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Abstract

Introduction: MRI measures may be used as outcome markers in Frontotemporal dementia (FTD).

Objectives: To predict MRI cortical thickness (CT) at follow-up at the single subject level, using brain MRI acquired at

baseline in preclinical FTD. 

Methods: 84 presymptomatic subjects carrying Granulin mutations underwent MRI scans at baseline and at follow-up 

(31.216.5 months). Multivariate nonlinear mixed-effects model was used for estimating individualized CT at follow-

up based on baseline MRI data. The automated user-friendly preGRN-MRI script was coded.

Results: Prediction accuracy was high for each considered brain region (i.e., prefrontal region, real CT at follow-up vs.

predicted CT at follow-up, mean error<=1.87%). The sample size required to detect a reduction in decline in a 1-year

clinical trial was equal to 52 subjects (power=0.80, alpha=0.05).

Discussion: The preGRN-MRI tool, using baseline MRI measures, was able to predict the expected MRI atrophy at

follow-up in presymptomatic subjects carrying GRN mutations with good performances. This tool could be useful in

clinical trials, where deviation of CT from the predicted model may be considered an effect of the intervention itself.

Key-words: Frontotemporal dementia; Granulin; mutation; Magnetic Resonance Imaging; presymptomatic; preclinical.
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Introduction

Frontotemporal dementia (FTD) refers to a heterogeneous group of disorders predominantly affecting the frontal and

temporal lobes and characterised by behavioural disturbances, impairment of executive functions or language deficits

[1,2]. About 40% of FTD patients have a family history of dementia, and about 20% have a clear autosomal dominant

inheritance  [3].  Among monogenic FTD, mutations in Granulin  gene  (GRN) are one of the most frequent genetic

determinants  [4–6] where  symptoms  are  preceded  by  a  long  period  of  gradual  accrual  of  subtle  impairment  of

cognitive  functions,  progressive  brain  imaging abnormalities  and  biomarker  changes.  However,  despite  the  timely

characterisation  of  early  and  proximity  markers  of  disease  onset  [7,8],  outcome measures  to  test  the  efficacy  of

treatment interventions are not yet validated. Indeed, in GRN mutation carriers a number of potential therapeutic drugs

have been designed  [9,10], and it is likely that these drugs may be more effective if administered early in disease

course. However, because of the tautologic impossibility to define a clinical outcome for preclinical FTD, our strategic

approach is directed towards fluidic or imaging biomarkers as outcome measures.

Circulating progranulin levels have been demonstrated useful to detect the presence of GRN haploinsufficiency [11],

while serum or cerebrospinal fluid (CSF) Neurofilaments Light Chain (NfL) or Glial Fibrillary Acidic Protein (GFAP)

concentrations may be used to predict early symptoms development [12,13], but their utility as outcome markers need

to be further established. In preclinical GRN mutations carriers, cross-sectional studies have identified significant grey

matter atrophy and white matter hyperintensities in mutation carriers up to 10 years before expected symptom onset

[7,14,15], while longitudinal studies have carefully shown imaging trajectories over time [15–17]. However, none of

these markers can be currently used as outcome measures with sufficient accuracy at the single subject level. 

Magnetic resonance imaging (MRI) markers are good candidates for the assessment of intervention efficacy, as they

may aid to track the delay of disease progression, selectively evaluating effects on specific brain regions. An ideal

marker should be able to accurately predict the expected MRI features at follow up, should be reliable and reproducible,

and should be consistent across different centres.  In other words,  a useful outcome MRI marker should be able to

forecast  a subject’s follow-up findings from baseline data. Accordingly,  a pharmacological  or non-pharmacological

intervention  may be  considered  effective  when associated  with a  significant  difference  from the  predicted  model,

indicating a reduction of expected disease progression. This approach could be used in early experimental medicine

studies without placebo/sham treatment, which is particularly useful in view of the neurosurgical intervention required

for some proposed GRN treatments and the challenges to global recruitment for large placebo-controlled studies. 
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In the present work, we used a multivariate nonlinear mixed effects model to predict brain MRI data at follow-up in

presymptomatic subjects carrying pathogenetic GRN mutations from the Genetic FTD Initiative (GENFI) cohort. Such

multivariate  nonlinear  mixed  effects  models  have  been  used  to  estimate  individualized  longitudinal  trajectories  of

neuroimaging data, but few studies examined neurodegenerative disorders [18]. We computed and coded an automated

user-friendly script in which the simple and straightforward entry of raw baseline MRI T1-weighted data resulted in an

accurate prediction of follow-up MRI data at a given time point and at the single subject level. 
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Methods

Participants. Data for this study were drawn from the GENFI multicentre cohort study (data freeze 5), which consists

of 22 research centres across Europe and Canada (www.genfi.org.uk). We included subjects carrying null mutations in

the GRN gene at their presymptomatic stage, and for whom both baseline and follow-up MRI was available. 

