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GAReID: Grouped and Attentive High-Order
Representation Learning for Person

Re-Identification
Pingyu Wang, Fei Su, Zhicheng Zhao, Yanyun Zhao, Nikolaos V. Boulgouris

Abstract—As person parts are frequently misaligned between
detected human boxes, an image representation that can handle
this part misalignment is required. In this work, we propose an ef-
fective Grouped Attentive Re-Identification (GAReID) framework
to learn part-aligned and background-robust representations for
person re-identification. Specifically, the GAReID framework
consists of Grouped High-Order Pooling (GHOP) and Attentive
High-Order Pooling (AHOP) layers, which generate high-order
image and foreground features, respectively. In addition, a novel
Grouped Kronecker Product (GKP) is proposed to employ both
channel group and shuffle strategies for high-order feature
compression, while promoting the representational capabilities
of compressed high-order features. We show that our method
derives from an interpretable motivation and elegantly reduces
part misalignments without using landmark detection or feature
partition. This paper theoretically and experimentally demon-
strates the superiority of the GAReID framework, achieving
state-of-the-art performance on various person re-identification
datasets.

Index Terms—Person Re-Identification, Part Misalignments,
Kronecker Product, Group Shuffle, High-Order Pooling

I. INTRODUCTION

PERSON Re-Identification (ReID) aims at matching per-
son images of the same person across non-overlapping

cameras. It plays an important role in various video surveil-
lance applications such as suspect tracking and missing elderly
or children retrieval. With the blooming of Convolutional Neu-
ral Network (CNN), the current deep feature learning based
methods [1–16] have significantly outperformed a variety of
traditional feature learning based approaches [17–22]. How-
ever, the ReID task is far from being solved because of part
misalignments caused by camera views, detection errors, body
occlusions and background clutters. As shown in Fig. 1, part
misalignments usually change the spatial distribution of person
appearances, which might degenerate the distinctiveness and
robustness of person representations.

In order to mitigate part misalignments, prior ReID works
have broadly followed two main paradigms, i.e., part-based
and landmark-based methods. The part-based approaches [2,

Pingyu Wang, Fei Su, Zhicheng Zhao and Yanyun Zhao are with Bei-
jing Key Laboratory of Network System and Network Culture, School of
Artificial Intelligence, Beijing University of Posts and Telecommunications,
Beijing, China. (e-mail: applewangpingyu@bupt.edu.cn; sufei@bupt.edu.cn;
zhaozc@bupt.edu.cn; zyy@bupt.edu.cn)

Nikolaos V. Boulgouris is with Department of Electronic and Computer
Engineering, Brunel University, London, United Kingdom. (e-mail: Niko-
laos.Boulgouris@brunel.ac.uk)

This work is supported by Chinese National Natural Science Foundation
(62076033, U1931202). (Corresponding author: Zhicheng Zhao)

(a) Camera View (b) Detection Error

(c) Body Occlusion (d) Background Cluster

(0, 3.6, 0, 11.1)Fig. 1: Illustration of the part misalignment problem caused by camera views,
detection errors, body occlusions and background clutters. The aligned part
pairs are connected with solid lines, while the misaligned part pairs are
connected with dashed lines.

5, 12–14] partition the global person images/features into a
few fixed rigid parts and concentrate on local feature learning
so as to obviate the need for landmark detection. Nevertheless,
such coarse partition is unable to effectively align body
parts without considering fine-grained pose variations within
each part. For achieving fine-grained part alignments, the
landmark-based works [1, 6–11, 23] employ human landmark
annotations or landmark detection networks and then learn
part-aligned features from pose-normalized person images.
Although those works have boosted the ReID performance,
they introduce extra operations to the ReID system, e.g.,
landmark detection and pose normalization. In addition, those
operations bring non-ignorable space and time costs, making
it hard to train the ReID model.

In this work, we propose an effective Grouped Attentive Re-
Identification (GAReID) framework composed of two novel
pooling layers, i.e., Grouped High-Order Pooling (GHOP)
and Attentive High-Order Pooling (AHOP). As we know,
compared with the first-order function, the high-order func-
tion f(x) = xn (n > 1, x ≥ 0) contributes to amplifying the
discrepancies between two dependent variables when two
independent variables are fixed. Motivated by this amplifi-
cation property of the high-order function, the essential idea
behind GAReID is to compute the high-order mapping of part
similarities in order to enlarge the similarity discrepancies
between aligned and misaligned part pairs. Specifically, the
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GAReID is able to highlight aligned part similarities and
suppress misaligned part similarities. Since the high-order
feature similarity between a pair of person images is equivalent
to an average of high-order similarities of both aligned and
misaligned part pairs, the high-order aligned similarities are
likely to dominate the high-order feature similarities. In this
way, the part misalignment problem is effectively alleviated
without relying on landmark detection or feature partition.

Although high-order features contribute to part alignments,
the dimension of high-order features increases exponentially,
which gravely impairs the applications of high-order models.
Therefore, we need to design an effective feature compres-
sion method for high-order features. Inspired by light-weight
networks [24, 25], the proposed GHOP layer adopts channel
group and shuffle strategies to compress the dimension of
high-order features. Specifically, input feature channels are
uniformly divided into different groups and then those groups
are shuffled to disperse the information across feature groups.
Subsequently, we propose Grouped Kronecker Product (GKP)
to employ the Kronecker product for sub-features in each
original and shuffled group to excavate informative high-
order interactions. Since the Kronecker product increases
feature dimensions in each group, we obtain grouped high-
order features by conducting element-wise aggregation, which
can significantly improve the effectiveness of high-order fea-
tures. As background clutters may hinder part alignments, we
put forward an effective foreground attention module named
Adaptive Foreground Attention (AFA) to preserve foreground
regions and eliminate background areas. With the integration
of the GHOP layer and the AFA module, the proposed AHOP
layer is constructed to boost both part-aligned and background-
robust representation learning.

In summary, this paper makes the following contributions:
(1) We analyze the cause of part misalignments and prove
that the high-order mapping of part similarities facilitates fine-
grained part alignments in theory. (2) We propose an effective
GAReID framework with two novel pooling layers, i.e., GHOP
and AHOP. The GHOP layer aims at compressing high-
order features, while the AHOP layer focuses on eliminating
background clutters. (3) The GAReID framework is able to
learn both part-aligned and background-robust representations
without relying on any landmark detection or feature partition,
making it highly generalizable to other unknown pose and
background variations. (4) The GAReID achieves state-of-the-
art ReID performance on Market1501 [26], CUHK03 [27],
DukeMTMC [28] and MSMT17 [29] datasets.

