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Abstract. Goodness-of-fit statistics measure the compatibility of random samples against
some theoretical or reference probability distribution function. The classical one-dimensional
Kolmogorov-Smirnov test is a non-parametric statistic for comparing two empirical distributions
which defines the largest absolute difference between the two cumulative distribution functions
as a measure of disagreement. Adapting this test to more than one dimension is a challenge
because there are 2d-1 independent ways of ordering a cumulative distribution function in d

dimensions. We discuss Peacock’s version of the Kolmogorov-Smirnov test for two-dimensional
data sets which computes the differences between cumulative distribution functions in 4n2

quadrants. We also examine Fasano and Franceschini’s variation of Peacock’s test, Cooke’s
algorithm for Peacock’s test, and ROOT’s version of the two-dimensional Kolmogorov-Smirnov
test. We establish a lower-bound limit on the work for computing Peacock’s test of Ω(n2 lg n),
introducing optimal algorithms for both this and Fasano and Franceschini’s test, and show
that Cooke’s algorithm is not a faithful implementation of Peacock’s test. We also discuss and
evaluate parallel algorithms for Peacock’s test.

1. Introduction

Goodness-of-fit statistics measure the compatibility of random samples against some theoretical
probability distribution function. In general, given two independent stochastic variables X and
Y whose cumulative distribution functions (CDFs) F and G are unknown, the classical two-
sample problem consists of testing the null hypothesis

H0 : F (x) = G(x), for every x ∈ Rd

against the general alternative

H1 : F (x) 6= G(x), for some x ∈ Rd

This kind of problem could arise in a context where, given an observed sample X1, . . . , Xn and
a reference sample Y1, . . . , Ym, one must determine whether they come from the same distribution
function. The nature of the sets is, however, important in defining the kind of test available.
In particular, an important consideration is whether the data are available as discrete points or
have been binned into histograms. A well accepted test for binned distributions is based on the
χ2 statistic[1]. Continuous data can always be binned by grouping the events into ranges, but
this usually comes at the price of losing information.
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The classical test for one-dimensional continuous data is the Kolmogorov-Smirnov (KS)
test[2]. It is a non-parametric statistic for comparing two empirical distributions which defines
the largest absolute difference between the two cumulative distribution functions as a measure of
disagreement. Adapting goodness-of-fit tests to multi-dimensional space is in general a challenge.
Tests based on binning face the hurdle of “the curse of dimensionality”: a high dimensional space
is mostly empty and binning tests can only start to be effective when the data sets are very
large[3]. On the other hand, adapting the KS test demands the definition of a probability
function that is independent of the direction of ordering, which does not seem to be possible
given that there are 2d−1 ways of defining a CDF in a d-dimensional space.

However, there are many applications in experimental physics where comparison of two-
dimensional data sets is important. For example, monitoring the performance of high-energy
physics detectors such as the Compact Muon Solenoid[4] (CMS) at the Large Hadron Collider
will involve periodic comparisons of collected data to reference histograms to uncover as soon
as possible any changes in operating conditions; the sheer number of detector elements to be
monitored necessitates that this process be automated as much as possible.

As an example of such histograms we have produced data from the reconstruction of the
simulated tracks of muon pairs, originating from Z-particle decay, within the CMS Silicon
Tracker sub-detector. The data, obtained using the CMSSW software framework[4], are given
as histograms in Fig. 1, showing the relationship between the reduced χ2 of the track fit and
the track pseudorapidity η (η = -ln tan θ

2
, where θ is the angle between the track and the proton

beam axis). The first histogram gives results for perfect detector alignment while the second
histogram was obtained after introducing small errors, representative of probable initial errors[5],
to individual detector modules. The data are binned at 20x20 resolution; the blockiness is due to
dithering each bin to fill its area proportionally to its contents. It is noticeable that χ2 is generally
higher in the second histogram around η=±1.5, where tracks pass through the transition between
cylindrical “barrel” detectors and circular “end caps”[4]. Files of the individual data points were
retained, and subsets of the data used in the comparisons in this work, which extends upon
results reported earlier[6].
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a)  Reference Reconstruction
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b)  Misalignment Scenario

