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Abstract - This paper considers the issues involved in case, it should be noted that different kinds of
developing a generic problem solver to be used within a grid instrumentation will have completely different ways of
environment for the monitoring and control of collecting information and that, in contrast to a particular
instrumentation. The specific feature of such an environment implementation of a classical grid, this information will be
is that the type of data to be processed, as well as the markedly heterogeneous. This makes it necessary to
problem, is not always known in advance. Therefore, it is
necessary to develop a problem solver architecture that will develop a problem solver with a generic structures- n
address this issue. We propose to analyze the performance Of other words, a problem solver that is able to process data
the problem solving algorithms available within the WEKA efficiently irrespective of the size of the processed dataset
toolkit and determine a decision tree of the best performing and its type.
algorithm for a given type of data. For this purpose the The diverse roles of problem solvers, such as problem
algorithms have been tested using 51 datasets either drawn recognition, definition and analysis, data management and
from publicly available repositories or generated in a grid- collection and solution development demonstrate the
enabled environment.X

complexity of developing a generic problem solver [7].
Moreover, in developing the problem solver we should

I INTRODUCTION concentrate not only on processing and analysis techniques

The rapid development of grid-enabled services is mainly but also on the development of explanation techniques [8].
driven by the need to use large computational resources in We will refer to a generic problem solver as being a
such applications as meteorology, Human Proteome problem solver that is capable of adapting to and solving a
Folding or the processing of medical data. While remote generic problem [9]. One of the ways to approach the
control of, and data collection from, instrumentation was development of a generic problem solver is to develop one
part of the initial grid concept most recent grid algorithm along with a technique to "fit" into the problem
developments have been concentrated on the sharing of domain, for example by utilizing the domain ontology
distributed computational and storage resources. while acquiring human expert knowledge [10] or by
In this scenario applications that need computational power utilizing genetic programming principles [ 1]. The obvious
have just to use these grid elements in order to access an advantage of such an approach is in the use of just one
unlimited amount of computational power and disk algorithm that is capable of solving a number of different
storage. Existing grid architectures are therefore not problems. At the same time, a significant disadvantage is
appropriate for applications incorporating real-time that its performance will vary depending on the problem
measurements from instrumentation, where there is a need tackled. In order to avoid this disadvantage we propose to
for a strong interaction between the instrumentation and develop an algorithm-based decision tree so that when
the computational grid. GRIDCC, a European running the problem solver, the best performing algorithm
Commission-funded project, is developing an architecture for a given data type will be chosen. Both problem-specific
and set of services that will enable the monitoring and and problem-generic algorithms will be able to participate
control of instrumentation in a grid environment [1], [2]. in the decision tree - it being an essential feature of the

The importance of data miniGRIDCC architecture that the problem solver should be
Trchitecimporthane of datahminhlinghservicingriandfuflexible enough to include problem specific algorithms
archItectures h b h t i [ a f should they exist. This can be easily achieved if the

revieed i[4] A nuber f prjectshavebeen WEKA environment [12] iS utilised as the "container" for
established with the aim of implementing grid-enabled data such algorithms.
mining interfaces and services, where the major focus was
on the development of services for data grid architectures. Therefore, the purpose of this paper is to investigate the
Examples of such projects include GridMiner [5] and behaviour of the existing algorithms integrated into the
DataMiningGrid [6]. The introduction of instrumentation WEKA toolkit, and to analyse their behaviour using
into a grid architecture elicits a new role for data mining in various applications and data types. From the results
a grid environment, where the data should be processed obtained, we aim to develop an algorithm-based decision
from at least two points of view: (1) data processing and tree that selects the best performing algorithm for a given
(2) the fault management of instrumentation. In the second type of data. The performance of the algorithms has been
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tested based on datasets taken from publicly available perform 10-CV a dataset is separated into ten
repositories, as well as several generated within a grid- approximately equal portions, each of which is used in turn
enabled environment. for testing with the other nine being used for training

