the role of KL as a 

longevity factor. 

3.6 Postface 

As of 13th August 2021, the work described in this chapter is under consideration for 

publication by The Journals of Gerontology, Series A. 
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4 Klotho and Cardiometabolic Traits 

4.1 Introduction 

As discussed in Chapter 3, there does not appear to be any reliable evidence of an 

association between Klotho variants and longevity at age 85 years or over. However, it is 

also important to explore the possibility that Klotho variants may be associated with 

specific diseases that are amongst the most common causes of mortality amongst older 

people. 

Cardiometabolic diseases are a group of pathologies that include cardiovascular 

disease and the metabolic syndrome. The metabolic syndrome is characterised by 

central adiposity (as measured by waist circumference), dyslipidaemia (namely 

increased triglycerides and reduced high-density lipoprotein), hypertension and insulin 

resistance (which progresses into type 2 diabetes) [87]. Although the exact diagnostic 

criteria for metabolic syndrome are debated [87], the characteristics of metabolic 

syndrome are associated with ischaemic heart disease and stroke [88], which, in 2018, 

were the second and fourth leading causes of death in UK residents aged 65 years or 

more, respectively [89]. 

The chapter begins with a review of the previous evidence for an association between 

Klotho variants and cardiometabolic diseases and traits. Then, an attempt is made to 

verify the reported associations between KL variants, including the KL-VS haplotype, 

and cardiometabolic phenotypes in UKB participants, by carrying out a phenome scan of 

cardiometabolic outcomes and their associated risk factors and to search for novel 

associations between the KL genetic variants and cardiometabolic phenotypes using 

the same approach. The results of these analyses are also presented and discussed in 

this chapter. 

4.2 Klotho variants and cardiometabolic phenotypes 

There is conflicting evidence that genetic variants at the Klotho gene locus may be 

associated with cardiometabolic diseases and their risk factors. The ones that are most 
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commonly assessed are: KL-VS, a haplotype represented by two variants in complete 

linkage disequilibrium that result in F352V (rs9536314) and C370S (rs9527025) 

substitutions; G395A (rs1207568); and C1818T (rs564481). 

4.2.1 KL-VS 

Since rs9536314 and rs9527025, represented by the KL-VS haplotype, are the most 

well-characterised Klotho variants, their association with cardiovascular outcomes and 

risk factors is reviewed. KL-VS was first reported to be associated with coronary artery 

disease (CAD) by Arking et al. [90], who found that Caucasian carriers of the rs9536314 

G allele were at a lower risk of early-onset CAD (n = 520), but Low et al. [91] did not find 

any such association (n = 440). Paula et al. [56] found that KL-VS is not associated with 

CAD in an older (≥60 years old) Brazilian population (n = 168) but Donate-Correa et al. 

[58] found a higher rate of atherosclerosis in F352V carriers in comparison to non-

carriers in a Spanish population (n = 105). Arking et al. [69] found that KL-VS 

heterozygotes were less likely to experience a stroke, but: Majumdar et al. [92] found the 

opposite to be true in a South Asian population (n = 1034); and Paula et al. [56] did not 

find an association between stroke and KL-VS in their data. KL-VS also does not appear 

to be associated with myocardial infarction [69,93]. With respect to diabetes, the V 

allele is reportedly associated with a lower risk of diabetes in Brazilians [56], but not in 

Caucasians [94]. The available evidence for an association between KL-VS 

cardiometabolic outcomes is contradictory. 

In terms of cardiovascular risk factors, Arking et al. [69] found that KL-VS heterozygotes 

have a lower systolic blood pressure (SBP) in their data but, in their respective datasets: 

Nzietchueng et al. [95] found this effect to be restricted to VV homozygotes, Donate-

Correa et al. [58] did not find evidence for an association between blood pressure and 

KL-VS in their data; and Majumdar and Christopher [96] actually found that VV 

homozygotes have a high SBP in a South Asian population. Paroni et al. [97] found that 

VV homozygotes had higher levels of high-density lipoprotein (HDL), but three other 

groups did not find evidence of this association in their respective data [56,69,94]. The 

evidence for an association between cardiovascular risk factors, namely SBP and HDL, 

and KL-VS is contradictory. 
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4.2.2 G395A (rs1207568) 

There is evidence that G395A may affect the risk of CAD. Imamura et al. [98], found 

that the 395A allele is associated with CAD in a Japanese population. These findings 

were corroborated in a Korean population by Jo et al. [99], who found that carriers of 

the 395A allele are more likely to suffer from CAD. In addition to its effects on CAD risk, 

the 395A allele has been associated with an increased risk of cardioembolism in Korean 

women [100], but Pereira et al. [93] did not find evidence of a relationship between the 

G395A variant and stroke in a Brazilian population. 

There is evidence that the effect of G395A on CAD risk could be age-dependent. Rhee 

et al. [101] found no evidence of an association between the 395A allele and coronary 

artery stenosis (mean age = 58.5 years) and in fact observed that, when the analysis was 

restricted to those aged over 60 years, stenosis of the coronary artery is actually less 

common in Koreans who carry the 395A allele. In contrast, when Jo et al. [99] restricted 

their analyses to Koreans aged over 60 years, there was no association between 395A 

and CAD and in those aged under 60, CAD was more common in 395A carriers. 

Together, this suggests that the effect of the 395A allele on CAD could be age-

dependent, at least in Koreans, but the possibility of this being a false positive cannot 

be discounted. 

Rhee et al. [102] found that 395A carriers had a higher SBP in comparison to non-

carriers in a sample of Korean women and the absence of a statistically significant 

effect in a mixed sex sample of Koreans [101] raises the possibility that this effect is 

female-specific, at least in Koreans. However, the G395A variant does not appear to be 

associated with hypertension in a Spanish population [58] and Wang et al. [57] found 

that the 395A allele lowers the odds of hypertension in a Chinese Han population. The 

latter was corroborated by Gao et al. [103], who used data from elderly Chinese 

participants and found that carriers of the 395A allele had a lower SBP. Shimoyama et 

al. [104] found that, in a Japanese population, male and female carriers of the 395A 

allele had lower HDL and higher fasting glucose levels, but Paroni et al. [97] did not find 

evidence for either of these associations in an Italian population. Donate-Correa et al. 

[58] found that carriers of the 395A were more likely to get diabetes, but Gao et al. 

[103] did not find evidence of such an association. In summary, the effect of the G395A 
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variant on cardiometabolic risk factors varies with ethnicity and perhaps with sex but, 

once again, the possibility of this being a false positive cannot be discounted. 

4.2.3 C1818T (rs564481) 

The third of the three commonly assessed variants is C1818T (rs564481) and, as is the 

case with KL-VS and G395A, its effects also vary between different ethnicities, though 

this variation could again be a case of false positives. Rhee et al. [102] and Shimoyama 

et al. [104] respectively found that Korean women and Japanese women who carried the 

T allele have higher fasting glucose levels but interestingly, Paroni et al. [97] found that 

the T allele had the opposite effect on fasting glucose in Italian women. The association 

between C1818T and fasting glucose is not present in South Asians [92,96]. Rhee et al. 

[101] found that Koreans who carry the T allele had a reduced risk of CAD, but Pereira et 

al. [93] found that Brazilians who carry the T allele are more likely to get MI. C1818T is 

not associated with stroke in Korean, South Asian and Brazilian populations [92,93,100]. 

4.2.4 Summary 

To summarise: the associations between KL-VS, G395A and C1818T and 

cardiometabolic phenotypes could vary between ethnic groups; the associations 

between G395A and C1818T and cardiometabolic phenotypes may vary with age and 

sex, respectively; however, since the evidence for these genetic variants having different 

effects across ethnic groups, age and sex is from small sample sizes, one cannot 

discount the possibility of these patterns being false positives. As part of the work 

described in this chapter, an attempt is made to verify these reported associations by 

carrying out a phenome scan of cardiometabolic outcomes and their associated risk 

factors in a much larger sample available from the UKB. 

4.3 Phenotypes 

In order to assess whether Klotho variants are associated with cardiovascular outcomes 

and their risk factors, it was necessary to use both measurements performed during the 

assessment centre as well as the summarised data generated from the participants’ 

hospital records (see Section 2.2) provided by UKB to generate phenotypes. 
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4.3.1 Diabetes and glycaemic traits 

Type 2 diabetes: participants who reported being diagnosed with diabetes by a doctor 

(UKB field 2443, which records participants’ responses when asked to declare whether 

they had been diagnosed with diabetes by a doctor) were considered as cases; and 

participants with one or more primary diagnoses of ICD-10 codes E10 (Insulin-

dependent diabetes mellitus), E12 (Malnutrition-related diabetes mellitus), E13 (Other 

specified diabetes mellitus), E14 (Unspecified diabetes mellitus) and O24 (Diabetes 

mellitus in pregnancy, childbirth, and the puerperium) listed in UKB field 41202 (which 

lists all lifetime hospital diagnoses for each participant since records were available) 

were set to missing to ensure that the analyses were restricted to type 2 diabetes. 

Type 2 diabetes can be diagnosed on the basis of a fasting glucose test. However, a 

fasting glucose test does not necessarily provide an accurate representation of longer-

term blood glucose levels. Chronically elevated glucose levels result in the production of 

advanced glycation end-products [105], which is where the excess glucose binds to 

various proteins and lipids. One protein that glucose can bind to is haemoglobin, which 

produces glycated haemoglobin (HbA1c). The ratio of non-glycated haemoglobin to 

glycated haemoglobin is used a diagnostic marker for type 2 diabetes since a higher 

concentration of HbA1c indicates chronic exposure to a higher level of glucose [106]. 

Standard clinical biochemistry analyses were performed using blood samples provided 

by participants at the UKB assessment centres. Fasting glucose concentrations for 

participants were obtained from UKB field 30740 and participants who reported fasting 

for less than 8 hours (UKB field 74, which asked participants how many hours had 

passed since they had last eaten) were excluded. Glycated haemoglobin (HbA1c) 

concentrations were obtained from UKB field 30750. Since participants who have been 

diagnosed with type 2 diabetes are likely to have been prescribed anti-diabetic 

medication, only participants who were specified as controls for the type 2 diabetes 

phenotype were used for analyses of fasting glucose and HbA1c phenotypes in order to 

minimise the effects of any medical interventions against diabetes. 
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4.3.2 Incident cardiovascular and stroke outcomes 

As described in Section 2.2, UKB provides a list of diseases that each participant was 

diagnosed with and the date on which they were diagnosed with each disease. A 

participant with one or more diagnoses of a particular disease was considered to be a 

case for that disease and all other participants were considered to be controls. Some 

diseases are similar to the disease of interest but have a different ICD-10 code (e.g. 

atherosclerotic heart disease, I25.1, is a type of ischaemic heart disease, I20-I25), so a 

participant may be considered as a control for the disease of interest yet may also have 

been diagnosed with a similar disease, which means that this participant’s case-control 

status is arguably ambiguous. These participants are therefore set to missing. 

In this chapter, only incident cases of cardiovascular and stroke outcomes are 

considered. The purpose of this is to try and reduce the bias that exists because of the 

fact that people who get premature CAD would be less likely to volunteer for the UKB 

study, partly because some of those who suffer from premature CAD may have died. 

Table 4.1 shows ICD-10 codes that were used to define cardiovascular and stroke 

outcomes and to set controls to missing. To restrict the analyses to incident cases, data 

from UKB fields 41202 (Diagnoses - main ICD10) and 41262 (Date of first in-patient 

diagnosis - main ICD10) were used to exclude participants with one or more primary 

diagnoses of diseases affecting the circulatory system (ICD-10 codes I00 to I99, G45 

and G46) before attending the assessment centre at baseline (UKB field 53). To 

generate the premature CAD phenotype, participants who were considered as cases for 

the CAD phenotype were set as controls if their first primary diagnosis of ICD-10 code 

I251 occurred on or after 60 years of age; this age cutoff was chosen because NICE 

defines premature CAD as ‘an event before 60 years’ [107]. 
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Table 4.1 ICD-10 codes used to define cardiovascular outcomes 

ICD-10 codes from UKB field 41202 used to define cases and to exclude controls from 

the analyses. 

Phenotype Cases Controls set to 
missing 

Coronary artery 
disease (CAD) 

I251 Atherosclerotic heart disease I20-I25 Ischaemic 
heart diseases 

Acute myocardial 
infarction (MI) 

I21 Acute myocardial infarction I20-I25 Ischaemic 
heart diseases 

Stroke I60 Subarachnoid haemorrhage 
I61 Intracerebral haemorrhage 
I62 Other nontraumatic intracranial 
haemorrhage 
I63 Cerebral infarction 
I64 Stroke, not specified as 
haemorrhage or infarction 
G45 Transient cerebral ischaemic 
attacks and related syndromes 
G46 Vascular syndromes of brain in 
cerebrovascular diseases 

I60-I69 
Cerebrovascular 
diseases   

Cerebrovascular 
disease 

I60-I69 Cerebrovascular diseases 
G45 Transient cerebral ischaemic 
attacks and related syndromes 
G46 Vascular syndromes of brain in 
cerebrovascular diseases 
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4.3.3 Cardiovascular risk factors 

Systolic blood pressure (SBP) and diastolic blood pressure (DBP) measurements taken 

during the assessment centre visit at baseline were obtained from UKB fields 4080 and 

4079, respectively. 15 mmHg and 10 mmHg was added to the SBP and DBP 

measurements for participants who reported taking antihypertensive medication (UKB 

fields 6153 and 6177) because this has been shown to increase statistical power 

[108,109]. Waist circumference measurements and body mass index (BMI), also taken 

during the baseline assessment centre visit, were obtained from UKB fields 48 and 

21001, respectively. Data from the clinical biochemistry analyses also included 

measurements for direct LDL (low-density lipoprotein cholesterol), HDL (high-density 

lipoprotein cholesterol), triglycerides, total cholesterol and LpA (lipoprotein A) were 

obtained from UKB fields 30780, 30760, 30870, 30690 and 30790, respectively. 

