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a b s t r a c t

Due to more affordable solar and wind power, and the European Union regulations for decarbonisation
of the economy, more than 40% of the Fortune 500 companies have targets related to green energy.
This is one of the main reasons why multi-technology Power-Purchase Agreements (PPAs) are
becoming increasingly important. However, there are risks associated with the uncertainty and variable
generation patterns in wind speed and solar radiation. Moreover, there are challenges to predict
intermittent wind and solar generation for the forecasting horizon required by PPAs, which is usually
of several years. We propose a long-term wind and solar energy generation forecasts suitable for PPAs
with cost optimisation in energy generation scenarios. We use Markov Chain Monte Carlo simulations
with suitable models of wind and solar generation and optimise long-term energy contracts with
purchase of renewable energy.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Energy is the backbone of modern economy, with increasing
eed of electrification of various areas (such as transport) under
he policies related to climate change, sustainability, and security
f supply. Consumers, investors and politicians have been work-
ng on developing more efficient and sustainable ways to meet
heir electricity requirements.

According to Fulbright et al. (2021), more than 40% of For-
une 500 companies have targets related to renewable energy
rocurement, energy efficiency or cutting Greenhouse Gas Emis-
ions (GHG). One example is Google, whose target in 2010 was
o achieve 100% renewable energy by 2017 for their global oper-
tions, including data centres and offices (Hölzle, 2017).
With development of more efficient solar power technologies,

his type of renewable energy supply becomes a viable option,
conomically and environmentally, for development of energy-
emanding industries, such as crypto-currency mining (Nikzad
nd Mehregan, 2022) and field irrigation (Nikzad et al., 2019).
esla is building a solar farm of 3.8MW for bitcoin mining (More,
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2022) in Texas, US. This illustrates the new technologies appear-
ing on the interface of renewable energy generation and user
demand needs.

As defined in Jenkins et al. (1999), a Power Purchase Agreement
s a long-term contract between an Independent Power Producer
IPP) and an off-taker, usually an energy-intensive organisations
r an utility company. PPAs are seen as a hedging tool by many
rganisations, as they offer an opportunity for energy buyers to
chieve price certainty beyond 3–5 years, and at the same time
eet their sustainability objectives.
Mature renewable technologies were price-competitive in

020 and could offer prices for their intermittent output at
ll-time lows. In 2021, economic turmoil has affected most com-
odity markets, and as a result, Levelized Costs of Electricity

LCOEs) of all electricity-producing technologies. Renewables in
022, still offer electricity at a discount compared with fossil-
uelled power plants. This trend, albeit being delayed by various
conomic circumstances, defines the future energy systems.
The intermittency of renewable technologies is one of the

ain challenges in renewable PPAs. Many corporations are reluc-
ant to be exposed to this risk, despite the fact that it constitutes
nly a small fraction of the total value of a PPA.
In physically-settled PPAs, which is the most commonly used

tructure, there is usually a Balancing Responsible Party that
ndertakes the balancing tasks, which are necessary to achieve

ffective hedging via PPAs. The balancing responsibilities should
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eflect three types of risks, which are related to variable genera-
ion patterns (Hedges et al., 2019):

• Balancing risk: Risk associated to the exposure of power
system costs that arise when an asset’s forecasted gener-
ation is different from its actual generation. This risk is
related to the imbalance cost, therefore the more an asset
contributes to the power system’s imbalance, the higher the
cost.

• Shape or profile risk: This risk is related to the variability
of wind speed or solar irradiation, and is independent of the
total volume generated by the asset, which will differ from
a 24-hour base-load delivery quoted for standard products.

• Volume risk: It captures the variable generation of an asset
over a certain period of time. This can be related to devia-
tions in the long-term, such as higher than expected wind
speed or lower levels of irradiation due to, for example,
abnormal weather conditions or unplanned outages.

