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Abstract

This article contributes to our understanding of the macro-financial linkages

in the high-frequency domain during the recent health crisis. Building on the

extant literature that mainly uses monthly or quarterly macro proxies, we

examine the daily economic impact on intra-daily financial volatility by apply-

ing the macro-augmented HEAVY model with asymmetries and power trans-

formations. Our study associates US and UK financial with macroeconomic

uncertainties in addition to further macro drivers that exacerbate equity mar-

ket volatility. Daily local economic policy uncertainty is one of the main

drivers of financial volatility, alongside global credit and commodity factors.

Higher macro uncertainty is found to increase the leverage and macro effects

from credit and commodity markets on US and UK stock market realized vola-

tility. Most interestingly, the Covid-19 outbreak is found to exert a considerable

impact on financial volatilities through the uncertainty channel, given the

prevalent worry about controversial policy interventions to support societies

and markets, particularly in the case of the severely censured US and UK gov-

ernments' reluctant and limited response in the very beginning of the

pandemic.
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1 | INTRODUCTION

Modelling and forecasting financial volatility are both of
crucial importance to market practitioners for the pur-
poses of derivatives pricing, portfolio management, firm
valuation, funding strategies and among others. Any
business operation that includes asset valuation or risk
assessment requires a volatility input. The behaviour of

volatility is also closely monitored by policymakers, given
its potentially destabilizing effects on the financial system
and the tight link of financial markets with the macro-
economic environment. In particular, the global financial
crisis of 2007/2008 led to a sharp increase in volatility
and its persistence (with systemic risk externalities) and
thus to a renewed interest in developing an appropriate
modelling framework that, apart from the time series
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properties of the second moment of returns, also con-
siders significant macro fundamentals.

In this vein, our study investigates the macro-
financial linkages in the high-frequency domain. In par-
ticular, we explore the daily macroeconomic effect on US
and UK financial markets. We demonstrate that the stock
market volatility receives the significant impact of daily
macro fundamentals in all states of the economy and the
recent pandemic-induced turmoil as well, by applying a
sophisticated macro-augmented econometric framework
for volatility modelling. We intend to contribute to the
extant literature on the macro forces driving financial
markets, by incorporating high-frequency (daily) eco-
nomic proxies (rather than quarterly or monthly vari-
ables most commonly used), and on the Covid-19 crisis
effects on the volatility pattern, by using a broad sample
which covers the initial shock of the virus outbreak on
the financial system. The economic environment is rap-
idly evolving, especially during crises. The necessity to
nowcast the macroeconomic developments has become a
critical challenge nowadays for both market practitioners
in trading and investments and policymakers in market
interventions (Berger et al., 2023). Macro-informed vola-
tility forecasts should rely on timely published high-
frequency fundamentals rather than the traditional
monthly or quarterly indicators often released with a sig-
nificant time lag.

Against this backdrop, we address this highly topical
and policy-relevant issue by applying an extension of the
HEAVY model of Shephard and Sheppard (2010)1 intro-
duced by Karanasos and Yfanti (2020) for financial vola-
tility modelling, which augments the bivariate system
with asymmetries and power transformations through
the asymmetric power autoregressive conditional hetero-
skedasticity (APARCH) structure of Ding et al. (1993).
The benchmark specification with leverage and power
effects has already been shown to improve considerably
on Bollerslev (1986) standard generalized autoregressive
conditional heteroskedasticity (GARCH) model (Brooks
et al., 2000). The present study provides evidence that the
augmented specification outperforms the benchmark one
for the US and UK equity indices (see also Karanasos &
Yfanti, 2020, for evidence on the European stock mar-
kets, and Karanasos et al., 2022, on emerging markets).
Our first finding on US and UK equity data confirms the
results of Karanasos and Yfanti (2020) for the European
markets: namely, each of the two power transformed
conditional variances is affected by the lags of both pow-
ered variables, the squared negative returns and the real-
ized variance.

Second, we estimate the extension of the asymmetric
power (AP) specification with macro effects from daily
US and UK economic policy uncertainty (EPU), global

credit and commodity market benchmarks. This is the
way to explore macro-financial linkages with higher-
than monthly or quarterly frequency macro factors (used
in most of the existing empirical literature) and provide a
robust volatility modelling framework directly applicable
to the well-established practice of financial trading and
risk measuring relying on relevant fundamentals from
the real economy. We apply the macro-augmented model
to five US and UK stock index time series data covering
the last two decades, with the first 5 months of the cur-
rent pandemic included. We find that realized volatility
is significantly affected by the macro variables and their
inclusion improves the model's forecasting performance.
In contrast with Karanasos and Yfanti (2020) and Kara-
nasos et al. (2022), who explore the UK- and US-led
uncertainty spillovers over the European and emerging
markets, respectively, our motivation here is to investi-
gate the crucial role of the local uncertainty effect
(US and UK uncertainties on US and UK stock markets,
respectively) and emphasize the need for daily news-
based uncertainty indices covering more countries than
only the UK and the US.

Moreover, we estimate, apart from the direct destabi-
lizing impact of uncertainty on volatility (by using it as a
regressor), the uncertainty effect on each parameter of
the realized volatility equation and demonstrate that
higher uncertainty magnifies the leverage and macro
effects from credit and commodity markets. Finally, we
explore the daily macro-financial linkages separately dur-
ing the world-wide Coronavirus outbreak. The Covid-19
effect on financial markets is significant and drives equity
volatilities higher, mainly through the policy uncertainty
channel, in line with the results of Baker, Bloom, Davis,
Kost, et al. (2020) and Baker, Bloom, Davis, and Terry
(2020). The forecasting superiority of our approach is fur-
ther illustrated through a value-at-risk (VaR) exercise
focused particularly on the Covid period. In a nutshell,
we answer three research questions. Which daily macro
fundamentals drive the US and UK stock market intra-
daily volatility? Does the local uncertainty channel mag-
nify the volatility drivers? How did the stock markets
react to the initial pandemic wave?

Our study contributes to the existing macro-finance
literature in two important areas: (i) in volatility model-
ling, by implementing a novel macro-augmented econo-
metric approach and demonstrating its superiority over
standard benchmark models, and (ii) in the investigation
of macro-financial linkages with the effects of domestic
uncertainty levels on the stability of US and UK financial
markets, using high-frequency data and the Covid-
induced impact. Hence, we demarcate our study from
Karanasos and Yfanti (2020), who focus on European
markets with the UK uncertainty level effects without
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the pandemic impact, and from Karanasos et al. (2022),
who study the influence of the second moment (volatil-
ity) of the US uncertainty on emerging markets. The
bivariate model of the two volatility series is suitable for
equity market returns and several other financial assets,
such as bonds, commodities or cryptocurrencies and
business finance applications, such as investing and trad-
ing in bond and commodity markets, foreign exchange
risk hedging and further important daily business opera-
tions of corporate treasuries. Specifically, it outperforms
the benchmark specification in terms of both the short-
and long-term forecasting properties (note that trading
and risk management are mostly based on 1- to 10-day
forecasts while policymakers focus on longer-term pre-
dictions of financial volatility). This is shown through the
VaR example that has both risk management and policy
implications. Finally, this article is relevant to a crucial
issue nowadays, the pandemic-induced crisis, and con-
tributes to the burgeoning research on the Covid-19
socio-economic impact and policy interventions.

The remainder of the article is structured as follows.
Section 2 presents the theoretical background and our
research hypotheses. Section 3 describes the extended
HEAVY specification, which allows for asymmetries,
power transformations and macro effects. Section 4
describes our dataset and Section 5 presents the results
for the benchmark and the macro-augmented AP models.
Section 6 analyses the forecasting properties of the alter-
native models by comparing their multiple-step-ahead
forecasts and by using the volatility predictions in a VaR
example for the Covid period. Section 7 focuses on the
uncertainty effects on the parameters of the HEAVY
specifications and Section 8 explores the recent Covid-
induced uncertainty impact on macro-financial linkages.
Finally, Section 9 offers some concluding remarks.

2 | THEORETICAL BACKGROUND
AND RESEARCH HYPOTHESES

In this section, first, we outline our theoretical underpin-
nings in the existing literature, and, second, we develop
our research hypotheses.

2.1 | Theoretical background

The harsh economic reality driven by the Covid-19 pan-
demic and the speed of the crisis spread introduce uncer-
tainty into econometric modelling for the assessment of
the disastrous effects of the virus outbreak (Baker,
Bloom, & Terry, 2020). Baker, Bloom, Davis, and Terry
(2020) have measured this Covid-induced economic

uncertainty feelings considering three major sources:
equity volatility, newspaper-based and business expecta-
tions survey-based uncertainties. Baker, Bloom, Davis,
Kost, et al. (2020) have examined the pandemic's devas-
tating impact on stocks and find that the effects are by far
more potent than those of other health crises
(e.g. Spanish flu) due to the current disease's severity, the
faster spread of Covid-19 news, and the more solid cross-
country macro-financial interdependence in the current
globalized economic environment. In a broader context,
Sharif et al. (2020) have explored the dependence struc-
ture between the pandemic, oil and stock market volatil-
ity, US policy uncertainty and geopolitical tensions.
Making use of the wavelet approach, they have shown,
among others, the shocking Covid impact on equities vol-
atility, geopolitical and policy uncertainty. Focusing on
the Covid shock on equity volatility, Wang et al. (2020)
have recently implemented an augmented HAR model
(heterogeneous autoregressive) for stock market realized
variance with two daily US uncertainties (the VIX index
and the US Economic Policy Uncertainty) incorporated
alternatively. Financial uncertainty, proxied by the VIX
index, has been found more powerful at predicting world-
wide equity index volatilities. This study has examined
the cross-border spillovers of US uncertainty across vari-
ous countries. By contrast, our work estimates the local
uncertainty impact and further global macro effects on
US and UK markets, employing the HEAVY model, a
sophisticated econometric framework for both daily and
intra-daily equity dispersion metrics.