4.4 Statistical analyses 

PLINK 2.0 [66] was used to fit additive linear models between the cardiometabolic 

phenotypes and the genetic variants in all individuals. For KL-VS, G395A and C1818T, 

dominant and recessive linear models were also fitted because previous studies 

revealed evidence of non-additive effects. Unless otherwise specified, all association 

analyses were adjusted for the first four genetic principal components (PCs) (UKB field 

22009) and the genotyping array that the participant was genotyped on. We used the 

first four genetic PCs because they represent >90% variation in the genome. Any 

quantitative phenotypes and covariates were standardised to a mean of 0 and a 

variance of 1 before any linear modelling was performed. 

To find conditionally independent associations, we used a forwards-backwards stepwise 

selection procedure as implemented in the ols_step_both_p() function from the olsrr 

package in R [110]. The procedure is applied only to variants that are found to be 

individually associated with a phenotype and is as follows: one, the variant with lowest p-

value is added to the model; two, if any variants are statistically insignificant (p > 0.05), 

the are removed from the model; and three, steps one and two are repeated until none 

of the variants that were originally associated with the phenotype remain. 
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To test whether the effect of KL-VS, G395A and C1818T on the cardiometabolic 

phenotypes varied with age, PLINK 2.0 was used to run additive linear models in those 

aged ≥60 years at baseline and in those aged <60 years at baseline (this was not done 

for the premature CAD phenotype since there are no cases in those aged ≥60 years at 

baseline based upon the definition of premature CAD provided in the Phenotypes 

section). For each phenotype-variant combination, we used the metagen() function from 

the meta package in R [79] to perform a chi-squared test of heterogeneity between the 

effect sizes from the two strata. The aforementioned procedure was also used to test 

whether there is heterogeneity in the effect of KL-VS, G395A and C1818T on 

cardiometabolic phenotypes between males and females. 

We applied statistical correction for multiple testing since we tested for associations 

between multiple variants and multiple phenotypes (see Section 2.8). In order to 

determine the number of independent phenotypes, a principal component (PC) analysis 

was performed, which showed that 8 PCs are needed to represent >90% of the variation 

in the 11 quantitative cardiometabolic phenotypes. The 8 PCs referred to here were 

generated from the 11 quantitative cardiometabolic phenotypes as opposed to the 

genetic PCs referred to in the previous paragraph, which were generated by UKB from 

the genotype data. PCA cannot be applied to the binary cardiometabolic phenotypes, so 

they were assumed to be independent for the purposes of multiple testing. Two 

independent variants remain after applying the procedure described in Section 2.8. KL-

VS, G395A and C1818T are treated as 3 independent variants for the purposes of 

multiple testing when analysed separately from the other 211 variants. A p-value 

threshold of 0.05 was used and Bonferroni-correction for the appropriate number of 

independent tests in each case was applied when necessary. 

4.5 Results 

4.5.1 Population characteristics 

There are 335,024 participants that pass the QC described in Chapter 2. The sample 

has a mean age of 57 ± 8 years at baseline and 53.6% are female. Table 4.2 and Table 

4.3 summarise the binary phenotypes (disease traits) and the quantitative phenotypes 

in the sample, respectively.  
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Table 4.2 Cardiometabolic disease traits 

Number of incident cases and controls for binary cardiometabolic phenotypes. CAD = 

coronary artery disease. 

Phenotype Controls Cases 
Premature CAD 296907 1035 
CAD 292365 5577 
Myocardial infarction 292365 3048 
Stroke 297603 2825 
Cerebrovascular disease 297603 4045 
Type 2 diabetes 318023 15449 
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Table 4.3 Quantitative cardiometabolic traits 

Distribution of quantitative cardiometabolic phenotypes in their original units. N = 

sample size. SD = standard deviation.  

Phenotype N Mean SD 
SBP 305630 141.3 20.6 
DBP 305637 84.3 11.2 
HbA1c 303003 35.1 4.4 
Fasting glucose 10619 5.1 0.7 
Triglycerides 319183 1.8 1 
LDL 318837 3.6 0.9 
HDL 292497 1.5 0.4 
Total cholesterol 319428 5.7 1.1 
Lipoprotein A 253988 44.1 49.5 
Waist circumference 334475 90.4 13.5 
BMI 333960 27.4 4.8 
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4.5.2 Association of cardiometabolic outcomes with KL-VS, G395A and C1818T 

Since KL-VS (rs9536314), G395A (rs1207568) and C1818T (rs564481) are the Klotho 

variants that are most often reported to be associated with cardiometabolic traits (see 

Section 4.2), initial analyses were carried out to see whether any of these three variants 

are associated with cardiovascular outcomes or type 2 diabetes under additive, 

dominant and recessive models, adjusted for age and sex. A p-value threshold of 

0.05/54 was used because the effects of three variants on six outcomes under three 

different models (3 × 6 × 3 = 54 independent tests) were tested. None of the three 

variants are associated at a p-value of 0.05/54 with any of the six outcomes regardless 

of which model was used (Table 4.4). The results for the unadjusted additive model are 

provided in Supplementary Table 4.1.  
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Table 4.4 Regression of cardiometabolic outcomes on KL variants 

Log odds ratios (beta) and their respective errors (SE) when regressing the six cardiometabolic outcomes on KL-VS 

(rs9536314), G395A (rs1207568) and C1818T (rs564481) using logistic regression. N = sample size. A1 = effect allele. 

Trait Variant A1 N 
Additive Dominant Recessive 

beta SE p beta SE p beta SE p 
CAD rs1207568 A 297942 -0.0023 0.025 0.93 0.01 0.029 0.73 -0.084 0.075 0.26 
CAD rs9536314 G 297942 -0.014 0.026 0.59 -0.011 0.03 0.72 -0.068 0.089 0.44 
CAD rs564481 T 297942 -0.018 0.02 0.36 0.00042 0.029 0.99 -0.067 0.038 0.078 
Cerebrovascular disease rs1207568 A 301648 0.014 0.029 0.63 0.0069 0.034 0.84 0.073 0.082 0.37 
Cerebrovascular disease rs9536314 G 301648 -0.032 0.031 0.31 -0.047 0.035 0.18 0.053 0.098 0.59 
Cerebrovascular disease rs564481 T 301648 0.0032 0.023 0.89 -0.0068 0.033 0.84 0.023 0.043 0.6 
Myocardial infarction rs1207568 A 295413 -0.017 0.033 0.62 -0.021 0.039 0.59 -0.012 0.098 0.9 
Myocardial infarction rs9536314 G 295413 0.026 0.035 0.46 0.029 0.04 0.47 0.037 0.11 0.75 
Myocardial infarction rs564481 T 295413 -0.04 0.027 0.13 -0.048 0.038 0.21 -0.063 0.051 0.21 
Premature CAD rs1207568 A 297942 0.052 0.056 0.35 0.063 0.066 0.34 0.059 0.16 0.71 
Premature CAD rs9536314 G 297942 -0.053 0.061 0.38 -0.036 0.069 0.6 -0.3 0.23 0.18 
Premature CAD rs564481 T 297942 -0.045 0.045 0.32 -0.074 0.065 0.26 -0.033 0.086 0.7 
Stroke rs1207568 A 300428 0.028 0.034 0.4 0.031 0.04 0.44 0.052 0.098 0.6 
Stroke rs9536314 G 300428 -0.0041 0.037 0.91 -0.017 0.042 0.69 0.092 0.12 0.43 
Stroke rs564481 T 300428 -0.021 0.028 0.44 -0.035 0.04 0.37 -0.016 0.052 0.76 
Type 2 diabetes rs1207568 A 333472 -0.023 0.015 0.13 -0.014 0.018 0.43 -0.12 0.046 0.011 
Type 2 diabetes rs9536314 G 333472 -0.0074 0.016 0.65 0.0028 0.018 0.88 -0.11 0.055 0.051 
Type 2 diabetes rs564481 T 333472 -0.016 0.012 0.18 -0.011 0.017 0.54 -0.04 0.023 0.079 
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4.5.3 Association of cardiometabolic traits with KL-VS, G395A and C1818T 

We next tested to see whether KL-VS (rs9536314), G395A (rs1207568) and C1818T 

(rs564481) are associated with quantitative cardiometabolic risk factors (Table 4.5). 

Although we tested 11 traits, we determined that >90% of the variation is explained by 

eight principal components (see Section 4.4), so we used a p-value threshold of 0.05/72 

(3 × 8 × 3 = 72 independent tests). 

We found that the rs9536314 G allele is associated with increased levels of HbA1c 

under both the additive model (beta = 0.012 [SE = 0.0034, p = 5.7 × 10-4]) and the 

dominant model (beta = 0.014 [SE = 0.0039, p = 3.7 × 10-4]). 

We sought independent support for our HbA1c association results using publicly 

available data. However, there is no evidence for this association (beta = 0.0023 

[SE = 0.0029, p = 0.43]) in the largest external GWAS of HbA1c in Europeans [111]. The 

results for the unadjusted additive model are provided in Supplementary Table 4.2.  
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Table 4.5 Regression of cardiometabolic traits on KL variants 

Regression coefficients (beta) and their respective errors (SE) when regressing the 11 cardiometabolic traits on KL-VS 

(rs9536314), G395A (rs1207568) and C1818T (rs564481) using linear regression. N = sample size. A1 = effect allele. 

Trait Variant A1 N 
Additive Dominant Recessive 

beta SE p beta SE p beta SE p 
BMI rs1207568 A 333960 0.0021 0.0031 0.49 0.0012 0.0037 0.74 0.011 0.0091 0.23 
BMI rs9536314 G 333960 -0.0067 0.0033 0.044 -0.0063 0.0038 0.096 -0.02 0.011 0.068 
BMI rs564481 T 333960 0.0048 0.0025 0.055 0.0027 0.0036 0.45 0.012 0.0047 0.0082 
Diastolic BP rs1207568 A 305637 0.0038 0.0032 0.24 0.0034 0.0038 0.37 0.011 0.0094 0.22 
Diastolic BP rs9536314 G 305637 -0.00085 0.0034 0.8 -0.00067 0.0039 0.86 -0.0036 0.011 0.75 
Diastolic BP rs564481 T 305637 -0.002 0.0026 0.42 -0.006 0.0037 0.11 0.0029 0.0048 0.55 
Fasting glucose rs1207568 A 10619 0.0063 0.017 0.71 0.0046 0.02 0.82 0.026 0.05 0.61 
Fasting glucose rs9536314 G 10619 -0.0035 0.019 0.85 0.00081 0.021 0.97 -0.046 0.061 0.46 
Fasting glucose rs564481 T 10619 0.0051 0.014 0.71 0.0062 0.02 0.76 0.0077 0.026 0.77 
HbA1c rs1207568 A 303003 -0.01 0.0032 0.0014 -0.012 0.0038 0.0015 -0.014 0.0093 0.13 
HbA1c rs9536314 G 303003 0.012 0.0034 0.00057 0.014 0.0039 0.00037 0.011 0.011 0.31 
HbA1c rs564481 T 303003 -0.0048 0.0025 0.06 -0.0064 0.0037 0.083 -0.0062 0.0048 0.2 
HDL rs1207568 A 292497 0.0048 0.003 0.12 0.0055 0.0036 0.13 0.0073 0.0089 0.42 
HDL rs9536314 G 292497 -0.0019 0.0033 0.56 -0.00095 0.0037 0.8 -0.012 0.011 0.25 
HDL rs564481 T 292497 0.0053 0.0024 0.031 0.0058 0.0035 0.1 0.009 0.0046 0.05 
LDL rs1207568 A 318837 0.0049 0.0032 0.12 0.0022 0.0038 0.57 0.029 0.0094 0.0018 
LDL rs9536314 G 318837 0.0057 0.0034 0.093 0.0051 0.0039 0.19 0.019 0.011 0.088 
LDL rs564481 T 318837 0.00061 0.0026 0.81 -0.0025 0.0037 0.5 0.0064 0.0048 0.18 
Lipoprotein A rs1207568 A 253988 -0.00014 0.0036 0.97 7.10E-06 0.0042 1 -0.0013 0.011 0.9 
Lipoprotein A rs9536314 G 253988 0.0013 0.0038 0.74 7.00E-04 0.0044 0.87 0.0081 0.013 0.52 
Lipoprotein A rs564481 T 253988 -0.0042 0.0029 0.15 -0.0076 0.0042 0.069 -0.0021 0.0054 0.7 
Systolic BP rs1207568 A 305630 0.0024 0.003 0.43 0.0026 0.0035 0.47 0.0045 0.0088 0.61 
Systolic BP rs9536314 G 305630 -0.0043 0.0032 0.18 -0.005 0.0036 0.17 -0.0043 0.011 0.69 
Systolic BP rs564481 T 305630 0.0018 0.0024 0.45 0.0024 0.0035 0.5 0.0025 0.0045 0.59 
Total cholesterol rs1207568 A 319428 0.0066 0.0031 0.037 0.0046 0.0037 0.22 0.028 0.0092 0.0021 
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Total cholesterol rs9536314 G 319428 0.0042 0.0034 0.21 0.0038 0.0038 0.32 0.013 0.011 0.23 
Total cholesterol rs564481 T 319428 0.0028 0.0025 0.26 4.00E-04 0.0037 0.91 0.0094 0.0048 0.049 
Triglycerides rs1207568 A 319183 0.0016 0.0031 0.61 0.0012 0.0037 0.75 0.0066 0.0092 0.47 
Triglycerides rs9536314 G 319183 0.0018 0.0033 0.59 0.0019 0.0038 0.62 0.0035 0.011 0.75 
Triglycerides rs564481 T 319183 -0.0013 0.0025 0.59 -0.0024 0.0036 0.51 -7.00E-04 0.0047 0.88 
Waist circumference rs1207568 A 334475 0.002 0.0028 0.48 0.002 0.0033 0.53 0.0043 0.0081 0.59 
Waist circumference rs9536314 G 334475 -0.0058 0.0029 0.05 -0.0054 0.0033 0.11 -0.017 0.0097 0.073 
Waist circumference rs564481 T 334475 0.0034 0.0022 0.13 0.0025 0.0032 0.44 0.0078 0.0042 0.062 
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4.5.4 Effect of sex and age on KL-VS, G395A and C1818T associations 

We sought to test whether sex or age moderate the effect of Klotho variants on 

cardiometabolic phenotypes by stratifying our sample by sex and by age (≥60 vs. <60), 

repeating the analyses separately in each sample and testing whether there is 

heterogeneity between the effect sizes. We found no evidence that the effect sizes 

between those aged ≥60 years and those aged <60 years are different (Table 4.6 & 

Table 4.7). We also found no evidence that the effect sizes between males and females 

are different (Table 4.8 & Table 4.9), with the possible exception of rs1207568 and type 

2 diabetes: in men, there was a small but not statistically significant effect 

(beta = -0.00094 [SE = 0.019, p = 0.96]); in women, the effect was larger and in the 

opposite direction (beta = 0.062 [SE = 0.025, p = 0.011]); but the heterogeneity p-value 

of 0.045 did not pass correction for multiple testing. 
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Table 4.6 Age-stratified regression of cardiometabolic outcomes on KL variants 

Log odds ratios (beta) and their respective errors (SE) when regressing the six cardiometabolic outcomes on KL-VS 

(rs9536314), G395A (rs1207568) and C1818T (rs564481) using logistic regression in participants aged ≥60 years and in 

participants aged <60 years p heterogeneity = p-value from chi-squared test of heterogeneity. N = sample size. A1 = effect 

size. 