Figure 1. 2D data used in this study; reduced χ2 of track fits vs. pseudorapidity η for
reconstructed muon tracks in the CMS Silicon Tracker. a) Ideal detector geometry. b) small
“short-term scenario” misalignments of the detector modules. The histograms use 20x20 binning.
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2. Peacock’s variation on the KS test

Table 1. Results and timings (in seconds) of implementations of Peacock’s KS test and the
Fasano and Franceschini algorithm for comparisons of different-sized subsamples of the aligned
and misaligned track data. Programmes in C on Ubuntu Linux; 2.0 GHz AMD Athlon XP.

Peacock Fasano and Franceschini
Sample Brute Force Range-Counting Brute Force Range-Counting

Size Distance t (s) Distance t (s) Distance t (s) Distance t (s)

1024 0.096680 110 0.096680 35.5 0.094727 0.15 0.094727 0.04
2048 0.084961 969 0.084961 180 0.081055 0.60 0.081055 0.13
3072 0.072591 7357 0.072591 502 0.069824 1.38 0.069824 0.24
4096 0.075195 19143 0.075195 1130 0.073364 2.46 0.073364 0.38
5120 0.078320 37591 0.078320 1970 0.075684 3.84 0.075684 0.52
6144 0.084147 64887 0.084147 2613 0.082601 5.53 0.082601 0.67
7168 0.086356 103208 0.086356 3758 0.085658 8.51 0.085658 0.83
8192 0.083374 153833 0.083374 5144 0.082520 11.7 0.082520 1.11

65536 - - - - 0.075539 840 0.075539 20.1
131072 - - - - 0.074738 1318 0.074715 52.4

The KS test is applicable to continuous, unbinned, one-dimensional data samples and assumes
that a list of data points can be easily converted to a cumulative distribution function. To
extend this to two dimensions, given the challenge noted above, Peacock[7] introduced the idea
of making the statistic independent of any particular ordering by finding the largest difference
between the cumulative distribution functions under any possible ordering. Given n points in
a two-dimensional space, this requires calculating the cumulative distribution functions in the
4n2 quadrants of the plane defined by all pairs (Xi, Yj), Xi and Yj being coordinates of any pair
of points in the given samples. The test can be performed by a brute force algorithm which
sweeps through each quadrant for every point in a sample, deciding whether the point is in it.
This requires n steps, one for each point, with complexity Θ(n2), thus giving a final complexity
of Θ(n3).

This time can be improved if, instead of deciding whether each individual point is contained
in each quadrant, we apply an efficient algorithm to query the number of points in each quadrant.
Given that Peacock’s test defines 4n2 quadrants, the time of the new algorithm will be O(n2q),
where q is the time spent in each query. One suitable query method uses the range-counting
tree, a balanced binary tree where each node splits the points under it by the median of their
x coordinate. In addition, using a cascading fractional technique developed in [8], each node
indexes both nodes to its left and right using an ordered sequence of the y coordinate of the
points under it. A set of n points in two dimensions can be indexed by a range-counting tree
in O(n lg n) [9]. To use such a range-counting tree, a two-sided query is started using a binary
search in the root to decide the largest possible interval of y coordinates and a comparison of the
x coordinate in the query with the x median in the root of the tree to direct a recursive search
to either the left or the right sub-tree. Any two-sided range-counting query can be answered in
O(n lg n) time. The accumulation of the largest difference between the cumulative distribution
functions in each quadrant defined by Peacock’s test can be performed by one range-counting
query, and the whole test can be computed in O(n2 lg n).

The lower-bound for finding the maximum of O(n2) quantities is Ω(n2) [10]. In addition, the
lower-bound for performing Peacock’s test on n points is the accumulation of the 4n2 differences
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of cumulative distribution functions which requires Ω(n2 lg n), because it needs to locate each
point in the quadrants and the lower-bound for this is Ω(lg n).