Risks can be mitigated depending on the structure of the PPA
ontract itself (Brindley, 2020), but also by achieving the best
ossible forecast for both wind and solar generation. We consider
long-term scale forecasting horizon, of at least one year, for
ind and solar generation.
Wind generation forecasting has always been of interest for

nergy community, as estimation of wind generation forecast
nfluences sizing reserves and shape-balancing risk (Gil et al.,
010; Constantinescu et al., 2009; Lowery and O’Malley, 2012;
auch et al., 2013). The authors (Wilczak et al., 2015) point out

he importance of wind forecast, but their aim is to improve the
ccuracy of short-term wind forecast. In another example, Solari
t al. (2012) uses geostrophic wind data to forecast wind speed
or port safety, but the maximum horizon achieved is in the order
f days. Similarly, Cheng et al. (2017) aims to forecast wind speed
sing anemometer data, but the forecast horizon is short-term.
lso, Lange et al. (2006) outlines several techniques for wind
orecast, but it follows a similar forecast horizon. Many wind
orecast horizons are oriented to achieve short-term accurate
esults (Huang et al., 2011; Akçay and Filik, 2017; Bossanyi, 1985),
ven though what is considered in this field as long-term does
ot extend to more than 120 h, as is the case of Barbounis and
heocharis (2006). A case of wind speed long-term forecast is
resented in Azad et al. (2014), where a series of Neural Network
NN) methodologies are used to forecast wind speed in a period
f six months by using only previous wind speed pattern data.
ther predictions are short-term (Negnevitsky and Potter, 2006;
hi et al., 2013; Pinson et al., 2009; Juban et al., 2007).
We are interested in estimating electricity generation, in par-

icular, in the probability of generation values to happen within
everal intervals during the year than in a forecast for the next
eriod. Matos and Bessa (2010), Pinson et al. (2007) use proba-
ilistic modelling and Markov Chain Monte Carlo (MCMC) process
o generate the wind field data, and they do so for a time horizon
f maximum 50 h. There are many studies based on Bayesian
ethodologies to model short-term wind speed forecast (Jiang
t al., 2013; Bracale and De Falco, 2015; McLean et al., 2013).
s mentioned before, many models use meteorological data to
orecast energy generation, but the inconvenience of this is that
he forecast goes as far as the meteorological model goes, and this
s usually short-term.

Concerning solar forecast, the challenge is minor in compari-
on to wind forecast. This is due to the hours of daylight which
re known. There are other climatological factors that influence
olar generation, such as cloudiness. Solar radiation is commonly
orecast in order to estimate solar energy generation (Reikard,
009; Heinemann et al., 2006; Sfetsos and Coonick, 2000; Perez

t al., 2010). One of the most popular approaches is NN-based
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models, such as Gensler et al. (2016), which uses autoencoders
and Long Short-Term Memory (LSTM) NNs to perform the fore-
cast, see also (Chen et al., 2011; Abuella and Chowdhury, 2015).
When looking at the forecasting horizon, similar to wind, most
of the predictions are focused in the short term (Urquhart et al.,
2015; Golestaneh et al., 2016; Bacher et al., 2009), therefore they
cannot be used for the purpose of the paper.

The goal of this paper is to produce long-term forecasts of
wind and solar energy generation combined, for the purposes
of PPAs, with time horizon of one year, taking into account the
three types of risks in order to find an optimal match of the
forecasts with respect to the target consumption profile. The rest
of the paper is organised as follows: In Section 2 we describe the
problem in more detail and the data, as well as the characteristics
and electricity prices of the considered wind and solar farms.
In Section 3 we outline the methodology used to achieve the
goal of the paper for solar and wind energy, and the optimi-
sation problem. In Section 4 we explain the obtained results.
Finally, limitations and further work are outlined in Section 5, and
conclusions in Section 6.

2. Problem description & data

The objective of this work is two-fold: estimation of solar
and wind generation for the next year (and further few years if
necessary), and optimisation of price profile and shape for the
estimated solar and wind profiles with respect to a determined
business consumption profile. The estimation of both wind and
solar generation relies only on observed data, therefore no other
predictors are used. We estimate the electricity prices by averag-
ing a certain range of prices in the year 2018. Information about
total volume generated and prices for 2018 can be seen in Table 1:

Temporal resolution of data is half-hourly, therefore the total
length of the data is 17520 points for all energy farms, and for
the consumption profiles. Specific characteristics, such as turbine
model and number or farm locations, are not provided, due to
data confidentiality.

3. Methodology

In this section we outline the methodologies used for wind
and solar energy generation estimations, and the optimisation
problem. Due to the difference between wind and solar, two
different techniques have been used for each of them. We start by
explaining Bayesian inference for wind, and a different algorithm
for solar, both relying on one year data available for the training
stage.