Phenotype Variant A1 
Over 60 Under 60 

p heterogeneity 
N Beta SE p N beta SE p 

BMI rs1207568 A 150456 0.00041 0.0047 0.93 183504 0.0034 0.0042 0.42 0.64 
BMI rs9536314 G 150456 1.80E-05 0.005 1 183504 -0.011 0.0045 0.01 0.1 
BMI rs564481 T 150456 0.00043 0.0037 0.91 183504 0.0079 0.0034 0.019 0.14 
Diastolic BP rs1207568 A 138210 0.0084 0.0048 0.079 167427 -0.00036 0.0043 0.93 0.17 
Diastolic BP rs9536314 G 138210 -0.00067 0.0052 0.9 167427 -0.00068 0.0046 0.88 1 
Diastolic BP rs564481 T 138210 -0.0036 0.0039 0.35 167427 -0.0011 0.0034 0.75 0.63 
Fasting glucose rs1207568 A 3293 -0.012 0.031 0.7 7326 0.016 0.021 0.46 0.45 
Fasting glucose rs9536314 G 3293 -0.044 0.033 0.19 7326 0.016 0.022 0.49 0.13 
Fasting glucose rs564481 T 3293 0.022 0.026 0.4 7326 -0.0015 0.017 0.93 0.45 
HbA1c rs1207568 A 133816 -0.0096 0.0049 0.052 169187 -0.011 0.0043 0.0089 0.83 
HbA1c rs9536314 G 133816 0.015 0.0053 0.006 169187 0.01 0.0046 0.027 0.48 
HbA1c rs564481 T 133816 -0.0066 0.004 0.093 169187 -0.0035 0.0034 0.3 0.55 
HDL rs1207568 A 132098 0.0038 0.0045 0.41 160399 0.0056 0.0041 0.17 0.77 
HDL rs9536314 G 132098 -0.0022 0.0049 0.65 160399 -0.0016 0.0044 0.71 0.93 
HDL rs564481 T 132098 0.00033 0.0036 0.93 160399 0.0092 0.0033 0.0049 0.069 
LDL rs1207568 A 143571 0.0029 0.0046 0.54 175266 0.0064 0.0043 0.14 0.58 
LDL rs9536314 G 143571 0.0085 0.005 0.086 175266 0.0043 0.0046 0.34 0.54 
LDL rs564481 T 143571 0.0011 0.0037 0.78 175266 -0.00058 0.0034 0.86 0.74 
Lipoprotein A rs1207568 A 114051 -8.80E-05 0.0054 0.99 139937 -0.00015 0.0048 0.98 0.99 
Lipoprotein A rs9536314 G 114051 -0.002 0.0057 0.72 139937 0.0039 0.0052 0.45 0.44 
Lipoprotein A rs564481 T 114051 -0.0057 0.0043 0.19 139937 -0.0029 0.0039 0.45 0.63 
Systolic BP rs1207568 A 138206 0.0052 0.0048 0.27 167424 -0.00014 0.0042 0.97 0.4 
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Systolic BP rs9536314 G 138206 -0.0082 0.0051 0.11 167424 -0.00095 0.0044 0.83 0.28 
Systolic BP rs564481 T 138206 0.0026 0.0038 0.5 167424 0.0011 0.0033 0.74 0.77 
Total cholesterol rs1207568 A 143829 0.0053 0.0045 0.25 175599 0.0074 0.0043 0.084 0.74 
Total cholesterol rs9536314 G 143829 0.0068 0.0049 0.16 175599 0.0029 0.0045 0.52 0.56 
Total cholesterol rs564481 T 143829 0.0018 0.0036 0.62 175599 0.0029 0.0034 0.39 0.82 
Triglycerides rs1207568 A 143748 0.0051 0.0047 0.28 175435 -0.0012 0.0041 0.76 0.31 
Triglycerides rs9536314 G 143748 -0.00011 0.0051 0.98 175435 0.0038 0.0044 0.39 0.56 
Triglycerides rs564481 T 143748 -1.10E-05 0.0038 1 175435 -0.0027 0.0033 0.41 0.59 
Waist circumference rs1207568 A 150742 9.70E-05 0.0041 0.98 183733 0.0034 0.0037 0.36 0.55 
Waist circumference rs9536314 G 150742 -0.001 0.0044 0.81 183733 -0.0093 0.004 0.019 0.16 
Waist circumference rs564481 T 150742 0.0017 0.0033 0.61 183733 0.0046 0.003 0.12 0.52 
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Table 4.7 Age-stratified regression of cardiometabolic traits on KL variants 

Regression coefficients (beta) and their respective errors (SE) when regressing the 11 cardiometabolic traits on KL-VS 

(rs9536314), G395A (rs1207568) and C1818T (rs564481) using linear regression in participants aged ≥60 years and in 

participants aged <60 years p heterogeneity = p-value from chi-squared test of heterogeneity. N = sample size. 

Phenotype Variant A1 
Over 60 Under 60 

p heterogeneity 
N beta SE p N beta SE p 

CAD rs1207568 A 128383 -0.017 0.031 0.58 169559 0.026 0.042 0.54 0.41 

CAD rs9536314 G 128383 0.0022 0.033 0.95 169559 -0.046 0.045 0.31 0.39 

CAD rs564481 T 128383 -0.007 0.024 0.78 169559 -0.038 0.034 0.26 0.46 

Cerebrovascular disease rs1207568 A 130610 0.0086 0.035 0.8 171038 0.026 0.05 0.61 0.78 

Cerebrovascular disease rs9536314 G 130610 -0.05 0.038 0.19 171038 0.0048 0.054 0.93 0.41 

Cerebrovascular disease rs564481 T 130610 -0.0027 0.028 0.92 171038 0.016 0.04 0.7 0.7 

Myocardial infarction rs1207568 A 126541 -0.022 0.043 0.61 168872 -0.0086 0.052 0.87 0.84 

Myocardial infarction rs9536314 G 126541 0.04 0.045 0.37 168872 0.0037 0.055 0.95 0.61 

Myocardial infarction rs564481 T 126541 -0.019 0.034 0.57 168872 -0.071 0.042 0.09 0.34 

Stroke rs1207568 A 129764 0.028 0.042 0.49 170664 0.03 0.059 0.61 0.98 

Stroke rs9536314 G 129764 -0.021 0.045 0.64 170664 0.028 0.063 0.66 0.53 

Stroke rs564481 T 129764 -0.03 0.034 0.37 170664 -0.0041 0.048 0.93 0.66 

Type 2 diabetes rs1207568 A 150282 -0.02 0.019 0.3 183190 -0.029 0.025 0.24 0.77 

Type 2 diabetes rs9536314 G 150282 -0.0095 0.02 0.64 183190 -0.0041 0.026 0.87 0.87 

Type 2 diabetes rs564481 T 150282 -0.032 0.015 0.036 183190 0.0095 0.019 0.63 0.086 
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Table 4.8 Sex-stratified regression of cardiometabolic outcomes on KL variants 

Log odds ratios (beta) and their respective errors (SE) when regressing the six cardiometabolic outcomes on KL-VS 

(rs9536314), G395A (rs1207568) and C1818T (rs564481) using logistic regression in female participants and in male 

participants p heterogeneity = p-value from chi-squared test of heterogeneity. N = sample size. 

Trait Variant A1 
Female Male 

p heterogeneity 
N beta SE p N beta SE p 

CAD rs1207568 A 163819 0.014 0.047 0.77 134123 -0.0086 0.029 0.77 0.68 
CAD rs9536314 G 163819 -0.016 0.05 0.76 134123 -0.014 0.031 0.66 0.97 
CAD rs564481 T 163819 0.015 0.038 0.7 134123 -0.03 0.023 0.19 0.31 
Cerebrovascular disease rs1207568 A 165269 0.014 0.043 0.74 136379 0.013 0.038 0.73 0.99 
Cerebrovascular disease rs9536314 G 165269 -0.07 0.047 0.14 136379 -0.0024 0.041 0.95 0.28 
Cerebrovascular disease rs564481 T 165269 0.021 0.035 0.55 136379 -0.01 0.031 0.74 0.51 
Myocardial infarction rs1207568 A 163145 -0.03 0.064 0.64 132268 -0.012 0.039 0.75 0.81 
Myocardial infarction rs9536314 G 163145 0.12 0.065 0.07 132268 -0.01 0.041 0.8 0.091 
Myocardial infarction rs564481 T 163145 -0.035 0.051 0.5 132268 -0.042 0.031 0.17 0.91 
Premature CAD rs1207568 A 163819 0.21 0.11 0.05 134123 -0.0033 0.065 0.96 0.095 
Premature CAD rs9536314 G 163819 -0.12 0.13 0.34 134123 -0.032 0.07 0.65 0.55 
Premature CAD rs564481 T 163819 0.037 0.091 0.68 134123 -0.072 0.052 0.17 0.3 
Stroke rs1207568 A 164698 0.019 0.053 0.72 135730 0.036 0.045 0.42 0.81 
Stroke rs9536314 G 164698 -0.034 0.057 0.55 135730 0.017 0.048 0.72 0.49 
Stroke rs564481 T 164698 -0.011 0.042 0.79 135730 -0.028 0.036 0.43 0.76 
Type 2 diabetes rs1207568 A 178906 -0.062 0.025 0.011 154566 0.00094 0.019 0.96 0.045 
Type 2 diabetes rs9536314 G 178906 -0.03 0.026 0.25 154566 0.0061 0.02 0.76 0.27 
Type 2 diabetes rs564481 T 178906 -0.027 0.019 0.17 154566 -0.0098 0.015 0.52 0.48 
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Table 4.9 Sex-stratified regression of cardiometabolic traits on KL variants 

Regression coefficients (beta) and their respective errors (SE) when regressing the 11 cardiometabolic traits on KL-VS 

(rs9536314), G395A (rs1207568) and C1818T (rs564481) using linear regression in female participants and in male 

participants p heterogeneity = p-value from chi-squared test of heterogeneity. N = sample size. A1 = effect allele. 

Trait Variant A1 
Female Male 

p heterogeneity 
N Beta SE p N beta SE p 

BMI rs1207568 A 179054 -7.80E-05 0.0043 0.99 154906 0.0051 0.0046 0.27 0.41 
BMI rs9536314 G 179054 -0.007 0.0045 0.12 154906 -0.0062 0.0049 0.2 0.9 
BMI rs564481 T 179054 0.0027 0.0034 0.43 154906 0.0078 0.0037 0.034 0.31 
Diastolic BP rs1207568 A 163418 0.0034 0.0044 0.45 142219 0.0042 0.0048 0.38 0.9 
Diastolic BP rs9536314 G 163418 -0.0036 0.0047 0.45 142219 0.0026 0.0051 0.62 0.37 
Diastolic BP rs564481 T 163418 -0.00024 0.0035 0.95 142219 -0.0043 0.0038 0.26 0.43 
Fasting glucose rs1207568 A 4709 -0.013 0.026 0.6 5910 0.021 0.023 0.37 0.33 
Fasting glucose rs9536314 G 4709 -0.0076 0.028 0.79 5910 -0.0021 0.025 0.93 0.88 
Fasting glucose rs564481 T 4709 0.035 0.021 0.097 5910 -0.013 0.019 0.49 0.09 
HbA1c rs1207568 A 164895 -0.0079 0.0042 0.062 138108 -0.013 0.0048 0.0063 0.42 
HbA1c rs9536314 G 164895 0.0096 0.0045 0.034 138108 0.014 0.0051 0.005 0.52 
HbA1c rs564481 T 164895 -0.0053 0.0034 0.12 138108 -0.0043 0.0038 0.26 0.84 
HDL rs1207568 A 155604 0.0038 0.0046 0.41 136893 0.0073 0.0049 0.14 0.6 
HDL rs9536314 G 155604 -0.0044 0.0049 0.37 136893 0.0012 0.0052 0.82 0.43 
HDL rs564481 T 155604 0.0051 0.0037 0.16 136893 0.0066 0.0039 0.089 0.78 
LDL rs1207568 A 170863 0.0071 0.0043 0.098 147974 0.0013 0.0047 0.79 0.36 
LDL rs9536314 G 170863 0.0047 0.0046 0.31 147974 0.0083 0.005 0.095 0.6 
LDL rs564481 T 170863 0.0034 0.0034 0.32 147974 -0.0031 0.0037 0.41 0.2 
Lipoprotein A rs1207568 A 136626 -0.0014 0.0049 0.78 117362 0.0013 0.0053 0.8 0.71 
Lipoprotein A rs9536314 G 136626 0.0034 0.0052 0.51 117362 -0.0011 0.0056 0.84 0.56 
Lipoprotein A rs564481 T 136626 -0.0067 0.0039 0.09 117362 -0.0013 0.0042 0.75 0.35 
Systolic BP rs1207568 A 163414 0.0015 0.0041 0.71 142216 0.0031 0.0045 0.5 0.79 
Systolic BP rs9536314 G 163414 -0.0076 0.0044 0.081 142216 0.00049 0.0049 0.92 0.22 
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Systolic BP rs564481 T 163414 0.0024 0.0033 0.47 142216 9.00E-04 0.0036 0.8 0.76 
Total cholesterol rs1207568 A 171141 0.0086 0.0043 0.043 148287 0.0032 0.0047 0.49 0.4 
Total cholesterol rs9536314 G 171141 0.0023 0.0046 0.62 148287 0.0078 0.005 0.12 0.42 
Total cholesterol rs564481 T 171141 0.0053 0.0034 0.12 148287 -0.00046 0.0037 0.9 0.25 
Triglycerides rs1207568 A 171059 0.0011 0.0043 0.81 148124 0.0015 0.0047 0.75 0.95 
Triglycerides rs9536314 G 171059 -0.0013 0.0046 0.78 148124 0.0052 0.005 0.3 0.34 
Triglycerides rs564481 T 171059 -0.00045 0.0034 0.89 148124 -0.0024 0.0038 0.52 0.7 
Waist circumference rs1207568 A 179276 0.00034 0.0042 0.94 155199 0.0044 0.0046 0.33 0.51 
Waist circumference rs9536314 G 179276 -0.0075 0.0045 0.099 155199 -0.0051 0.0049 0.29 0.72 
Waist circumference rs564481 T 179276 0.0036 0.0034 0.29 155199 0.0041 0.0037 0.27 0.92 
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4.5.5 Association between other Klotho variants and cardiometabolic traits 

We next tested whether any of the remaining 211 Klotho variants are associated with any 

of the six cardiometabolic outcomes at a p-value threshold of 0.05/12. We found no 

associations, with and without adjusting for age and sex (Supplementary Table 4.1). 