II. RELATED WORKS

A. Person Re-Identification

For relieving part misalignments, prior ReID works can be
roughly summarized into two streams, i.e., part-based and
landmark-based methods. The part-based works [2, 5, 8–
10, 12–14, 30, 31] usually use deep neural networks for learn-
ing discriminative local features. As global features learned
from the full image intend to capture the coarse-grained clues
of appearance, the global feature maps in [2, 12, 14] are
equally divided into multiple horizontal patches to exploit
local details. Based on PCB [2, 12], some following works,

i.e., MGN [5], PyramidNet [13] and HPM [14], extract both
global and local person representations by dividing convolu-
tional feature maps horizontally into multi-grained patches.
To enhance the part alignment of learned representations, the
landmark-based works [1, 6–11, 23] consider extra landmark
knowledges for training ReID networks. For instance, GAN-
based works [6, 7] use auxiliary landmark annotations to
guide the generative model [32] to synthesize pose-specific
person images and supervise the identity encoder model to
mine pose-aligned features. Two-stream networks [33, 34] are
applied in [3] to independently generate appearance and pose
representations which are fused to enable part alignments.
To achieve a more precise alignment, the fine-grained pixel-
level person semantics predicted by DensePose [35] are used
in [11] as an additional regularizer to guide the part-aligned
representation learning from the original images. In order to
solve the occluded person ReID problem, Occluded-ReID [36]
incorporates the pose information to make the ReID model
focus on the body region only and filter noise features brought
by occlusions.

In general, these methods use either local feature partition
or additional landmark information to align person features.
However, the part-based ReID approaches only achieve the
coarse-grained part alignments without considering detailed
pose variations within each part. In addition, it is non-
trivial to obtain landmark-labeled person images or landmark
detection networks in real-world circumstances. Therefore,
the landmark-based models might not generalize well to
new images with unseen pose variations. In this work, the
GAReID heads from a totally disparate but effective idea
that emphasizes the similarity discrepancies between aligned
and misaligned part pairs via a high-order mapping function.
Furthermore, our method is able to automatically rectify part
misalignments without depending on landmark information
or feature partition. Besides, the GAReID framework can be
applied to the field of unsupervised person ReID [37], and
helps unsupervised person ReID models to select more reliable
neighborhoods for each person image. As a result, the pro-
posed GAReID framework has increased practical significance
and application prospect.

B. High-Order Statistics

High-order statistics has been widely studied in traditional
machine learning due to its powerful representation ability.
Recently, the fine-grained visual classification task [38–40] has
shown that the integration of high-order features with deep
networks can bring promising performance improvements.
For person re-identification, Ustinova et al. [41] propose an
architecture based on the deep bilinear convolutional network.
Chen et al. [42] construct a mixed-order attention module to
utilize both low-order and high-order statistics in attention
mechanism, so as to produce discriminative attention propos-
als. Although the two architectures lead to some performance
improvements, they are not explicitly concerned with part
alignments.

Although high-order features exhibit strong representational
capabilities, the dimension of high-order features exponen-
tially increases, which hinders their applications in real-
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Fig. 2: Illustration of the first-order, second-order and third-order functions.
The high-order function contributes to enlarging the difference of dependent
variables when the difference of independent variables are fixed, i.e., ∆y3 >
∆y2 > ∆y1.

world problems. Recently, several works [39, 40, 43, 44]
seek various feature compression methods in order to learn
compact high-order features. For example, both CBP [43]
and KP [39] adopt random feature projections [45–48], but
introduce constant projection matrixes, resulting in additional
non-negligible memory overheads. Besides, they employ Fast
Fourier Transform (FFT) and Inverse Fast Fourier Transform
(IFFT) to simplify convolution operations, but it may be
discommodious to achieve FFT and IFFT on deep learning
frameworks. DBT [40] adopts tensor partition to capture intra-
group interactions, but ignores inter-group interactions. More-
over, since both CBP and DBT are second-order modules, they
are unable to learn higher-order (n ≥ 3) features, which might
severely weaken the generalization capabilities of trained
models. In this work, the GAReID employs both channel
group and shuffle strategies to achieve high-order feature
compression, while promoting the representational capabilities
of compressed high-order features.

C. Attention Mechanism

Attention mechanism, inspired by the human sensing pro-
cess, has been studied extensively in various computer vision
tasks [49]. Specifically, an attention mechanism aims at em-
phasizing informative regions for image representations, while
depreciating harmful ones (e.g., background and occluded
regions). Interestingly, this approach is also efficient and
effective for person re-identification [42, 50–53] because it
can handle person misalignments and background clutters.
For instance, HACNN [50] jointly learns hard region-level
attention and soft pixel-level attention in a unified attention
block. Mancs [51] considers both the channel-wise and spatial-
wise attention in a fully attentional block, where the channel
information is re-calibrated and the spatial structure informa-
tion is also preserved. In addition, SONA [52] introduces a
second-order non-local attention network to directly model
long-range relationships via second-order feature statistics.
As distinguished from previous attention methods, our AFA
module generates foreground attention masks according to
the l2 norms of all spatial features. Interestingly, the AFA
module significantly contributes to discovering useful semantic

regions without introducing any learnable parameters. By
combining the proposed GHOP layer and AFA module, we
build the AHOP layer to jointly relieve part misalignments
and background clutters.

Theorem 1. Suppose
⊗

n u = u
⊗

u
⊗
· · ·

⊗
u and

⊗
n v =

v
⊗

v
⊗
· · ·

⊗
v are two nth-order vectors generated by Kro-

necker product
⊗

with two input vectors u and v, the simi-
larity of nth-order vectors is computed by

〈⊗
n u,

⊗
n v
〉
=〈

u,v
〉n

.

Proof. See the proposition 2 in [54].

III. PROPOSED METHOD

In this section, we first analyze theoretically the cause of part
misalignments. Then we introduce the Grouped High-Order
Pooling (GHOP) and Attentive High-Order Pooling (AHOP)
in the GAReID framework as shown in Fig. 3.

A. Part Misalignment

In this part, we give a theoretical analysis for the cause of
part misalignments in the person ReID task. Given two input
person images Iu and Iv from the same class, we use CNNs
in order to extract two convolutional feature maps U ,V ∈
RC×H×W , where C, H and W denote the channel, height
and width dimension, respectively. Then the two feature maps
are pooled by a Global Average Pooling (GAP) layer [55] to
obtain the corresponding person descriptors as follows,

u =
1

|S|
∑
pu∈S

Upu , v =
1

|S|
∑
pv∈S

V pv , (1)

where Upu ,V pv ∈ RC are two part descriptors at the posi-
tions pu and pv , respectively. The set S = {1, 2, · · · , HW} is
the set of all spatial positions and |S| = HW is its cardinality.
Here, we use the inner product between u and v to measure
the similarity of the two person images,

Sim (Iu, Iv) =
〈 1

|S|
∑
pu∈S

Upu
,
1

|S|
∑
pv∈S

V pv

〉
=

1

|S|2
∑

pu,pv∈S

〈
Upu ,V pv

〉 , (2)

where 〈u,v〉 denotes the inner product between u and v. The
similarity of u and v can be interpreted as an average of part
similarities between |S|2 part pairs.