3.1. Wind generation estimation

3.1.1. Bayesian modelling and Markov chain Monte Carlo
Bayes theorem

Bayesian inference is the process of deducing properties of
probability distribution from the observed data by using the
Bayes theorem (Bayes, 1763). First, we define a prior distribution,
by estimating the histogram of the observed dataset. We use the
prior distribution as our belief, then the prior’s parameters are
updated according to the Bayes theorem:

P(A|X) =
P(X |A)P(A)

P(X)
(1)

Here, P(A) refers to the prior distribution, P(X |A) is the like-
ihood distribution, and P(A|X) refers to the updated posterior
robability.
arkov Chain Monte Carlo
According to Walsh (2004), the main idea of MCMC process

s to have an estimate state x that begins as an arbitrary value
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Table 1
Annual volume (MWh) and price (£/MWh) for different assets and consumption profile.

Wind
farm 1

Wind
farm 2

Wind
farm 3

Wind
farm 4

Solar
farm 1

Consumption
profile

Annual volume
(MWh)

78000 19500 55500 42000 59000 195000

Price
(£/MWh)

51.50 53.98 55.60 61.03 48.40
Fig. 1. Overview of the wind generation model. One-year data is used to estimate points where changes of pattern happen (switch points). A different model is
then applied separately to every period of data to get estimates for the period.
and develops further with time steps. Eventually x becomes a fair
ample from a certain objective distribution p(x). Markov chains
re sampled from some distribution q(t)(x), where t denotes the
umber of time steps occurred. At the beginning, the sampling
lgorithm departs from some distribution q(0) that arbitrarily
nitialises x for each chain. Then q(t) is influenced by all previous
arkov chain steps. The goal for q(t)(x) is to eventually converge

o p(x).
Following Goodfellow et al. (2016), when a single Markov

hain state x is updated to a new state x′, the probability of a
ingle state transitioning to state x′ is given by

q(t+1)(x′) =

∑
x

q(t)(x)T (x′
|x), (2)

where T (x′
|x) is the transition distribution that specifies the prob-

ability that a random update will go to state x′ when departing
from state x. T can be re-written using matrix A, defined such that
Ai,j = T (x′

= i|x = j), so the expression can be re-defined as

v(t) = Av(t−1). (3)

3.1.2. Wind generation model
For the purpose of wind generation estimation, we use

Bayesian modelling. It is known that wind patterns are very
difficult to predict, therefore this methodology needs to handle
some uncertainty. We rely solely on historical wind generation
data to estimate wind generation. The fact of not using any
climatological information adds an extra difficulty to the problem,
as patterns and behaviour have to be inferred from historical data.

The first step we take to infer patterns in wind generation data
is to detect changes on the wind generation distribution. Then,
for every separation or period, we fit the data in each subset
individually using a mixture model. The high level overview of
the process is shown in Fig. 1.

We first assume that for every period, the wind energy gen-
eration patterns have a particular probability distribution. Then
the model assigns the switchpoints where changes in the param-
eters of the probability distribution occur. Switch points are then
included in a discrete Poisson distribution, whose parameters
are defined according to the switch function implemented in the
python library PyMC3 (Salvatier et al., 2016).
294
The schematic of the switch point detection model can be seen
in Fig. 2. Here, the priors for the different switch points (or τs)
have been defined with uniform distribution. We assume that
wind generation data fits a beta distribution. The reason to select
beta distribution is that it is very versatile: it can take ‘U’-shape
or just decrease from the left or increase towards the right side of
the histogram. Beta distribution supports values between 0 and
1, therefore wind generation data has had to be rescaled within
that range.

Once the data has been trained and the switch points have
been obtained, we separate the data into different subsets and
train every period individually. As mentioned in Section 2, we use
the year of 2018 as the training period, and the timeline with the
parameters is shown in Fig. 3.

For every subperiod, we use a mixture model composed of
three beta distributions, whose parameters α and β are defined
by a uniform distribution with values between 0 and 10. The
weights of each distribution are defined by a Dirichlet distribution
with α = 1, under the condition that the sum of all of them is
equal to 1.

The wind generation histogram accumulates more values near
the minimum and the maximum, as observed in Fig. 4, where
switch points are applied. It also may accumulate points around
the centre of the histogram. This is the reason for choosing more
than one distribution as a prior.