We also tested whether any of the 211 Klotho variants are associated with any of the 11 

quantitative cardiometabolic traits at a p-value threshold of 0.05/16. We found 125 

variants that are associated with HbA1c. We found no other associations, with and 

without adjusting for age and sex (Supplementary Table 4.2). 

Since rs576674, a variant upstream of KL, has previously been reported to be 

associated with type 2 diabetes [112], we repeated our analysis for these 125 variants 

and adjusted for rs576674 to test whether the associations we observed are due to the 

variants’ close proximity to rs576674 (Supplementary Table 4.3). We removed any 

variants that were not associated with HbA1c independently of rs576674 at a p-value of 

0.05. Out of the 93 variants that remain, we used stepwise selection to identify 4 

conditionally independent associations (Table 4.10). We attempted to replicate these 4 

associations in the largest and most recent GWAS of HbA1c performed in Europeans 

[111] and found that the association between HbA1c and the rs495392 A allele 

replicates if one does not correct for the fact that an attempt is being made to replicate 

four, not one, associations (beta = -0.0053 [SE = 0.0022, p = 0.015]). The rs563925 

association does not replicate (beta = 0 [SE = 0.002, p = 1]) and there are no results 

available for rs546677 and rs564823. However, rs495392 is not associated with type 2 

diabetes (beta = 0.0019 [SE = 0.023, p = 0.94) in the GWAS by Cai et al. [113] nor is it 

associated with fasting glucose (beta = 0.0029 [SE = 0.0031, p = 0.35) in the GWAS by 

Lagou et al. [114], but rather is a pQTL (effect allele = A, beta = 0.16 [SE = 0.046, 

p = 7.2 × 10-4]) for haemoglobin [115]. 
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Table 4.10 Regression of HbA1c on four KL variants 

Regression coefficients (beta) and their respective errors (SE) when regressing HbA1c 

on the four conditionally independent variants. A1 = effect allele. 

Variant A1 beta SE p 
rs546677 T 0.016 0.0027 1.10E-09 
rs564823 C -0.012 0.0027 1.40E-05 
rs563925 A -0.012 0.0027 2.00E-05 
rs495392 A -0.013 0.0028 5.30E-06 
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4.6 Discussion 

The aim of the work described in this chapter was to verify the previously reported 

associations between KL variants, including the KL-VS haplotype, and cardiometabolic 

phenotypes in the UK Biobank, and to search for novel associations between KL genetic 

variants and cardiometabolic phenotypes. We found no reliable associations between 

KL-VS, G395A and C1818T and any of the phenotypes that we tested nor did we find 

evidence that age or sex affects these associations. We did find an association between 

rs495392 and HbA1c and, assuming that this is not a false positive, this may be driven 

by a currently unspecified non-glycaemic pathway (discussed later in this section). 

The lack of reliable associations between KL-VS, G395A and C1818T and any of the 

phenotypes that we tested may not be surprising considering the fact that previously 

published associations between these variants and cardiometabolic phenotypes are not 

always consistent (likely due to the fact much of them are based on small sample 

studies that have not been replicated) and much of them are from individuals who do 

not have a European ancestry. The only study carried out using UK participants was by 

Freathy et al. [94], who did not find any associations between KL-VS and the 

cardiometabolic phenotypes that they tested, which supports the findings we report 

here. 

One possible explanation for the apparent inconsistency between our findings and 

those reported previously by some other authors may be that these authors use 

participants that are older or younger than the samples we used. However, we did not 

find evidence of heterogeneity in effect sizes between those aged ≥60 years and those 

aged <60 years, which suggests that the effect of KL-VS, G395A and C1818T on 

cardiometabolic phenotypes is unlikely to vary with age and therefore may negate the 

possibility that the effect of Klotho variants on cardiometabolic phenotypes varies with 

age. However, it is also important to note that some authors who have reported 

associations between Klotho variants and cardiometabolic phenotypes used 

participants that were much older than the participants we used for our study 

[56,69,97], and the lack of evidence in our data for heterogeneity between the effect 

sizes of Klotho variants and cardiometabolic phenotypes may be due to the fact that 

almost all of the participants that we used were aged ≤69 years, so differences in effect 
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at older ages would not have been detected by the analyses we performed. Whilst it may 

be worth repeating the analyses described in this chapter when UK Biobank participants 

are older, it is currently not possible to conclude that age effects the relationship 

between Klotho variants and cardiometabolic phenotypes. 

We found the rs495392 A allele decreases HbA1c concentrations but suggest that this 

is due to a non-glycaemic pathway. This is for two reasons: firstly, rs495392 is not 

associated with type 2 diabetes nor with fasting glucose; and secondly, the rs495392 A 

allele is reported to be associated with increased haemoglobin in the blood [115], which 

would have the effect of reducing the concentration of glycated haemoglobin. A 

possible avenue for future work could be to elucidate what pathway might explain the 

rs495392 association. However, it should be noted that whilst there is suggestive 

evidence that this association is true (p < 0.05), strictly speaking, the replication p-value 

does not pass multiple testing correction and this association may also be another false 

positive. 

There are three main limitations to our study. Firstly, since the UKB consists of 

participants who are of European descent, we cannot comment on the reliability of 

associations between Klotho variants and cardiometabolic phenotypes reported by 

other authors in non-European populations. Secondly, the participants in the UKB are 

healthier than average, which may explain the differences between our findings and 

previously published reports: other studies may have less of a healthy volunteer bias. 

Finally, the UKB dataset may be biased for the purposes of detecting an association 

between Klotho variants and diseases that affect younger people, e.g. premature CAD, 

because these people may have either died or are otherwise unable to volunteer to 

participate in studies like the UKB. 

In conclusion, there is insufficient evidence in the UK Biobank to support the concept 

that KL variants affect cardiometabolic outcomes or traits in British Caucasian 

individuals. Further follow-up testing would be required to verify the reported effects of 

KL variants on cardiometabolic outcomes and traits that are reported in very elderly 

individuals. 
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5 Klotho and Cognition 

5.1 Introduction 

As discussed in Section 1.1, older people have the capacity to continue to contribute 

socially and economically. However, this is only possible if they are able to maintain 

their cognitive function as they age. This chapter begins with a review of the previously-

published evidence pertaining to the association between Klotho variants and cognitive 

function and its decline before describing the results of analyses that were carried out 

to verify the reported associations between KL variants between the KL genetic variants 

and cognitive function, including the KL-VS haplotype, and to search for any novel 

associations. 

Cognition can be defined as any process that is required for an individual to be aware of 

their situation and to use that information to respond to it [116]. As individuals get older, 

memory, learning and processing speed decline; [117] often leading to reduced 

independence and increased reliance on families and social care. 

Multiple studies have been carried out exploring the relationship between KL variants, 

cognitive function and its decline, mostly focusing on the KL-VS haplotype. However, 

previous evidence has been varied: some authors have suggested that among adults 

aged 70 years or more, people homozygous for V (valine) at position 352 have poorer 

cognitive function [118,119], but also suggests that V352 heterozygotes have better 

cognitive function than those who are homozygous for F (phenylalanine) at position 352 

[53,118]. On the other hand, Mengel-From et al. [120] reported that, in Danish 

populations aged between 92-100 years, V352 heterozygotes had poorer cognition and 

Almeida et al. [121] reported that, among men aged 71-87 years, V352 carriers were 

more likely to get dementia. De Vries et al. [122] reported that V352 heterozygotes have 

a slower rate of cognitive decline, but Porter et al. [123] did not find any such 

relationship in their data. 

In addition to the KL-VS haplotype, there are reports of associations between variants in 

the KL promoter region and cognition. Mengel-From et al. [120] reported that carriers of 
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the rs398655 C allele had better cognitive function than non-carriers and Hao et al. 

[124] reported that those who are homozygous for the G (guanine) allele at G-395A 

(rs1207568) have an increased risk of cognitive impairment. 

At present, these conflicting reports indicate that, at a population level, the relationship 

between the KL-VS haplotype and cognitive function or cognitive decline is not 

particularly clear: there is, therefore, a need to explore this area further using 

significantly bigger sample sizes. In the work described in this chapter, we aimed to 

verify the reported associations between KL variants, including the KL-VS haplotype, 

and cognitive function in up to 335,074 UK Biobank (UKB) participants aged between 

40 and 81 years, by carrying out a phenome scan of cognitive measures, including 

reaction time and various memory tests. We also aimed to search for novel associations 

between the KL genetic variants and cognitive function using the same approach. 

5.2 Phenotypes 

One of the problems with evaluating cognitive function in the UK Biobank is that 

dementia is usually diagnosed in people who are much older than the UKB participants 

[125] so there are very few cases. Additionally, individuals with dementia are: less likely 

to be recruited; less likely to be able to give informed consent; and less likely to be able 

to participate in longitudinal studies. Therefore, instead of attempting to find 

associations between Klotho variants and dementia directly the analyses described in 

this chapter used data from cognitive function tests. 

Table 5.1 summarises the phenotypes relating to cognitive function (referred to as 

cognitive measures) that were used for our analyses. A measure of general cognitive 

ability, g, was calculated by carrying out a principal components (PC) analysis and taking 

the first PC (representing 40% of the variation in the four cognitive measures) as g. For 

some cognitive measures, a baseline measurement was carried out (referred to as 

‘Baseline’, which occurred between 2006-2010) at one of 22 assessment centres as well 

as up to 2 follow-up measurements (referred to as ‘Repeat’ and ‘Imaging’ – the former 

occurred between 2012-2013, and the latter began in 2014 and is still ongoing) for a 

subset of participants. For Pairs Matching, there were 3 rounds; the first round had 3 

pairs that the participants needed to match and the second and third rounds had 6; we 
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only used data from the second round because there was insufficient variation in the 

data from the first round, and the third round had a high level of missingness. We did 

not include participants in the analysis for a given cognitive function test if they 

abandoned the test and/or if they completed the test with a pause. 
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Table 5.1 Description of the cognitive measures from the UK Biobank 

A description of the cognitive measures from the UK Biobank used in this study. 

Category Field ID Description  
Fluid Intelligence 20016 Number of correct answers given to 13 fluid 

intelligence questions within 2 minutes 

 

Reaction Time 20023 Mean time to correctly identify matching pairs of 
cards (based on 12 rounds) 

 

Numeric Memory 4282 Maximum number of digits remembered correctly 
 
 

Pairs Matching 399  Number of incorrect matches in round when 
recalling the position of matching pairs of cards 

 
 

Prospective Memory 4291 Instruction correctly recalled first time (yes/no) 
 

 

  

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20016
http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20023
http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4282
http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=399
http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4291
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Each follow-up of each measure was treated as a separate phenotype unless otherwise 

stated (e.g. if a measure was available for Baseline, Repeat and Imaging, then these 

three results are treated as three separate phenotypes). The rate of change of a 

cognitive measure is the change in the cognitive measure, M2-M1, divided by the age 

difference between Baseline (T1) and Imaging (T2), T2-T1, in years: on average, the 

difference between two measurements is 8.4 years. Educational attainment was based 

on UKB field 6138 and was coded as a binary variable (those with and without a College 

or University degree at baseline). 

5.3 Statistical Analyses 

PLINK 2.0 [66] was used to fit additive and dominant linear models between the 

cognitive measures and the genotypes in all individuals. This was then repeated for the 

following subsets of individuals: those who were aged 69 years or more at the time of 

performing the cognitive test (note: age2 is not included as a covariate in analyses for 

this subset due to multicollinearity); and those who were Apo-ε4/ε4 (i.e. those who have 

a CC genotype at both rs429358 and rs7412) and those who were not. 

Unless otherwise specified, all association analyses (i.e. additive and dominant linear 

models) were adjusted for the first 4 genetic principal components (PCs) (UKB field 

22009) and the genotyping array on which the participant was genotyped. The cognitive 

measures and any quantitative covariates were standardised to a mean of 0 and a 

variance of 1 before any linear modelling was performed. 

Since multiple tests were undertaken, we applied statistical correction for this. A 

principal component (PC) analysis showed that all 5 PCs are needed to represent >90% 

of the variation in the 5 cognitive measures. There were 15 independent variants based 

on the method described in Section 2.8. A p-value threshold of 0.05 is used and the 

Bonferroni-correction is applied when necessary for the appropriate number of 

independent tests in each case (up to 75 independent tests: 15 independent variants 

and 5 PCs). 
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5.4 Results 

After QC, there were 335,028 individuals available for analysis. A summary of the 

sample by phenotype is provided in Table 5.2. 
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Table 5.2 Population characteristics by cognitive measure 

Characteristics of the population by phenotype n = number of samples. SD = 1 standard deviation. All phenotypes are in their 

original units, except for Prospective Memory, for which the percentage of individuals who recalled the instruction correctly 

on the first attempt is shown. 