However, such coarse similarity aggregation may degenerate
into a suboptimal solution, which can be attributed to two
major reasons. The first reason is associated with the im-
balanced quantity distribution between about |S| aligned and
|S| (|S| − 1) misaligned body part pairs. Since the number
of the misaligned pairs (shoulder ↔ hand) is quadratically
larger than the number of the aligned ones (hand ↔ hand),
the similarities of the aligned part pairs may be overwhelmed
by the misaligned part pairs, which might exacerbate the part
misalignment problem to some extent. The second reason is
related to the non-person part descriptors containing various
background clutters. This problem is particularly apparent
when person bodies are partially occluded by other non-person
objects. As a result, the background descriptors may bring an
objectionable bias to the aggregated similarities in Eq. 2.
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Fig. 3: Overview of the proposed GAReID framework. It consists of three parts, i.e., a backbone network, a GHOP layer and an AHOP layer. The backbone
network is input with person images to extract convolutional feature maps. Then we use a series of 1×1 convolutional layers and BatchNorm layers to produce
multiple input feature maps, i.e.,

{
Xi
}n
i=1

and
{
Zi
}n
i=1

. Next, those feature maps are fed into the GHOP and AHOP layers to generate high-order image
and foreground features, respectively. The output features are supervised by triplet loss during training, while we concatenate the two features to compute
cosine similarities during testing.

B. Grouped High-Order Pooling

High-Order Representation: As illustrated in Fig. 1, the
aligned parts usually contain identical semantics while the
misaligned parts have dissimilar semantics, so the aligned
part similarities are likely to be larger than the misaligned
part similarities. However, recent works are unable to exploit
this prior knowledge efficiently, so similarity discrepancies
between aligned and misaligned part pairs may not be sharp
and easy to distinguish. As indicated in Fig. 2, the high-order
function f(x) = xn (n > 1, x ≥ 0) contributes to enlarging
the similarity discrepancies between aligned and misaligned
body-part pairs. Note that we need to add a ReLU layer after
input features to ensure the part similarity is always non-
negative. By taking this high-order function into Eq. 2, a high-
order similarity is defined as,

Sim (Iu, Iv;n) =
1

|S|2
∑

pu,pv∈S

〈
Upu

,V pv

〉n
, (3)

where 〈u,v〉n represents the nth-order part similarity between
parts u and v. As the order n increases, the aligned part
similarities will dominate the aggregated similarity in Eq. 3.
Therefore, the high-order mapping function is beneficial to
solve the part misalignment problem without the requirement
of auxiliary landmark knowledges.

According to Theorem 1, the similarity of high-order fea-
tures is equivalent to the high-order mapping of the first-order
similarity. Subsequently, we reformulate Eq. 3 to simplify the
computation of high-order similarities,

Sim (Iu, Iv;n) =
1

|S|2
∑

pu,pv∈S

〈⊗
n

Upu
,
⊗
n

V pv

〉
=
〈 1

|S|
∑
pu∈S

⊗
n

Upu ,
1

|S|
∑
pv∈S

⊗
n

V pv

〉 . (4)

Hence, a high-order representation is defined as,

x =
1

|S|
∑
px∈S

⊗
n

Xpx . (5)

Since the Kronecker product
⊗

allows all elements of feature
vectors to interact with each other, the high-order features
exhibit strong representational capabilities. Notwithstanding,
the dimension of high-order features increases exponentially,

leading to very high memory consumption O (Cn) and com-
putational complexity O (Cn). Therefore, an effective feature
compression approach is needed to project high-order features
onto a lower dimensional space.

High-Order Compression: Motivated by light-weight net-
work design [24, 25], we propose a novel Grouped Kronecker
Product (GKP) to compress high-order features by using
channel group and shuffle strategies. As shown in Fig. 4, input
feature channels are uniformly divided into G groups which
are then shuffled to help the information dispersion across
feature groups. Then, we employ the conventional Kronecker
product for sub-features in each original and shuffled group,
which contributes to encoding both intra-group and inter-group
high-order interactions. Since the Kronecker product increases
feature dimensions in each group, we further compress high-
order features by conducting element-wise aggregation. This
can significantly improve the effectiveness of high-order fea-
tures. Mathematically, the nth-order GKP operation is formu-
lated as,

G⊗
n
x =



x, n = 1,
G∑

j=1

Ijx
⊗

Ijx+ Îjx
⊗

Îjx, n = 2,

G∑
j=1

(
Ij

G⊗
n−1

x
)⊗

Ijx+
(
Îj

G⊗
n−1

x
)⊗

Îjx, n > 2,

(6)

where Ij ∈ RC
G×C is a block matrix and I = [I1; I2; · · · ; IG]

is an identity matrix. Î ∈ RC×C is the shuffled version of
the identity matrix I . Note that we set G =

√
C to keep

high-order feature dimension unchanged. In this way, the pro-
posed GKP has much lower time complexity O

(
nC2.5

)
and

space complexity O
(
nC2.5

)
than the conventional Kronecker

product. If
√
C is not an integer, we set G = d

√
Ce and

an extra sub-feature with a length G2 − C is generated by
randomly sampling elements from the input feature. Then,
we concatenate the input feature and sampled sub-feature to
produce a new feature with length G2. This fused feature is
used to generate a high-order feature with length G2. Then
we randomly discard G2 − C elements from the high-order
feature to reduce feature length to C.

High-Order Pooling: By applying the GKP into Eq. 5, the
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Fig. 4: A toy example of Grouped Kronecker Product (GKP)
⊗G

n x with n = 2, G = 3 and C = 9. “G1”, “G2” and “G3” represent the first, second and
third group, respectively. The left two vectors are split into 3 groups and then the two subvectors of each group are aggregated by the conventional Kronecker
product to produce a second-order vector with a length 9. The right two vectors are the group-shuffled versions of the left two vectors and then the three
second-order vectors are generated by the same process as the left two vectors. Finally, all six second-order vectors are fused by the element-wise summation
to produce a second-order vector with a length 9.

proposed GHOP layer is defined as,

x =
1

|S|
∑
px∈S

G⊗
n

Xpx . (7)

Since multiple input features provide informative semantic
characteristics of person poses, the high-order interactions
among multiple input features are able to enhance the gen-
eralization ability of the GAReID model. For exploiting those
high-order interactions, we extend the GHOP layer by refor-
mulating Eq. 7 with multiple input features,

x =
1

|S|
∑
px∈S

X1
px

G⊗
X2

px

G⊗
· · ·

G⊗
Xn

px
, (8)

where
⊗G denotes the second-order GKP with n = 2. It

is worth noting that this GHOP layer can be viewed as the
high-order fusion method of multiple input features, which
contributes to mining much richer information than the first-
order method such as channel concatenation.

C. Attentive High-Order Pooling

Foreground Attention: Since aligned background similarities
might introduce noise to the similarity aggregation of Eq. 2,
the background knowledge should be excluded from person
features. Recent studies [56] have found that the largest feature
norms appear above target objects in a classification model
pretrained on ImageNet. Our goal is to bootstrap on this
phenomenon in order to highlight foreground regions without
explicitly introducing learnable parameters. To this end, we
design an attention module named Adaptive Foreground At-
tention (AFA) to produce a binary mask over spatial locations
with using the l2-norm of spatial features. Formally, given a
feature map Z ∈ RC×H×W , we first generate a feature map
T ∈ RH×W by operating the l2 norm for features as,

T p = ‖Zp‖2 , (9)
where T p denotes the response score of T at the position p.
In order to mine foreground parts, we sample the positions
where the response value is larger than an adaptive threshold.
In this way, we produce a foreground position set as,

SF = {p|T p > εT avg} , (10)
where T avg denotes the average response of T and ε = 0.4 is
a hyperparameter controlling the activation threshold. Subse-
quently, the attention mask M ∈ RH×W is formed as,

Mp = αI (p ∈ SF ) + βI (p /∈ SF ) , ∀p ∈ S, (11)
where Mp denotes the attention score of M at the position
p. The indicator function I (·) returns 1 if the input condition

is true; otherwise it returns 0. In our experiments, we set
foreground and background attention values as α = 1.0 and
β = 0.3, respectively.

