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Abstract—2D based Virtual Try-On (VTON) has been trending
towards using human parsing to improve the quality of the
try-on image. However, it remains a challenging problem for
most existing VTON models to generate realistic images for
situations with unpaired candidate-clothing images and body-
part occlusions. We have developed a Simplified Virtual Try-
On (SVTON) model to rectify the above problem. The SVTON
uses refined input data to produce accurate labels and has fewer
trainable parameters than existing methods. Also, it is designed
with a simplified network architecture for segmentation and
an efficient Affine Transform for warping to target clothing.
Experiments on benchmark datasets show that the proposed
model performs better than the state-of-the-art VTON models
for unpaired and occlusion cases, while maintaining the similar
overall performance level for normal cases.

Index Terms—Virtual Try-on (VTON), Generative Adversarial
Network (GAN), U-Net, Segmentation, Affine Transform

I. INTRODUCTION

The 2D based Virtual Try-On (VTON) models attempt
to synthesise an image of a person wearing the desired
clothing. VTON can benefit consumers who shop clothing
items online, providing insight into how the garment may look
before purchasing improving customer satisfaction. Though
significant progress has been made [1]–[3], much still needs
to be done to make the synthesised images more genuine and
photo-realistic. For example, older VTON models struggle
to synthesise a person wearing a long-sleeved garment into
the short-sleeved target clothing because it is challenging to
generate high-quality arms and hands. More recent VTON
models utilise the segmentation module for preserving details
from the candidate image [3], [4], but still, fail to produce
accurate segment labels. Poor segmentation performance leads
to severe problems because it affects the performance of the
subsequent modules, and the try-on image will show the
candidate wearing the target clothing incorrectly. To address
the above problems, we have developed a novel Simplified
Virtual Try-On (SVTON) model in this work. Fig. 1 shows
how our model is more consistent in applying the target cloth-
ing correctly and realistically than existing models (VITON
[1], CP-VTON+ [5] and ACGPN [3]), which have failed to
generate realistic images under situations of short-sleeves to
long-sleeves, occluded body parts and occluded clothing, for
example.

The proposed model uses the Predictive Human Parsing
Module (PHPM) first. The PHPM uses the binary mask of the

Fig. 1. Comparison of our model against VITON, CP-VTON+ and ACGPN.
The proposed model performs better than the previous models, especially for
cases with unpaired candidate-clothing (e.g. short-sleeves to long-sleeves) and
occlusions of body parts.
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Fig. 2. An overview of the network architecture of our SVTON, which is comprised of three modules of PHPM, GMM and TOM.

candidate image and clothes to predict the label for the arm
and torso. The next step is for the Geometric Matching Module
(GMM) to warp the garment to fit inside the torso label
generated by PHPM. The GMM uses an Affine Transform to
guide the neural network about positioning texture, logo, and
pattern on the warped clothing. Lastly, the Try-On Module
(TOM) will merge the images produced by PHPM and GMM
into a final try-on image. PHPM output will help TOM decide
what it can preserve from the candidate image and where it
may need to generate the arms in the try-on image.

The novel contributions of the work are as follows: 1) A
new method to generate segmentation for the relevant body
parts by refining the input data from both candidate and
clothing images and designing a different network architecture
to perform the segmentation, 2) an Affine Transform to assist
the neural network responsible for warping onto the target
clothing.

The rest of the paper is organised as follow. Section II re-
views the relevant previous studies on this topic. The proposed
model SVTON is described in Section III. Experimental results
and analysis are provided in Section IV. Finally conclusions
are drawn in Section V. The source code of this paper can be
found at https://github.com/1702609/SVTON.

II. BACKGROUND

Generative Adversarial Networks (GAN) has made a sig-
nificant breakthrough in image synthesis and generation [6],
[7]. Goodfellow trained two neural networks adversarially that
allows the generator to produce data that resemble the dataset
[8]. Conditional Generative Adversarial Network (cGAN) [9]
has shown how the neural network takes images to influence
the outcome. VTON depends on conditions (i.e. an image of
the person and clothes), making cGAN valuable to VTON.

The development of VTON started by using 3D measure-
ments of a person’s body to fit the target clothing onto the
person. Drape [10] and Sekine et al. [11] utilise a 2D image of
clothing and 3D information of a person or avatar to synthesise
the try-on image. 3D based VTON is not suitable for online
scenarios because it is difficult for consumers to provide 3D
information about their body shape.