Phenotype n units, mean (SD) age, years, mean (SD) % female % degree 

Fluid Intelligence (Baseline) 108433 6 (2.1) 57 (8) 53.3 51.7 

Fluid Intelligence (Repeat) 14654 7 (2) 62 (7.3) 50.7 46.8 

Fluid Intelligence (Imaging) 22981 7 (2) 63 (7.5) 50.6 47.6 

g 34489 0 (1.2) 57 (8.2) 53.6 53.2 

Numeric Memory (Baseline) 35484 7 (1.7) 57 (8.2) 53.6 52.7 

Numeric Memory (Imaging) 15245 7 (1.4) 64 (7.4) 50.6 46.6 

Pairs Matching (Baseline) 327485 4 (3.2) 57 (8) 53.7 50.8 

Pairs Matching (Repeat) 14651 4 (3) 62 (7.3) 50.8 46.8 

Pairs Matching (Imaging) 23040 4 (2.8) 63 (7.5) 50.6 47.6 

Prospective Memory (Baseline) 110550 80.2 57 (8) 53.3 51.4 

Prospective Memory (Repeat) 14766 86.2 62 (7.3) 50.7 46.7 

Prospective Memory (Imaging) 23256 85.7 63 (7.5) 50.6 47.6 

Reaction Time (Baseline) 333034 555 (113.2) 57 (8) 53.6 50.5 

Reaction Time (Repeat) 14735 556 (109.6) 62 (7.3) 50.7 46.7 

Reaction Time (Imaging) 23320 591 (108.6) 63 (7.5) 50.6 47.6 
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Since the 2 variants making up the KL-VS haplotype are well-characterised functional 

KL variants in humans, we investigated whether either of them were associated with the 

cognitive function measures. Neither rs9536314 nor rs9527025 were significantly 

associated at a p-value threshold of 0.05/5 with any of the cognitive measures 

(assuming an additive model) when unadjusted (Supplementary Table 5.1) and when 

adjusted for age, age2, sex, and educational attainment (Supplementary Table 5.1 & 

Figure 5.1). 

A dominant model was also tested since some previous studies compared carriers to 

non-carriers. This also yielded no associations (Supplementary Table 5.1). 

Since our sample participants are younger than those in which associations between 

KL-VS and cognitive function have been found, we repeated our analyses in participants 

aged 69 years or more (n ≥ 1224). We did not find any associations (Supplementary 

Table 5.1 & Figure 5.1). 
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Figure 5.1 Regression of cognitive measures on KL-VS 

Standardised beta coefficients with 95% Confidence Intervals when regressing 

cognitive measures on rs9536314 and on rs9527025 in the UK Biobank with (All) and 

without (≥69) including participants less than 69 years old, using an additive model, and 

adjusted for age, age2, sex, and educational attainment. 
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Although the associations were not statistically significant, the effect size appeared to 

increase when excluding individuals under the age of 69 years. We, therefore, repeated 

the analyses but included a genotype*age interaction term to test whether the effect of 

KL-VS variants on the cognitive function measures changed with age. We found that age 

does not have a statistically significant effect on the relationship between KL-VS and 

any of the cognitive function measures available, at a p-value threshold of 0.01/5, 

adjusting for age, age2, sex, and educational attainment (Supplementary Table 5.2). 

There is evidence to suggest that KL-VS carrier status may influence the risk of 

Alzheimer’s disease in APOE4 carriers. [21] We therefore divided our sample into 

APOE4 carriers and non-carriers and tested whether rs9536314 or rs9527025 were 

associated with any of the cognitive function measures, with and without adjusting for 

age, age2, sex, and educational attainment. We did not find any associations at a p-value 

threshold of 0.05/5 in APOE4 carriers nor in non-carriers (Supplementary Table 5.3). We 

also included an APOE4*genotype interaction term in our model to test whether the 

associations between the KL-VS variants and the cognitive measures were affected by 

APOE4 carrier status, but the interaction term was not statistically significant for any of 

the cognitive measures tested (Supplementary Table 5.4). 

We next sought to test whether rs9536314 or rs9527025 were associated with a change 

in any of the cognitive measures over age. For all measures except Prospective Memory, 

a rate of change was calculated for each participant (see Section 5.3). We found that 

neither rs9536314 nor rs9527025 were significantly associated at a p-value threshold 

of 0.05 with a change in any of the available cognitive measures over age, adjusted for 

the measure at baseline (M1), ageT1, ageT12, sex, and educational attainment 

(Supplementary Table 5.5). 

We also tested to see if any other KL variants were associated at a p-value threshold of 

0.05/75 with any of the available cognitive measures. The rs141113969 T allele is 

associated with participants being more likely to not recall the instruction on their first 

attempt in the Prospective Memory task during the imaging visit (log odds = 0.37 [SE = 

0.1, p = 3.9×10-4]), adjusting for age, age2, sex, and educational attainment. In 

participants aged 69 years or older, we found that the rs2227122 T allele and the 

rs676046 A allele are associated with increased errors in the Pairs Matching task 
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during the repeat assessment centre visit (beta = 0.33 [SE = 0.094, p = 4.1×10-4], and 

beta = 0.32 [SE = 0.092, p = 6.1×10-4], respectively), adjusting for age, age2, sex, and 

educational attainment. There were no further significant associations, with or without 

adjustment for age, age2, sex, and educational attainment (Supplementary Table 5.1); 

there were also no other significant associations when excluding individuals under the 

age of 69 years (Supplementary Table 5.1). 

We attempted to replicate the association between rs141113969 and Prospective 

Memory. We first removed participants who performed the Prospective Memory task 

during the imaging visit from the baseline sample to create an independent sample. The 

previously identified association did not reproduce in this sample at a p-value threshold 

of 0.05 (beta = 0.032 [SE = 0.053, p = 0.55]). We also found no associations at a p-

value of 0.05/4 between rs141113969 and the other four cognitive measures nor 

between rs141113969 and g (Table 5.3). The age of the participants who completed the 

Prospective Memory task at baseline is, on average, lower in comparison to the age of 

the participants at the imaging visit (Table 5.2). However, there is no evidence that the 

relationship between rs141113969 and Prospective Memory is affected by age: firstly, the 

genotype*age interaction term is not significant (Supplementary Table 5.6); and 

secondly, a sliding window plot suggests that the association in the imaging sample is 

driven by younger individuals (Supplementary Figure 5.1). Therefore, the absence of an 

association between rs141113969 and Prospective Memory at baseline is not because 

the baseline sample is younger than the imaging sample. Note: the U-shape seen in 

Supplementary Figure 5.1 is not present in an independent baseline sample 

(Supplementary Figure 5.2). 
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Table 5.3 Regression of cognitive measures on rs141113969 

Standardised coefficients (beta), standard errors (se), sample sizes (n) and p-values (p) 

when regressing cognitive measures on rs141113969 in the UK Biobank in participants 

who performed the Prospective Memory task during the imaging visit (Discovery) and 

those who did not (Baseline), with and without adjusting for age, age2, sex, and 

educational attainment. 

phenotype n beta se p 
Additive model adjusted for age, age2, sex, and educational attainment 
Fluid Intelligence (Baseline) 84433 -0.00075 0.018 0.97 
g 26999 0.039 0.031 0.2 
Numeric Memory (Baseline) 27474 0.065 0.031 0.036 
Pairs Matching (Baseline) 249802 -0.00065 0.011 0.95 
Prospective Memory (Baseline) 85332 0.032 0.053 0.55 
Prospective Memory (Discovery) 21636 0.37 0.1 0.00039 
Reaction Time (Baseline) 252703 0.019 0.01 0.06 
Additive model adjusted for PCs and chip only 
Fluid Intelligence (Baseline) 100559 0.0024 0.018 0.9 
g 32185 0.02 0.032 0.54 
Numeric Memory (Baseline) 33163 0.028 0.031 0.37 
Pairs Matching (Baseline) 304524 0.0077 0.01 0.45 
Prospective Memory (Baseline) 102642 0.052 0.044 0.23 
Prospective Memory (Discovery) 23256 0.37 0.097 0.00013 
Reaction Time (Baseline) 309815 0.011 0.01 0.28 
Dominant model adjusted for age, age2, sex, and educational attainment 
Fluid Intelligence (Baseline) 84433 -0.0036 0.018 0.84 
g 26999 0.034 0.032 0.28 
Numeric Memory (Baseline) 27474 0.062 0.031 0.048 
Pairs Matching (Baseline) 249802 -0.0016 0.011 0.89 
Prospective Memory (Baseline) 85332 0.034 0.053 0.52 
Prospective Memory (Discovery) 21636 0.35 0.11 0.001 
Reaction Time (Baseline) 252703 0.019 0.01 0.065 
Dominant model adjusted for PCs and chip only 
Fluid Intelligence (Baseline) 100559 4.00E-04 0.018 0.98 
g 32185 0.014 0.032 0.66 



 

92 

phenotype n beta se p 
Numeric Memory (Baseline) 33163 0.028 0.032 0.38 
Pairs Matching (Baseline) 304524 0.0072 0.01 0.49 
Prospective Memory (Baseline) 102642 0.052 0.044 0.24 
Prospective Memory (Discovery) 23256 0.36 0.1 0.00029 
Reaction Time (Baseline) 309815 0.011 0.01 0.3 
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To replicate the associations between rs2227122 and rs676046 and Pairs Matching, we 

removed participants who performed the Pairs Matching task during the repeat 

assessment visit from the imaging visit sample (and not the baseline sample because 

the baseline sample has no individuals aged over 70 years), tested the associations in 

those aged 69 years or more (adjusted for age, sex, and educational attainment), and 

found that neither of the previously identified associations replicate (beta = 0.052 [SE = 

0.07, p = 0.46] and beta = 0.054 [SE = 0.068, p = 0.43] for rs2227122 and rs676046, 

respectively) (Table 5.4). We also found no associations between these two variants and 

the other four cognitive measures in the same sample (Table 5.4). There is no evidence 

of a genotype*age interaction (Supplementary Table 5.6). 
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Table 5.4 Regression of cognitive measures on rs2227122 and rs676046 

Standardised coefficients (beta), standard errors (se), sample sizes (n) and p-values (p) 

when regressing cognitive measures on rs2227122 and rs676046 in the UK Biobank in 

participants aged ≥69 years who performed the Pairs Matching task during the repeat 

assessment visit (Discovery) and those who did not (Imaging), with and without 

adjusting for age, sex, and educational attainment. 

phenotype variant A1 n beta se p 
Additive model adjusted for age, age2, sex, and educational attainment 
Fluid Intelligence (Imaging) rs2227122 T 4887 0.089 0.07 0.2 
Numeric Memory (Imaging) rs2227122 T 3880 0.067 0.08 0.41 
Pairs Matching (Discovery) rs2227122 T 2601 0.33 0.094 0.00041 
Pairs Matching (Imaging) rs2227122 T 4916 -0.052 0.07 0.46 
Prospective Memory (Imaging) rs2227122 T 4972 -0.26 0.17 0.13 
Reaction Time (Imaging) rs2227122 T 5019 0.053 0.069 0.45 
Additive model adjusted for PCs and chip only 
Fluid Intelligence (Imaging) rs2227122 T 4887 0.09 0.07 0.2 
Numeric Memory (Imaging) rs2227122 T 3880 0.064 0.081 0.43 
Pairs Matching (Discovery) rs2227122 T 2601 0.35 0.094 0.00023 
Pairs Matching (Imaging) rs2227122 T 4916 -0.058 0.07 0.41 
Prospective Memory (Imaging) rs2227122 T 4972 -0.28 0.17 0.1 
Reaction Time (Imaging) rs2227122 T 5019 0.055 0.07 0.43 
Dominant model adjusted for age, age2, sex, and educational attainment 
Fluid Intelligence (Imaging) rs2227122 T 4887 0.095 0.071 0.18 
Numeric Memory (Imaging) rs2227122 T 3880 0.059 0.082 0.47 
Pairs Matching (Discovery) rs2227122 T 2601 0.33 0.094 0.00041 
Pairs Matching (Imaging) rs2227122 T 4916 -0.052 0.071 0.46 
Prospective Memory (Imaging) rs2227122 T 4972 -0.25 0.18 0.15 
Reaction Time (Imaging) rs2227122 T 5019 0.058 0.07 0.41 
Dominant model adjusted for PCs and chip only 
Fluid Intelligence (Imaging) rs2227122 T 4887 0.096 0.071 0.17 
Numeric Memory (Imaging) rs2227122 T 3880 0.058 0.082 0.48 
Pairs Matching (Discovery) rs2227122 T 2601 0.35 0.094 0.00023 
Pairs Matching (Imaging) rs2227122 T 4916 -0.058 0.071 0.41 
Prospective Memory (Imaging) rs2227122 T 4972 -0.27 0.17 0.11 
Reaction Time (Imaging) rs2227122 T 5019 0.059 0.07 0.4 
Additive model adjusted for age, age2, sex, and educational attainment 
Fluid Intelligence (Imaging) rs676046 A 4887 0.091 0.068 0.18 
Numeric Memory (Imaging) rs676046 A 3880 0.086 0.079 0.27 
Pairs Matching (Discovery) rs676046 A 2601 0.32 0.092 0.00061 
Pairs Matching (Imaging) rs676046 A 4916 -0.054 0.068 0.43 
Prospective Memory (Imaging) rs676046 A 4972 -0.28 0.17 0.096 
Reaction Time (Imaging) rs676046 A 5019 0.053 0.067 0.43 
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phenotype variant A1 n beta se p 
Additive model adjusted for PCs and chip only 
Fluid Intelligence (Imaging) rs676046 A 4887 0.09 0.068 0.19 
Numeric Memory (Imaging) rs676046 A 3880 0.081 0.079 0.31 
Pairs Matching (Discovery) rs676046 A 2601 0.33 0.093 0.00035 
Pairs Matching (Imaging) rs676046 A 4916 -0.06 0.068 0.38 
Prospective Memory (Imaging) rs676046 A 4972 -0.3 0.17 0.076 
Reaction Time (Imaging) rs676046 A 5019 0.058 0.068 0.39 
Dominant model adjusted for age, age2, sex, and educational attainment 
Fluid Intelligence (Imaging) rs676046 A 4887 0.097 0.069 0.16 
Numeric Memory (Imaging) rs676046 A 3880 0.079 0.08 0.32 
Pairs Matching (Discovery) rs676046 A 2601 0.32 0.092 0.00061 
Pairs Matching (Imaging) rs676046 A 4916 -0.055 0.069 0.43 
Prospective Memory (Imaging) rs676046 A 4972 -0.28 0.17 0.11 
Reaction Time (Imaging) rs676046 A 5019 0.059 0.068 0.39 
Dominant model adjusted for PCs and chip only 
Fluid Intelligence (Imaging) rs676046 A 4887 0.096 0.069 0.16 
Numeric Memory (Imaging) rs676046 A 3880 0.075 0.081 0.36 
Pairs Matching (Discovery) rs676046 A 2601 0.33 0.093 0.00035 
Pairs Matching (Imaging) rs676046 A 4916 -0.061 0.069 0.38 
Prospective Memory (Imaging) rs676046 A 4972 -0.29 0.17 0.086 
Reaction Time (Imaging) rs676046 A 5019 0.062 0.069 0.37 
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We next sought to test whether any KL variants were significantly associated at a p-

value threshold of 0.05/15 with a change in any of the cognitive measures over age, in 

the same way that KL-VS was tested. We did not find any statistically significant 

associations (Supplementary Table 5.5). 