A standardised clinical assessment was performed for each subject, including the Digit Symbol Task, parts A and B of

the Trail  Making Test, the Wechsler  Abbreviated Scale of Intelligence Block Design task, the short  version of the

Boston Naming Test and Letter and Category fluences [7].

Local ethics committees approved the study at each site and all participants provided written informed consent; the

study was conducted according to the Declaration of Helsinki.

Study design. This study was aimed at predicting follow-up brain MRI data at a given time point and at single subject

level with the baseline MRI data serving as inputs to the model. We propose that if a treatment intervention is carried

out, any deviation from the predicted model may be considered an effect of the intervention itself (see Figure 1).

There were five steps to the study: 1) we extracted cortical thickness maps with a widely used automated brain atlas

from  baseline  and  follow-up  MRI  scans  (see  below,  MRI  acquisition  and  pre-processing  section);  2)  we  run  a

multivariate nonlinear mixed effects model and  an expectation-maximization algorithm  for estimating individualized

longitudinal trajectories of neuroimaging data (see below, Statistical approach section); 3) we then run a montecarlo

simulation (5000 runs) leaving ten random subject out to assess results reliability in predicting follow-up MRI cortical

regions from baseline MRI cortical thickness at a single subject level, and we assessed the mean percent error the for

each considered brain region; 4) we coded a user friendly toolbox, the preGRN-MRI, to predict MRI at follow-up; 5)

we considered baseline MRI data of another cohort of presymptomatic GRN mutations carriers from the GENFI study,

not included in the previous analysis, and we assessed the mean percent error in this second dataset to further prove the

reliability of the method.

The preGRN-MRI toolbox, the user guide and the related example dataset  are available on request  (Prof.  Barbara

Borroni, bborroni@inwind.it  )  .

MRI acquisition and pre-processing.  Participants were scanned at  their local  site  on 3 Tesla scanners  from two

different  manufacturers,  either  Philips  Healthcare  or  Siemens  Healthcare  Diagnostics.  The  acquisition  protocol,

designed to match across scanners as much as possible, included a volumetric T1-weighted MRI scan, as previously

published  [7].  Baseline and follow-up scans  were  processed using the standardized  longitudinal  cortical  thickness

pipeline of the Computational Anatomy Toolbox (CAT v12.6, http://www.neuro.uni-jena.de/cat/), extension to SPM12

6

http://www.neuro.uni-jena.de/cat/
mailto:bborroni@inwind.it


V.7219 running on MATLAB R2017a). The quality assurance framework implemented in CAT was applied on a scale

from A to F (A excellent to F unacceptable/failed), and we only retained scans with an overall quality ranging from A

(excellent) to C (satisfactory).

Baseline  and  follow-up cortical  thickness  maps  were  parceled  into  68  cortical  regions,  according  to  the  Desikan-

Killiany atlas [19]. Mean cortical thickness of each region was estimated in the native space. Then, mean values were

mediated  according  to  their  belonging  to  brain  macro-areas:  lateral  frontal  cortex  (caudal  middle  frontal,  pars

opercularis,  pars orbitalis, pars triangularis,  rostral middle frontal),  orbitofrontal cortex (lateral  orbitofrontal,  medial

orbitofrontal, frontal pole), superior frontal cortex (superior frontal), insula (insula), lateral temporal cortex (inferior

temporal,  middle  temporal,  superior  temporal),  medial  temporal  cortex  (entorhinal,  fusiform,  parahippocampal,

temporal pole), lateral parietal cortex (inferior parietal, superior parietal) and precuneus (precuneus).

Statistical approach.  In this work, we used a multivariate nonlinear mixed effects model developed by Bilgel et al.