The first 2D approach of VTON can be traced back to
2017 when Jetchev and Bergmann proposed CAGAN [12]
to swap a person’s original clothes with the target clothes.
However, the model requires both the target and original
clothing to change during testing, making it infeasible in
practical scenarios. VITON [1] uses Thin-Plate Spline (TPS)
to warp the garment and merges it with the coarse body shape
of the person to generate the try-on image. CP-VTON [2]
improves the TPS performance by using a neural network to
predict TPS parameters rather than directly relying on images.
It is common for VTON to suffer from body-part occlusions
such as the arms not being preserved. VITON-GAN [13]
has used a similar model of CP-VTON but trained with a
discriminator to solve the occlusion problem slightly. Newer
VTON models generate body labels that suit the target clothing
and perform better in occlusion cases. For example, SwapNet
[14] and VTNFP [4] have shown that the segment provides
guidance on the alignment of the target clothes and allows for
better preservation of the person’s body shape and pose and
generation of body features. Generated labels allow VTON to
preserve complex body parts such as the hand, which increases
the quality of the try-on image, as demonstrated by ACGPN
[3] and VITON-HD [15]. VITON-HD focuses on the mis-
alignment of the warped garment. They argue that geometrical
transformation (such as TPS and Affine Transformation) can
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never align with a person’s body; therefore, the misalignment
region needs to be generated. Many researchers have turned
away from using 3D-based methods due to practical issues.
CloTH-VTON [16] utilises the advantages of 2D and 3D-
based image synthesis. Their approach warps a 3D garment
model that provides more realistic deformation than 2D into
the person. CloTH-VTON uses the 2D method for generating
or preserving body parts. Similarly, M3D-VTON [17] also
utilise the benefits of 2D and 3D approaches. Their method
uses 2D image-based virtual try-on and then makes inferences
to create a 3D person wearing the desired clothes. Despite the
significant development in this area, VTON remains a chal-
lenging problem, especially for cases with unpaired candidate-
clothing and body-part occlusion.

III. METHOD

The proposed SVTON model is inspired by ACGPN [3].
Fig. 2 shows the overall architecture of SVTON. There are
three modules: the Predictive Human Parsing Module (PHPM),
Geometric Matching Module (GMM), and the Try-On Module
(TOM). We have adapted the original U-Net [18] for efficiency
purposes.

A. Predictive Human Parsing Module (PHPM)

PHPM analyses the target clothing to generate the torso
and arms segment. The clothing image C, candidate’s mask
M and RGB pose skeleton S are the input data for the PHPM.
M will be blurred to help PHPM lose the coarse body shape
of the original clothing and allow the U-Net to generate an
appropriate label for the torso that complements C. Fig. 3
illustrates the difference when using regular or blurred M. The
binary mask is shrunk by a factor of 16 and then resized back
to the original dimension, giving the effect of the boundaries
being blurry. PHPM should generate a 4-channel output MS

W

showing the distinct segment of the torso and arms. The VTON
dataset has included the original segmentation label Mgt for
every body part, which we have extracted the torso and arms
from them and used as the ground truth when training PHPM.
Individual segments from MS

W can be extracted further as
torso Mt and arms Mra, Mla. W is depicted as (W = b, t,
ra, la (b:background, t:torso, ra:right arm, la:left arm)).

Cross-entropy loss is useful for neural networks that predict
probabilities for multiple classes [19]. PHPM generates four
labels, and cross-entropy can calculate how well each segment
matches the ground truth. The loss function for PHPM is
formulated as LPHPM:

LPHPM = λ1Lentropy (1)

where Lentropy is the cross-entropy loss [19], and λ1 is the
parameter to magnify the loss.

B. Geometric Matching Module (GMM)

We introduce Affine Transform in our Geometric Matching
Module (GMM). Our Spatial Transformation Network (STN)
utilises Affine Transform to align C with Mt. STN acts as a
preliminary stage since its purpose is to guide the subsequent

Fig. 3. Blurring the mask helps PHPM to remove the torso label’s clothing
shape. Without blurring, the segments may capture the undesired shape from
the original clothing (e.g. the bulge at the sleeve shown here) and render the
final generated images unrealistic.

Fig. 4. RGB skeleton shows how joints are connected and make it easy for
the U-Net to distinguish between the arm and torso in occlusion cases.