Peacock’s test is very demanding. Performing the test on 218 points with the brute-force
algorithm running on a 2GHz processor would require several years. Even the range-counting tree
based algorithm would demand days to perform the test on such a sample, as shown by Table 1
which gives the results and running times, in seconds, obtained by using the two techniques to
compare different-sized subsamples of the aligned and misaligned track data.

3. Fasano and Franceschini’s test

Fasano and Franceschini introduced a variation[11] on Peacock’s test that evaluates the model
distributions only in the quadrants centred on each point of the given samples – a sample with n
points defines 4n quadrants. A brute force algorithm performs a sweep through all quadrants for
each given point, to decide whether the point must be counted in it. This algorithm computes
in Θ(n2) and is presented, for example, in [12].

An algorithm based on a range-counting tree can index the n points in O(n lg n) time.
Subsequently 4n two-sided range queries of O(lg n) each can be used two compute cumulative
distribution functions differences in all quadrants. The lower-bound for computing the Fasano
and Franceschini test is the lower-bound for sorting n points in a two-dimensional plane, i.e.
O(n lg n) [13]. As such, the algorithm based on a range-counting tree is optimal.

Table 1 also shows results and running times, in seconds, for both these implementations of
Fasano and Franceschini’s test. The Table indicates that all running times follow the predicted
scaling with sample size, and that for sets with up to a thousand (210) points any of the
algorithms demands only a few minutes of computation. For more than one million points
(220), however, only the Fasano and Franceschini test implemented on top of a range-counting
tree can yield times in the range of minutes.

4. Cooke’s test

Cooke has presented an efficient method which is claimed to calculate Peacock’s test[14]. The
algorithm is described and implementations for it given in both Python and C. A parallel
implementation of Cooke’s algorithm is discussed by Chan[15].

Cooke’s algorithm is evaluated here because it is the fastest of all tests based on the 1-D
KS test, even though, as shown below, the claim that it runs in O(n lg n) is optimistic. The
algorithm uses two binary trees each containing all points from both samples, with each point
tagged to identify its source. The trees are ordered in x and in the first tree points are inserted in
increasing order of the y coordinate. As a result, points with lower y coordinate will be allocated
next to the root. By moving down the tree from leaves to root, the algorithm performs a sweep
from top to bottom in all quadrants, each node in the tree defining the centre of a quadrant.
The second tree inverts the order of insertion of points, locating points with higher y coordinates
next to the root to produce a sweep from bottom to top in the quadrants as the tree is swept
from leaves to root. The number of points in each quadrant is updated during the sweeps, by
counting the number of points in each sub-tree, and updating the maximum difference.

Cooke’s unproven assumptions about the algorithm are that the dominating time is in the
construction of the tree, which is claimed to scale as O(n lg n), and that by sweeping all quadrants
defined by the nodes from top to bottom and reverse the computation is done over all 4n2

quadrants defined by Peacock’s algorithm.
The first assumption is clearly false. The algorithm uses an unbalanced binary tree and the

upper-bound to build such a tree is O(n2)[16, 17]. The upper limit to constructing a balanced
binary tree is O(n lg n), but since the algorithm depends on ordering the tree level by y coordinate
a balanced tree cannot be used as this would disturb the ordering in the levels. However, the
algorithm is still efficient as the average time to build an unbalanced tree is O(n lg n).
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The second assumption is also false. A sample with n repeated points defines four quadrants
in Peacock’s test. In Cooke’s algorithm, each point constitutes a node in the binary tree and a
reference for a quadrant: n different points with the same coordinates implies n different nodes
in the binary tree, yielding a quadratic time in the construction because the tree will be totally
unbalanced, and also a statistic that is different from the one produced by Peacock’s test.