Ensemble Attention: However, a single attention mask may
not locate the foreground regions accurately because of diverse
variations from person images. Inspired by ensemble learning,
we adopt an element-wise average to fuse multiple attention
masks generated from input feature maps in Eq. 8 as,

M =
1

n

n∑
i=1

M i, (12)

where M i denotes the attention mask of the ith input feature
map Zi. With the combination of the GHOP and AFA layers,
the proposed AHOP layer is defined as follows,

z =
1

|S|
∑
pz∈S

(
MpzZ

1
pz

) G⊗
· · ·

G⊗(
Mpz

Zn
pz

)
. (13)

It is worth noting that this AHOP layer can be viewed
as an attention fusion method, which aggregates different
attention masks to refine the segmentation of foreground and
background regions.

D. Overall Loss Function

In order to train the GAReID framework, we utilize the triplet
loss [58] to learn discriminative high-order features. We define
xa, xp and xn as the anchor, positive and negative high-order
features from the GHOP layer, while za, zp and zn represent
the anchor, positive and negative high-order features from the
AHOP layer. The triplet loss aims at separating the positive
pair from the negative one by a similarity margin m. The
triplet loss is defined as,

Lt =
∑
a,p,n

[〈
x̃a, x̃n

〉
−
〈
x̃a, x̃p

〉
+m

]
+

+
[〈
z̃a, z̃n

〉
−
〈
z̃a, z̃p

〉
+m

]
+

, (14)

where m is set as m = 0.2. The vectors x̃a, x̃p and x̃n are
the l2 normalized features of xa, xp and xn, while z̃a, z̃p

and z̃n are the l2 normalized features of za, zp and zn.

IV. DISCUSSION

A. Feature Visualization

In this part, considering the collaborative effect of high-order
interactions among multiple feature maps in Eq. 8 and 13,
we give a microscopic interpretation from the perspective of
feature visualization, which shows a strong justification of
our method. To some extent, it also reveals the reason why
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Fig. 5: Visualization of feature maps extracted from the first-order (n = 1), second-order (n = 2) and third-order (n = 3) GHOP and AHOP layers. Following
the SIFTFlow [57], we use Principal Component Analysis (PCA) to compress all part descriptors into three-dimensional vectors and then rescale the vector
values into the range of [0, 255] to represent the three color channels of RGB images. In the visualized feature maps, the same color implies that the part
descriptors are similar, whereas different colors indicate the part descriptors are dissimilar. Notably,

{
Xi
}n
i=1

and
{
Zi
}n
i=1

represent the input feature maps
of the nth-order GHOP and AHOP layers, while X and Z represent the output feature maps of the nth-order GHOP and AHOP layers.

the high-order interactions in the GHOP and AHOP layers
contribute significantly to part-aligned and background-robust
representation learning.

As exemplified in Fig. 5, one can observe that the first-order
input feature maps mainly encode the semantics of various
body parts, including heads, hands, shoulders and legs, and
their corresponding colors differ depending on their spatial
positions. Furthermore, the part descriptors with the same po-
sitions from different input feature maps are shown in different
colors due to the diversity of multiple input feature maps. In
Fig. 5a, the high-order output feature maps concentrate on
encoding the discriminative body parts (e.g., heads, shoulders
and legs) to represent person identities, while the low-order
output feature maps focus on capturing coarse-grained appear-
ance information. Hence, the high-order interactions from the
GHOP layer are beneficial as they enhance pose-invariance
within the learned person features. In Fig. 5b, the proposed
AHOP layer is able to remove background regions and retain
foreground areas of the input feature maps. This contributes
to high-order background-invariant representation learning.

B. Similarity Visualization

Based on the high-order similarity aggregation in Eq. 3,
we provide another macroscopic explanation from high-order
feature similarities. In a sense, it also furnishes a valuable
angle for the understanding of the relationship between high-
order feature similarities and fine-grained part alignments.

As illustrated in Fig. 6, the maximum part similarity of the
high-order features is clearly larger than the similarity of the
low-order features, while the minimum part similarity remains
largely unchanged for all orders. In addition, the number of
misaligned part pairs with prominent similarities consistently
decreases along with the increase of feature order. Compared
with the GHOP layer, the AHOP layer distinctly reduces
the similarities of background part pairs, which reinforces
the background-robust representation learning. Moreover, the
increase amplitude of the maximum part similarity in the
AHOP layer is evidently larger than the similarity of the
GHOP layer with the same increase of feature orders. This
observation indicates that the background removal alleviates
the part misalignment problem.

C. Landmark Visualization

As suggested in prior works [8–10], the semantic knowledge
of person landmarks is likely to remain unchanged, even
when drastic pose variations have taken place. Besides, person
pose variations mainly reflect the landmark distribution of
person images. Therefore, to analyze the effectiveness of
part alignments, it is worth exploring the high-order semantic
interactions between different landmark pairs.

Given a pair of images Iu and Iv of the same person,
we extract a pair of output feature maps U and V from the
first-order, second-order, and third-order GHOP/AHOP layers.
Then, we adopt an existing OpenPose [34] to detect 16 body
landmarks for the two person images. In order to extract
landmark descriptors, we upsample the output feature maps
with the cubic interpolation to have the same size as the input
images and then the landmark features are acquired from the
resized feature maps according to landmark positions. Finally,
the cosine similarities of 16×16 landmark pairs from the two
images are computed to form a similarity confusion matrix.
The results shown in Fig. 7 well demonstrate that the high-
order part features can successfully learn landmark correspon-
dences between the two images without using landmark an-
notations. Specifically, compared with the low-order features,
the high-order features are able to significantly enlarge the
similarity discrepancies between aligned and misaligned land-
mark pairs. More interestingly, the comparison between the
GHOP and AHOP layer certifies that foreground region mining
is conducive to highlighting the semantic correspondences of
person landmarks.

D. Attention Visualization

In this part, we provide an intuitive interpretation by visu-
alizing foreground attention masks to study the impact of the
proposed AFA module. The visualized results demonstrate the
superiority of the proposed ensemble attention strategy for the
person ReID task. To some degree, the interpretation also
clarifies the reason why learning foreground-based features
is more helpful to part alignments than learning image-based
features.