U-Net about the positioning of the clothing and its vital
characteristics like the logo, texture and embroidery. RGB
pose skeleton shows how the poses are connected and help
GMM differentiate the torso and the arm in occlusion cases.
We have illustrated this in Fig. 4 where it clearly shows the
advantages of using RGB pose skeleton over individual pose
map. Our experiment shows that Affine Transform helps retain
clothing detail when warped. Unlike in previous methods, we
oppose using Thin-Plate Spline (TPS) because they have more
trainable parameters, making them difficult to train. Though
TPS offers a higher degree of freedom of shape deformation,
Fig. 5 shows that extra shape deformation does not improve the
performance of U-Net. The transformed garment Cw will go
through the U-Net to match Mt. The S and Mt are auxiliary
data inputted into the U-Net.

A discriminator is used to train the GMM. We use the cGAN
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Fig. 5. Comparison of warping results from different methods. The difference
between TPS and Affine Transform is insignificant, but the model complexity
of Affine is much lower, and therefore it is easier to train.

loss [9], which they formulated as:

LGAN(x, y) =Ex,y[logD(x, y)]

+ Ex[log(1−D(x,G(x)))]
(2)

where x represents data fed into the generator and y is the
ground truth.

To calculate the loss of GMM, we utilise the L1 and VGG
loss functions. We formulate the loss function as LGMM:

L1(x, y) = |x− y| (3)

LVGG(x, y) = λ2|ϕ5(x)− ϕ5(y)| (4)

LGMM =L1(x, y) + L1(x̂, y) + LVGG(x, y)

+ LGAN(f, y)
(5)

where x, x̂, y, and f denotes Cw, Ca, the ground truth of the
warped garment Cgt and data we input to GMM. LVGG is the
VGG perceptual loss [20] in which ϕ represents the feature
map of Cw and Cgt from the pre-trained VGG19 model. We
use the 5th layer of the VGG network. Lambda is a parameter
to control the loss value.

C. Try-On Module (TOM)

TOM merges the images generated from the previous mod-
ule into a final try-on image If . The U-Net expects an input
of Cw, G, preserved body part Ip and average skin colour V .
Ip contains the head, hair, bottom clothes and the preservable
region of the arm. We generate Ip the same way as in ACGPN
[3]. TOM creates U by performing element-wise subtraction
on Ma with the original arm label Ia. We perform element-
wise subtraction on I by U and Mt to preserve the desired
region Ip. It is essential to remove the hand region from MS

W

because we trained the U-Net to generate the arm only if the
arm label is present. To produce a handless segment G, we
perform element-wise multiplication between MS

W and Ip.
TOM uses the VGG and L1 loss functions to train, and we

formulate the loss as:

LTOM = L1(x, y) + LVGG(x, y) + LGAN(f, y) (6)

where x, y, and f denotes If , I and data we input to TOM.

Fig. 6. Apparent differences are shown between ACGPN and SVTON.
ACGPN generates labels for short-sleeved to long-sleeved poorly.

IV. EXPERIMENTS

A. Dataset

We trained our model using the VTON dataset [1]. The
dataset consists of 12,821 candidate-clothing pairs as the
training set, 1400 image pairs for the validation and a further
2032 image pairs for the testing set. The resolution of the
images is 256 x 192. The dataset consists of the candidate
images, paired clothing images, binary masks, segmentation
and RGB Skeleton.

B. Implementation

U-Net architecture [18] is adopted across all the three mod-
ules of PHPM, GMM and TOM, but with fewer convolutional
layers in the former two.

The U-Net of PHPM and GMM has seven convolutional
layers with a kernel size of 3, and their respective number of
filters are 64, 128, 256, 512, 512, 1024, 1024 for their encoder.
The decoder has ten convolutional layers with a kernel size of
3, and their respective number of filters are 512, 512, 512,
256, 256, 128, 128, 64, 64, 3. We used skip connections in
this U-Net. The additional STN used by GMM has the same
architecture as in [21]. TOM has the same architecture as the
original U-Net. The discriminator has four convolutional layers
with a kernel size of 4, and their respective number of filters
are 64, 128, 256, 1 with sigmoid function in the end.

We have trained the modules separately to assess how
the individual modules are performing. We trained PHPM
and GMM for 20 epochs and TOM for 100 epochs in a
paired setting, which means SVTON trained to synthesise
candidate images with their original clothes. We used the
Adam optimiser to optimise the U-Nets with a hyperparameter
of 0.0002 for the learning rate and set β1 = 0.5 and β2 = 0.999.