(meaning that ten iterations are performed in total).
II DATASETS

The 51 datasets have been collected from the UCI Machine A Tree Algorithms
Learning Repository [13], from URLs [14], [15], and from Tree algorithms generate a model by constructing a tree
a grid CE (Compute Element) cluster at INFN (Istituto where each internal node is a feature or attribute. The leaf
Nazionale di Fisica Nucleare), Legnaro. The 'grid' datasets nodes are class outputs. Each dataset is tested using the
have been incorporated in the benchmark analysis because, following tree algorithms: ADTree [12], DecisionStump
like these, the data from instrumentation will typically be [18], ID3 or Inductive Decision trees [19], J48 (which is
unclassified datasets. The sizes of the datasets range from based on C4.5R8 algorithm [20] and the original C4.5
36 instances to 67557 instances. They are divided into four algorithm [21]), LMT (Logistic Model Trees) as developed
types, namely 1) small size and none-missing datasets, 2) by Landwehr [22], M5P (originally called M5') according
small size and missing datasets, 3) large size and none- to Holmes et al [23], NBTree or Naive Bayes Trees created
missing datasets and 4) large size and missing datasets. A by Holmes et al [23], RandomTree as explained by Tan in
"none-missing" dataset is one where every attribute in [24] and its extension RandomForest [24], which simply
every instance contains a valid value, whereas in a dataset generates a specified number of RandomTrees and finally
described as "missing" some attributes of some instances REPTree [25].
do not have valid values. The boundary separating small B Rule Induction
and large datasets is 1000 instances, since the datasets vary
from tens to thousands of instances. Also, the class type Rule Induction algorithms generate a model as a set of
and type of attribute are employed to categorise the rules Therules are in the form of standardIF-THEN rules.
datasets. There are 29 small supervised datasets, 16 large Most rule algorithms rely on tree algorithms. Each dataset
supervised datasets, 2 datasets for regression (housing and is tested using the following rule algorithms:
abalone), and 4 unsupervised datasets (those from the grid ConjunctiveRule [26], which generates a single rule;
cluster: grid700, gridl750, grid3500 and grid7000). Of the DecisionTable or DecisionTableMajority (DTM) [27];
29 small datasets, there are 17 small and none-missing JRip, which is based on Cohen's RIPPER algorithm [28];
datasets, of which 8 have nominal (non-numeric) class and M5Rules, which generates rules using the MS described in
numeric attribute, 3 nominal class and nominal attribute [23]; NNge (Nearest Neighbour using Generalized
and 6 nominal class and mixed (combination of numeric Exemplar) [29]; OneR based on the IR algorithm [30];
and nominal) attribute, while there are 12 small and PART, named because it uses a PARTial tree to generate
missing datasets, of which 1 has nominal class and its knowledge base [31]; PRISM [32]; Ridor or Ripple
numeric attribute, 2 nominal class and nominal attribute Down Rule learner [33] and finally ZeroR.
and 9 nominal class and mixed attribute. Of the 16 large
datasets, there are 13 large and none-missing datasets, of
which 7 have nominal class and numeric attribute, 5 The original datasets are converted to ARFF (Attribute
nominal class and nominal attribute and 1 nominal class Relation File Format), this being the input file format for
and mixed attribute, while there are 3 large and missing WEKA. At this stage the dataset is ready for classification,
datasets, of which 1 has nominal class and nominal regression or clustering, depending on dataset's
attribute and 2 have nominal class and mixed attribute. characteristics. Most of datasets fall under classification; a

few datasets, e.g. housing and abalone, fall under
III CLASSIFICATION regression. The datasets from the grid-enabled cluster

Databases can have nominal, numeric or mixed attributes (grid700 etc.) are unsupervised and need to be clustered
and classes. Not all classification algorithms perform well before classifying. WEKA provides numerous
for different types of attributes and classes as well as for classification algorithms but only tree and rule algorithms
different size databases. In aiming to design a generic are used here because they have easily understandable
classification tool, one should consider the behaviour of behaviour. The ten tree and ten rule algorithms identified
various existing classification algorithms on different in section III are tested on each dataset with the option of
datasets. WEKA is an excellent tool for such an 10-CV enabled. The results are represented as the average
investigation since it can be easily integrated into accuracy over the ten iterations. Here we are interested in
JavaScript and new algorithms can be added. Our aim at the percentage of correctly classified instances of the
this stage is to analyse the existing classification algorithms. The algorithms giving the most accurate
algorithms implemented in the WEKA toolkit and define a estimate, in other words the algorithms with the lowest
decision tree according to their performance. There exist estimated error, are chosen. Table I shows the algorithms
many classification algorithms [16] that can be classified that yield the highest accuracy results for each of the small
according to design methodology. Here we analyse the tree datasets whereas Table II shows the algorithms that yield
and rule based classification algorithms provided in the highest accuracy results for each ofthe large datasets.
WEKA [12]. Several tree and rule algorithms are applied The first column is the criteria for classifying the datasets:
to each dataset and then evaluated for accuracy by using the type of class, i.e. nominal or numeric, type of attribute,
10-cross-validation strategy [17]. 10-cross-validation (10- i.e. nominal, numeric or mixed, as well as whether there is
CV) is a standard way of predicting the error rate. To missing data, is taken into account. The second column is