Given an input person image Ix, we extract individual
attention masks {M i}ni=1 and ensemble attention masks M
from the first-order (n = 1), second-order (n = 2) and third-
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(e) AHOP (n = 2), max
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Fig. 6: Part similarity visualization of H2W 2 part pairs. Given a pair of images from the same person, we extract a pair of output feature maps from the
first-order (n = 1), second-order (n = 2) and third-order (n = 3) GHOP/AHOP layers. The two feature maps are individually normalized by dividing the
l2 norms of spatially pooled features. Finally, the similarity matrix is calculated by the inner product of all H2W 2 part pairs. Note that “max” and “min”
denote the maximal and minimal part similarities, respectively.

order (n = 3) AHOP layers. To better visualize the spatial
relationships between confidence maps and body parts, the
low-resolution attention mask is upsampled using the cubic
interpolation to have the same size as Ix. Then we merge
both attention masks and person images by alpha blend-
ing. For interpreting the effectiveness of the proposed AFA
method, we analyze the three attention generation methods,
including “l2 Norm”, “Avg” and “Max”. In particular, “l2
Norm”, “Avg” and “Max” represent that the l2 norms, average
values and maximal values along the channel dimension are
used to generate attention masks, respectively. As seen in
Fig. 8, “Avg” performs the worst among the three attention
generation methods because it is unable to finely discriminate
foreground regions from background ones. In other words,
“Avg” mixes up foreground and background knowledge, which
may hinder the background-robust representation learning.
On the whole, both “l2 Norm” and “Max” can successfully
capture foreground regions and eliminate background areas
without using person segmentation annotations. Compared
with “Max”, “l2 Norm” performs foreground detection with
a more fine-grained manner. For example, when the order
factor n = 2 or n = 3, “Max” is unable to detect the
foreground regions of person legs, while “l2 Norm” is capable
of avoiding a few residual background problems. Furthermore,
as the order n increases, the foreground attention quality of
“l2 Norm” consistently improves with a significant margin.
More interestingly, compared with individual attention masks
{M i}ni=1, our ensemble attention mask M is beneficial to
preserve discriminative foreground regions and remove hard
background areas.

E. Similarity Attention

In order to analyze the impact of the proposed AHOP layer, we
reformulate the high-order similarity between the two images
Iu and Iv as,

Sim (Iu, Iv;n) =
〈
u,v

〉
=

1

|S|2
∑

pu,pv∈S

〈
Mu

pu
Upu

,Mv
pv
V pv

〉n
=

1

|S|2
∑

pu,pv∈S

(
Mu

pu
Mv

pv

)n〈
Upu ,V pv

〉n, (15)

where Mu and Mv represent foreground attention maps
of the two images Iu and Iv , respecively. Additionally,(
Mu

pu
Mv

pv

)n
can be viewed as the nth-order similarity

attention between pu and pv . To illustrate the effectiveness
of foreground attention, we consider four part-pair cases, i.e.,
Foreground-Foreground (FF), Foreground-Background (FB),
Background-Foreground (BF) and Background-Background
(BB). If the body-part pair belongs to the FF case, then
Mu

pu
Mv

pv
= 1 always holds and its high-order similarity

attention keeps unchanged as follows,
lim
n→∞

(
Mu

pu
Mv

pv

)n
= 1. (16)

If the part pair belongs to FB, BF or BB, then Mu
pu
Mv

pv
< 1

always holds and its high-order similarity attention dramati-
cally decreases as follows,

lim
n→∞

(
Mu

pu
Mv

pv

)n
= 0. (17)

To sum up, the high-order similarity attention contributes to
reducing the part similarity of FB, BF and BB pairs, while
maintaining the similarity of FF pairs. As the order factor
n → ∞, the person similarity is equivalent to an average of

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/TNNLS.2022.3209537, 
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Fig. 7: Landmark similarity visualization of a pair of images from the same person. We employ OpenPose [34] to detect 16 body landmarks and then 16
landmark features are extracted from the first-order (n = 1), second-order (n = 2) and third-order (n = 3) GHOP/AHOP layers. Then, the cosine similarities
of 16 × 16 landmark pairs from the two images are computed to form a similarity confusion matrix.

the similarities of aligned foreground part pairs, resulting in
both part-aligned and background-robust person ReID.

F. Gradient Optimization

Finally, to assess the collaborative impact of high-order fea-
tures on metric learning, we provide another theoretical anal-
ysis based on the gradient optimization for the triplet loss.

In order to simplify the following analysis, we ignore the l2
normalization for high-order features. If we suppose that the
high-order features are directly aggregated by the Kronecker
product, the triplet loss is formulated as,

L =
[〈
za, zn

〉
−
〈
za, zp

〉
+mt

]
+

=
[ 1

|S|2
∑

pa,pn∈S

(
Ma

pa
Mn

pn

)no
〈
Za

pa
,Zn

pn

〉no

− 1

|S|2
∑

pa,pp∈S

(
Ma

pa
Mp

pp

)no
〈
Za

pa
,Zp

pp

〉no
+mt

]
+

,

(18)
where no is the order coefficient of attentive high-order
features. In addition, Za

pa
denotes the part feature vector of

the anchor feature map Za at the position pa, while Ma
pa

refers to the attention value of the anchor attention mask Ma

at the position pa. In the same way, a similar definition is also
adopted to the positive/negative feature maps (Zp

pp
and Zn

pn
)

and attention masks (Mp
pp

and Mn
pn

). For optimizing Eq. 18,
we can calculate its gradient with respect to Za

pa
, Zp

pp
and

Zn
pn

as follows,
∂L
∂Za

pa

=
no
|S|2

∑
pn∈S

(
Ma

pa
Mn

pn

)no−1〈
Za

pa
,Zn

pn

〉no−1
Zn

pn

− no
|S|2

∑
pp∈S

(
Ma

pa
Mp

pp

)no
〈
Za

pa
,Zp

pp

〉no−1
Zp

pp
,

∂L
∂Zp

pp

= − no
|S|2

∑
pa∈S

(
Ma

pa
Mp

pp

)no
〈
Za

pa
,Zp

pp

〉no−1
Za

pa
,

∂L
∂Zn

pn

=
no
|S|2

∑
pa∈S

(
Ma

pa
Mn

pn

)no
〈
Za

pa
,Zn

pn

〉no−1
Za

pa
,

(19)
if the margin constraint of Eq. 18 is violated, or zero otherwise.
To simplify the above formulas, we define

W an
papn

=
(
Ma

pa
Mn

pn

)no
〈
Za

pa
,Zn

pn

〉no−1
,

W ap
papp

=
(
Ma

pa
Mp

pp

)no
〈
Za

pa
,Zp

pp

〉no−1
,

(20)

where W an
papn

and W ap
papp

can be viewed as two weight
coefficients for different part pairs. Consequently, Eq. 19 can
be rewritten as,

∂L
∂Za

pa

=
no
|S|2

∑
pn∈S

W an
papn

Zn
pn
− no
|S|2

∑
pp∈S

W ap
papp

Zp
pp
,

∂L
∂Zp

pp

= − no
|S|2

∑
pa∈S

W ap
papp

Za
pa
,

∂L
∂Zn

pn

=
no
|S|2

∑
pa∈S

W an
papn

Za
pa
.