[18] for estimating the trajectories of biomarkers from longitudinal data in different brain areas.  As a hierarchical

model, each subject was fitted on its regression, with fitting parameters applied a second-order fitting. At this point,

whole-group parameters were used to extrapolate a general trend, considering subjects’ age and time spans.

The progression of MRI cortical thickness for each subject sijwas assumed to be as followings:

sij=α i t ij+β i

where α i is the rate of MRI cortical thickness progression, t ij is the age of the subject i at time j , and β i is the baseline

MRI cortical thickness. Then the K  biomarker measurements form a vector y ij for subject i at time j  is modeled by:

y ij=a sij+b+ϵ ij

where  a and  b are  vector  and  ϵ ij N (0 ,R) is  the observation noise  assumed to be  independent  and identically

distributed across subjects.

This is a mixed effects model that incorporates the fixed effects a and b , the individual random effects α i and β i. The

model is nonlinear in the parameters.

To solve for the parameters, we applied an expectation-maximization (EM) algorithm [20], an iterative method that

estimates parameters in statistical models, depending on unobserved latent variables. The algorithm alternates between

an expectation (E) step, evaluating the expectation of the log-likelihood using the current estimate for the parameters,

and a maximization (M) step, which computes the parameters maximizing the function found in the E step.
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To assess how the results of the statistical analysis may be generalizable to an independent data set, and to estimate how

accurately the predictive model performs,  we used a ten-fold cross-validation. The cross-validation method works by

partitioning the data into two subsets: a training set and a testing set. The first set is used to calculate the models, while

the second set is used to test the model with a set of data not used to calculate the parameters of the models.  To

minimize the variability, multiple rounds of cross validation were performed using different sets randomly selected by

the original dataset. The validation results were averaged to estimate the performance. In our case, we used a ten-fold

cross-validation where in each run we randomly select 10 subjects as testing set and the other subjects were used to

estimate the parameters of the models. 

The mean error between the predicted cortical thickness of each region and then expected (real) cortical thickness of

each region  [100*(predicted value - expected value)/predicted value] was calculated.

Finally, we performed a power analysis using G*Power [21], to investigate the minimum number of subjects necessary

have a good reliability and power as defined by Cohen [22]. To this, we used the non-centrality parameter L calculated

as:

L=f 2(n−k−1)

where n is the number of subjects, k  the number of regressor and f 2 defined as:

f 2= R2

1−R2

that is the ratio of the proportion of variance accounted for relative to the proportion of variance unaccounted for.  

Data availability  statement.  The data  used  to  support  the  findings  of  this  study  were  derived  from the  Genetic

Frontotemporal Dementia Initiative (GENFI, http://genfi. org.uk/). They are available on request from the Principal

Investigator of the GENFI consortium (Dr Jonathan Rohrer, University College London, genfi@ucl.ac.uk).
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Results

Participants.  We firstly considered  84 presymptomatic subjects  carrying  GRN  mutations.  The mean age  was 47.8

(standard  deviation,  SD=11.4),  60.7%  were  female  (n=51),  with  15.04  (SD=3.4)  years  of  formal  schooling.

Neuropsychological assessment (mean score ± standard deviation) was reported in Supplementary Table 1. The mean

interval between MRI scans was 31.2 months from the baseline MRI scan (SD=16.5, range=9.6-71.3 months). MRI

quality ranking was excellent/good for both baseline and follow-up scans (baseline: 82% B, 18% B-; follow-up: 80% B,

20% B-).

Baseline and follow-up cortical thickness values are reported in Table 1 (first cohort). We found significant differences

between baseline and follow-up in the superior frontal region, bilaterally. These areas presented more severe cortical

thinning at follow-up compared to baseline (one-way mixed ANOVA, with baseline  vs. follow-up MRI as within-

subjects factors). No other significant differences between baseline and follow-up cortical regions were found. 

Model fitting. The prediction analysis takes baseline cortical regions as input, considering age and time between the two

MRI scans as regressors, and the model was then fitted. As reported in  Figure 2  and  Table 1  (first cohort),  overall

prediction accuracy was high for each considered brain region, with low mean error. The best prediction was obtained

considering lateral prefrontal regions, bilaterally (real cortical thickness at follow-up vs. predicted cortical thickness at

follow-up, mean error<=1.87%), while the worst was for medial temporal region, bilaterally (mean error=5.82% and

6.89%). Thus, for each subject, we obtained overall high accuracy in predicting brain imaging outcome.