the dataset name followed by two numbers in parenthesis.
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The forner is the number of attributes and the latter is the faced with a memory problem in WEKA but other
number of instances. The third and fourth columns are the algorithms are still able to deal with the classification in
chosen tree and rule algorithms, respectively, including the datasets. The problem nornally occurs in datasets with
their corresponding accuracy percentages. The last column large numbers of instances or attributes. For such datasets,
is the best algorithm overall, based on which one offers the the candidate algorithm given is the most accurate of those
highest accuracy. For certain datasets, some algorithms are that were able to run successfully.

Table I
Results of Small Datasets

Category Datasets
Tree (T) Rule Induction (R) Best Algorithms

Algorithms Per cent Algorithms Per cent Types Algorithms Per cent

iris(4,150) J48 96.00%0 NNge 96.00%0 T,R J48,Nnge 96.000
bupa(6,345) RandomForest 68.99% NNge 66.67%0 T RandomForest 68.99%
pima-indians- LMT 77.47% JRip 75.13% T LMT 77.47%

Small None diabetes (8,768)
MIissing dataset RandomForest, 9.00 DcsoTbe9.30 T RnoFrs,ETe 860
Nominal Class, glass(9,214) REPTree 98.60% Dei ''able 98.13% T RandomForest,REPTree 98.

Numeric-
Attribute vehicle(18,846) LMT 82.98% PART 71.51%o T LMT 82.98%

aminoacid(20,698) LMT 45.99%0 NNge 42.84%0 T LMT 45.990
ionosphere(34,351) ADTree,LMT 93.166% PART 91.74%0 T ADTree,LMT 93.166%
sonar (60,208) RandomForest 80.77% PART 80.29%| T RandomForest 80.77%

Small None balance-scale(4,625) LMT 93.12%0 PART 77.28%0 T LMT 93.12%
Missing dataset1
Nominal Class, tic-tac-toe(9,958) LMT 98.23%0 Ridor 99.69%0 R Ridor 99.69%

Nominal-
Attribute spect(22,267) LMT 83.52%| JRip 84.64%0 R Jrip 84.64%

tae(5,151) RandomTree 61.69% NNge 63.64% R NNge 63.64%

grub-damage(8,155) NBTree 46.45%0 OneR 41.94%0 T NBTree 46.45%
Small None vowel(13,990) RandomForest 95.96%0 NNge 87.47%0 T RandomForest 95.96%

Missing dataset lymph(l8,148) LMT 83.11%0 Ridor 85.14%0 R Ridor 85.14%
Nominal Class,
Mixed attribute pasture(22,36) RandomForest 83.33%0 Ridor 83.33%0 T,R RandomForest,Ridor 83.33%

white-cover(31,63) LMT 71.43%0 Jrip 65.08%0 T LMT 71.43%

|| grid700(154,700) | J48 92.57%0 PART 93.86%0 R PART 93.86%
Small None

Missing dataset
Numeric Class, housing(13,506) M5P 62.42%0 M5Ruls 60.16%0 T M5P 62.42%

Numeric-
Attribute
Small and

MIissing dataset breast cancer 96.4200 >hg 96.2800 TNTe 640

Numein C wisconsin(9,699) NBTree NNge T NBTree 96.42%

Attribute
Small and breast cancer(9,286) LMT 76.22%0 OneR 78.32%0 R OneR 78.32%0Missing dataset