Furthermore, a wide variety of literature has already
shown the counter-cyclical pattern of stock market volatility
using lower than daily frequency macro drivers (see,
e.g. Conrad & Loch, 2015; Corradi et al., 2013; Engle &
Rangel, 2008; Engle et al., 2013; Hamilton & Lin, 1996;
Schwert, 1989). Motivated by this empirical evidence, we
investigate how daily business cycle dynamics affect finan-
cial market stability. We first focus on the potent role of
uncertainty alongside further macro forces. Uncertainty dis-
rupts the real economy directly (e.g. output, employment,
consumption, investment) and the financial markets, as
well (see, among others, Alessandri & Mumtaz, 2019;
Bekaert et al., 2013; Bekiros et al., 2020; Bernanke, 1983;
Bloom, 2014; Carriero et al., 2018; Dixit & Pindyck, 1994;
Han & Li, 2017; Jo & Sekkel, 2019; Jurado et al., 2015;
Mumtaz & Theodoridis, 2018; Pastor & Veronesi, 2012,
2013). We choose the news-based index of EPU, which is
the only economic uncertainty metric available on a daily
frequency by Baker et al. (2016) for two countries, namely,
the United States and the United Kingdom (see also
Karanasos & Yfanti, 2020, for the discussion on the relative
merits of the EPU indices). We extend the studies of Kara-
nasos and Yfanti (2020) and Karanasos et al. (2022), who

CAPORALE ET AL. 1583

 10991158, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ijfe.2748 by T

est, W
iley O

nline L
ibrary on [26/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



first used the daily UK EPU index on European stock mar-
kets and the volatility of US EPU on emerging equities, by
investigating the effect of both US and UK daily EPUs
locally on US and UK equity volatility and their impact dur-
ing the Covid-19 pandemic. Moreover, we incorporate daily
global proxies for credit conditions and commodity markets
to capture most aspects of the economic cycle.

2.2 | Research hypotheses

Our empirical analysis will respond to our three research
questions about: (i) the daily macro drivers of the US and
UK stock market intra-daily volatility, (ii) the impact of
the local uncertainty channel on the volatility drivers and
(iii) the initial pandemic shock on the stability of US and
UK equity markets. Given the well-established literature
on the counter-cyclicality of the volatility pattern, we test
the following hypotheses:

Hypothesis 1. Weak (strong) daily macro
fundamentals exacerbate (reduce) stock market
volatility. (H1)

In our first Hypothesis, we expect that an economic
slowdown captured by daily macro proxies destabilizes
the US and UK stock markets. The volatility increases
when economic uncertainty is higher, credit conditions
are tighter, and commodities become more expensive. On
the other hand, economic expansion is associated with
markets ‘tranquility’ (see also, Section 4.2 for the discus-
sion about the economic intuition supporting the selec-
tion of the macro variables which explain the volatility
pattern).

Hypothesis 2. The local uncertainty channel
magnifies the macro impact on stock market
volatility. (H2)

In the second Hypothesis, we proceed with a sensitiv-
ity analysis by focusing on the EPU role. It is expected
that an elevated local uncertainty level aggravates the
impact of the volatility determinants (see, e.g. Pastor &
Veronesi, 2013).

Hypothesis 3. The pandemic shock intensifies
the counter-cyclical behaviour of stock market
volatility. (H3)

Our final Hypothesis delves deeper into the macro-
relevance of financial volatilities by examining their crisis
vulnerability. We expect that the health crisis shock mag-
nifies the macro impact on volatilities, and we confirm

this counter-cyclical trajectory in the high-frequency
domain.

3 | THE ECONOMETRIC
FRAMEWORK

The financial econometrics literature has proposed a wide
variety of volatility models. Andersen et al. (2001) and
Barndorff-Nielsen et al. (2008) were the first to formalize
realized volatility measures, while long memory models
(ARFIMA and HAR-RV) are established for predicting the
future volatility pattern (Andersen et al., 2001; Corsi, 2009).
GARCH-X, HEAVY and Realized GARCH are among the
more sophisticated variance models which combine daily
with intra-daily returns (Barunik et al., 2016; Engle, 2002;
Hansen et al., 2012; Shephard & Sheppard, 2010). Based on
the benchmark HEAVY bivariate specification of Shephard
and Sheppard (2010), we implement the HEAVY extension
introduced by Karanasos and Yfanti (2020), which con-
siders asymmetries (downside risk), power transformations
and macro effects. We estimate the macro-augmented
model incorporating these features in order to improve the
performance of volatility forecasting (see also Karanasos
et al., 2021, for a long memory HEAVY extension without
macro effects, Yfanti et al., 2022, for a trivariate AP
HEAVY system without macro effects and Yfanti &
Karanasos, 2022, for a tetravariate asymmetric HEAVY sys-
tem without power transformations).

3.1 | The HEAVY model

Following the econometric representation of Karanasos
and Yfanti (2020) and Karanasos et al. (2022), the
HEAVY system of equations involves two variables: the
close-to-close returns (rt) and the realized measure based
on high-frequency observations RMt. First, we calculate
the signed square rooted (SSR) realized measure:
~RMt ¼ sign rtð Þ ffiffiffiffiffiffiffiffiffi

RMt
p

, where sign rtð Þ¼ 1, if rt ≥ 0 and
sign rtð Þ¼�1, if rt <0.

Next, we make the following assumption for both
returns and the SSR realized measure:

rt ¼ ertσrt, ~RMt ¼ eRtσRt ,

where the stochastic term eit is considered independent
and identically distributed (i:i:d), i¼ r,R; σit is positive
with probability one for all t and it is a measurable func-
tion of Ƒ XFð Þ

t�1 , that is the filtration generated by all avail-
able information through time t�1. We will use Ƒ HFð Þ

t�1

(X ¼H) for the high-frequency past data, that is for the
case of the realized measure, or Ƒ LoFð Þ

t�1 (X ¼Lo) for the
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low-frequency past data, that is for the case of the close-
to-close returns. Hereafter, we will drop the superscript
XF for notational convenience.

In the HEAVY/GARCH specification eit has zero
mean and unit variance. Thus, the two time series have
zero conditional means and their conditional variances
are given by

 r2t jƑt�1

� �¼ σ2rt and gRM2

t jƑt�1

� �
¼ RMtjƑt�1ð Þ¼ σ2Rt,

where  �ð Þ denotes the expectation operator. The returns
equation is called HEAVY-r and, similarly, the realized
measure equation is denoted as HEAVY-R.

3.2 | The macro-augmented asymmetric
power specification

The AP model for the HEAVY(1) system consists of the
following equations (in what follows, we drop the order
of the model if it is (1) for notational simplicity):

1�βiLð Þ σ2it
� �δi

2 ¼ωiþ αirþ γirst�1ð ÞL r2t
� �δr

2

þ αiRþ γiRst�1ð ÞL RMtð Þ
δR
2 , ð1Þ

where L is the lag operator, δi �ℝ>0 (the set of the posi-
tive real numbers), for i¼ r,R, are the power parameters
and st ¼ 0:5 1� sign rtð Þ½ �, that is, st ¼ 1 if rt <0 and 0 oth-
erwise; γii, γij (i≠ j) are the own and cross leverage
parameters, respectively2; positive γii, γij means a larger
contribution of negative ‘shocks’ in the volatility process.
In this specification, the powered conditional variance,
σ2it
� �δi

2 , is a linear function of the lagged values of the
powered transformed squared returns and realized
measure.

We consider three different asymmetric cases: the
double one (DA: γij ≠ 0 for all i and j), the own asymme-
try (OA: γij ¼ 0 for i≠ j only) and the cross asymmetry
(CA: γii ¼ 0).

The αiR and γiR are the (four) Heavy parameters (own
when i¼R and cross when i≠R). The Heavy parameters
estimate the impact of the realized measure on the two
conditional variances. The αir and γir (four in total) are
the Arch parameters (own when i¼ r and cross for i≠ r),
which capture the effect of the squared returns on the
two conditional variances.

The AP specification is equivalent to a bivariate AP-
GARCH system (Conrad & Karanasos, 2010) for the
returns and the SSR realized measure. If all Arch param-
eters are zero, we have the AP version of the benchmark

HEAVY, where the only unconditional regressor is the
lagged powered RMt .

Moreover, all the parameters in this bivariate model
should take non-negative values (see, e.g. Conrad &
Karanasos, 2010). We augment the realized measure
equation with non-negative macro factors: the EPU,
EPUt, the Credit conditions (the Merrill Lynch MOVE
treasury bonds implied volatility index or the Moody's
AAA corporate bonds yields), CRt, and the Commodities
(the S&P GSCI index or the Crude oil WTI prices), COt,
market benchmark indices. The macro-augmented
(m) AP-HEAVY system is given by the following equa-
tion for the realized variation measure:

1�βRLð Þ σ2Rt
� �δR

2 ¼ωRþ αRr þ γRrst�1ð ÞL r2t
� �δr

2

þ αRRþ γRRst�1ð ÞL RMtð Þ
δR
2 þφREPUt�1

þζRCRt�1þϑRCOt�1:

ð2Þ

Equation (2) incorporates three Macro parameters,
φR, ζR and ϑR, which capture the macro effects on the
power transformed realized variation. The returns equa-
tion is the same as in the non-augmented model without
the direct macro effects φr , ζr , ϑr ¼ 0ð Þ.

In summary, the benchmark system consists of two
conditional variance equations, the GARCH(1,0)-X for
returns and the GARCH(1) for the SSR realized measure:

HEAVY� r : 1�βrLð Þσ2rt ¼ωr þαrRL RMtð Þ,

HEAVY�R : 1�βRLð Þσ2Rt ¼ωRþαRRL RMtð Þ:

Equation (2) is the general formulation of the macro-
augmented extension (RMt), which incorporates leverage
and power transformations to the benchmark specifica-
tion (see Yfanti et al., 2022, for the relevant theoretical
considerations). We also apply the Gaussian quasi-
maximum likelihood estimators (QMLE) and multistep-
ahead predictors already used (see Ding et al., 1993) in
the APARCH framework (see, among others, He &
Teräsvirta, 1999; Karanasos & Kim, 2006; Laurent, 2004).
We first estimate the two conditional variance equations
in the general form with all the Arch, Heavy and Asym-
metry terms of Equation (2). When a parameter is insig-
nificant, we exclude it and this results in a reduced form,
statistically preferred for each volatility process. For
example, in the returns and realized measure estima-
tions, the own and cross Arch parameters (αrr and αRr ,
respectively) are found insignificant and, are, therefore,
excluded (see Section 5, Table 3, Panels A and B) to
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obtain our preferred specification for both returns and
realized measures.

4 | DATA DESCRIPTION

We estimate the HEAVY framework for five stock indices
returns and realized volatilities. We enrich the bench-
mark HEAVY model of daily returns and intra-daily real-
ized measure with power transformations, asymmetries
and macro effects as established by Karanasos and
Yfanti (2020).