We then coded a user-friendly automated preGRN-MRI toolbox to predict cortical thickness of each region at follow-up

at the single subject level. No significant further preprocessing is needed; the user has only to insert the age of the

subject at baseline MRI, the values of each considered baseline cortical region, previously computed with the Desikan-

Killiany atlas 19,  and the age of the subject at the desired MRI follow-up. The toolbox will assess automatically the

predicted brain regions’ values at follow-up in the referral presymptomatic subject carrying a GRN mutation.

Model validation. We further evaluated the effectiveness of our toolbox, using a new dataset of  6 presymptomatic

subjects carrying GRN mutations from the GENFI cohort, not included in the previous analyses. The mean age was 47.3

(standard deviation, SD=11.4),  33% were  female (n=2),  with 11.4 (SD=4.3)  years  of  formal  schooling. The mean

follow-up MRI was 18.2 months (SD=6.4, range=12-25 months). MRI quality ranking was excellent/good for both

baseline and follow-up scans (baseline: 84% B, 16% B-; follow-up: 85% B, 15% B-). This second (validation) cohort

presented a different pattern of cortical thickness, as demonstrated by the between-cohort comparisons (1st vs 2nd cohort
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at baseline and at follow-up), with statistically significant differences between the two cohort at baseline as well as at

follow-up (frontal, temporal, parietal and insula regions, bilaterally) (Supplementary Table 2).

We re-run the analyses using the previously coded preGRN-MRI toolbox. The mean percent error was comparable, as

reported in Figure 3 and Table 1 (second cohort).

Sample size estimates. The sample size required to detect a reduction in decline of overall cortical thickness in a 1-year 

clinical trial was equal to 52 subjects (power=0.80, alpha=0.05).
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Discussion

Our study demonstrated that  a  novel user‐friendly toolbox, preGRN-MRI, can accurately  predict  cortical  thickness

changes at follow-up MRI, at the single subject level over a timescale compatible for clinical trials. Thus, preGRN-MRI

toolbox might be proposed as a  useful  device to track neuroimaging changes  in early phase clinical  trials,  as any

deviation of cortical  thickness from the predicted model could be considered an effect  of the intervention itself.  It

avoids complicated processing by the end users, by providing them with an easy‐to‐use, automated pipelined toolbox. It

also produces comprehensive  and interpretable  results for model evaluation toward better  understanding FTD, and

better design of trials.

We considered MRI T1-weighted structural imaging and a widely used atlas [19] to easily compute the data analysis,

and to use preGRN-MRI toolbox in any centre with comparable findings, independently of MRI scan or acquisition

process [23,24]. Indeed, in both the first and in the second cohorts the best prediction was obtained by considering the

lateral frontal cortex (mean error<1.88% and <1.20%, respectively) but other regions scored adequately, suggesting the

possibility to compute a compound score to increase predictive performances.

These results show that the nonlinear mixed effect model has good reliability and good generalizability. The proposed

framework  simplifies  the  estimation  of  parameters,  and  accurately  estimates  the  trajectory  parameters  taking  into

account inter-individual differences: as hierarchical model, the first level regression of the subjects and the subsequent

second level analysis provided a regression over time independent from the single subjects. From this point of view, this

can be considered as an experimental “single subject” measure along all times. The high reproducibility was further

demonstrated by a second dataset from the GENFI cohort (even including subjects with different cortical thickness

pattern), with comparable findings.  

Future clinical trials in presymptomatic subjects carrying GRN mutations may benefit from preGRN-MRI toolbox to

capture variations in response to a treatment intervention. Up to now, no reliable outcome marker in the preclinical

stages of FTD is yet available.  The present model fitting may be expanded to other monogenic forms of FTD in their

preclinical or symptomatic stages. Indeed, we may argue that the model parameters may differ in  C9orf72 or  MAPT

mutations, as these are characterized by different disease trajectories and the involvement of selective brain areas [7],

in both presymptomatic and symptomatic disease stages.