As can be seen in Fig. 4, wind generation patterns oscillate
between the maximum and the minimum, with a significant
amount of values on both extremes. This pattern is more obvious
during winter and spring, as the values of energy generation shift
to the left (closer to minimum generation) in summer. After the
summer period, the pattern starts inclining again towards max-
imum generation values, being the maximum generated during
the last period of the year.

3.2. Solar generation estimation

For the purpose of solar generation estimation, we develop a
procedure that relies on historic (previous year) generation data,
in order to extrapolate the generation to the following years to
accommodate yearly decay of PV panels. The annual solar panel
degradation can be assumed as 1% (Stahley, 2019). As the model
does not simulate meteorological conditions, we need to add a
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Fig. 2. Switchpoint model description. Priors for the beta distributions are defined by an uniform distribution between 0 to 10 for α and β . Parameters τs are defined
by an uniform distribution too, where the lower value is the previous τ distribution and the upper one is restricted up to two months with respect to the previous
upper limit, approximately. gen are generation subsets, which are optimal after model is trained with observed data.
Fig. 3. Scheme for timeline defining the estimation of wind generation for year 2018. Six intervals are defined by five switchpoints.
oise component to approximate the stochastic variability in the
bserved data. For this purpose, we generate red noise (Gilman
t al., 1963), with a scaling exponent β = 0.9,mean = 1, std =

.5.
The algorithm starts by extracting the rolling average of 30

alf-hour periods. Next, the minimum and maximum of such
olling averages are extracted. Then, the lengths of the vectors for
he numbers and hours of light are defined, as we need to define
wo main trends: seasonal and diurnal. For both, we use a sinu-
oidal wave. We combine diurnal and seasonal variability, with
he maximum generation peaking at midday. Red noise vector of
he same length as the training data is added as a multiplicative
omponent, point-wise, to the obtained vector. Rate of decay
r panel degradation is the final additive component, with the
umber of years assumed according to the forecast horizon.
Let Sroll = [Sn−1, . . . , ST ] be the n = 30 period rolling

verage vector of solar generation, and S , S the minimum
min max
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and maximum values of Sroll where:

St = St−1 +
1
n

(
St − St−(n−1)

)
, with St =

1
n

n−1∑
i=0

St−i. (4)

Let t s = [0, . . . , π ] be a vector of length = Number of days in the
year and td = [0, . . . , π ] be a vector of length = Number of half-
hour periods in a day. We define M as the number of points in our
training data. Therefore, we define the seasonal component of the
model as:

y(t) = sin(t)Smax, with t ∈ t s = [0, . . . , π ] (5)

We define the seasonal component as follows. The value is set
to the minimum of the season, Smin, when y(t) is minor than this,
therefore the result is:

fseasonal(t) =

{
Smin if y(t) ≤ Smin
y(t) if y(t) > Smin
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Fig. 4. Histograms of wind generation of the wind farm 1 in time intervals separated by switchpoints. The data in x-axis are rescaled into interval [0, 1] for
comparison, so the units of energy are arbitrary.

Fig. 5. Mixture model for every subperiod of a year. Such a model is formed of three beta distributions, whose priors are defined by a uniform distribution over
intervals [0, 10] for both α and β . Dir is the Dirichlet distribution used to fit the weights.

296
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Fig. 6. Evolution of parameters for the Bayesian mixture model in each interval between switchpoints.
We add red noise η and rate of decay of 1% denoted as
ecay. Finally, the model equation of solar energy generation is
s follows:
olar(k) = (z(k) + fseasonal(t) sin(td)) · decay(i) · η,

for 24 < k + 48 < M; 0 < t < number of days in a year;
0 < i < M

(6)

Using this model, we formulate the optimisation problem.

3.3. Definition of the optimisation problem

We prioritise the price of newly build assets over the demand
profile in the optimisation problem, as in a real case scenario
a client would seek to fulfil electricity demand by paying the
minimum price possible. In a real-case scenario there are other
less quantifiable parameters that would influence buyer’s deci-
sion, but in this paper we focus on the key parameter, which
is the price of the commodity element of the Power Purchase
Agreement.