(21)
According to Eq. 21, the gradient term with respect to Za

pa

is equivalent to the difference between the weighted average
of all positive and negative part descriptors. Similarly, the
gradient terms with respect to Zp

pp
and Zn

pn
are equivalent to

the weight average of all part descriptors of anchor samples.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/TNNLS.2022.3209537, 
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Fig. 8: Attention mask visualization of the three attention methods. In each visualized attention, the red areas refer to the foreground regions while the purple
ones are associated with the background clutters. We extract individual attention masks

{
M i

}n
i=1

and ensemble attention masks M from the first-order
(n = 1), second-order (n = 2) and third-order (n = 3) AHOP layers. “l2 Norm”, “Avg” and “Max” represent that the l2 norms, average values and maximal
values along the channel dimension are used to generate attention masks, respectively.

When no ≥ 2, the two weight coefficients W an
papn

and
W ap

papp
can be viewed as attentive (no−1)th-order feature sim-

ilarities. As the order no increases, the gradients of aligned part
descriptors are highlighted over those of the misaligned parts.
In this case, the gradient term ∂L/∂Za

pa
pushes the anchor

descriptor Za
pa

close to the aligned positive part descriptors
and away from the aligned negative part descriptors. Likewise,
∂L/∂Zp

pp
pushes the positive part descriptor Zp

pp
close to the

aligned anchor part descriptors, whilst ∂L/∂Zn
pn

keeps the
negative part descriptor Zn

pn
away from the aligned anchor

part descriptors. On the basis of the analysis in Sec. III-C, the
attention factors, i.e.,

(
Ma

pa
Mn

pn

)no and
(
Ma

pa
Mp

pp

)no , are
able to reduce the background effects on similarity aggrega-
tion. Accordingly, the composition of background gradients
is effectively eliminated for Eq. 21. To some degree, this
explains why the background removal contributes to enabling
part alignment for the ReID task.

When no = 1, the two weight coefficients are reformu-
lated as W an

papn
= Ma

pa
Mn

pn
and W ap

papp
= Ma

pa
Mp

pp
,

respectively. Therefore, the weight coefficient of the first-order
AHOP layer is equivalent to the product of two attention val-
ues. Although the attention product encodes the relationships
between a pair of spatial positions, there is no guarantee that
the attention product of the aligned part pair will be larger than
the misaligned part. For example, if both hands and legs have
very large attention values, the aligned (leg ↔ leg and hand
↔ hand) and misaligned (leg ↔ hand) part pairs might have
similar values of attention product. Thus, the gradient terms
of the first-order model contain both aligned and misaligned
part descriptors, which might generate even totally erroneous
gradient directions for backpropagation optimization.

According to the above analysis, the weight coefficient can
be treated as a regularization term to regulate the gradient
direction, which explains well the reason why the high-
order features enhance the generalization ability of the ReID
model. In summary, by considering the collaborative effort
of all gradient terms, we could understand better the working
principle of the proposed GAReID framework. Our framework
not only enables regularization for the gradient direction but
also enhances the part-alignment and background-robustness

properties within features.

V. EXPERIMENTS

A. Dataset

Market1501 [26]: It contains 32,668 images of 1,501 persons
captured by six camera views. The whole dataset is divided
into a training set containing 12,936 images of 751 persons
and a testing set containing 19,732 images of 750 persons. For
each person in the testing set, we select one image from each
camera as a query image, forming 3,368 queries following the
standard setting in [26].

CUHK03 [27]: It contains 14,097 images of 1,467 persons,
captured by six camera views. Two types of person images are
provided: manually-labeled person bounding boxes (Labeled)
and automatically-detected bounding boxes (Detected). We use
the settings of both labeled and detected person images on the
splits in [71], where 767 and 700 persons are used for training
and testing, respectively.

DukeMTMC [28]: It contains 36,411 images of 1,812
persons captured by 8 cameras, where only 1,404 persons
appeared in more than 2 cameras. The other 408 persons
are regarded as distractors. The training set contains 16,522
images of 702 persons while the testing set contains 2,228
query images of 702 persons and 17,661 gallery images.

MSMT17 [29]: It contains manually annotated 126,441
bounding boxes of 4,101 persons, which is currently the largest
person ReID dataset. All images are captured by the 15-camera
network deployed in campus, which contains 12 outdoor
cameras and 3 indoor cameras. The training set contains
32,621 bounding boxes of 1,041 persons, and the testing set
contains 93,820 bounding boxes of 3,060 persons. From the
testing set, 11,659 bounding boxes are randomly selected as
query images and the other 82,161 bounding boxes are used
as gallery images.

B. Implementation Details

Network Architecture: We take the ResNet-50/101 [59]
initialized with the parameters pretrained on ImageNet [72] as
the backbone network. Following the work [14], the last fully-
connected layer and global average pooling layer are removed
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TABLE I: Comparison with state-of-the-art methods on Market1501 [26], CUHK03 [27], DukeMTMC [28] and MSMT17 [29] datasets. CUHK03-L and
CUHK03-D use labeled and detected bounding boxes to crop person images on CUHK03, respectively. Two baseline models based on ResNet50/101 [59]
are trained with triplet loss and global features are extracted from the GAP layer to perform ReID evaluation.

Method Market1501 CUHK03-L CUHK03-D DukeMTMC MSMT17
Rank1 mAP Rank1 mAP Rank1 mAP Rank1 mAP Rank1 mAP

PDC [60] 84.14 63.41 - - - - - - 58.00 29.70
GLAD [1] 89.90 73.90 - - - - - - 61.40 34.00

HACNN [50] 91.20 75.70 44.40 41.00 41.70 38.60 80.50 63.80 - -
PAB [3] 91.70 79.60 - - - - 84.40 69.30 - -

PCB + RPP [2] 93.80 81.60 63.70 57.50 - - 83.30 69.20 68.20 40.40
MGN [5] 95.70 86.90 68.00 67.40 66.80 66.00 88.70 78.40 - -

IANet [61] 94.40 83.10 - - - - 83.10 73.40 75.50 46.80
DSAReID [11] 95.70 87.60 78.90 75.20 78.20 73.10 86.20 74.30 - -

MHN [42] 95.10 85.00 77.20 72.40 71.70 65.40 89.10 77.20 - -
OSNet [62] 94.80 84.90 - - 72.30 67.80 88.60 73.50 78.70 52.90
SAN [63] 96.10 88.00 80.10 76.40 79.40 74.60 87.90 75.50 79.20 55.70

RGA-SC [64] 96.10 88.40 81.10 77.40 79.60 74.50 - - 80.30 57.50
LEAP-CF [65] 93.50 84.20 - - - - 87.80 74.20 76.70 50.80

GASM [66] 95.30 84.70 - - - - 88.30 74.40 79.50 52.50
PISNet [67] 95.60 87.10 - - - - 88.80 78.70 - -

ISP [68] 95.30 88.60 76.50 74.10 75.20 71.40 89.60 80.00 - -
ReID-NAS [69] 95.10 85.70 - - - - 88.10 74.60 79.50 53.30

Occluded-ReID [36] 92.70 81.30 - - - - 86.20 72.60
RFC [70] 95.20 89.20 - - 81.10 78.00 90.70 80.70 82.00 60.20

ResNet50 + GAP 93.53 84.83 76.57 74.37 75.71 72.10 85.59 72.84 69.31 44.43
ResNet50 + GAReID 96.13 89.42 82.04 81.02 80.20 78.76 89.28 81.64 80.57 58.73

ResNet101 + GAP 93.82 86.58 81.21 78.84 77.21 75.13 86.94 76.01 73.63 49.75
ResNet101 + GAReID 96.45 90.76 86.21 83.80 84.64 82.03 91.04 82.13 82.40 61.22

and the stride of the last residual block Conv4 1 is set from
2 to 1 for increasing the feature map size.