4.1 | Volatility measures

We source the time series data for four US and one UK
stock indices from the Oxford-Man Institute's realized
library (Heber et al., 2009): S&P 500 (SP), Dow Jones
Industrial Average, Nasdaq 100 (NASDAQ) and Russell
2000 (RUSSELL) from the US and FTSE 100 (FTSE) from
the UK. Our sample covers the period from 2 January
2001 to 20 May 2020. We calculate the daily returns using
the daily close prices, PC

t rt ¼ ln PC
t

� �� ln PC
t�1

� �� �
. We

also download the realized variance computed from the
5-min returns, that is RVt ¼

P
x2j,t x2j,t

�
is the squared

5-min return of the jth trade of the tth day).
Table 1 presents the dispersion metrics for the

squared returns and realized variances time series of each
index over the sample period. We calculate the annual-
ized volatility and the standard deviation of the time
series. The annualized volatilities are always higher than
the standard deviations. The open-to-close variation
(realized variance) exhibits lower dispersion than the
close-to-close yield (squared returns), as expected given
that realized variance excludes the overnight noise. The
annualized volatility of the realized variance is between
14% and 18%, while the squared returns range from 19%
to 24%.

We further investigate the sample autocorrelations of
the power transformed absolute returns jrtjδr and SSR
realized variance jSSR_RMtjδR for various values of the
power term, δi. Figures 1 and 2 present the autocorrelo-
grams of the S&P 500 index from lag 1 to 120 for δr ¼
1:4,1:7,2:0 and δR ¼ 1:3,1:6,2:0. The autocorrelations for
jrtj1:4 are higher than those of jrtjδr for δr ¼ 1:7,2:0 at
every lag up to at least 120 lags. Thus, jrtjδr has the stron-
gest and slowest decaying autocorrelation when δr ¼ 1:4.
Similarly, for the realized measure, the power with the
strongest autocorrelation function is δR ¼ 1:3. Further-
more, Figures 3 and 4 present the sample autocorrela-
tions of jrtjδr and jSSR_RMtjδR as a function of δi for lags
1, 12, 36, 72 and 96. For example, for lag 12, the highest

autocorrelation values of power transformed absolute
returns and SSR realized variance are calculated closer to
the power of 1.5 and 1.0, respectively. We, hereby, sup-
port our motivation for enriching the benchmark
HEAVY through the APARCH framework of Ding et al.
(1993) and confirm the power estimated by our econo-
metric models, which is δr ¼ 1:4 for returns and δR ¼ 1:3
for the realized measure (see Section 5).

4.2 | Macroeconomic variables

We further study the high-frequency macro-financial link-
ages by adding non-negative daily macro variables to the
HEAVY specification and test our research hypotheses on
the economic forces driving financial volatility. We enrich
the model of daily and intra-daily volatility with daily indi-
cators of the macroeconomic conditions similar to the prox-
ies used in the existing studies of low-frequency (monthly/
quarterly) volatility determinants. Since most activity, mon-
etary, and sentiment indices are not available at a daily fre-
quency, we turn to other daily variables informative about
the economic outlook. The EPU index is a catalytic driver
of the business cycle dynamics, given its contractive impact
on employment and investment (Baker et al., 2016). EPU is
used here instead of the activity factors considered in the
extant literature and is expected to exert the opposite effect
on volatility compared with that estimated when activity
variables are included. Uncertainty decreases the level of
activity and high uncertainty is associated with recessions
impeding subsequent recoveries. EPU also replaces macro-
economic variation and confidence indicators (Conrad &
Loch, 2015). Next, we consider the daily influence from the
credit channel to substitute the business and monetary con-
ditions' effect on volatility, based on Schwert (1989), who
suggested leverage, bond and interest rate volatility. Finally,
given the link between commodity prices and the macroec-
onomy introduced by Barsky and Kilian (2004), who con-
nected elevated oil prices with economic slowdowns, we
incorporate daily commodity market indices and expect an
upward response of stock volatility time series to an
increase in commodity prices with distorting impact on the
real economy.

In this vein, first, we investigate the role of uncer-
tainty in financial volatility using the news-based EPU
index (log-transformed), which incorporates both eco-
nomic and policy-relevant elements of uncertainty. Sec-
ond, for the credit conditions, we include two alternative
global benchmarks of the bond market: the 1-month
Merrill Lynch MOVE Index (MOVE) and the Moody's
triple-A Corporate Bonds Yields (M.AAA). The MOVE is
the option implied volatility index of US government
bonds. It is the Treasury counterpart of the VIX index for
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TABLE 1 Dispersion measures for

squared returns and realized variance
Sample period r2t RVt

Index Start date End date Obs. Avol SD Avol SD

SP 2 January 2001 20 May 2020 4862 0.197 0.057 0.167 0.027

DJ 2 January 2001 20 May 2020 4859 0.189 0.057 0.169 0.029

NASDAQ 2 January 2001 20 May 2020 4861 0.235 0.068 0.166 0.022

RUSSELL 2 January 2001 20 May 2020 4859 0.244 0.076 0.141 0.018

FTSE 2 January 2001 20 May 2020 4887 0.186 0.043 0.176 0.031

Note: The table reports the dispersion measures of the squared returns and realized variance time series data
in the whole sample period. Avol and SD denote the annualized volatility and standard deviation,

respectively.
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the S&P 500 and captures the sovereign credit market
stance. Increased sovereign bond volatility means
increased turbulence in the credit channel for govern-
ments with direct spillover (pass-through) effects on the
corporate credit conditions. The M.AAA index consists of
daily averages of global triple-A corporate bond yields
(higher yields denote higher cost of financing for corpora-
tions) and is used as an alternative to the MOVE index
for the credit channel. Third, the commodity market con-
ditions are incorporated here with either of the two alter-
native global factors: the S&P Goldman Sachs
Commodity Index (GSCI) and the crude oil dollar prices
per barrel (West Texas Intermediate crude stream—
WTI). GSCI and WTI capture the firms' production costs.
Higher commodity prices lead to production and

investment deterioration due to higher cost effects on
corporations. The GSCI is a widely watched global com-
modity markets benchmark, where most liquid commod-
ities are included, while oil is the most important energy
source across all economies. The oil is incorporated in
the GSCI computation and used here as the alternative
commodity regressor to the GSCI. The four credit condi-
tions and commodities data series are retrieved from
Refinitiv Workspace.

The daily macro regressors are log-transformed and
included in the realized variance equation, where they
are estimated to be jointly significant. Given the GARCH
positivity constraints, we impose sign restrictions (posi-
tive) on the coefficients estimated for our non-negative
regressors. Hence, our analysis of the macro-financial

FIGURE 3 Autocorrelation of S&P

500 jrtjδr at lags 1, 12, 36, 72, 96

FIGURE 4 Autocorrelation of S&P

500 jSSR_RMt jδR at lags 1, 12, 36, 72, 96
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linkages is conducted on economic forces that exacerbate
volatility. Figures 5–8 clearly show the comovement of
realized volatility with the macro proxies. Rising uncer-
tainty, financing costs, and commodity prices, all lead to
higher volatility levels, a characteristic feature of a

weaker economic stance, portrayed in the figures below,
where we observe the concurrent peaks in the time series
graphs around crisis episodes (see, e.g. the graph peaks
around the 2008 global financial crash and at the end of
the sample with the pandemic crisis).

FIGURE 5 US EPU and S&P 500 realized variance

FIGURE 6 UK EPU and FTSE 100 realized variance

CAPORALE ET AL. 1589

 10991158, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ijfe.2748 by T

est, W
iley O

nline L
ibrary on [26/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



5 | IN-SAMPLE ESTIMATION
RESULTS

Starting from Engle (2002), who proposed the GARCH-X
model by adding regressors in the conditional variance

equation, a large body of literature worked on the asymp-
totic properties of this specification with a fractionally
integrated covariate (see, among others, Francq &
Thieu, 2019; Han, 2015; Han & Kristensen, 2014, for the
univariate case, and Ling & McAleer, 2003; Nakatani &

FIGURE 7 US EPU and the credit market proxies

FIGURE 8 US EPU and the commodity market proxies
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Teräsvirta, 2009; Pedersen, 2017, for the multivariate
GARCH processes). For the AP HEAVY extensions, we
use the Gaussian QMLE and multistep-ahead predictors
of the APARCH specification (He & Teräsvirta, 1999;
Karanasos & Kim, 2006; Laurent, 2004). Following Peder-
sen and Rahbek (2019), first, we test for conditional het-
eroscedasticity. Since we reject the homoscedasticity
hypothesis, we perform the one-sided tests for the signifi-
cance of the regressors in the GARCH equations.

We initially report the results of the benchmark
HEAVY (Shephard & Sheppard, 2010), that is, the bivari-
ate returns-realized measure system without asymme-
tries, power transformations and macro effects (Table 2).
The chosen equation of returns is a GARCH(1,0)-X
model without the lagged squared close-to-close returns.
The own Arch effect, αrr , is insignificant when we add
the lagged realized variance cross effect, αrR. In the SSR
realized variance equation, we prefer a GARCH(1) with-
out the impact of returns. The preferred benchmark
HEAVY formulations (after testing all alternative

GARCH models of order (1), (1,1)-X and (1,0)-X) are the
same as in Shephard and Sheppard (2010) with similar
parameter values and an identical finding that the intra-
daily realized measure does all the work at moving
around both conditional variances. However, this bench-
mark's finding, as we demonstrate below, does not apply
to the macro-augmented AP system. The SBT-Sign Bias
test (Engle & Ng, 1993) shows that the asymmetric effect
of the returns is ignored and omitted by the benchmark
estimations (p-values lower than 0.10).

Table 3 reports the results of the macro-augmented
AP specifications. Wald and t-tests are carried out to test
the significance of the Heavy and Arch parameters and
they reject the null hypothesis at the 10% level in all
cases. We apply one-sided tests because all the coeffi-
cients take non-negative values (see Pedersen &
Rahbek, 2019).