A  number  of  ongoing  pharmacological  trials  aim  to  postpone  or  revert  disease  onset  in  monogenic  FTD.   GRN

mutations impair transcription of the gene, leading to levels of progranulin in the serum and CSF that are >50% lower

than normal  from birth  [4,5].  Therefore, therapeutic approaches may range from either increasing transcription from

the normal allele or modulating post-translational mechanisms  [25].  Clinical trials have already tested amiodarone,
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with  the  purpose  to  increase  progranulin  levels  in  GRN mutations  carriers,  with  no  clear-cut  efficacy  [26] and

pharmacological trials targeting the sortilin (SORT1), a lysosomal trafficking receptor for progranulin and mediating

progranulin endocytosis [27], are ongoing with promising results [28]. Other potential therapeutic strategies are in the

pipeline,  including the delivery of a  healthy  GRN  gene via an AAV9 vector  [29]. Recently,  non-pharmacological

approaches by using non-invasive brain stimulation technologies have been demonstrated safe and effective in restoring

clinical symptoms and brain connectivity in FTD patients [30–32]. Within this context, and prospectively thinking to

future intervention strategies,  a  reliable surrogate  marker  of disease,  such as regional cortical  thinning, may be  of

crucial to assess treatment efficacy in clinical trials. We do not argue against the ultimate necessity for randomized

placebo controlled trials.  but  in  view of the low prevalence  of  known  GRN mutation carriers  worldwide,  and the

invasiveness of non-pharmacological approaches in development, early proof of concept studies may benefit from open

label studies without placebo, relying on accurate predictive biomarkers to indicate efficacy.  

PreGRN-MRI  toolbox  presents  several  advantages  for  this  approach.  It  is  automated,  together  with  parameter

optimization  through  nested  cross‐validation  and  it  is  flexible,  allowing  users  to  consider  different  brain  regions

individually or to compute a comprehensive measure of brain changes.

We acknowledge that this study entails some limitations. First, the prediction model may be improved considering

modulators of disease progression, such as cognitive reserve proxy measures [16,33] or computing cerebral regions in a

different  way.  However,  the  model  used  here,  implemented  by an expectation-maximization  algorithm,  takes  into

account unobserved latent variables, i.e.  variables that do not change over time, such as  TMEM106b genotype [33].

Moreover,  testing preGRN-MRI toolbox in future  clinical  trials  may prove its  reliability  in  assessing intervention

efficacy. Finally, the same approach might be tested in the other pathogenetic mutations, such as MAPT or C9orf72, to

develop a user-friendly toolbox tailored on each monogenic FTD-related disorder.

In conclusions, preGRN-MRI tool, using baseline MRI measures, was able to predict the expected MRI at follow-up in

presymptomatic subjects carrying GRN mutations with good performances. In future studies, preGRN-MRI tool might

be  useful  in  clinical  trials,  where  deviation  of  CT from the  predicted  model  may be  considered  an  effect  of  the

intervention itself.
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Table 1. Cortical thickness of each brain region in presymptomatic GRN mutation carriers.

Brain ROIs

First cohort (n=84) Second cohort (n=6)

baseline MRI follow-up
MRI

p-value mean error
%*

baseline MRI follow-up
MRI

p-value mean error
%*

 lateral frontal L 2.760.13 2.760.12 0.71 1.840.36 2.880.09 2.850.11 0.52 1.190.35

 lateral frontal R 2.760.12 2.760.17 0.36 1.870.49 2.850.12 2.840.10 0.87 0.530.13

 orbitofrontal L 2.650.17 2.670.16 0.84 4.070.94 2.820.18 2.770.16 0.63 1.840.26

 orbitofrontal R 2.640.17 2.670.20 0.06 3.690.88 2.860.124 2.860.17 1.00 1.950.37

 superior frontal L 2.880.14 2.830.18 <0.001 2.590.53 3.040.09 3.030.11 0.87 1.370.27

 superior frontal R 2.870.14 2.820.17 <0.001 2.840.59 3.040.11 3.020.11 0.63 0.960.19

 medial temporal L 3.160.26 3.200.25 0.10 5.921.18 3.510.23 3.610.20 0.42 4.610.87

 medial temporal R 3.180.29 3.220.3 0.08 6.891.37 3.610.08 3.540.08 0.20 2.110.49

 lateral temporal L 2.900.16 2.930.14 0.014 2.680.49 2.980.10 2.940.11 0.42 1.290.33

 lateral temporal R 2.930.15 2.970.20 0.008 2.540.62 2.990.14 2.980.15 0.75 0.870.14