5.5 Discussion 

Previous evidence suggested that KL-VS and other KL variants are associated with 

cognitive function during the later stages of life. Our aim was to explore these findings 

in a younger and much larger cohort, namely the UK Biobank, using intermediate 

phenotypes that can track early stages of cognitive decline [126]. We did not find 

evidence of a relationship between KL-VS and cognitive function, nor did we find any 

evidence that the age of an individual had a significant effect on this relationship. The 

very small number of associations that we found did not replicate in independent 

samples, nor is there any evidence of them in previously published studies, so they 

seem likely to be false positives. We also did not find evidence of any other KL variants 

being associated with cognitive function, or with cognitive decline. 

An important point is that previous studies that have identified relationships between 

KL variants and cognition use populations that are much older (usually aged 70 years or 

more), whereas the population we examined is relatively young (the larger Baseline 

samples had a mean age of 57 years). We attempted to address this limitation by 

repeating our analyses, but only including individuals aged 69 years or more; we still did 

not find associations - perhaps because only about 4% of this subset in the imaging 

cohort are over 75 years of age and less than 1% are over 79 years of age. Indeed, 

whenever authors report an absence of statistically significant associations between KL 

variants and cognition, the mean age of the cohorts that they analyse are closer to the 

one we analysed. For example, Deary et al. [119] examined 2 cohorts and the cohort who 

undertook cognitive testing at age of 64 years did not show statistically significant 

associations between KL-VS and cognition. Dubal et al. [53] also did not find an 

association in one of the 3 cohorts that they analysed, and the mean age of this cohort 

was 63 years. 
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Deary et al. [119] provided evidence suggesting that KL-VS may influence cognitive 

decline. We did not find any evidence to support this. This may be because the 

difference between the repeated measurements available to us was about 8 years 

whereas Deary et al. compared the cognitive abilities of individuals first tested when 

aged 11 years and then at the age of 79 years. It is also important to note that whilst 

some authors do report relationships between KL-VS and cognitive decline [119,122], 

other authors do not find any such relationship [120,123]. 

The UKB dataset, despite the advantage of its size, does have biases. In particular, the 

participants are generally healthier than average [127]. There is evidence to suggest that 

the effect of KL variants on cognitive function/decline may be as a result of affecting 

the severity of a pre-existing psychopathology [128,129] and individuals suffering from 

early dementia, etc would be either unlikely or even unable to volunteer to participate. 

Furthermore, it is important to note that, in comparison to what is considered “gold 

standard” practice in cognitive testing, the tests undertaken by UKB participants were 

shorter, carried out in an uncontrolled and unsupervised environment, and did not 

include multiple tests to evaluate a particular aspect of cognition. This raises the 

question of whether or not the UKB tests are a reasonable measure of cognitive 

function. A recent attempt to compare UKB cognitive tests with more standard 

reference tests for cognitive function found that the former correlates reasonably well 

with the latter, suggesting that the UKB cognitive tests are a reliable, but not ideal, 

measure of cognitive function. The test re-test reliability (i.e. the correlation between 

performance on a cognitive test administered 2-4 weeks apart) of UKB tests were also 

moderate to high, suggesting that the UKB cognitive tests can be used to assess factors 

affecting cognitive decline [130]. It is also important to point out that the utility of the g 

factor is contested [131]. 

In conclusion, there is insufficient evidence in the UK Biobank to support the concept 

that KL variants affect cognitive function or its rate of decline in British Caucasian 

individuals aged between 40 and 81 years. Analysis of follow-up testing, as more 

participants move into old age, would be required to verify the reported effects of KL 

variants on cognitive function and decline that have been reported in very elderly 

individuals.  
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6 Klotho and Cancer 

6.1 Introduction 

Cancer is expected to become the leading cause of death and is claimed by some 

commentators to be the single most important barrier to increasing life expectancy 

across the world in the 21st century [132]. Thus, it is possible that Klotho might influence 

mortality by either affecting risk of cancer initiation or survival rate. As with other 

phenotypes examined in the course of this work, there are conflicting reports about the 

potential role of Klotho in cancer (discussed below). 

This chapter begins with a brief definition of cancer, then continues with a review of the 

available evidence for an association between Klotho variants and cancer and, finally, 

describes work that uses genetic data and linked hospital records available from the UK 

Biobank to test the association between KL variants and cancer risk and survival in up 

to 335,024 participants. 

Cancer can be defined in general terms as an abnormal and uncontrolled growth of 

cells. Despite the large number of differences between different types of cancer, they all 

share a few key characteristics [133] that are typically not exhibited by non-cancerous 

cells: 

• The rate at which cells proliferate is partly determined by a combination of pro-

growth and anti-growth signals, but cancer cells are able to both become self-

sufficient in pro-growth signals (e.g. they produce their own signalling molecules 

and respond to these to create a positive feedback loop) [134] and are also able 

to adapt to avoid responding to anti-growth stimuli [135]. 

• In addition to being able to proliferate, cancer cells must also avoid both 

apoptosis (programmed cell death) [136] and avoid becoming senescent (normal 

cells cannot double more than approximately 70 times, which is referred to as 

their Hayflick limit) [137]. 
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• Finally, as tumours become more advanced, they are able to generate their own 

network of blood vessels (angiogenesis) [138] and are able to migrate and invade 

other tissues (metastasis) [139]. 

Carcinogenesis is a multistep process, beginning with a genetic aberration that may, 

amongst other things, result in a tumour suppressor gene becoming inactivated. 

Evidence from several authors implies that the Klotho (KL) gene may be a tumour 

suppressor and it has also been shown that decreased KL expression is associated with 

poorer prognosis in a variety of different cancers [140]. For example, increased Klotho 

expression inhibited colony formation in MCF-7 and MDA-MB-231 cells, which are both 

breast cancer cell lines [141]. 

Furthermore, some authors have reported associations between KL variants and cancer 

in non-European populations. Kim et al. [142] found that rs3752472 is associated with 

prostate cancer risk in a sample of Korean men. Liu et al. [143] and Kamal et al. [144] 

found that carriers of the rs1207568 A allele were more likely to get colorectal cancer in 

a Chinese and in an Egyptian population, respectively. However, neither of these reports 

presented any evidence for an association between colorectal cancer risk and rs564481 

[143,144], though it could be argued that rs1207568 is a promoter variant and may 

affect Klotho expression, whereas there is no conclusive evidence that rs564481 is a 

functional variant. 

To date, the relationship between genetic variants at the Klotho locus and cancer risk 

and survival has not been studied in a sufficiently large European sample. Here we use 

genetic data and linked hospital records available from the UK Biobank to test the 

association between KL variants and the risk of different types of cancer as well as the 

effect of KL variants on the survival chances of participants diagnosed with these 

different types of cancer. 

6.2 Data sources 

The UK Biobank was used as the discovery sample (see Section 2.2). The replication 

dataset for melanoma survival consisted of 858 non-Hispanic white patients with 

cutaneous melanoma recruited between March 1998 and August 2008 [145]. 
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6.3 Phenotypes 

The UKB provides separate data fields related to participants’ cancer diagnoses from 

national cancer registries. UKB field 40006 lists all of the cancers that a participant has 

been diagnosed with since records are available. UKB field 40005 lists the 

corresponding dates on which they received those diagnoses. No self-reported data is 

used for the analyses described in this chapter. For the survival analyses, data from 

death registries was used, namely date of death (UKB field 40000) and cause of death 

(UKB field 40001). 

The phenotype definitions provided here are illustrated using malignant melanoma as 

an example. Supplementary Table 6.1 lists the ICD-10 codes used to define the grouped 

cancer categories (similar to the process described in Section 4.3.2). Participants with 

diagnoses of in-situ carcinomas or benign neoplasms (ICD-10 code beginning with D in 

UKB field 40006), but without the corresponding malignant neoplasm ICD-10 code 

were set to missing (see Supplementary Table 6.1). 

Malignant melanoma: participants with one or more occurrences of ICD-10 code C43 

under UKB field 40006 were considered cases; and all other participants were 

considered controls. The same definition was used for all other cancers, substituting the 

ICD-10 code for malignant melanoma with the code for each of the other cancers in 

turn. 

To carry out survival analysis using the aforementioned malignant melanoma cases, 

participants with a diagnosis of malignant melanoma before baseline (diagnosis dates 

obtained from UKB field 40005) were excluded. In addition, participants with a 

diagnosis of any other cancer before their malignant melanoma diagnosis were also 

excluded. The survival time in days for each participant was calculated as the number of 

days between the date on which they were first diagnosed with malignant melanoma 

and the censor date, where the censor date was the date of death for participants who 

had died (UKB field 40000) or 26 April 2020 for participants who had survived until 

this date. A participant whose primary cause of death (UKB field 40001) was malignant 

melanoma (ICD-10 code C43) was considered an event. The age of first diagnosis for a 

given individual is the age at which that individual was first diagnosed with malignant 
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melanoma. The same procedure was used for all other cancers, substituting the ICD-10 

code for malignant melanoma with the code for each of the other cancers in turn. 

6.4 Statistical analyses 

We used R 4.0.2 [75] for all analyses, unless stated otherwise. We used PLINK 2.0 [66] 

to regress each of the cancer outcomes on each of the KL variants using logistic 

regression, assuming an additive genetic model, and adjusting for age at baseline, sex, 

the array on which the participant was genotyped and the first four principal 

components for the genetic variability of the genome (UKB field 22009). 

We omitted all cancers with <661 cases based on a power calculation [146], which 

showed that 661 cases are required to detect a relative risk of 1.2 at a p-value of 0.05 

with 80% power assuming a MAF of 0.16 (because rs9536314 has a MAF of 0.16) and a 

control:case ratio of 5.62:1 (because this is the overall cancer_free:cancer ratio). 

We used the coxph() function from the survival 3.2.3 package in R [147] to fit Cox 

proportional hazards models to assess the association between KL variants and cancer 

survival. We used sex, the age at which the participant was first diagnosed with the 

cancer, the first four genetic principal components and the genotyping array as 

covariates. Only cancers included in the aforementioned logistic regression analyses 

were included. 

As we carried out multiple tests, we applied a statistical correction. There are two 

independent genetic variants (see Section 2.8). We tested both individual cancers and 

cancer groups. We assume that each cancer group and any cancer that does not fit 

within a group are independent, so p-values generated from the analyses described in 

this chapter are corrected for up to 20 independent tests (threshold = 2.5 × 10-3). 

6.5 Results 

After the QC described in Chapter 2, there were 335,024 participants remaining. Their 

characteristics are summarised in Table 6.1 and the number of cases for the different 

types of cancer analysed are presented in Table 6.2.  
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Table 6.1 Age and sex distribution by cancer status in the UK Biobank 

Number of participants with (cases) and without (controls) one or more cancer 

diagnoses and the average age and percentage female of these groups. 

  All Cancer Controls 

N 335,024 50,597 284,427 

age in years (SD) 57 (8) 60 (6.7) 56 (8) 

% female 53.6 51.7 53.9 
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Table 6.2 Prevalence of selected cancers in the UK Biobank 

Number of participants diagnosed at least once with specific cancer, excluding those 

who did not pass QC. Note that the All category includes cancer with too few individual 

cases as per the power calculation. 

Cancer cases controls 
Head and Neck 1026 332434 
Digestive 6208 327146 
Upper GI Tract 1074 332424 
Lower GI Tract 4227 329124 
Lower Respiratory 1903 331627 
Female Reproductive 2611 173602 
Male Reproductive 7276 147162 
Breast 9614 167871 
Melanoma 2681 329938 
Skin (not melanoma) 17227 315733 
Bladder 919 332182 
Prostate 6818 147647 
C18 Colon 2605 330835 
C20 Rectum 1236 332199 
C34 Lung 1900 331630 
C54 Uterus 1253 177658 
C56 Ovary 842 178076 
C64 Kidney 964 332570 
C83 Non-Hodgkin's lymphoma 767 332754 
All 50580 277692 
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6.5.1 KL variants and cancer risk 

Since the two variants making up the KL-VS haplotype are well-characterised functional 

KL variants in humans, we investigated whether or not they were associated with cancer 

risk. We did not find evidence of an association between rs9536314 and the available 

cancers in our sample (p > 0.05), with or without adjusting for age and sex 

(Supplementary Table 6.2). We repeated our analyses using dominant, recessive, and 

heterozygous models, but still did not find any significant associations (Supplementary 

Table 6.2). 

We next tested the association between the remaining 213 KL variants and cancer risk 

(Supplementary Table 6.2). However, we did not find sufficient evidence of an 

association between any of these variants and the available cancers in our sample (p > 

2.5 × 10-3). 