In the two equations of returns and realized variance,
the selected model is the double asymmetric power
(DAP) one. Both power transformed variances receive

TABLE 2 The benchmark HEAVY

model
SP DJ NASDAQ RUSSELL FTSE

Panel A. Stock returns: HEAVY-r

1�βrLð Þσ2rt ¼ωr þαrRL RMtð Þ
βr 0.59 0.62 0.63 0.67 0.63

(11.69)*** (14.22)*** (11.45)*** (15.93)*** (13.71)***

αrR 0.55 0.45 0.70 0.78 0.40

(7.49)*** (7.85)*** (6.67)*** (7.49)*** (7.43)***

Q12 17.29 13.05 10.91 15.25 4.60

[0.14] [0.37] [0.54] [0.23] [0.97]

SBT 2.81 1.73 1.97 1.69 2.26

[0.01] [0.08] [0.05] [0.09] [0.02]

lnL �6357.31 �6208.70 �7464.03 �7979.69 �6497.69

Panel B. Realized measure: HEAVY-R

1�βRLð Þσ2Rt ¼ωRþαRRL RMtð Þ
βR 0.52 0.56 0.44 0.53 0.62

(14.21)*** (14.73)*** (13.25)*** (15.87)*** (16.79)***

αRR 0.49 0.44 0.53 0.42 0.38

(11.97)*** (9.08)*** (15.40)*** (13.48)*** (9.52)***

Q12 10.79 13.76 6.65 14.96 10.23

[0.55] [0.32] [0.88] [0.24] [0.60]

SBT 4.82 3.61 3.76 3.10 2.64

[0.00] [0.00] [0.00] [0.00] [0.01]

lnL �6026.19 �5754.72 �5981.74 �5197.18 �6257.32

Note: The table presents the bivariate benchmark HEAVY system. The numbers in square brackets are

p-values. The numbers in parentheses are t-statistics. ***, **, * denote significance at the 0.01, 0.05, 0.10
level, respectively. Q₁₂ is the Box–Pierce Q-statistics on the standardized residuals with 12 lags. SBT denotes
the Sign Bias test of Engle and Ng (1993). lnL denotes the log-likelihood value for each specification. Bold
(underlined) numbers indicate minimum (maximum) values across the five indices.
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TABLE 3 The m-DAP-HEAVY model

SP DJ NASDAQ RUSSELL FTSE

Panel A. Stock returns: m-DAP-HEAVY-r

1�βrLð Þ σ2rt
� �δr

2 ¼ωr þ αrr þ γrrst�1ð ÞL r2t
� �δr

2 þ αrRþ γrRst�1ð ÞL RMtð Þ
δR
2

βr 0.75 0.78 0.73 0.90 0.82

(26.64)*** (36.42)*** (19.60)*** (82.14)*** (31.93)***

αrR 0.14 0.09 0.27 0.07

(4.34)*** (3.87)*** (4.62)*** (2.67)***

γrr 0.05 0.09 0.05 0.11 0.11

(2.50)*** (5.28)*** (2.57)*** (11.11)*** (6.77)***

γrR 0.19 0.12 0.18 0.08 0.09

(6.18)*** (4.92)*** (4.45)*** (3.32)*** (4.20)***

Q12 12.20 14.50 8.99 14.17 5.51

[0.27] [0.27] [0.70] [0.17] [0.94]

SBT 1.51 1.06 1.13 0.23 1.56

[0.13] [0.29] [0.26] [0.82] [0.12]

lnL �5980.38 �5865.44 �6888.80 �7121.48 �6142.30

Panel B. Realized measure: m-DAP-HEAVY-R

1�βRLð Þ σ2Rt
� �δR

2 ¼ωiþ αRr þ γRrst�1ð ÞL r2t
� �δr

2 þ αRRþ γRRst�1ð ÞL RMtð Þ
δR
2 þφREPUt�1þζRCRt�1þϑRCOt�1

βR 0.64 0.69 0.54 0.64 0.77

(27.86)*** (33.89)*** (22.00)*** (27.18)*** (38.15)***

αRR 0.22 0.18 0.33 0.23 0.13

(10.82)*** (10.40)*** (15.41)*** (11.77)*** (5.97)***

γRR 0.07 0.07 0.03 0.08 0.05

(6.05)*** (5.91)*** (2.38)** (0.08)*** (3.30)***

γRr 0.09 0.10 0.07 0.03 0.09

(9.57)*** (8.60)*** (11.35)*** (8.22)*** (11.14)***

φR 0.03 0.02 0.02 0.02 0.01

(4.13)*** (3.11)*** (2.19)** (2.73)*** (3.16)***

ζR 0.06 0.05 0.05 0.02 0.05

(4.14)*** (4.26)*** (3.30)*** (2.58)*** (4.81)***

MOVE MOVE MOVE MOVE MOVE

ϑR 0.03 0.03 0.01 0.02 0.01

(4.78)*** (4.50)*** (2.30)** (2.92)*** (2.08)**

GSCI GSCI GSCI GSCI GSCI

Q12 14.04 14.57 6.50 15.46 11.52

[0.30] [0.27] [0.89] [0.22] [0.49]

SBT 0.44 0.26 0.12 1.21 0.82

[0.66] [0.79] [0.91] [0.23] [0.41]

lnL �5934.08 �5670.01 �5879.11 �5039.12 �5800.00

Panel C. Powers δi

δr 1.40 1.40 1.50 1.40 1.50

δR 1.30 1.30 1.30 1.30 1.30

Note: The table reports the estimation of the m-DAP-HEAVY model. The numbers in square brackets are p-values. The numbers in parentheses are t-statistics.
***, **, * denote significance at the 0.01, 0.05, 0.10 level, respectively. Q₁₂ is the Box–Pierce Q-statistics on the standardized residuals with 12 lags. SBT denotes
the Sign Bias test of Engle and Ng (1993). lnL denotes the log-likelihood value for each specification. Bold (underlined) numbers indicate minimum
(maximum) values across the five indices.
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the significant impact from own and cross asymmetries.
We estimate the powers separately with a two-step proce-
dure. First, we run the univariate AP models for the
returns and the realized measure; the Wald tests for the
power terms reject the hypotheses of δi ¼ 1 and δi ¼ 2 in
most cases (available upon request). In the second step,
we use the estimated powers, δr and δR, from the first
step to power transform the conditional variances of both
series and include them in the bivariate system. Our
sequential procedure results in the fixed values of the
power term, which are the same for both specifications
(δr and δR are common for Panels A and B).

For the returns (see Panel A), the estimated power,
δr , is either 1.40 or 1.50. The Heavy cross effect and asym-
metry parameters, αrR and γrR, are highly significant in
most cases, apart from the Russell index returns, for
which the Heavy cross effect, αrR, is insignificant and not
included. The significance of both Heavy effects in the
returns equation extends the specification preferred by
Karanasos and Yfanti (2020), where the joint significance
of αrR and γrR is not included in the chosen models
reported. Although αrr is insignificant and excluded in all
cases, the OA parameter (γrr) is significant with
γrr � 0:05,0:11½ �. Therefore, we conclude that the lagged
values of both powered variables drive the process of the
returns' power transformed variance. The momentum,
βr , is around 0.73–0.90. All five indices generated very
similar DAP specifications without macro effects since
our realized measure equation includes the macro
variables.

For the realized measure, the preferred specification
is the m-DAP one. The estimated power, δR, is 1.30 in all
cases and consistently lower than the returns power term
(see Panel B). Both Heavy parameters, αRR and γRR, are
significant: αRR is around 0.13 (min. value) to 0.33 (max.
value), while the OA, γRR, is between 0.03 and 0.08. The
CA Arch term is always significant with γRr � 0:03,0:10½ �.
This denotes that the powered conditional variance of
~RMt is significantly influenced by the lagged values of

both powered variables: the squared negative returns and
the realized measure. The momentum, βR, is estimated to
be around 0.54–0.77.

Finally, we test our first Hypothesis (H1) and find
that the macro effects are significant (see Panel B). Their
positive sign, as expected, confirms H1, that is weak
(strong) fundamentals increase (decrease) volatilities.
The power transformed realized variance receives a
boosting impact from higher EPU levels, φR � 0:01,0:03½ �,
in line with the results of Pastor and Veronesi (2013),
who were the first to associate stock market volatilities
with EPU. The uncertainty results also confirm Conrad
and Loch (2015), among others, on the negative impact
of confidence. Consumer confidence is the opposite

sentiment to uncertainty, which is found here with the
expected opposite sign. For the US indices, we use the
daily US EPU index and for FTSE 100, the UK EPU
instead. Regarding the credit and commodity markets,
we prefer to use common global proxies for both the US
and UK stock markets. Credit market conditions are bet-
ter captured by the MOVE index in all cases compared
with the M.AAA yields alternative. As expected,
increased US treasury implied volatility raises realized
volatility in stock markets (ζR � 0:02,0:06½ �) since the tur-
bulence in the credit markets always generates significant
volatility spillover effects to stock markets. This is consis-
tent with Engle and Rangel (2008), who conclude on a
positive impact of government bond interest rate volatil-
ity on stock volatility through the Spline-GARCH model.
Moving to commodities, the GSCI index (ϑR � 0:01,0:03½ �)
is the chosen commodity regressor across all five indices
according to the information criteria minimization rule
compared with the WTI alternative proxy. Crude oil coef-
ficients are estimated positive and significant, but the
commodity effect is better captured by the GSCI index
(reported in Table 3), whose major component is the
crude oil price. Lower commodity values depress the cost
of supplies for firms. Hence, they boost productivity,
investment, and, more generally, economic activity and,
at the same time, reduce financial volatilities. Given that
higher oil prices mostly coincide with recessions
(Barsky & Kilian, 2004), the positive link between vari-
ance and commodity prices, captured by ϑR, confirms the
negative relationship between economic activity and
stock market volatility.

All in all, our estimation results show significant
Heavy effects (αrR, γrR, αRR and γRR), Arch asymmetries
(γrr and γRr) and macro influences (φR, ζR and ϑR). The
log-likelihood (lnL) values are higher for the m-DAP
model than the lnL values of the benchmark one, show-
ing the in-sample performance superiority of our model
(Appendix A.3, Figure A1 provides the S&P 500 standard-
ized residuals graphs for the two models). The SBT
results demonstrate that the leverage effect is not omitted
since the sign coefficients are estimated insignificant,
with p-values higher than 0.11. Table A1 (Appendix A.1)
provides additional results for the realized measure equa-
tion step-by-step estimation, first, with the DAP extension
(Panel A) and, second, the m-DAP with the EPU regressor
only (Panel B). We follow the particular stepwise proce-
dure before deciding on our final chosen model extending
the HEAVY-R with powers, asymmetries and all three
macro factors. Table A2 (Appendix A.1) presents the
benchmark equation for the realized measure with macro
effects for all five stock indices. Finally, Tables A3 and A4
(Appendix A.1) report the stepwise estimation results for
our preferred benchmark and m-DAP realized variance
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equations of SP, where we choose MOVE and GSCI for
the credit and commodity proxies (compared with Moody's
AAA yields and WTI crude oil, respectively) according to
the information criterion minimization rule.