Data Processing: In order to obtain enough context infor-
mation from person images and a proper size of feature map
for the proposed LTReID framework, we first resize training
images to 384 × 128. Then we randomly crop each training
image with scale in the interval [0.64, 1.0] and aspect ratio
[2, 3]. Third, we resize these cropped images back to 384×128.
Following the work [51], the training images are augmented
with horizontal flipping and random erasing [73]. Before it
is sent to the network, each image is subtracted from the
mean values [0.485, 0.456, 0.406] and divided by the standard
deviations [0.229, 0.224, 0.225] according to normalization
procedure when using the pretrained model on ImageNet.

Training/Testing Configurations: Since triplet loss is used
to learn person features, we need to adopt an appropriate
triplet sampling strategy. To simplify this procedure, triplets
are generated using the PK sampling method [74], which ran-
domly samples P classes and then randomly selects K images
for each person to form a mini-batch with the size P × K.
In a mini-batch, we use all possible PK (PK −K) (K − 1)
combinations of triplets for triplet loss. For all datasets, P and
K are set to 16 and 4, respectively. Following the work [3],
we use the Stochastic Gradient Descent (SGD) algorithm to
minimize the overall loss function, where the initial learning
rate, weight decay and momentum are set to 0.01, 2 × 10−4

and 0.9, respectively. The learning rate is decreased by a
factor of 5 after every 200 epochs and all models are trained
for 750 epochs. As for the testing phase, we use the cosine
distance to measure the similarities between the probe and
gallery images. Besides, Mean Average Precision (mAP) and
Rank1 (R1) accuracy are used for evaluation. All our methods
are implemented on PyTorch [75]. All experiments run on a
server with 2 Intel(R) Xeon(R) E5-2620 v4@2.10GHz CPUs,
4 GeForce GTX 1080 Ti GPUs and 128G RAM.

TABLE II: Comparative experiments using different attention mechanism
methods. “l2 Norm”, “Avg” and “Max” represent that the l2 norms, average
values and maximal values along the channel dimension are used to generate
attention masks, respectively. Note that all models use ResNet50 as the
backbone.

Method mAP
Market1501 CUHK03-D DukeMTMC MSMT17

SE [76] 89.13 78.50 81.44 58.34
AG [62] 89.40 78.69 81.47 58.72

w/o. Atten 89.00 78.44 81.42 58.03
Avg 87.47 74.37 79.65 57.42
Max 88.33 76.95 80.12 57.79

l2 Norm 89.42 78.76 81.64 58.73

C. Comparison with State-of-the-Art Methods

In Table I, we compare the proposed GAReID with current
state-of-the-art methods on the four person ReID datasets.
From the results we can see that our method achieves the best
ReID performance on each dataset. Specifically, the proposed
GAReID based on ResNet50 outperforms the previous best
performed SAN [63] by 4.16% in mAP on CUHK03-D.
Although our method performs closely to ISP [68] on Mar-
ket1501 and DukeMTMC datasets, our method can achieve
a slightly higher accuracy in a very simple yet effective way.
This is because the GAReID performs superior part alignment
with only identity labels while other methods require landmark
annotations or body partition during the training and testing
phases. Compared with other datasets, the MSMT17 dataset
presents the following challenges: (1) large number of person
identities, bounding boxes and cameras; (2) complex scenes
and backgrounds; (3) multiple time slots with severe lighting
changes. Although all compared methods achieve lower accu-
racies on MSMT17 than other datasets, the proposed GAReID
is the best-performing method, outperforming the second best
method by 1.23% for mAP. This clearly demonstrates that the
GAReID achieves a satisfactory generalization on the large-
scale dataset.
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TABLE III: Ablation studies of different modules on Market1501, CUHK03, DukeMTMC and MSMT17 datasets. “HOP”, “MF”, “GS” and “EA” represent
high-order pooling, multiple feature input, group shuffle and ensemble attention, respectively. Note that all models use ResNet50 as the backbone.

Method mAP
HOP MF GS EA Market1501 CUHK03-D DukeMTMC MSMT17

8 8 8 8 84.83 72.10 72.84 44.43

4 8 8 8 87.69 76.01 78.83 51.46
4 4 8 8 88.52 77.63 80.50 56.99
4 4 4 8 89.00 78.44 81.42 58.03
4 4 4 4 89.42 78.76 81.64 58.73
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Fig. 9: Ablation studies on Market1501 [26] and DukeMTMC [28] datasets.
(a) Analyzing the impact of the order n. (b) Comparing different order fusion
strategies, “(1,2)” means that the first-order and second-order features are
fused by channel concatenation.

D. Ablation Study

Feature Order: We first study the impact of the order of
high-order features. As seen in Fig. 9(a), we can observe two
interesting phenomena. First, a higher feature order benefits
person ReID performance. The mAP scores of Market1501
and DukeMTMC datasets increase consistently until they reach
a stable performance. For example, the third-order feature
(n = 3) outperforms the first-order feature (n = 1) by
3.57% and 7.99% in terms of mAP on Market1501 and
DukeMTMC datasets, respectively. Second, increasing the
order (n > 3) makes a limited contribution to the mAP
improvement compared with n = 3. To some extent, this is
because the third-order pooling layer has largely eliminated
part misalignments. Therefore, there is little room for further
part alignment improvements. To sum up, we recommend
n = 3 for the GAReID as it strikes a satisfactory balance
between the computational efficiency and ReID performance.

Order Fusion: We explore the effectiveness of order fusion
by averaging features from different orders. Two interesting
observations can be made in Fig. 9(b). First, compared with
low-order features (n = (1, 2)), fusing high-order features
(n = (2, 3)) always benefits person ReID performance. The
main reason is that the high-order features help to reduce
the person part misalignment problem. Second, compared
with single-order features (n = 3), mixed-order features
(n = (1, 2, 3)) may significantly degrade ReID accuracies. To
some extent, this is because fusing too many low-order feature
is unable to highlight the discriminative information.

Attention Generation: We compare the performance of
different attention generation methods on Market1501 and
DukeMTMC datasets. The results in Table II show that the
“l2 Norm” consistently achieves superior mAP scores than
other attention methods. This suggests that “l2 Norm” is
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Fig. 10: Ablation studies on Market1501, CUHK03 and DukeMTMC datasets.
(a) Analyzing different network architectures. (b) Analyzing different pooling
layers.

more suitable to mine foreground regions than other methods.
Moreover, we observe that “Avg” achieves the worst mAP
score than the model without using attention. As illustrated in
Fig. 8, the main reason is that “Avg” can be viewed as a low-
pass filter which removes some discriminative information. In
view of performance and efficiency, we adopt the “l2 Norm”
to generate foreground attention masks in this work.