Nominal Class, voting-
Nominal- veotds1ng- 35
Attribute LMT 96.55% NNge 96.09% LMT 96.55%0

post-operative(8,90) J48,LMT,REPTree 70.00%0 Ridor 71.11%| R Ridor 71.11%

credit(I5,690) J48 86.09%0 Jrip 85.80%0 T J48 86.09%

hepatitis(19,155) J48 83.87%0 PART 84.52%0 R PART 84.52%

Small and eucalyptus(19,736) LMT 65.76%0 Jrip 61.01%0 T LMT 65.76%
Missing ataSse oli(2236) ||RandomForest 86.1400| PART 84.7800| T Rando)mForest 86.1400
MixedAttributel squash- l ll

llunstored(23,52) ll J48 82.6900| PART 80.77001 T J48 82.690%

||squash-stored(24,52) || NBTree 73.0800| PART 65.3800| T NB1Tree 73.0800

||autos(25,205) ||RandomForest 83.4100| NNge 80.0000| T RandomForest 83.4100

L___ ||__ dermatology(34,366)| LMT |97.5400| NNge |96.1700| T LIMT |97.54%0
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Table II
Results of Large Datasets

Categories Datasets Tree (T) Rule Induction (R) Best Algorithms
Algorithms Per cent Algorithms Per cent Types Algorithms Per cent

shuttle(2) (9,14500) RandomForest 99.9300 PART 99.89%0 T RandomForest 999300

shuttle(1) (9,43500) RandomForest 99.98% PART 99.97%0 T RandomForest 99.98%

Large and None page-Bcks RandomForest 97.24% PART 97.06%0 T NBTree, RandomForest 97.240
Missing dataset , R

NoinlCls, letterrecognition RnoFrs 440
Numeric-ass, (16,20000) RandomForest 94.46% PART 89.05%0 T RandomForest 9446
Attribute segment(19,2310) RandomForest 97.88% PART 96.28%0 T RandomForest 97.88%

segmentation RandomForest 97.62% PART 96.45%| T RandomForest 97.620
(199,23 10)
waveform(40,5000) LMT 86.96% JRip 79.20%0 T LMT 86.96%

car(6,1728) LMT 98.78%0 Ridor 96.30%0 T LMT 98.78%
Large and None
Missing dataset krkopt(6,28056)* J48 56.58%| PART 54.09%0 T J48 56.58%
Nominal Class, nursery(8,12960) LMT 98.99%0 PART 99.21%0 R PART 99.21%

Nominal- *4 8019701
Attribute connect-4(42,67557)| J48 80.97%0 PART 79.25%0 T J48 80.97%

splice(61,3190)* NBTree 95.30%0 | JRip 94.45%0 | T NBTree 95.30%

Large and None cmc(9,1473) LMT 53.02%0 DecisionTable 54.99%0 R DecisionTable 54.99%
Large and None * ;
Missing dataset gridl750(154,1750) J48 94.0600o PART 95.26%0 R PART 95.26%
NominalClass, grid3500(154Cs35 J48 98.51%0Rip 98.91% R JRip 98.91%MIixed Attribute gi3O(5,500~. Rp.

grid7000(154,7000)J J48 99.130 || JRip 99.39%0 R JRip 99.39%0
Large and None

NAumeric Class, abalone(8,,4177) MSP 36.25%0 MSRules 35.40%0 T MSP 36.25%

Mixed Attribute
Large and J48,NBTree,

Missing dataset J48,NBTree, DecisionTable, RandomForest,
Nominal Class, mushroom(22,8124) RandomForest 100.00%0 JRip,NNge, 100.00%0 T,R DecisionTable, 100.00%

Nominal- RnoFrsPART JRip,,NNge,,
Attribute PART

Large and sick-euthyroid J48 97.88% Ridor 97.53 T J48 97.88%Missing dataset (25,3164) 11 98 RT
Nominal Class, hypothyroid J48REPTree 99.580 Ridor 99.44%0 T J48,REPTree 99.58%

MIixed ttribute (29!,3772)

"not enough memory" occurring in some algorithms
Missing
Values

No Yes

Type of Class Type of Class

numeric nominal
numeric nominal

Type of Type of Type of Type of
Attribute Attribute Attribute Attribute

nominal mixed
Large and Missing dataset

RF = RandomForest algorithm
DT = DecisionTable J48,NBTree,RF,DT J48 REPTree

1. mushroom (22,8 124) 1. Sick-euthyroid 1. hypothyroid
Dataset(#attr,#instance) accuracy00100%o (25,3164) 97.88%o (29,3772) 99.58%o

2. hypothyroid
No data for numeric class type (29,3772) 99.58%o
No data for numeric attributes ofnominal class type

Figure 1
Diagram of Large and Missing datasets
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