Our results on macro-financial linkages are informa-
tive about the high-frequency macro drivers of the
counter-cyclical financial volatility process. In line with
previous studies focusing instead on the low-frequency
volatility drivers or macro transmission channels
(Conrad & Loch, 2015; Engle & Rangel, 2008; Pastor &
Veronesi, 2013; Schwert, 1989), we identify three main
transmission channels of the high-frequency macro
impact on volatility in financial markets, namely:

i. The economic sentiment channel, through which
daily macro expectations, perceptions and the subse-
quent feelings of economic agents are incorporated
into equities. In particular, the daily loss of confi-
dence, as proxied by economic uncertainty, exacer-
bates equity risk.

ii. The credit channel, through which credit conditions
influence the volatility pattern. Tighter credit, prox-
ied by the volatility of Treasury securities or corpo-
rate funding costs, drives the daily stock realized
variance higher.

iii. The real activity channel, through which economic
recessions increase financial turbulence. In particu-
lar, higher commodity prices typically associated
with activity slowdowns tend to magnify financial
volatility.

6 | OUT-OF-SAMPLE
PERFORMANCE

Following our in-sample estimation of the m-DAP model,
which is found superior to the benchmark specification,
we examine its out-of-sample performance. We compute
the multistep-ahead out-of-sample forecasts and compare
the predictive accuracy of our proposed formulation with
the benchmark HEAVY for the returns and the realized
measure and three more standard volatility models: the
GARCH(1) for the daily returns and the ARFIMA(1,d,1)
and HAR-RV for the intra-daily realized variance.

We calculate the 1-, 5-, 10- and 22-step-ahead vari-
ance forecasts for the benchmark HEAVY, the DAP, its
macro-augmented extension, and the three standard
models. We choose the rolling window in-sample estima-
tion method using 2500 observations (the initial in-
sample estimation period for SP spans from 2 January
2001 to 22 December 2010) and re-estimate each model
daily based on the 2500-day rolling sample. The calcu-
lated out-of-sample forecasts of each model for SP are as

follows: 2362 one-step-ahead, 2358 five-step-ahead, 2353
10-step-ahead and 2341 22-step-ahead predicted vari-
ances. Next, we use the time series of the forecasted
values and compute for each point forecast the mean
square error (MSE) and the QLIKE loss function in com-
parison with the respective actual value. For each specifi-
cation and forecast horizon, we calculate the average
MSE and QLIKE to create the ratio of the forecast losses
for each extended HEAVY formulation (DAP and
m-DAP) to the loss of the benchmark one (see also,
Appendix A.2, Table A5 for the forecast losses of all
HEAVY, standard GARCH and HAR models). When the
ratio is lower than one, the proposed model's forecasting
performance is superior to the benchmark. The lowest
ratio signifies the lowest forecast losses, that is, the model
with the best predictions. Using the MSE calculations, we
apply the test for the pairwise comparison of nested
models (here the benchmark specification vs. the DAP
extensions) introduced by Harvey et al. (1998), HLN there-
after. The HLN forecast encompassing test is a modified
version of the Diebold–Mariano test (Diebold &
Mariano, 1995), which considers that the models can be
nested (the DAP nests the benchmark specification). It
examines whether the differences between the competing
specifications' forecasts are statistically significant and
whether the more general model's forecast losses are smal-
ler than the nested model's losses (Clark &
McCracken, 2001).

We implement the optimal predictor jrtjδ
(as formalized in Yfanti et al., 2022, section 3.2.3, proposi-
tion 3) and compute the out-of-sample forecasts. The
results, reported in Tables 4 and 5 for the SP index (simi-
lar results for the other four stock indices are available
upon request), demonstrate the preference for our exten-
sions compared with the benchmark specifications in all
time horizons (results reported in Table A5 also show the
extended models' forecast superiority over the standard
models with higher losses for GARCH, ARFIMA and
HAR specifications). The m-DAP model dominates the
benchmark one with the lowest MSE and QLIKE
(Table 4). The HLN test shows that the AP extensions
perform significantly better than the benchmarks. It
rejects the null hypothesis of equal predictions in favour
of the DAP's lower losses at a significance level of 5%
(Table 5). Overall, the extended models perform better
than the benchmarks in the short- and long-term predic-
tions. The forecasted values are significantly closer to the
actuals for the enriched specifications. The advanced in-
sample estimations with asymmetries, power, and macro
effects transfer their forecasting superiority to the out-of-
sample computations. Our macro-informed volatility
modelling framework provides reliable short-term predic-
tions for traders, investors, portfolio and risk managers.
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Policymakers can further utilize our superior longer-term
forecasts in scenarios of future financial volatility paths
for their interventions in the financial system.

Market and policy implications: We further illustrate
the equity market volatility response to the Covid-19 pan-
demic shock and the forecasting superiority of the
HEAVY extensions during the pandemic-induced market
turbulence with a real-world risk management exercise.
The widely used daily market risk metric, VaR, denotes
the potential loss of a portfolio's value, over a specific
holding period, with a given confidence level (see also
Karanasos et al., 2021). The VaR calculation's primary
input is the 1-day volatility forecast of the portfolio's risk
factors. We apply the conditional variance forecasts in a
long portfolio position to one S&P 500 index contract
starting from 24 December 2019. We compute 100 daily
VaR values from 26 December 2019 to 20 May 2020
(which mainly consists of the Coronavirus outbreak
period) using the 1-day variance forecasts of each returns
and realized measure model. We first calculate the 1-day
VaR with 95% and 99% confidence levels, given the zero
mean and normality assumption for the returns. Follow-
ing the parametric approach to VaR calculations, we

multiply the daily portfolio value with the 1-day-ahead
conditional volatility forecasted value (the square root of
the conditional variance) and the left quantile at the con-
fidence level of the normal distribution (the z-scores for
95% and 99% confidence levels are 1.645 and 2.326). Sec-
ond, we compute the daily realized return of the portfolio
(profit and loss). Third, we conduct the backtesting exer-
cise, comparing the realized payoff with the respective
1-day VaR for the 95% and 99% confidence levels. If the
realized losses exceed the respective day's VaR, we con-
sider it an exception in backtesting, denoting that the
VaR value fails to cover the losses of the particular day's
portfolio valuation.

The backtesting results (Table 6: Backtesting results)
show that the number of exceptions across all models is
according to the selected confidence level (the 95% and
99% confidence levels allow for 5 and 1 exceptions,
respectively, every 100 days) and low enough to avoid
increased capital charges imposed by supervisors (in the
case of the trading portfolio of a commercial bank). All
exceptions are identified in March 2020, around 16 March
2020, immediately after the World Health Organization
(WHO) announced that the Coronavirus outbreak is

TABLE 4 Mean square error (MSE) and QLIKE of m-step-ahead out-of-sample forecasts for SP as a ratio of the benchmark model

MSE QLIKE

Specifications# m-steps ! 1 5 10 22 1 5 10 22

Panel A: Stock returns (HEAVY-r)

Benchmark 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

m-DAP 0.789 0.816 0.867 0.933 0.741 0.782 0.854 0.890

Panel B: Realized measure (HEAVY-R)

Benchmark 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DAP 0.761 0.819 0.873 0.879 0.770 0.761 0.831 0.922

m-DAP with EPU only 0.743 0.802 0.851 0.881 0.724 0.740 0.806 0.866

m-DAP 0.656 0.781 0.844 0.863 0.691 0.738 0.795 0.859

Note: The table reports the MSE and QLIKE ratios of the SP conditional variance forecasts from the extended compared with the benchmark models. Bold
numbers indicate minimum values across the different specifications.

TABLE 5 HLN forecast

encompassing test results for SP (p-

values)

Specifications# m-steps ! 1 5 10 22

Panel A: Stock returns (HEAVY-r)

Benchmark vs. m-DAP 0.005 0.023 0.036 0.052

Panel B: Realized measure (HEAVY-R)

Benchmark vs. DAP 0.027 0.029 0.041 0.040

Benchmark vs. m-DAP with EPU only 0.025 0.028 0.040 0.044

Benchmark vs. m-DAP 0.003 0.022 0.030 0.050

Note: The numbers reported are p-values of Harvey et al. (1998) test of the null hypothesis for equal
forecasting performance against the one-sided alternative that the extended outperforms the nested
specification for SP.
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spreading at a pandemic growth rate and stock market
volatilities reached their highest peak after the markets
crash during the global financial crisis of 2008. More
exceptions in backtesting lead to higher market risk capi-
tal requirements for banks because regulators penalize
financial institutions' internal models, which fail to cover
trading losses through the VaR estimates. According to
the Basel traffic light approach, the capital charge for
market risk rises if the backtesting exceptions are more
than four in 250 daily observations and a 99% confidence
level. Given that all models provide adequate coverage of
the actual (realized) losses, we further scrutinize the
mean and minimum VaR estimates based on the fore-
casts of each model (Table 6: Descriptive statistics). The
VaR measure that ensures the highest loss coverage with
the lowest capital charges is the VaR with the lowest
minimum and highest mean values. This is provided by
the realized variance formulations, for which we prefer
the macro-augmented AP models. Since the capital
requirement for market risk is calculated on the total
trading 99% VaR (absolute value, 60-day average) and
any penalty from the backtesting exercise (more than
four exceptions in the 250-day period), the bank seeks
the lowest possible VaR average with the highest mini-
mum estimate in absolute terms. The macro-augmented
models clearly satisfy both criteria, contributing to the
risk manager's VaR calculation of the volatility forecasts
that better capture the loss distribution (highest extreme
loss coverage with highest absolute minimum value)
without inflating the capital charges (lowest abso-
lute mean).