Table 2 compares distances and running times for Cooke’s and Peacock’s tests. The sub-
samples of the χ2 versus η data used in these comparisons are:

aeta.8: 256 points from the aligned data
meta.9: 512 points from the misaligned data

r7m4: artificial sample – 128 repetitions of a sample of 16 points from the misaligned data
r8m4: artificial sample – 256 repetitions of a sample of 16 points from the misaligned data
r9m4: artificial sample – 512 repetitions of a sample of 16 points from the misaligned data

aeta.13: 8192 points from the aligned data
meta.13: 8192 points from the misaligned data

It is interesting to notice that when the samples contain repetitions Cooke’s running times
quadruple for a doubling of the input size. As well, the last two lines of the table show that
the test was more than 30 times faster in the absence of repetitions for inputs containing 8192
points each. However, a more pertinent observation is that for comparisons of sub-samples with
themselves Cooke’s test returns a finite distance, implying that there is a difference between the
distributions, while Peacock’s test returns the expected zero maximum distance. This is because
the binary trees contain data from both distributions, so a self-comparison leads to repeated
points in the tree, with the detrimental effects noted above.

Table 2. A comparison of Cooke’s and Peacock’s tests on data sub-samples. Programmes in C

on Ubuntu Linux; 2.0 GHz AMD Athlon XP.

Cooke’s Test Peacock’s Test
Samples Size Distance Time (s) Distance Time (s)

aeta.8 vs. aeta.8 256 0.031250 0.00 0.000000 0.06
meta.9 vs. meta.9 512 0.015625 0.00 0.000000 0.29
r7m4 vs. r7m4 2048 0.066406 0.43 0.000000 12.4
r8m4 vs. r8m4 4096 0.077637 1.75 0.000000 1023
r9m4 vs. r9m4 8192 0.061890 5.41 0.000000 5259
aeta.13 vs. meta.13 8192 0.0833374 0.17 0.083374 5259

5. ROOT’s KS test

The data analysis package ROOT[18] is widely used within the physics community. It is
particularly oriented towards histogrammed data, and provides KS comparisons within its one-
and two-dimensional histogram classes. While these cannot give a true metric like Peacock’s
test, they can nevertheless be useful.

The calculation of a pseudo-KS statistic is trivial in the 1D histogram case, but in the 2D case
the implementation runs up against the problem of how to define a suitable ordering to calculate
the CDF. The chosen solution is to calculate two CDFs for each histogram, running over the
bins in row-major and column-major order respectively, then calculating the KS probability
from the average of the maximum distance between the two sets of CDFs. An example of these
pseudo-CDFs is illustrated in Fig. 2, for a comparison between 8192-track samples from the
aligned and misaligned data (aeta13 and meta13 above) binned at 50 x 50.
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Figure 2. The two pairs of pseudo-CDFs accumulated by ROOT’s 2D KS test during a
comparison of two 8192-track histograms binned at 50 x 50.

Table 3. The ROOT 2D KS comparison test applied to two 8192-track data subsamples. Shown
are the maximum differences Dmax between the pseudo-CDFs obtained from the two different
orderings of the histogram bins – all tests were consistent with the samples’ being from different
populations. Discrete 1D KS tests, using RPy, on the χ2 and η data separately are included
for comparison. Results from ROOT’s χ2 comparison test are also given. ROOT 5.13 and RPy

libraries called from python under Scientific Linux CERN 3.08; 2.8 GHz Intel Pentium D.

Histogram Size Dmax(χ
2) Dmax(η) χ2 Test Time (s)

25 x 25 0.078755 0.009555 0.00 0.00
50 x 50 0.082351 0.007044 0.00 0.00

100 x 100 0.085978 0.005911 0.69 0.00
200 x 200 0.083166 0.005745 1.00 0.01
500 x 500 0.083219 0.006118 1.00 0.09

1000 x 1000 0.084688 0.005947 1.00 0.36
RPy 1D KS 0.081797 0.006348 - 0.46

Table 3 gives the results of comparing these two samples within ROOT at various binnings.
All tests returned a probability of 0.0 that the samples came from the same distribution. It is
easily seen that the limit of the two pseudo-CDFs at fine binnings is the CDF of each set of
coordinates considered separately, as shown in Table 3 where the 1D KS test from the statistics
package RPy[19] is applied to the individual sets of χ2 and η data.