minimise
M∑

m=1

Psm · S⃗m +

K∑
k=1

Pwk · W⃗k,

subject to
M∑

m=1

βm · S⃗m +

K∑
k=1

γk · W⃗k ≥ C⃗,

M∑
m=1

βm +

K∑
k=1

γk ≥ 1,

m = 1, . . . ,M; k = 1, . . . , K ,

βb = 0, 1; ∀ b ∈ 1, . . . ,M,

γc = 0, 1; ∀ c ∈ 1, . . . , K ,

(7)

where Ps and Pw are MWh prices for every solar and wind
generation asset, S⃗ and W⃗ are the vectors containing generation
data for solar and wind, respectively, C⃗ is the target consumption
profile, and β and γ are the binary decision variables for each
generation source (‘on’ or ‘off’). Therefore, this is a linear pro-
gramming minimisation problem, whose goal is to minimise the
297
price of generation for both assets, subject to fulfil the difference
between the aggregated generation sources and the target con-
sumption profile, in order to find the optimal combination. This
optimisation problem has been implemented in Python using the
optimise method from SciPy v1.4.1 library (Jones et al., 2001).

4. Results

4.1. Results of the wind generation modelling

Our goal is to identify suitable switchpoints for data subsets
and generate realistic data patterns using Bayesian modelling
and MCMC for every period. Fig. 6 shows the weights and the
parameter values α and β for the three distributions comprising
the mixture model in each of the six intervals of the year. The
weights show the importance of each of the distributions in each
period of generation. The results are used for wind simulation
in the following year, as our main interest is to capture a range
where the wind generation is more likely to be homogeneous. The
histograms of the simulated data for every period can be seen in
Fig. 7.

In Fig. 7, one can see that the twenty simulations of the
mixture model with the three beta distributions approximate
the histogram of the data very well for every period. This figure
displays the differences between summer and winter period in
both actual and simulated data. Due to the smoothness of the
mixture data, it can be seen that the simulated data could miss
some spikes in generation data close to 0.9 in the right side, but
due to the nature of the beta distribution, it captures the left side
well in all cases. This shows the flexibility of beta distribution in
all different scenarios.

We compare the generated simulations with their respective
actual values observed in 2018. This is a hindcast exercise, i.e. a
forecast in the past which can be compared with ground truth.
Results can be seen in Table 2.

4.2. Results of the solar generation modelling

Fig. 8 shows actual solar generation for 2019 and its corre-
sponding simulations for the same year. The reference year used
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Fig. 7. Histograms of wind generation and MCMC estimations for wind asset 1 for separated subsets. A total of twenty MCMC traces have been used to create the
histograms in every subperiod. The data for histograms was scaled between 0 and 1 for convenience of comparison.

Fig. 8. Actual and simulated solar generation for the year 2019. The simulations have been carried out with the stochastic model described in Section 3.2. The top
panel represents data of half-hourly temporal resolution. The bottom panel represents daily average generation. Year 2018 has been used as a reference period in
order to simulate values to the following year.

298
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Fig. 9. Optimal mixed generation of wind and solar energy, and energy consumption profiles in 2019. Every panel corresponds to ten days in six separated periods
f the year. Time resolution is half-hourly.
Table 2
Comparison of actual and simulated total annual volume for 2019 for the four
wind farms (hindcast exercise).

Wind
farm 1

Wind
farm 2

Wind
farm 3

Wind
farm 4

Actual volume
(MWh)

77728.30 19579.12 55530.87 41753.34

Simulated volume
(MWh)

80448.22 23164.32 60067.23 48774.21

is 2018, therefore we applied rate of decay of PV energy genera-
tion over one following year. As the model considers minimum
and maximum peaks on the range of its moving average with
period of 30 half-hourly units, the path followed by the seasonal
line is similar. Fluctuations within the same day are modelled by
the multiplicative red noise, as described earlier.

We show daily average values displaying the seasonal trends
nd the noise. The noise amplitude increases from winter to sum-
er, and then decreases back to winter levels. These irregularities
re followed by the simulated data, which shows not only the
ame seasonality pattern, but also the same noise pattern.
We also compared the forecast for three years, in terms of the

otal volume in MWh: we considered data of 2017 as historic and
orecast ahead for the three years 2018, 2019, 2020, with a longer
orecast horizon than in the previous experiments. These results

an be seen in Table 3.
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Table 3
Comparison of actual and forecast total annual volume of solar generation for
three consecutive years (three-year forecast horizon for 2018–2020), based on
the data of 2017.