Besides the risk management practice, our volatility
forecasts are useful for a wide range of business opera-
tions. Portfolio managers can use the macro-informed
specification to predict subsequent volatility in the
minimum-variance framework of asset allocation,
respecting the risk appetite of their clients. Risk-averse
investors impose low volatility thresholds on their invest-
ments, while risk lovers' mandates allow higher volatil-
ities on their portfolio positions. Future volatility
predictions can also be employed in the context of a
forward-looking performance evaluation through the
risk-adjusted return metrics, that is the Treynor or the
Sharpe ratios. Traders and risk practitioners focus on the
volatility pattern for macro-informed trading strategies,
derivatives pricing, and almost any risk and valuation
task in business analytics. Investing and hedging in
financial markets rely on risk factors whose forecasted
volatility is the main parameter of the pricing solutions
applied. Moreover, financial managers and accountants
consider volatility predictions when they decide on
investment projects or funding sources (the variation of
expected future cash flows) and measure the fair value of
financial instruments or estimate expected credit losses
for financial reporting purposes. Finally, policymakers
and supervisors of the financial system should use reli-
able volatility forecasts in designing their prudential pol-
icy responses. Regulators can rely on the macro-informed
volatility forecasts of the m-DAP-HEAVY system for the
proactive risk assessment of the financial system and the
oversight policies for maintaining financial stability, such
as the macro stress tests on financial institutions, the

TABLE 6 VaR Backtesting results and descriptive statistics for the SP portfolio

Backtesting results
Descriptive statistics

No. of exceptions 99% VaR 95% VaR

Specifications 99% VaR 95% VaR Mean Min. Mean Min.

Panel A: Stock returns (HEAVY-r)

GARCH(1) 1 2 �93.23 �157.88 �65.67 �112.89

Benchmark 1 2 �80.12 �149.76 �57.68 �102.39

m-DAP 1 2 �76.34 �133.54 �51.55 �95.41

Panel B: Realized measure (HEAVY-R)

ARFIMA(1,d,1) 1 2 �85.26 �134.98 �60.71 �93.77

HAR-RV 1 2 �89.51 �131.75 �63.62 �90.11

Benchmark 1 2 �70.34 �120.32 �50.19 �83.26

DAP 1 2 �76.23 �122.83 �53.88 �84.34

m-DAP with EPU 1 2 �75.66 �129.31 �53.67 �89.46

m-DAP with EPU, Credit and Commodities 1 2 �72.14 �136.69 �50.16 �94.99

Note: The table reports the VaR backtesting exercise and the descriptive statistics of the portfolio VaR for SP. Mean and Min. denote the average and minimum
VaR estimate, respectively. Bold numbers indicate the preferred specifications for the lower market risk capital charge with the higher loss coverage.
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bank capital and risk frameworks, and the early warning
systems.

7 | THE UNCERTAINTY EFFECT
ON REALIZED VOLATILITY

Following the extension of the benchmark HEAVY sys-
tem with leverage, power, and macro effects, we delve
into the impact of uncertainty on financial volatility and
test our second Hypothesis (H2). Over the decade after
the global turmoil that created new interest in the role of
uncertainty, the most widely used metrics or proxies have
all been based on macroeconomic, financial and policy
uncertainty, which have been found to have a detrimen-
tal impact on the economy and financial markets, which
is stage-contingent (with more dampening effects in
shakier times). The present study fills a remarkable gap
in the extant EPU literature by documenting its role
within the extended HEAVY volatility modelling frame-
work. Our analysis differs from earlier ones in the use of
both daily US and UK EPU index as a determinant of
daily realized volatility, with major implications for
macro-informed financial investments and the actions of
policymakers overseeing financial stability and managing
systemic risk.

We have already observed the direct positive effect, in
line with Antonakakis et al. (2013) and Pastor and Vero-
nesi (2013), and the predictive power of daily EPU on vol-
atility within the m-DAP framework in Sections 5 and 6.
In this part of our study, we extend our empirical analysis
by focusing more specifically on the main macro determi-
nant of volatility in the realized measure equation, that
is, the significant EPU effect on the realized variance. We
first estimate the EPU effect in the context of the bench-
mark realized volatility equation augmented with the
credit and commodity proxies. Table 7 reports the results
of the benchmark realized volatility specification with
credit (MOVE) and commodities (GSCI) for SP (similar
results for the other four stock indices are available upon
request). We estimate five restricted forms to observe
each EPU effect separately via three interaction terms as
follows: αepuRR is the coefficient of the EPU multiplied by
the realized variance, measuring the EPU impact on the
Heavy parameter (αRR), ζ

epu
R and ϑepuR capture the EPU

effect on the credit and commodity regressors, respec-
tively. The interaction terms are all significant and with a
positive sign. We show that elevated uncertainty leads to
a stronger volatility impact from credit and commodity
market conditions, confirming H2. Given that higher
uncertainty appears in economic downturns, we further
elicit the connection of credit turbulence and increased
commodity values during economic worsening with

higher equity market volatility, a connection critically
depending on the uncertainty channel. Furthermore, the
arch effect of the realized variance equation, that is the
Heavy coefficient (αRR), is partly attributed to EPU with
αepuRR estimated at 0.05. EPU also exerts significant influ-
ence on the macro factors, with the credit interaction
term ζepuR � 0:01,0:02½ � and the commodity interaction
term ϑepuR equal to 0.01.

The m-DAP-HEAVY-R equation is further esti-
mated using eight restricted forms alternatively with
four EPU interaction terms: γepuRR for the own Heavy
asymmetry, γepuRr for the cross Arch asymmetry, ζepuR for
credit and ϑepuR for commodities. Table 8 reports the
restricted forms for SP (see also, in Table 9, Panels B
and C, the EPU interaction terms estimated for all indices
in the whole sample and the Covid period separately). All
EPU interaction terms are positive, similar to the macro-
augmented benchmark specification's results, confirming
once more the amplifying EPU effect on each variable
(H2). The own Heavy and cross Arch asymmetries are
significantly and positively affected by higher uncer-
tainty, which also magnifies the macro effects. On the
one hand, within the empirical research on uncertainty,
the link between uncertainty and credit conditions tight-
ening has been explored by Alessandri and Mumtaz
(2019), who relate the rising funding costs for corpora-
tions with credit market uncertainty. On the other hand,
the uncertainty-commodities association has been widely
investigated by Antonakakis et al. (2014) and Fang et al.
(2018), among others. In particular, Antonakakis et al.
(2017) analyse the oil price-equity volatility link. How-
ever, all these studies have not covered the EPU, credit,
and commodities macro impact on intra-daily volatility
and the EPU magnifying role through credit and produc-
tion cost channels.

To sum up, our main contribution to the EPU
research consists of the novel evidence we provide on the
positive association between EPU and realized volatility
for both the US and the UK markets, in line with Karana-
sos and Yfanti (2020), who focused on European markets
and the UK EPU effect only. We first demonstrate the
daily EPU destabilizing impact on stock markets. Second,
the asymmetric and Heavy effects are state-dependent,
being affected by higher uncertainty. Third and most
interestingly, the economic interpretation of our results
points out that credit market turbulence and rising com-
modity prices, both of which are associated with weak
economic conditions, exacerbate financial volatility and
those effects are intensified by a higher EPU index.

From an economic perspective, the macro factors of
stock market volatility in the m-DAP framework verify
previous studies suggesting an upward volatility pat-
tern during economic worsening. This counter-cyclical
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trajectory has been shown by the negative impact of
economic activity indicators with quarterly or monthly
frequency (Engle & Rangel, 2008). In order to explore
the high-frequency domain of the macro-financial link-
ages, the quarterly/monthly activity proxies are
replaced by daily variables of economic activity as
regressors of the realized variance specification.
Restricted by the non-negativity constraints, we cannot
apply, among others, the daily yield curve slope
(or term spread), a predictor of future GDP (Estrella &
Hardouvelis, 1991) estimated significant by Conrad
and Loch (2015) in the monthly context. Relying on the
ample evidence of the adverse effects of uncertainty on
activity (Caggiano et al., 2017; Colombo, 2013; Jones &
Olson, 2013), we chose the daily EPU index to connect
stock market volatility with a proxy associated with the
contractive forces of economic activity. The positive
sign of the EPU variable is in line with prior findings
on the macroeconomic uncertainty's (Schwert, 1989)
and unemployment's positive effects and the negative
effect of production, GDP and sentiment growth
(Conrad & Loch, 2015). Similarly, the credit and com-
modities proxies linked with macro turbulence destabi-
lize equity markets as expected by the extant empirical

evidence (see, e.g. Asgharian et al., 2013; Barsky &
Kilian, 2004; Engle & Rangel, 2008).

Hence, in addition to contributing to the literature on
realized variance modelling through the asymmetric,
power and macro-augmentation of the benchmark model
applied in a broad sample with the Covid period included,
we also shed light on the economic sources of financial
volatility by studying the high-frequency domain of the
macro-financial linkages with daily macro regressors. All
three daily economic proxies that exacerbate equity volatil-
ity (higher economic uncertainty, tighter credit conditions
and increased commodity prices) are associated with eco-
nomic downturns. In what follows, we focus on the macro
effects during the unprecedented pandemic crisis by con-
ducting a sensitivity analysis of the realized variance equa-
tion's parameters to quantify the Covid effect on each
Heavy, Arch and Macro coefficient.

8 | THE COVID-19 EFFECT ON
MACRO-FINANCIAL LINKAGES

After investigating the significant macro-financial link-
ages in the US and UK markets and the important role of

TABLE 7 The benchmark HEAVY-R equation for SP with the EPU effect on Heavy and Macro parameters

1�βRLÞσ2Rt ¼ωRþ αRRþαepuRR EPUt�1
� �

L RMtð Þþ ζRþ ζepuR EPUt�1
� �

CRt�1þ ϑRþϑepuR EPUt�1
� �

COt�1

(1) (2) (3) (4) (5)

βR 0.47 0.48 0.48 0.49 0.48

(12.91)*** (13.03)*** (12.86)*** (13.54)*** (12.87)***

αRR 0.42 0.50 0.49 0.49 0.49

(9.26)*** (12.64)*** (12.51)*** (12.15)*** (12.49)***

αepuRR 0.05

(2.89)***

ζR 0.06 0.07 0.04 0.07

(2.88)*** (3.40)*** (1.83)* (3.31)***

MOVE MOVE MOVE MOVE

ζepuR 0.01 0.02

(2.64)*** (3.20)***

MOVE MOVE

ϑR 0.02 0.03 0.03 0.02

(1.72)* (2.84)*** (2.97)*** (1.70)*

GSCI GSCI GSCI GSCI

ϑepuR 0.01 0.01

(3.30)*** (3.27)***

GSCI GSCI

Note: The table reports the benchmark HEAVY-R equation for SP extended with the indirect EPU effect. Superscripts indicate the EPU effect on the respective

parameter. The numbers in parentheses are t-statistics. ***, **, * denote significance at the 0.01, 0.05, 0.10 level, respectively.
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TABLE 9 The Covid-19 and EPU effect on Heavy, Arch and Macro parameters in the m-DAP-HEAVY-R equation (Equation 3)