 lateral parietal L 2.460.12 2.460.10 0.86 2.230.51 2.530.07 2.530.10 0.75 1.110.15

 lateral parietal R 2.450.14 2.470.16 0.16 2.660.61 2.520.07 2.500.10 0.87 1.210.19

 precuneus 2.480.13 2.450.14 0.02 2.410.56 2.600.09 2.610.08 0.87 1.510.27

 insula L 3.490.22 3.510.20 0.14 4.440.82 3.690.11 3.630.16 0.42 2.400.69

 insula R 3.470.22 3.50.26 0.04 4.751.06 3.700.25 3.760.18 0.42 2.840.61

L = left; R = right; ROIs = Region of Interest expressed in millimeters; significant p-values in bold face, baseline MRI 

scores vs. follow-up MRI cortical thickness scores (p<0.004 corrected for multiple comparisons). Results are expressed 

as mean  standard deviation.

* mean error between real cortical thickness at follow-up and predicted cortical thickness at follow-up
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Legend to Figures

Figure 1. Study design.

The cartoon depicts the rationale of the present study.

Predicting follow-up MRI data by baseline MRI data input at single subject level may represent an helpful outcome 

marker of treatment response (first row). To this, we applied multivariate nonlinear mixed effects model and ten-fold 

cross-validation to predict follow-up MRI at single subject level at a given time point (second row). When treatment 

intervention is administered, efficacy may be proven by any deviation from the expected MRI scan (third row).

Figure 2. Mean percent error of multivariate nonlinear mixed effects model in predicting follow-up cortical 

regions by baseline MRI data in first cohort of presymptomatic Granulin (GRN) mutation carriers.

L = left; R = right. The results are expressed as mean error  standard deviation.

Figure 3. Percent error of multivariate nonlinear mixed effects model in predicting follow-up cortical regions by 

baseline MRI data in a new sample of 6 presymptomatic Granulin (GRN) mutation carriers. 

L = left; R = right. High percentage error values for several subjects (subject 6 for left insula, subject 4 for right insula, 

subject 1 for left medial temporal region) were reported to maintain consistency in the graphical representation.  
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Supplementary Table 1. Standardised neuropsychological assessment in 

presymptomatic GRN mutation carriers.

presymptomatic GRN mutation carriers *

Digit Symbol Task 55.511.8

Trail Making Test (part A) 28.710.5

Trail Making Test (part B) 64.224.8

 Block Design 46.115.0

Boston Naming Test (short) 28.41.6

Letter Fluency (combined) 45.615.1

Category Fluency (animals) 25.15.2

GRN: Granulin mutation carriers; * mean value ± standard deviation.

Supplementary Table 2. Between-cohort analyses (first cohort vs second cohort).

Brain ROIs Baseline (1st vs 2nd cohort) Follow-up (1st vs 2nd cohort)

lateral_frontal_L 0.04*.** 0.17

lateral_frontal_R 0.13 0.19

orbitofrontal_L 0.08* 0.22

orbitofrontal_R 0.02*.** 0.04*.**

superior_frontal_L 0.03*.** 0.02*.**

superior_frontal_R 0.02*.** 0.02*.**

medial_temporal_L 0.02*.** 0.02*.**

medial_temporal_R 0.01*.** 0.02*.**

lateral_temporal_L 0.19 0.9

lateral_temporal_R 0.44 0.9

lateral_parietal_L 0.22 0.22

lateral_parietal_R 0.19 0.48

precuneus 0.05*.** 0.02*.**

insula_L 0.04*.** 0.22

insula_R 0.08* 0.02*.**

ROIs: Rogions of Interests; L: left; R: right;

* p<0.05 uncorrected for multiple comparisons; ** p<0.05 FDR-corrected 

for multiple comparisons (Mann-Whitney test).
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	Participants. Data for this study were drawn from the GENFI multicentre cohort study (data freeze 5), which consists of 22 research centres across Europe and Canada (www.genfi.org.uk). We included subjects carrying null mutations in the GRN gene at their presymptomatic stage, and for whom both baseline and follow-up MRI was available.
	A standardised clinical assessment was performed for each subject, including the Digit Symbol Task, parts A and B of the Trail Making Test, the Wechsler Abbreviated Scale of Intelligence Block Design task, the short version of the Boston Naming Test and Letter and Category fluences [7].