2018 2019 2020

Actual volume
(MWh)

58776.61 62362.27 58424.66

Simulated volume
(MWh)

59845.69 59789.51 59955.11

Now that the estimations for both wind and solar generation
have been obtained for wind asset 1 and solar asset, we apply the
same model to the rest of assets and find the best combination
that matches them and minimises total cost and difference of
shape between total aggregated and consumption.

4.3. Linear programming for optimal shape match

Before proceeding with finding the optimal combination of
wind and solar generation, we perform the estimation of gener-
ation of all assets. For the consumption profile, we assume that a
very similar pattern repeats year after year, as we have observed
based in the historical data.

As shown in Fig. 9, total aggregated generation sometimes ex-
ceeds the consumption curve. It struggles to reach consumption
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Fig. 10. Optimal daily mixed generation of wind and solar energy and energy consumption in 2019.
at the baseload during the summer period, due to the lack of wind
generation available. However, there is normally a compensation
of solar generation within the day during peakload.

Fig. 10 shows daily aggregated data for both optimal gen-
eration and consumption, where the lack of wind generation
in summer can be seen. Also, the plot shows that the pattern
of the consumption profile increases in summer (most likely,
due to air conditioning), therefore the difference would be even
higher. Wind generation tends to decrease in summer, yet solar
generation is higher. The gap found in summer is due to two
reasons: a predominant number of wind generation assets over
solar assets, and the seasonality of the consumption profile.

Optimisation has been performed over the half-hourly data
(Fig. 9), therefore the optimised solution accounts for every half-
hourly model estimates to be as close as possible in total. If the
optimisation was performed in the total aggregated daily data,
then the optimisation would have been oriented to this specific
resolution and the results would have been slightly different.
We chose to optimise half-hourly resolution data to assess more
accurately the amount of electricity to buy or sell within the day.
This helps one to assess the risk of purchasing energy blocks in
the intraday or mid-term energy market beforehand.

5. Limitations and further work

The main limitation is related to data availability and quality.
For the purpose of this paper, we obtained two-year data for
every wind farm, and three years for the solar farm. Ideally,
we would like to test this model by using a longer forecasting
horizon, especially for wind. Also, regarding data availability,
we could only get data from one solar farm, so repeating the
experiment with a higher number of solar farms would give a
wider perspective of solar energy market.

As we see in the results for wind simulations, we achieved
satisfactory results by breaking the problem down to six sub-
intervals of a year using five switchpoints. However for further
300
research on this area, it would be interesting to create further
divisions in order to consider individual estimations and finding
an optimal number of switchpoints, preventing overfitting.

6. Conclusions

In this paper, we applied two techniques, Bayesian estimates
and MCMC processes, to model wind energy generation: one for
detecting change points in the data using beta distribution, and
another for period separation. We proposed a stochastic model to
forecast solar generation.

MCMC is a flexible and reliable method that suits the ap-
proach used in the paper. Various methods can be used to model
stochastic systems, and in a recent paper (Billuroglu and Livina,
2022), a comparison of ML and ARIMA models was performed,
which was the goal of the exercise. In this paper, our goal is to
demonstrate the application of PPA with stochastic modelling,
and MCMC adequately addresses the need.

In order to find the optimal combination of the results of
the forecasting and estimation with respect to a particular con-
sumption profile, we used linear programming to minimise costs
and fulfil the required electricity demand. The optimal combina-
tion of intermittent output of renewable projects, could support
energy buyers to minimise the commodity element of the PPA,
the related balancing costs on the PPA and, last but not least,
create a basis for the utility contract that can reduce some related
balancing costs on the buyer’s import utility contract.

This analysis shows that, despite the chaotic behaviour that
makes wind forecast a very challenging task, a satisfactory fore-
cast is achieved for one-year horizon. By breaking the problem
down into several periods, with different parameters of beta
distribution we could obtain a good forecast. A different approach
was used for solar generation forecasting. The optimal combina-
tion of several probability densities provides a decision on which
farms to choose for a particular consumption profile.

This paper is a simplified version of a real case scenario. In

regular PPA negotiations, many projects would be offered several
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enerators with different price structures. The length of these
ontracts would lie between 10 an 25 years instead of one year, or
horter-term periods. However, this model still serves as a solid
asis for real case scenarios, as they would use the same fore-
asting principles that can be extrapolated to a longer forecasting
orizon and a higher number of assets.
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