SP DJ NASDAQ RUSSELL FTSE

Panel A: The Covid-19 effect

αcovRR 0.02 0.01 0.04 0.03 0.02

(0.77) (0.61) (1.66)* (1.85)* (1.01)

γcovRR 0.03 0.03 0.04 0.07 0.05

(0.72) (0.99) (0.88) (1.82)* (1.21)

γcovRr 0.05 0.05 0.06 0.03 0.07

(2.24)** (2.26)** (2.37)** (2.50)*** (2.09)**

φcov
R 0.01 0.01 0.02 0.01 0.01

(1.65)* (1.63)* (1.78)* (1.73)* (1.62)*

ζcovR 0.01 0.01 0.02 0.01 0.02

(1.66)* (1.71)* (1.79)* (1.66)* (1.69)*

MOVE MOVE MOVE MOVE MOVE

ϑcovR 0.01 0.01 0.01 0.01 0.01

(1.69)* (1.76)* (1.74)* (1.63)* (1.69)*

GSCI GSCI GSCI GSCI GSCI

Panel B: The EPU effect in the whole sample

αepuRR 0.02 0.01 0.04 0.05 0.02

(0.88) (0.51) (1.78)* (2.42)** (0.77)

γepuRR 0.04 0.04 0.02 0.04 0.02

(5.86)*** (5.71)*** (2.59)*** (6.88)*** (3.03)***

γepuRr 0.05 0.05 0.03 0.02 0.04

(9.22)*** (8.12)*** (10.90)*** (8.35)*** (10.98)***

ζepuR 0.02 0.03 0.03 0.01 0.02

(3.04)*** (4.37)*** (3.43)*** (2.39)** (5.17)***

MOVE MOVE MOVE MOVE MOVE

ϑepuR 0.02 0.02 0.01 0.01 0.001

(4.34)*** (4.46)*** (1.64)* (2.85)*** (1.63)*

GSCI GSCI GSCI GSCI GSCI

Panel C: The EPU effect in the Covid-19 period

αcov_epuRR 0.004 0.002 0.01 0.01 0.004

(0.47) (0.33) (1.63)* (1.77)* (0.62)***

γcov_epuRR 0.01 0.01 0.01 0.03 0.01

(0.42) (0.66) (0.67) (1.71)* (1.02)

γcov_epuRr 0.01 0.02 0.02 0.02 0.03

(1.66)* (2.05)** (2.20)** (3.62)*** (2.01)**

ζcov_epuR 0.01 0.004 0.01 0.01 0.01

(1.66)* (1.69)* (1.82)* (1.71)* (1.67)*

MOVE MOVE MOVE MOVE MOVE

ϑcov_epuR 0.003 0.002 0.01 0.003 0.004

(1.70)* (1.69)* (1.81)* (1.66)* (1.64)*

GSCI GSCI GSCI GSCI GSCI

Note: The table reports the pandemic and EPU effect estimated in the m-DAP-HEAVY-R equation. The numbers in parentheses are t-statistics. ***, **, * denote
significance at the 0.01, 0.05, 0.10 level, respectively. Superscripts indicate the Covid-19 effect (cov), the EPU effect in the whole sample (epu) and the EPU effect

in the Covid-19 period (cov_epu).
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both daily EPU indices, confirming our first two Hypoth-
eses (H1 and H2), we further explore the Covid-induced
effect on equity markets and test the last Hypothesis
(H3). The first pandemic wave immediately led to market
turbulence with soaring volatilities close to the 2008 crisis
peak (see the 2008 crisis structural break effect on real-
ized variance in Karanasos & Yfanti, 2020). Markets are
destabilized by the widespread worries about delayed and
deficient socio-economic policies to support societies,
economies and the financial system in the US and the
UK. The meteoric threat of the contagious disease has
inflamed the uncertainty feelings about future economic
policy choices and their potential macro impact. The
ubiquitous Covid-driven uncertainty is captured by a sig-
nificant increase in the level of the US and UK EPU
indices.

Stock market volatility climbed to a record peak
around mid-March when the WHO gave the pan-
demic definition to the Covid-19 spread while daily
EPU levels rose sharply (see Figures 9 and 10).
Against this backdrop, we estimate the Covid impact
on the high-frequency macro-financial linkages by
adding to the m-DAP-HEAVY-R equation three inter-
action terms on all Heavy, Arch and Macro parame-
ters (Equation 3). The interaction terms capture the
Covid-19 impact, the EPU effect in the whole sam-
ple, and, separately, in the Covid era starting from
9 January 2020 when China reported the first virus-
linked death in Wuhan.

1�βRLð Þ σ2Rt
� �δR

2 ¼ωRþ

FIGURE 9 US EPU and S&P

500 realized variance (January–
May 2020)

FIGURE 10 UK EPU and FTSE

100 realized variance (January–
May 2020)
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αRRþαcovRRDcov,t�1þαepuRR EPUt�1þαcov_epuRR Dcov,t�1EPUt�1þ
�

þ γRRþ γcovRRDcov,t�1þ γepuRR EPUt�1þ γcov_epuRR Dcov,t�1EPUt�1
� �

st�1�L RMtð Þ
δR
2 þ

þ γRr þ γcovRr Dcov,t�1þ γepuRr EPUt�1

�

þ γcov_epuRr Dcov,t�1EPUt�1

�
st�1L r2t

� �δr
2þ

þ φRþφcov
R Dcov,t�1

� �
EPUt�1þ

þ ζRþζcovR Dcov,t�1þ ζepuR EPUt�1þ ζ
covepu
R Dcov,t�1EPUt�1

� �
CRt�1þ

þ ϑRþϑcovR Dcov,t�1þϑepuR EPUt�1

�

þ ϑcov_epuR Dcov,t�1EPUt�1

�
COt�1:

ð3Þ

Equation (3) incorporates the pandemic effect on real-
ized volatility with the dummy variable, Dcov,t, defined as
follows: Dcov,t ¼ 0, if t< cov and Dcov,t ¼ 1, if t≥ cov, cov¼
9 January 2020, the date of the first reported death due to
Covid-19. We further measure the EPU effect with the
EPU interaction terms constructed by the multiplication
of the EPU variable with the respective parameter of the
volatility equation, similarly to Section 7 estimations
(here, we report the interaction terms of the m-DAP-
HEAVY-R equation for all indices). Finally, we consider
the distinct EPU effect in the Covid-era by multiplying
the EPU interaction term with the Covid time dummy,
Dcov,t . Table 9 summarizes the Covid and EPU effects,
which are estimated by restricted forms of Equation (3)
by including each Covid, EPU and EPU under Covid
effect separately for each Heavy, Arch and Macro param-
eter. The Covid-crisis (Table 9, Panel A) magnifies the
Arch asymmetric and all three macro effects on realized
volatility (γcovRr , φ

cov
R , ζcovR , ϑcovR ) while the distinct Heavy

effects during the pandemic are mostly insignificant (αcovRR ,
γcovRR ). Similarly to the analysis in Section 7, the EPU
effect, reported for all five indices here, is always positive
and highly significant in all cases (γepuRR , γ

epu
Rr , ζ

epu
R , ϑepuR ),

apart from the Heavy parameter, αepuRR , where in three out
of the five indices the uncertainty impact is insignificant
(Table 9, Panel B). Furthermore, rising EPU levels during
the pandemic remarkably increase the effect of negative
squared returns, credit and commodity proxies on real-
ized variance (γcov_epuRr , ζcov_epuR , ϑcov_epuR ) while the Heavy
coefficients (αcov_epuRR , γcov_epuRR ) are mostly unaffected
(Table 9, Panel C). Our results show that the market tur-
bulence caused by Covid-19 is striking. We find a

significant inflating effect on the exacerbating impact of
the Arch asymmetry and Macro parameters, confirming
H3. We also provide sound evidence of the pandemic's
destabilizing impact through the uncertainty channel on
financial volatilities, given the significant EPU effect dur-
ing the disease spread.

9 | CONCLUSIONS

We have applied the HEAVY framework in US and UK
equity market volatility modelling enriched with asym-
metric, power and macro features for a sample covering
the Covid-induced crisis in financial markets. Our in-
sample estimation results favour the most general DAP
specification for the variance of returns and realized mea-
sure, where both powered transformed variables and
leverage effects are significant in both equations of the
bivariate system, in line with Karanasos and Yfanti
(2020). The macro-extension of the AP process produces
a specification that clearly outperforms its rivals, and that
can be used for the purposes of portfolio and risk man-
agement. In particular, we show that it has a better out-
of-sample forecasting performance over both short- and
long-term horizons during the pandemic crash. Finally,
our macro-analysis reveals that distinct features of eco-
nomic worsening, such as higher macro uncertainty,
commodity prices, and credit conditions tightening, raise
equity volatilities, while EPU further intensifies the
Heavy, Arch and, macro effects on the realized measure,
particularly during the recent period of the Covid-19
outbreak.

Our insights on the link between high- and low-
frequency volatility measures and daily macro factors
during the current health crisis project important impli-
cations for policy and market practitioners and suggest
possible avenues for future research to extend the
HEAVY model further. Our framework can be used by
both policymakers and market experts to analyse and
predict financial volatility trajectories even in crisis
periods with the aim of designing policies to preserve
financial stability and deciding on asset allocation, hedg-
ing strategies, investment projects, funding sources, and
capital risk buffers (for bank managers, in particular).
The research potential of the macro-augmented HEAVY
system for financial volatility is still large. Therefore,
future research could extend the analysis to commodities
and other asset classes (e.g. foreign exchange rates,
bonds, cryptocurrencies) using, in each case, appropriate
macro proxies for volatility. Finally, it would also be
interesting to construct daily EPU indices for other coun-
tries, in addition to the US and the UK, to obtain wider
evidence on the uncertainty channel repercussions.
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ENDNOTES
1 The acronym HEAVY stands for high-frequency-based volatility
(see Shephard & Sheppard, 2010).