Multiple Feature Fusion: In this part, we examine the
effectiveness of multiple feature fusion in Eq. 8 and 13.
Specifically, the multiple feature fusion represents that mul-
tiple features are aggregated by the Kronecker product, while
the single feature input denotes that the multiple duplicates of
the single feature are aggregated by the Kronecker product.
From the results in Table III, it can be observed that the
multiple feature fusion performs better than the single feature
input on the three datasets. The major reason is that the
multiple features are able to bring richer pose knowledges
than the single feature, resulting in a very strong high-order
representational capability for the ReID models.

Group Shuffle: Since the channel group strategy is crucial
to high-order feature compression, we need to explore the
impact of the group shuffle strategy on enhancing the gen-
eralization capability of ReID models. From Table III, we can
observe that the group shuffle strategy consistently improves
ReID performance with a significant margin on the three
datasets. This is because the group shuffle strategy encodes
the inter-group interactions, which are beneficial to enrich the
information of compressed high-order features.

Ensemble Attention: In this part, we investigate the im-
pact of the ensemble attention on background-robust feature
learning. We also design the independent attention masks for
different input features to eliminate background regions. From
the results reported in Table III, we notice that the ensemble
attention achieves significant ReID performance improvements
over the independent attention. This observation indicates

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/TNNLS.2022.3209537, 



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 12

TABLE IV: Analysis of computational costs. “ResNet50 + Cat + GAP” represents multiple output features are concatenated (Cat) for testing, which can be
viewed as the additional baseline model for “ResNet-50 + GHOP”. “ResNet50 + Atten + Cat + GAP” denotes that foreground-based features are obtained by
attention maps and then both image-based and foreground-based features are concatenated for testing, which can be viewed as the additional baseline model
for “ResNet50 + GHOP + AHOP”. The inference time and speed of all models are tested on a single GeForce GTX 1080 Ti GPU.

Method #Features #Parameters FLOPS Speed (fps) Time (ms) mAP
Market1501 CUHK03-D DukeMTMC MSMT17

ResNet50 + GAP 1 24.56M 6.28G 125.34 7.98 84.83 72.10 72.84 44.43

ResNet50 + Cat + GAP 2 25.61M 6.39G 122.76 8.15 85.27 72.87 73.01 45.76
ResNet50 + Atten + Cat + GAP 2 26.66M 6.50G 121.83 8.21 85.76 72.99 73.40 45.82

ResNet50 + CBP [43] 2 26.13M 6.43G 120.97 8.27 87.02 76.32 77.62 55.22
ResNet50 + MFB [77] 2 25.61M 6.39G 121.54 8.23 86.34 74.71 76.50 54.81
ResNet50 + DBT [40] 2 25.61M 6.40G 119.98 8.33 86.96 75.64 77.03 55.01

ResNet50 + GHOP 2 25.61M 6.40G 121.20 8.25 87.27 77.00 78.82 56.34
ResNet50 + GHOP + AHOP 2 26.66M 6.54G 119.87 8.34 88.66 77.34 79.46 57.26

ResNet50 + Cat + GAP 3 26.13M 6.46G 114.65 8.72 85.34 72.66 73.15 45.92
ResNet50 + Atten + Cat + GAP 3 27.71M 6.62G 110.07 9.09 85.57 72.90 73.36 46.27

ResNet50 + KP [39] 3 26.92M 6.53G 109.03 9.17 87.56 77.57 79.43 57.76
ResNet50 + MFH [78] 3 26.13M 6.46G 113.41 8.82 87.02 76.34 79.14 57.55

ResNet50 + GHOP 3 26.13M 6.50G 112.38 8.90 88.03 78.25 80.00 57.73
ResNet50 + GHOP + AHOP 3 27.71M 6.74G 109.88 9.10 89.42 78.76 81.64 58.73

that the ensemble attention, by integrating multiple attention
masks, can reduce the influence of background clutters more
effectively and generate better background-robust features.

Network Architecture: As shown in Fig. 3, we use different
BN layers for different input branches. The impact of the
BN layer for high-order feature learning can be observed in
Fig. 10(a). As seen, using the BN layer achieves significant
improvements on the three datasets, which justifies that the
normalized features contribute to learning discriminative high-
order representations. As mentioned in Sec. III-B, we need
to add a ReLU layer after input features to ensure the part
similarity is always non-negative. Therefore, it is worthwhile
to examine whether the GAReID can perform satisfactory part
alignments without ReLU. From the results in Fig. 10(a), we
observe that the GAReID without ReLU achieves superior
performance than the architecture with ReLU. This is because
ReLU causes “dead” neurons when their activation values are
negative. In other words, ReLU restricts the distribution of fea-
ture maps to a non-negative space and ignores the information
of negative neurons. This might impair the representational
capability of high-order features. In line with the findings of
the above analysis, we use the BN layer instead of the ReLU
layer as default.

Pooling Layer: In this part, we investigate the contributions
of the GHOP and AHOP layers on part-aligned representation
learning. In Fig. 10(b), the results show that the AHOP layer
consistently achieves superior mAP scores than the GHOP
layer. This phenomenon indicates that foreground-based fea-
tures are more suitable than image-based features in part
alignment tasks. To show the effectiveness of the joint learning
of the two features, we concatenate them along the feature
dimension to obtain complete person representations. We
observe that the leveraging of these two features significantly
outperforms either of them on the three datasets. In other
words, the foreground-based features have some advantages
over the image-based ones, but they are complementary to each
other. Therefore, our proposed system simultaneously learns
both image-based and foreground-based features.

Computational Costs: In Table IV, we further analyze
the computational costs of the proposed GAReID framework.
Compared with “ResNet50 + GAP”, “ResNet50 + GHOP”
achieves superior performances and only brings 1M ∼ 2M

additional network parameters. Compared with “ResNet50 +
Cat + GAP”, “ResNet50 + GHOP” has similar computational
costs but achieves higher mAP scores, which shows that
the improvements of the GHP layers are not brought by
the additional computational costs. Besides, “ResNet50 +
GHOP + AHOP” performs better than “ResNet50 + Atten
+ Cat + GAP” when similar model parameters are used. We
also compare the GAReID with other pooling methods, i.e.,
CBP [43], MFB [77], DBT [40], KP [39] and MFH [78]. The
comparison results show that the proposed GHOP and AHOP
are able to encode more discriminative high-order features than
other pooling methods. More interestingly, the running speed
of the GAReID is more than 109 FPS, which is fast enough
for video-based person ReID in real-time.

VI. CONCLUSION

In this paper, we propose a Grouped Attentive Re-Identification
(GAReID) framework to alleviate the pose misalignment prob-
lem for person re-identification. The proposed framework de-
signs the Grouped High-Order Pooling (GHOP) and Attentive
High-Order Pooling (AHOP) layers to learn image-based and
foreground-based high-order features, respectively. Besides,
we put forward a novel feature compression method named
Grouped Kronecker Product (GKP) to reduce the dimension of
high-order features. Our theoretical analysis shows that high-
order features facilitate pose alignments without depending on
landmark detection or feature partition. Extensive experiments
demonstrate that the GAReID framework achieves state-of-
the-art performance on various person datasets. In the future,
we will extend this work to the fields of attribute recognition,
face recognition and vehicle re-identification, where the part
misalignment problem is prevalent.
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