Testing has the same procedure as training, but the target
clothing can differ from what the candidate initially wears.
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ACGPN SVTON
Left Arm Right Arm Left Arm Right Arm

a) Dice 45.3% 47.5% 91.0% 86.7%
IoU 63.5% 64.4% 91.6% 88.2%

b) Dice 49.4% 8.6% 90.7% 81.3%
IoU 65.4% 51.1% 91.4% 84.0%

c) Dice 42.5% 82.6% 90.9% 96.9%
IoU 62.2% 85.0% 91.6% 95.7%

TABLE I
COMPARISON OF DICE AND IOU SCORES BETWEEN THE ACGPN AND

THE PROPOSED MODEL SVTON ON A SUBSET OF THE DATA WITH
UNPARIED SETTINGS. THE SVTON SCORES ARE HIGHER THAN ACGPN

FOR BOTH METRICS OF DICE AND IOU.

C. Qualitative Analysis

We have compared our method with VITON [1], CP-
VTON+ [5] and ACGPN [3], as shown in Fig. 1. VITON only
preserves the face and the hair when training or evaluating
the try-on network. Providing insufficient data to the neural
network causes the synthesised image to show changes in
undesired regions like VITON changing the colour of the
trouser. With CP-VTON+, ACGPN and SVTON, we included
the bottom clothes when feeding data into the neural network,
stopping the trouser from being modified. VITON and CP-
VTON+ have generated low-quality arms and hands because
they do not have a method that guides image generation
like human parsing. ACGPN tends to struggle to generate
appropriate labels when changing a candidate wearing a short-
sleeved garment into a long-sleeved one. ACGPN forces the
long-sleeved to fit inside the incorrectly generated torso label;
therefore, their try-on is incorrect. Our method performs better
than ACGPN when applying the clothing item onto the person.

Fig. 7 shows a common problem where PHPM produces
the incorrect size of the torso dimension. This is because
the blurred M does not clearly distinguish between the torso
and legs. The subsequent modules will be affected, producing
unnatural colouring in the gaps or, in rare cases, it will render
blanks, as seen on the bottom example of the figure. VITON-
HD [15] provides a distinct label of the head and legs to the
segmentation module, which will fix the torso issue.

D. Quantitative Analysis

We have used the Dice coefficient and IoU to compare
our segmentation performance against ACGPN [22]. We used
the testing set (paired setting) to show that ACGPN has
beaten our model around 10% for Dice and 8% for IoU when
generating the segment for the arm. When we experimented
on three handcrafted segmentation labels of unpaired settings,
we showed that our model outperformed ACGPN significantly.
Fig. 6 shows two examples where ACGPN has seriously
failed to produce the correct segment for both hands/arms.
We include an extreme case in Fig. 6b where ACGPN has
failed to generate the label for the right hand and scored only
8.6% for the Dice coefficient, as shown in Table 1.

E. Discussions

The proposed model performs better than the previous
models, mainly for two novel contributions. First, it generates

Fig. 7. The short label of the torso causes the U-Net to produce undesirable
try-on.

the segment labels of the arms more accurately on unpaired
settings. We developed a new segmentation module using
different input data and network architecture. The results have
shown that our model performs better at synthesising clothes
with any clothing. The ACGPN takes a different approach
since they differentiate a single-labelled image into multiple
body parts, producing inaccurate results even when training
their segmentation module for longer. Our work showed that
the segmentation module needs to produce the correct label;
otherwise, the subsequent modules will warp the garment
wrongly, and the try-on will be incorrect.

Second, the proposed model offers a more efficient method
for warping the garment. Previous VTON models [1], [2], [4],
[3] utilise TPS transformation to warp the garment. There are
disadvantages to using TPS, such as, in some difficult cases,
TPS can distort the texture of the clothing. ACGPN rectified
the problem by introducing a constraint to TPS to stabilise
the warping module. However, we showed that using an even
simpler approach, such as Affine transformation, can perform
just as well as TPS and is more efficient.

V. CONCLUSIONS

In this paper, we have presented the SVTON, a new
Virtual Try-On model, to address the challenging problem
of generating realistic images for unpaired candidate-clothing
images and body-part occlusions. The model is comprised of
three modules of PHPM, GMM and TOM, where the U-Net
architecture and generative models are adopted. The proposed
model differs from the previous models in that refined input
data are used, and different network architecture is adopted.
Also, the warping to target clothing is based on an Affine
Transform which is more computationally efficient. We have
experimented on the benchmark VTON dataset [1]. Improved
results have been demonstrated over a number of previous
models such as VITON [1], CP-VTON+ [5], and ACGPN [3],
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especially under situations with unpaired candidate-clothing
settings and significant body-part occlusions.
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