2 Glosten et al. (1993) have introduced this type of asymmetry.
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APPENDIX A

A.1 | REALIZED MEASURE EQUATION
ANALYSIS

TABLE A1 The (m-)DAP-

HEAVY-R equation
SP DJ NASDAQ RUSSELL FTSE

Panel A. Realized measure: DAP-HEAVY-R

1�βRLð Þ σ2Rt
� �δR

2 ¼ωRþ αRRþ γRRst�1ð ÞL RMtð Þ
δR
2 þ γRrst�1L r2t

� �δr
2

βR 0.65 0.70 0.56 0.64 0.77

(30.82)*** (38.01)*** (23.61)*** (27.72)*** (40.95)***

αRR 0.24 0.20 0.33 0.24 0.14

(12.34)*** (12.00)*** (15.79)*** (11.91)*** (6.71)***

γRR 0.07 0.07 0.02 0.08 0.05

(5.46)*** (5.86)*** (2.17)** (7.00)*** (3.22)***

γRr 0.08 0.09 0.07 0.03 0.08

(9.01)*** (7.93)*** (11.19)*** (7.81)*** (10.62)***

lnL �5947.31 �5723.10 �5927.50 �5061.56 �5839.15

Panel B. Realized measure: m-DAP-HEAVY-R with EPU only

1�βRLð Þ σ2Rt
� �δR

2 ¼ωRþ αRRþ γRRst�1ð ÞL RMtð Þ
δR
2 þ γRrst�1L r2t

� �δr
2 þφREPUt�1

βR 0.65 0.69 0.55 0.63 0.77

(30.28)*** (37.10)*** (22.98)*** (26.95)*** (40.29)***

αRR 0.24 0.20 0.34 0.24 0.14

(12.44)*** (12.03)*** (15.84)*** (11.96)*** (6.78)***

γRR 0.07 0.07 0.02 0.08 0.04

(5.45)*** (5.85)*** (2.19)** (7.05)*** (3.32)***

γRr 0.09 0.09 0.07 0.03 0.08

(9.10)*** (7.96)*** (11.24)*** (7.75)*** (10.63)***

φR 0.02 0.01 0.01 0.01 0.01

(4.02)*** (2.04)** (1.97)** (2.00)** (2.26)**

lnL �5937.55 �5700.21 �5920.07 �5055.11 �5831.88

Powers δi

δr 1.40 1.40 1.50 1.40 1.50

δR 1.30 1.30 1.30 1.30 1.30

Note: The table reports the estimation of the (m-)DAP-HEAVY-R equation without and with the direct EPU
effect. The numbers in parentheses are t-statistics. ***, **, * denote significance at the 0.01, 0.05, 0.10 level,
respectively. lnL denotes the log-likelihood value for each specification. Bold (underlined) numbers indicate

minimum (maximum) values across the five indices.
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TABLE A2 The benchmark

HEAVY-R equation with EPU, Credit

and Commodities

1�βRLð Þ σ2Rt
� �δR

2 ¼ωRþαRRL RMtð ÞþφREPUt�1þζRCRt�1þϑRCOt�1

SP DJ NASDAQ RUSSELL FTSE

βR 0.48 0.52 0.42 0.52 0.60

(12.89)*** (12.94)*** (12.24)*** (15.32)*** (14.88)***

αRR 0.49 0.45 0.54 0.43 0.38

(12.49)*** (10.01)*** (15.56)*** (13.64)*** (9.42)***

φR 0.03 0.02 0.02 0.02 0.02

(3.14)*** (2.46)*** (1.73)* (2.15)** (1.66)*

ζR 0.07 0.07 0.06 0.05 0.07

(3.32)*** (3.09)*** (2.24)** (2.96)*** (2.32)**

MOVE MOVE MOVE MOVE MOVE

ϑR 0.03 0.04 0.02 0.03

(2.80)*** (2.75)*** (1.65)* (2.24)**

GSCI GSCI GSCI GSCI

lnL �6010.34 �5746.31 �5973.71 �5176.34 �6219.94

Note: The table reports the benchmark HEAVY-R equation with Macro effects. The numbers in parentheses
are t-statistics. ***, **, * denote significance at the 0.01, 0.05, 0.10 level, respectively. lnL denotes the log-
likelihood value for each specification. Bold (underlined) numbers indicate minimum (maximum) values
across the five indices.

TABLE A3 The benchmark HEAVY-R equation for SP with EPU, Credit and Commodities (stepwise procedure)

1�βRLð Þ σ2Rt
� �δR

2 ¼ωRþαRRL RMtð ÞþφREPUt�1þ ζRCRt�1þϑRCOt�1

(1) (2) (3) (4) (5) (6) (7) (8) (9)

βR 0.51 0.48 0.50 0.50 0.51 0.48 0.48 0.50 0.50

(14.07)*** (13.06)*** (13.56)*** (13.45)*** (14.12)*** (12.89)*** (13.04)*** (13.54)*** (13.49)***

αRR 0.49 0.50 0.49 0.49 0.49 0.49 0.50 0.49 0.49

(12.10)*** (12.63)*** (12.15)*** (12.01)*** (12.13)*** (12.49)*** (12.69)*** (12.14)*** (12.04)***

φR 0.02 0.02 0.03 0.03 0.02 0.03 0.02 0.03 0.03

(2.28)** (2.59)*** (3.18)*** (2.97)*** (1.99)** (3.14)*** (2.35)** (3.19)*** (2.72)***

ζR 0.10 0.07 0.07 0.10 0.02 0.07

(4.41)*** (2.77)*** (3.32)*** (4.63)*** (1.80)* (2.69)***

MOVE AAA MOVE MOVE AAA AAA

ϑR 0.05 0.02 0.03 0.03 0.05 0.02

(4.15)*** (1.88)* (2.80)*** (2.53)*** (4.08)*** (1.68)*

GSCI WTI GSCI WTI GSCI WTI

AIC 2.31610 2.31502 2.31532 2.31587 2.31610 2.31496 2.31506 2.31573 2.31612

Note: The table reports the stepwise estimation of the benchmark HEAVY-R equation with Macro effects for SP. The numbers in parentheses are t-statistics.
***, **, * denote significance at the 0.01, 0.05, 0.10 level, respectively. AIC denotes the Akaike information criterion.
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A.2 | FORECAST LOSSES

TABLE A4 The m-DAP-HEAVY-R equation for SP with EPU, Credit and Commodities (stepwise procedure)

1�βRLð Þ σ2Rt
� �δR

2 ¼ωRþ αRRþ γRRst�1ð ÞL RMtð Þ
δR
2 þ γRrst�1L r2t

� �δr
2 þφREPUt�1þζRCRt�1þϑRCOt�1

(1) (2) (3) (4) (5) (6) (7) (8) (9)

βR 0.65 0.63 0.65 0.65 0.65 0.64 0.64 0.65 0.65

(30.28)*** (28.19)*** (29.26)*** (29.13)*** (30.07)*** (27.86)*** (27.95)*** (28.91)*** (28.95)***

αRR 0.24 0.23 0.22 0.22 0.24 0.22 0.23 0.22 0.22

(12.44)*** (11.64)*** (11.18)*** (11.31)*** (12.30)*** (10.82)*** (11.31)*** (10.97)*** (11.14)***

γRR 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

(5.45)*** (5.83)*** (5.87)*** (5.85)*** (5.43)*** (6.05)*** (5.84)*** (5.94)*** (5.85)***

γRr 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

(9.10)*** (9.29)*** (9.48)*** (9.36)*** (9.17)*** (9.57)*** (9.44)*** (9.49)*** (9.45)***

φR 0.02 0.02 0.03 0.03 0.02 0.03 0.02 0.03 0.03

(4.02)*** (2.95)*** (4.26)*** (4.39)*** (2.37)** (4.13)*** (2.57)*** (4.57)*** (4.10)***

ζR 0.07 0.08 0.06 0.08 0.04 0.08

(5.49)*** (5.38)*** (4.14)*** (5.84)*** (2.28)** (5.45)***

MOVE AAA MOVE MOVE AAA AAA

ϑR 0.04 0.01 0.03 0.02 0.03 0.02

(6.14)*** (1.89)* (4.78)*** (3.13)*** (3.33)*** (2.17)**

GSCI WTI GSCI WTI GSCI WTI

δr 1.40

δR 1.30

AIC 2.30564 2.30531 2.30527 2.30537 2.30599 2.30521 2.30553 2.30558 2.30570

Note: The table reports the stepwise estimation of the m-DAP-HEAVY-R equation for SP. The numbers in parentheses are t-statistics. ***, **, * denote
significance at the 0.01, 0.05, 0.10 level, respectively. AIC denotes the Akaike information criterion.

TABLE A5 Mean square error

(MSE) of m-step-ahead out-of-sample

forecasts for SP

Specifications# m-steps ! 1 5 10 22

Panel A: Stock returns

GARCH(1) 1.99177 2.83313 3.22341 6.35942

Benchmark HEAVY-r 1.86670 2.42979 2.62279 5.75513

m-DAP-HEAVY-r 1.47283 1.98270 2.27396 5.36954

Panel B: Realized measure

ARFIMA(1,d,1) 1.27116 2.01750 1.44358 1.30326

HAR-RV 1.26015 1.99137 1.41074 1.38670

Benchmark HEAVY-R 1.22345 1.86633 1.26297 1.09794

DAP-HEAVY-R 0.93105 1.52852 1.10257 0.96509

m-DAP-HEAVY-R with EPU only 0.90902 1.49680 1.07479 0.96729

m-DAP-HEAVY-R 0.80258 1.45760 1.06595 0.94752

Note: The table reports the mean square error of the SP conditional variance forecasts. Bold numbers
indicate minimum values across the different specifications.
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A.3 | S&P 500 RESIDUALS GRAPHS

FIGURE A1 S&P 500 standardized residuals (benchmark HEAVY and m-DAP-HEAVY models)

1608 CAPORALE ET AL.

 10991158, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ijfe.2748 by T

est, W
iley O

nline L
ibrary on [26/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	Macro-financial linkages in the high-frequency domain: Economic fundamentals and the Covid-induced uncertainty channel in U...
	1  INTRODUCTION
	2  THEORETICAL BACKGROUND AND RESEARCH HYPOTHESES
	2.1  Theoretical background
	2.2  Research hypotheses

	3  THE ECONOMETRIC FRAMEWORK
	3.1  The HEAVY model
	3.2  The macro-augmented asymmetric power specification

	4  DATA DESCRIPTION
	4.1  Volatility measures
	4.2  Macroeconomic variables

	5  IN-SAMPLE ESTIMATION RESULTS
	6  OUT-OF-SAMPLE PERFORMANCE
	7  THE UNCERTAINTY EFFECT ON REALIZED VOLATILITY
	8  THE COVID-19 EFFECT ON MACRO-FINANCIAL LINKAGES
	9  CONCLUSIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT

	Endnotes
	REFERENCES
	APPENDIX A
	  REALIZED MEASURE EQUATION ANALYSIS
	  FORECAST LOSSES
	  S&P 500 RESIDUALS GRAPHS