6.5.2 KL variants and cancer survival 

We tested the association between the 214 KL variants and cancer survival 

(Supplementary Table 6.3). We found that, in our sample, the rs71436501 G allele and 

the rs78425544 G allele are independently associated with reduced melanoma survival 

(HR = 2.54 [95% CIs 1.65 to 3.92, p = 2.3×10-5] and HR = 2.32 [95% CIs 1.49 to 3.62, p 

= 2.1×10-4], respectively) and the rs1207570 C allele and the rs438793 G allele were 

associated with reduced head and neck cancer (HNC) survival (HR = 1.83 [95% CIs 1.28 

to 2.61, p = 8.7×10-4] and HR = 1.74 [95% CIs 1.22 to 2.49, p = 2.4×10-3], respectively). 

However, the association between the rs71436501 G and the rs78425544 G alleles and 

melanoma survival was not present in the replication sample (HR = 0.44 [95% CIs 0.14 

to 1.42, p = 0.17] and HR = 0.44 [95% CIs 0.14 to 1.44, p = 0.17], respectively). The 

associations between rs1207570 and rs438793 and HNC survival are yet to be 

replicated. 
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6.6 Discussion 

Previous evidence suggested that KL variants were associated with colorectal cancer 

risk in non-European populations, but similar work had not been carried out in a large 

European sample. We did not find sufficient evidence to suggest that Klotho variants 

are associated with the types of cancer that we tested. 

Despite the association between KL-VS (rs9536314) and numerous other traits (see 

previous chapters), we did not find evidence of an association between rs9536314 and 

cancer risk or survival, albeit only in the types of cancer that we tested. Furthermore, we 

did not find an association between rs1207568 and colorectal cancer, although the 

previous groups who reported this association found it in Chinese [143] and Egyptian 

populations [144]. However, Liu et al. [143] and Kamal et al. [144] were not able to find 

evidence of an association between rs564481 and colorectal cancer and neither did we. 

The rs3752472 variant that is reportedly associated with prostate cancer [142] is not 

available in the UKB (because it is a rare variant in individuals of European ancestry). 

We tested whether Klotho variants were associated with surviving the types of cancer 

that we tested. We found associations between rs71436501 and rs78425544 and 

melanoma survival. However, we could not replicate these associations, so they are likely 

to be false positives. The replication sample we used was of European ancestry and, 

although it was smaller than the discovery sample, the direction of effect was opposite 

to the one observed in the discovery sample, so statistical power is a secondary issue in 

this case. It should be noted that replication performed in the replication sample was 

adjusted for age and sex and included only individuals who had early stage melanoma, 

which is similar to what was done for the discovery analyses. 

The associations between rs1207570 and rs438793 and HNC survival are yet to be 

replicated and should be treated with caution for now. As part of preparing the work 

presented in this chapter for publication, corresponding authors on papers that have 

GWAS data for HNC patients have been contacted and it is hoped that this will allow for 

an attempt to be made to replicate these associations. 
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Although the UKB cohort is healthier than average [127], the number of cancer cases we 

use is similar to and sometimes even larger than those used by other groups to provide 

evidence of associations between KL variants and cancer risk, albeit in non-Caucasian 

populations. Therefore, the number of cases is unlikely to be the reason why we did not 

find any associations with cancer risk. However, as this sample has a White British 

ancestry, our work should not be taken as a comment on the reliability of the 

associations between KL variants and colorectal risk reported in Chinese [143] and 

Egyptian populations [144]. 

In conclusion, we do not find evidence at a population genetics level to suggest that 

Klotho is associated with cancer risk in individuals with a European ancestry. Despite 

evidence suggesting that Klotho expression is associated with tumour progression, the 

associations we found between KL variants and melanoma survival and HNC survival fail 

to replicate and are yet to be replicated, respectively, and should be considered as 

potential false positives for now. 

It is important to note that the genetics of a cancerous cell are very different to that of a 

normal cell and common germline variants obtained from genotyping non-cancerous 

cells are by no means sufficient to capture this. Therefore, given the considerable 

evidence of Klotho expression affecting cancer prognosis, Klotho should not necessarily 

be dismissed as a target for anti-cancer research. 
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7 KL gene-based and KL-FGF23-FGFR1 
gene set analysis 

7.1 Introduction 

So far in this thesis, all analyses have focused on the relationship between individual 

variants in and around the KL gene locus and age-related phenotypes. In this chapter, 

using summary statistics from previously published genome-wide association studies of 

parental lifespan, myocardial infarction, cancer, COVID-19 risk and Alzheimer’s disease, 

the association between variants located around genes that encode the proteins that 

make up the Klotho signalling complex (namely, KL, FGF23 and FGFR1) are analysed as 

a whole as opposed to separately. 

7.2 Methods 

7.2.1 GWAS summary statistics 

As discussed in Chapter 1, a genome-wide association study (GWAS) is a hypothesis-

free approach that typically examines millions of common variants across the genome 

for an association with a phenotype of interest. One advantage of more recent GWASs is 

their large sample sizes, which is particularly beneficial for case-control phenotypes 

because the UK Biobank cohort is healthier than average which results in fewer cases 

and therefore less statistical power. Table 7.1 summarises the studies from which 

summary statistics were used to carry out the analyses in this chapter. It should be 

noted here that all summary statistics that were used were generated from participants 

with a European ancestry. 
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Table 7.1 GWASs used for gene-based and gene set analyses 

Authors, phenotypes and sample sizes for GWASs used for gene-based and gene set 

analyses 

Author Phenotype Sample size 
Timmers et al. [29]. Parental 

lifespan 
500,193 European ancestry offspring 

Hartiala et al. [148]. Myocardial 
infarction 

14,825 European ancestry cases and 
380,970 European ancestry controls 

Michailidou et al. [149]. Breast cancer 122,977 cases and 105,974 controls 
Schumacher et al. [150]. Prostate cancer 79,148 cases and 61,106 controls 
Wang et al. [151]. Lung cancer 11,348 cases and 15,861 controls 
Kunkle et al. [152]. Alzheimer's 

disease 
21,982 cases and 41,944 controls 

COVID-19 Host 
Genetics Initiative [153] 

COVID-19 risk 
(C2) 

122,616 cases and 2,475,240 controlsa 

aobtained from summary statistics file because information not available for release 7 
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7.2.2 GWAS of colorectal cancer in the UK Biobank 

A GWAS of colorectal cancer was performed in the UK Biobank data. In addition to the 

QC described in Chapter 2, all variants with a MAF < 0.05 were excluded. Individuals 

who had ICD-10 codes C18 (Malignant neoplasm of colon) and/or C19 (Malignant 

neoplasm of rectosigmoid junction) and/or C20 (Malignant neoplasm of rectum) in field 

40006 (Type of cancer: ICD10) were coded as cases. If an individual was not a case but 

had ICD-10 codes D010 (Carcinoma in situ, Colon) and/or D011 (Carcinoma in situ, 

Rectosigmoid junction) and/or D012 (Carcinoma in situ, Rectum) in field 40006 (Type 

of cancer: ICD10), they were set to missing. After QC, there were 4,107 cases and 

329,266 controls remaining. All analyses were logistic regressions performed using 

PLINK 2.0 [66] and adjusted for age, sex, the first four genetic principal components 

and the genotyping chip. 

7.2.3 Selection of genes for pathway analysis 

As discussed in Chapter 1, FGF23–FGFR1c–Klotho complexes form dimers that allow 

FGF23 signalling to take place. However, the proteins involved in the downstream 

signalling pathways are by no means exclusive to Klotho-dependent FGF23 signalling. 

Therefore, in an attempt to avoid possible false positives that might arise due to genes 

being involved in large numbers of signalling pathways, the set of genes used for the 

gene set analyses described in this chapter are restricted to KL, FGF23 and FGFR1. 

7.2.4 Gene-based and gene set analysis using MAGMA 

MODELS RUN USING MAGMA 

MAGMA v1.10 [154] was used to perform gene-set analyses on the GWAS summary 

statistics referred to in sections 7.2.1 and 7.2.2. In the first step, a gene-based analysis 

is performed which combines the p-values for associations at a gene locus into a mean 

test statistic, which results in an overall p-value for that gene. In the second step, a 

model is run that tests whether a gene being in a gene set is associated with its Z-score 

(obtained from the p-values generated in the first step); a statistically significant p-value 
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at this second step would suggest that the genes in the gene set of interest are more 

likely to be associated with the phenotype in comparison to genes not the gene set. 

1000 GENOMES 

At this point, it is important to note that LD between the variants is also taken into 

account in the first step of the analysis, which requires a reference data set. The 

analyses described in this chapter use 1000 Genomes data [155,156] downloaded from: 

https://www.cog-genomics.org/plink/2.0/resources. In addition to removing related and 

non-European samples (this information is provided as part of the download), the 

following QC was performed: samples with a missingness of >97% and/or extremes of 

heterozygosity (±3 standard deviations) were removed; and variants with a missingness 

of >97% and/or a MAF of <5% and/or not in HWE (p < 10-6) were removed. The 

remaining samples and variants were used as the reference data set which MAGMA 

uses to estimate LD between variants. 

ASSIGNING VARIANTS TO GENES 

In order to perform a gene-based analysis, MAGMA requires information to link 

together variants with genes. A variant was assigned to a gene if its position was within 

a gene’s transcription start and end sites. In addition, variants that were found to kidney 

eQTLs (expression quantitative traits loci, which are variants that are associated with 

the expression of a gene) for KL [156] were also considered to be associated with KL 

even if they did not fall within the transcription start and end sites. Supplementary File 

7.1 lists which variants were assigned to which genes. 

  

https://www.cog-genomics.org/plink/2.0/resources
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Table 7.2 Kidney eQTLs for KL 

Variants associated with KL expression in kidney tubules [156] 

variant other allele effect allele beta SE p-value 
rs7324259 G T -0.173 0.027 3.09E-10 
rs6561643 A T -0.139 0.022 1.15E-09 
rs9535729 T G -0.117 0.023 8.36E-07 
rs9596553 G A -0.116 0.023 9.04E-07 
rs731089 T C -0.113 0.023 1.60E-06 
rs2348264 T A -0.113 0.023 1.63E-06 
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MULTIPLE TESTING 

Since the gene-based and gene set analyses were performed on eight different GWASs, 

an association is only considered statistically significant if the p-value is less than 

0.05/8 = 0.00625. Please see Section 2.8. 

7.3 Results 

7.3.1 Gene-based results for KL 

A gene-based analysis was performed for all genes for each of the eight GWASs. Table 

7.3 shows the results for KL. There are no statistically significant associations 

(p > 0.00625) between KL and the eight traits that were tested when using a gene-

based approach. The analysis was repeated using a publicly available GWAS of 

phosphate (https://gwas.mrcieu.ac.uk/datasets/ukb-d-30810_raw/) as a positive control 

and a significant association for KL was found (p = 5.09×10-8). 

 

  

https://gwas.mrcieu.ac.uk/datasets/ukb-d-30810_raw/
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Table 7.3 Gene-based results for KL 

Z-scores and p-values from gene-based analyses for KL nVariants = number of variants. 

trait nVariants z-statistic p-value 
Breast cancer 178 0.779 0.218 
Alzheimer's disease 163 -0.087 0.535 
Colorectal cancer 188 -0.595 0.724 
COVID-19 risk (C2) 186 1.386 0.083 
Myocardial infarction 188 1.764 0.039 
Lung cancer 172 -0.408 0.658 
Prostate cancer 188 0.617 0.269 
Parental lifespan 175 0.656 0.256 
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7.3.2 Gene set results for KL-FGF23-FGFR1 

A gene set analysis was performed for a Klotho-specific gene set (containing KL, FGF23 

and FGFR1) for each of the eight GWASs. There are no statistically significant 

associations between the KL-FGF23-FGFR1 gene set and the eight traits that were 

tested. Please see Table 7.4 for the results. The analysis was repeated using a publicly 

available GWAS of phosphate (https://gwas.mrcieu.ac.uk/datasets/ukb-d-30810_raw/) as 

a positive control and a significant association for KL-FGF23-FGFR1 was found 

(p = 3.36×10-6). 

  

https://gwas.mrcieu.ac.uk/datasets/ukb-d-30810_raw/
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Table 7.4 Gene set results for KL-FGF23-FGFR1 

Regression coefficients and their standard errors from a gene set analysis performed 

using MAGMA. Analyses are adjusted for gene size, gene density, inverse mac, log(gene 

size), log(gene density) and log(inverse mac) mac = minor allele count. 

trait beta SE p-value 
Breast cancer 0.811 0.505 0.054 
Alzheimer's disease -1.074 0.472 0.989 
Colorectal cancer 0.445 0.472 0.172 
COVID-19 risk (C2) 0.596 0.448 0.092 
Myocardial infarction 0.232 0.507 0.323 
Lung cancer 0.270 0.467 0.281 
Prostate cancera -0.243 0.705 0.635 
Parental lifespan -0.031 0.502 0.525 
aNote that gene-based results for FGF23 not available for prostate cancer, so gene set result is based on KL 
and FGFR1 only. 
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7.4 Discussion 

In this chapter, gene-based and gene set approaches were used to evaluate the 

association between eight ageing-related traits and KL and KL-FGF23-FGFR1, 

respectively. Neither of these approaches yielded statistically significant results. 

To date, the closest analysis that has been performed with which the analyses described 

in this chapter can be compared is a gene-based PheWAS on exome sequencing data 

from the UK Biobank [157]. The results from this PheWAS analysis also show a nominally 

significant association between KL and myocardial infarction, but this association is no 

longer significant when corrected for multiple testing, which is consistent with the 

findings presented in this chapter. 

To the best of one’s knowledge, there are no other studies that perform gene set 

analyses using a KL-FGF23-FGFR1 gene set. However, since an association was found 

between the KL-FGF23-FGFR1 gene set and phosphate, the approach and the selection 

of genes is likely to be valid. Therefore, the lack of association between the KL-FGF23-

FGFR1 gene set and the age-related traits tested in this chapter is likely to be a robust 

finding, although independent replication is always ideal. 

A limitation of both the gene-based analysis and, by extension, the gene set analysis 

(since it relies on the results of the gene-based analysis) is determining which variants 

correspond to which gene. The analyses in this chapter assume that variants located 

between the transcription start and end sites for a gene are associated with that gene. 