For completeness, Table 3 also gives the results of ROOT’s 2D χ2-test between the histograms.
Beyond moderate binning this test tends to indicate that the histograms are probably from the
same distribution (probability=1.0). This is presumably due to the aforementioned “curse of
dimensionality” – since most bins are empty, the histograms appear similar.
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6. Parallel algorithms

The algorithms for Peacock’s test discussed in Section 2 have trivial parallel versions. The
brute-force algorithm can be parallelised by firstly having one parallel step where each one of p
processors computes Peacock’s statistic over 4n2/p quadrants. The following trivial step consists
of a parallel reduction operation that computes the maximum of the p statistics, directing it to

one master processor. This gives an algorithm with time O(n2

p
lg n) and work O(n2 lg n), making

it an “optimal” parallel brute-force algorithm.
The parallelisation of the range-counting tree algorithm consists of three parallel steps. In

the first step, p processors, in O(n lg n) time, build a copy of the range-counting tree over the
n input points. In the second parallel step, each processor computes Peacock’s statistics over

4n2/p quadrants, using two-sided range-tree queries, in O(n2

p
lg n) time. The last step is again a

reduction step which takes O(lg p) parallel steps to reduce the maximum to the master processor.

The whole algorithm is asymptotically optimal, taking O(n2

p
lg n) time, but it performs more

work than its sequential counterpart, the extra work being performed in the p−1 extra copies
of the range tree generated in the first step.

Table 4 shows results and running times for the parallel implementation of both the brute-
force and range-counting tree algorithms. For each test we used two samples of χ2 versus η
of the same size, one taken from aligned reconstruction data and the other from misaligned
reconstruction data. All tests yielded identical results regardless of the number of processors,
and the speedup was linear in the number of CPUs for both methods. As predicted in Section 2
the times for each method scale with sample size as n3 and n2lgn, respectively.

Table 4. Results and execution times for the parallel versions of Peacock’s test. Programmes

in MPI C on a SUSE 9.3 64-bit Linux cluster with 1.8 GHz Opteron 265 worker nodes.

Brute Force Range-Counting Tree
Sample Size Processors Distance Time (s) Distance Time (s)

4096 8 0.075195 2399 0.075195 127
4096 16 0.075195 1203 0.075195 63.2
4096 32 0.075195 601 - -
4096 64 - - 0.075195 16.0
5120 8 0.078320 4699 0.078320 214
5120 16 0.078320 2349 0.078320 106
5120 32 0.078320 1175 0.078320 53.5
6144 8 0.084147 8117 0.084147 327
6144 16 0.084147 4060 0.084147 166
6144 32 0.084147 2029 0.084147 82.0
6144 64 - - 0.084147 41.1
7168 8 0.086356 12872 0.086356 463
7168 16 0.086356 6445 0.086356 235
7168 32 0.086356 3223 0.086356 117
7168 64 - - 0.086356 58.8
8192 8 0.083374 19232 0.083374 650
8192 16 0.083374 9616 0.083374 322
8192 32 0.083374 4810 0.083374 162
8192 64 - - 0.083374 82.2
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7. Conclusion

These comparisons show that a proper comparison of 2D data can be difficult and expensive
to achieve. For unbinned data the Fasano and Franceschini method has a clear advantage over
Peacock’s method, particularly when implemented with range-counting trees. Unfortunately, the
performance boost afforded to Peacock’s method by parallel implementations is not realisable by
the Fasano and Franceschini algorithm, so there appears to be little scope to extend it beyond
105 points while retaining a reasonable turnaround. Other methods which may return speed-
ups in parallel implementations are being investigated. Cooke’s method, while undoubtedly fast,
suffers from the shortcomings outlined earlier although it may still be useful in individual cases
providing its limitations are recognised.

On the other hand, when comparisons need to be made on already-histogrammed data, there
is currently no substitute for the ROOT 2D KS test. It especially wins out on speed when normal
binning ranges are used but again its shortcomings need to be kept in mind. An alternative test
within the root framework, using a “minimum energy” concept[20], is under development and
should be available in the near future.
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