However, this may not always be the case: one issue with this assumption is that there 

may be variants that are located upstream of a gene in its promoter region that might 

affect its expression (and adding a fixed window may not always solve this issue 

because the distance between the transcription start site and these promoter variants is 

likely to vary); and another issue is that variants might even be found in the transcribed 

areas of two different genes in cases where gene loci overlap (i.e. one gene on the 

positive strand and the other on the negative strand). Another approach could be to 

select variants that are either exons of a gene or are known eQTLs for that same and 

group these together, but it is important to note that there are variants that affect the 

expression of more than one gene. 
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In conclusion, combining together variants in a gene-based analysis or combining 

together genes in a gene set analysis does not provide evidence for KL being 

associated with age-related phenotypes.  
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8 Discussion 

The aim of this thesis was to evaluate the Klotho gene as a target for anti-ageing 

research. In this chapter, the overall findings from this thesis are summarised in light of 

this aim as well as the strengths and limitations of the approaches and data before 

suggestions for possible avenues for future research are presented. 

8.1 Summary of results 

Throughout this thesis, the genetic variants that make up the KL-VS haplotype are 

tested for associations with age-related phenotypes. This is because reports of 

associations between KL variants and age-related phenotypes (reviewed in previous 

chapters) almost always test KL-VS, probably because the variants that make up the KL-

VS haplotype may well be functional variants [52-55]. However, despite testing KL-VS 

separately from other variants to avoid having to adjust the p-values for multiple testing, 

no reliable associations were found between KL-VS and longevity, cardiometabolic 

phenotypes, cognitive function and decline and cancer risk and survival. 

We also tested other common genetic variants at the Klotho gene locus for an 

association with longevity, cardiometabolic phenotypes, cognitive function and decline 

and cancer risk and survival. There was preliminary evidence for the following 

associations: rs2283368 and rs9536338 with longevity; rs495392 with HbA1c; 

rs141113969, rs2227122 and rs676046 with memory; and rs71436501 and rs78425544 

with melanoma survival. However, none of these associations could be adequately 

replicated. 

8.2 Strengths and limitations of the UK Biobank 

8.2.1 Sample size 

As discussed in previous chapters, the evidence for Klotho variants being associated 

with age-related phenotypes is contradictory. This is likely due to the fact that these 

studies are based on small sample sizes, which means that the findings reported in 
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these studies tend to have a large margin of error and are also not replicated because 

there is a tendency to favour work that describes a positive result over work that 

describes negative or null results [28]. In order to address the problem of small sample 

size, data from the UK Biobank, a prospective cohort study of half a million participants, 

is used. A larger sample size results in improved statistical power. 

However, the UK Biobank has a few disadvantages. These include healthy volunteer bias, 

a limited age range and participants predominantly who are of White British ancestry. 

8.2.2 Age range 

One of the recruitment criteria used [158] for the UK Biobank study was that 

participants were aged between 40 and 69 years of age. This poses two problems. 

Firstly, the majority of the participants are considered to be middle-aged, at least if one 

accepts the MeSH definition of middle-aged, i.e. an adult aged 45-64 years [82]. Given 

that the aim of this thesis is to evaluate Klotho as a target for anti-ageing therapy, it 

could be argued that using a dataset that predominantly consists of middle-aged 

participants is not optimal. 

Secondly, if one assumes that the results of previous studies are not false positives, 

then it is important to consider the possibility the effect of Klotho variants on age-

related phenotypes may vary with age and it is possible that the age range of the 

participants in the UKB may not capture the variation. There is evidence for this with 

respect to longevity [70], cognition [119] and coronary artery disease [90], though one 

cannot exclude the possibility that these pieces of evidence are false positives. 

For cognition and cardiometabolic phenotypes, the UK Biobank participants were 

stratified in an attempt to detect any potential interaction between age and Klotho 

genotype. However, this approach cannot completely overcome the problem of age-

specific effects. Firstly, stratification reduces sample size and this in turn reduces 

statistical power, though it should be noted that the sample size of the UKB is so large 

that even stratification does not reduce the sample size to anywhere near that of 

previous CGA studies on Klotho. Secondly, and more importantly, effects reported in 
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very old participants or relatively young participants cannot be observed in the UKB 

simply because there are no participants within those age ranges. 

8.2.3 Healthy volunteer bias 

It is well known that UK Biobank participants are socio-economically better off, have 

healthier lifestyles and are less likely to have a medical condition [85]. This means that 

any findings may not necessarily be generalisable to the UK population. 

In addition, healthy volunteer bias has further implications beyond generalisability with 

respect to searching for associations between Klotho variants and age-related 

phenotypes. When performing case-control analyses, the number of cases affects the 

statistical power of these analyses, so a sample that is healthier than average will have 

fewer cases and, therefore, will have lower statistical power. However, it should be noted 

that the number of cases present in the data used to carry out the analyses described in 

previous chapters contains many more cases compared to the data used by previous 

authors for their CGA studies. 

Beyond any potential issues of statistical power, the UKB study is unlikely to include 

participants who are severely unwell. An example of how this might affect the findings in 

this thesis is discussed in Chapter 5, where two studies [128,129] are cited that suggest 

that the effect of KL variants on cognitive function/decline may be as a result of 

affecting the severity of a pre-existing psychopathology and, if this is true, it could be 

argued that individuals suffering from early dementia, etc would be either unlikely or 

even unable to volunteer to participate in the UKB study and, therefore, an effect, if 

present, is less likely to be detected. Another example of how healthy volunteer bias 

might affect the findings in this thesis is discussed in Chapter 4, where previous reports 

of Klotho variants affecting the risk of premature CAD are cited [90,91] and, if one 

assumes that these reports are not false positives, it could be argued that individuals 

who are suffering from premature CAD would also be unlikely to volunteer for the UKB 

study and, therefore, an effect, if present, is again less likely to be detected. 
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8.2.4 Phenotype quality 

The UKB is one of the first large scale studies that includes deep phenotyping data. This 

makes it suitable for phenome-wide association studies, which is where one attempts to 

find an association between a genetic variant and multiple phenotypes. 

However, a large sample size can sometimes mean that one is restricted with respect to 

the types of data that can be collected. For example, whilst the tests used to assess the 

cognitive function are reportedly adequate [130], they are still not optimal in 

comparison to a clinical assessment [159]. 

In addition, several of the analyses presented throughout this thesis use hospital 

records. Even if one assumes that the diagnoses are accurate, it is definitely possible to 

argue that only those participants with particularly severe medical conditions would be 

diagnosed in a hospital environment. The most obvious impact of this is a fewer number 

of cases. However, diseases associated with ageing tend to be progressive in their 

nature and the initial symptoms are likely to be diagnosed in a General Practice (GP) 

setting. Whilst GP records of UKB participants are now becoming available, it was not 

possible to incorporate them into the analyses described in this thesis due to time 

constraints, though it may not have made a difference in any case (see below). 

On the other hand, several of the analyses in this thesis use quantitative intermediate 

measures, such as blood pressure or reaction time. These measures are associated with 

diseases outcomes that tend to occur later in life and, if Klotho is indeed a suitable 

target for anti-ageing research, it could be argued that the analyses presented in this 

thesis should have shown evidence of a reliable association between Klotho variants 

and these quantitative intermediate phenotypes. Since there appears to be insufficient 

evidence of association between Klotho variants and the quantitative intermediate 

phenotypes analysed in this thesis, it could be argued that incorporating GP records 

would not have produced substantially different findings. 
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8.3 Overall findings and recommendations 

The aim of this thesis was to evaluate Klotho as a candidate for anti-ageing research 

using a candidate gene association approach. The hypothesis was that if Klotho was 

indeed a suitable candidate for anti-ageing research, then genetic variants located in 

and around the Klotho gene locus should be associated with ageing as measured 

through longevity or be associated with diseases and phenotypes that are correlated 

with increased age. 

Overall, the analyses presented in this thesis show that there is either no evidence of an 

association between Klotho variants and age-related phenotypes at all and, whenever an 

association was found, it did not replicate. Therefore, at present, Klotho does not appear 

to be a suitable target for anti-ageing research. However, in light of the limitations 

presented in Section 7.2 and in light of published evidence, there are some possible 

avenues that could be considered with respect to Klotho. 

The first set of recommendations continues to focus on the candidate gene association 

approach. Firstly, many of the previous candidate gene association studies have been 

carried out using data from individuals who are not of European ancestry. Since large 

scale biobanks using data from individuals of non-European ancestry are likely to be 

created, such as the China Kadoorie Biobank [160], it may be worth performing a 

phenome-wide association study in these non-European biobanks. Secondly, since UK 

Biobank participants will continue to be followed up for many years to come, it may also 

be worth exploring the possibility that Klotho variants have longitudinal effects and/or 

that the effects of Klotho manifest in very old age. 

There are numerous published reports which suggest that serum Klotho, which is 

produced by enzymatic cleavage of full-length Klotho, may be associated with age-

related phenotypes and disease progression. These reports are based on correlations 

and, therefore, are susceptible to confounder bias. As proteomics continue to become 

more common and are likely to be applied to large scale studies [161], this opens up the 

possibility of both trying to replicate any associations that have been previously 

reported between serum Klotho and age-related phenotypes but, if one combines 

genetic data with proteomic data, it may be possible to perform Mendelian 
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randomisation studies [162] to determine whether the previously reported associations 

between serum Klotho and age-related phenotypes are causal. 

8.4 Conclusion 

In conclusion, the lack of evidence of a reliable association between Klotho variants and 

age-related phenotypes suggests that associations reported by previous authors who 

used a similar approach are likely to be false positives and, on this basis, the Klotho 

gene does not appear to be a suitable target for anti-ageing research. The work 

presented in this thesis also highlights the importance of carrying out replication 

studies. 
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Appendix 

All supplementary tables and figures are available at 10.5281/zenodo.5203043. 

Supplementary Table 3.1 

Odds ratios (OR) and p-values (P) when regressing sex on KL variants in the UK Biobank 

using logistic regression. 

Supplementary Table 3.2 

Genotype counts for Newcastle UK Biobank (UKB) and Newcastle 85+ (N85P) cohorts. 

CHISQ_2DF_P = p-value from a chi-squared test with 2 degrees of freedom. HOM = 

homozygous. HET = heterozygous. 

Supplementary Table 4.1 

Log odds ratios (beta) and their respective errors (SE) when regressing the six 

cardiometabolic outcomes on KL variants using logistic regression with and without 

adjusting for age and sex. N = sample size. A1 = effect allele. 

Supplementary Table 4.2 

Regression coefficients (beta) and their respective errors (SE) when regressing the 11 

cardiometabolic traits on KL variants using linear regression with and without adjusting 

for age and sex. N = sample size. A1 = effect allele. 

Supplementary Table 4.3 

Regression coefficients (beta) and their respective errors (SE) when regressing HbA1c 

on 125 KL variants using linear regression adjusting for age, sex and rs576674. N = 

sample size. A1 = effect allele. 
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Supplementary Table 5.1 

Standardised coefficients (beta), effect allele (A1), standard errors (se), sample sizes (n) 

and p-values (p) when regressing cognitive measures on 247 KL variants in the UK 

Biobank with (All) and without (≥69) including participants less than 69 years old, 

adjusted (adjusted) and unadjusted (unadjusted) for age, age2, sex, and educational 

attainment. 

Supplementary Table 5.2 

Standardised coefficients (beta), effect allele (A1), standard errors (se), sample sizes (n) 

and p-values (p) when regressing cognitive measures on rs9536314 and on rs9527025 

in the UK Biobank with a genotype*age interaction term and adjusted for age, age2, sex, 

and educational attainment. 

Supplementary Table 5.3 

Standardised coefficients (beta), effect allele (A1), standard errors (se), sample sizes (n) 

and p-values (p) when regressing cognitive measures on rs9536314 and on rs9527025 

in the UK Biobank in APOE4 carriers (E4) and non-carriers (EX), adjusted (adjusted) and 

unadjusted (unadjusted) for age, age2, sex, and educational attainment. 

Supplementary Table 5.4 

Standardised coefficients (beta), effect allele (A1), standard errors (se), sample sizes (n) 

and p-values (p) when regressing cognitive measures on rs9536314 and on rs9527025 

in the UK Biobank with a genotype*APOE4 interaction term and adjusted for age, age2, 

sex, educational attainment, and APOE4 carrier status. 

Supplementary Table 5.5 

Standardised coefficients (beta), standard errors (se), sample sizes (n) and p-values (p) 

when regressing the rate of decline of cognitive measures on 247 KL variants in the UK 

Biobank, adjusted for ageT1, ageT12, sex, and educational attainment. 
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Supplementary Table 5.6 

Standardised coefficients (beta), effect allele (A1), standard errors (se), sample sizes (n) 

and p-values (p) when regressing cognitive measures on rs141113969, on rs2227122, and 

on rs676046 in the UK Biobank with a genotype*age interaction term and adjusted for 

age, age2, sex, and educational attainment. 

Supplementary Figure 5.1 

Standardised log odds (beta) and 95% Confidence Intervals when regressing 

Prospective Memory task performance on rs141113969 after ordering participants by 

age. Window size = 10,000. Step size = 1,000. 

Supplementary Figure 5.2 

Standardised log odds (beta) and 95% Confidence Intervals when regressing 

Prospective Memory task performance on rs141113969 after ordering participants by 

age and excluding those who performed the task at imaging. Window size = 50,000. 

Step size = 5,000. 

Supplementary Table 6.1 

ICD-10 codes used to define cases and controls for individual cancers and cancer 

categories. 

Supplementary Table 6.2 

Log odds ratios (beta) and their respective errors (se) when regressing cancers on KL 

variants using logistic regression with (adjusted) and without (unadjusted) adjusting for 

age and sex. N = sample size. A1 = effect allele. Model = genetic model used. 
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Supplementary Table 6.3 

Hazard ratios (HR) and upper (upper) and lower (lower) 95% Confidence Intervals when 

regressing KL variants on cancer survival using a Cox proportional hazards model 

adjusted for age at diagnosis and sex. A1 = effect allele. 

Supplementary File 7.1 

A list file with one gene per row listing the gene name, the genomic region from which 

variants are chosen to be assigned to that gene and a list of variants that are assigned 

to that gene. 

 


