
Department of Mathematics

Academic Year 2021 - 2022

Efficient Classical Simulation of a Variant

of Cluster State Quantum Computation

Sahar Atallah

1830214

A thesis submitted for the degree of Doctor of Philosophy

Brunel University London

Department of Mathematics

Uxbridge

Middlesex

UB8 3PH

United Kingdom

T: +44 1895 203397

F: +44 (0) 1895 251686

Acknowledgments

This thesis would not have been possible unless the help of many people for whom

I will be thankful.

I owe my deepest gratitude to my supervisor Dr Shashank Virmani, who showed

me the significance of understanding every idea from all its perspectives, who helped

me passing every one of the obstacles I went up against amid the entire procedure,

and who improved my work with his insightful guidance. It has been such a benefit

for me to be supervised by a man with endless experience and boundless kindness

and patience. I might want to express appreciation toward him for acquainting me

with the subject of efficient classical simulation of a variant of cluster state quantum

computation.

I would like to thank Dr Anne-Sophie Kaloghiros, for her help, time and guidance

through the entire procedure.

I am grateful toward Dr Dmitry Savin and Dr Ilia Krasikov for their help and

kind support.

I am indebted to my friends, Michael Garn and Yukuan Tao who provided the

help I needed in my research. I am thankful to many of my friends for their help and

ethical support. My unique appreciation to Rodrigue Kazzi for backing me in any

decision I made. I find myself fortunate to have companions like them in my life.

Finally, I cannot disregard my family who encouraged me in all circumstances. It

is an honor for me to thank my father and my mother for their unconditional love

and support.

ii

Abstract

Quantum computers are known for their ability to solve some computational prob-

lems faster than classical computers. There is a race to build quantum computers

because it is believed they might be better than classical; but it remains unknown

whether quantum computers are in fact better than conventional computers. To un-

derstand this problem, we develop a new method of classically simulating certain

types of quantum system that are previously unknown to be efficiently simulatable

on classical computers.

We adjust a part of cluster state quantum computation to study the computa-

tional power and we demonstrate that there is a finite region of pure states |ψ〉 around

the Z-eigenstates for which the setup can be efficiently simulated classically, given

that the measurements are limited to Z and X − Y plane measurements. This clas-

sical simulation works by considering alternative local state spaces that we called

“cylinders” and different notion of entanglement to normal quantum entanglement.

Then, we work out similar regions for states created using other diagonal gates

instead of the CZ. These diagonal gates are represented by V (θ) = |0〉〈0|⊗I+|1〉〈1|⊗
Zθ where Zθ = |0〉〈0| + eiθ|1〉〈1|. It turns out that almost all inputs are classically

simulatable when θ is small.

In addition, we find that classical simulation also works by considering new type

of non-quantum state spaces other than cylinders and maintaining non-entangled

representation by growing the size of these state spaces. We search over some state

spaces to try optimize our classical simulation and it turns out that, among the state

spaces that we searched through, the cylinder is the most optimal state space.

And finally, we will look at a coarse graining version of construction which in-

creases the efficiently simulatable region.

iii

Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

1.1 Basic mathematics . 2

1.1.1 Hilbert space . 2

1.1.2 Operator . 6

1.1.3 Tensor product . 8

1.1.4 Quantum states . 10

1.1.5 Controlled gates . 18

1.1.6 Affine and convex sets . 21

1.1.7 Cluster States . 22

1.2 Classical simulation . 24

1.3 Quantum supremacy . 27

1.4 Preview of the thesis results . 27

2 Efficient Classical Simulation of quantum circuits with alternative

inputs 29

2.1 Description of the algorithm in Harrow and Nielsen[33] 30

2.2 Cylinder separability . 32

2.3 Cylinders and the restricted measurements 33

2.4 Bloch vectors of the cylinder . 34

2.5 Cylinder state space with different radii 36

iv

2.5.1 CZ gate acting on two input qubits 36

2.5.2 The diagonal gates acting on two input qubits 42

2.6 Summary of chapter 2 . 51

3 Different state spaces 53

3.1 State spaces . 53

3.2 Using Linear Programming to decide the convex hull membership . . 58

3.3 Linear Programming . 59

3.4 Results . 62

3.5 Summary of chapter 3 . 64

4 Coarse Graining 66

4.1 Description of coarse graining . 66

4.2 Block state space of four cylindrical state spaces 69

4.3 Block state space of many cylindrical state spaces 72

4.4 Summary of chapter 4 . 74

5 Summary 76

A Representation of V(θ) in the Pauli basis 78

B Matlab code 88

B.1 Matlab code for Chapter 2 . 88

B.2 Matlab code for Chapter 3 . 94

v

Chapter 1

Introduction

Quantum computing is the use of quantum phenomena, such as the so-called en-

tanglement and superposition, to perform computation. Computers that performs

quantum computations are known as quantum computers. These computers are able

to solve some computational problems, such as factorization in polynomial time, ex-

ponentially faster than the best known algorithm on classical computers. Algorithms

that are performed on quantum computers, are called quantum algorithm [22, 23,

44, 42, 56]. For example, Shor [57] who works on factoring integers; this problem is

believed to be hard on a classical computer but efficient algorithms are given for this

problem on a quantum computer. An additional example is that Grover [30] discov-

ers an algorithm that can solve a problem on a quantum computer using quadratic

speedup operations.

Before mentioning the goal of the research, let’s start by revealing why we are

interested in simulating quantum systems on a classical computer. The first reason

is that it is unknown if quantum computers are better than conventional computers.

To understand this problem, we can proceed one of two ways. We can try to find that

quantum computers can’t be efficiently simulated classically or we can try to develop

an algorithm that can classically simulate a quantum system.

The motivation of simulating a complex quantum system efficiently classically is

that people think that quantum computers, built with quantum systems, can solve

problems such as factorization that can’t be done classically; but if it is found that

simulating quantum computer can be done classically, then it means that any algo-

rithm can be done on quantum computers, it can be efficiently simulated classically.

For instance, there would be an efficient algorithm for factorization on a classical

computer.

Progress has been made in efficiently simulating a quantum system on a classi-

cal computer. For example, Gottesman-Knill theorem [27] shows that a quantum

computation, that involves only the state preparations in the computational basis,

1

Hadamard gates, Phase gates, Controlled-NOT gates, Pauli gates and measurements

in the Pauli group, may be efficiently simulated on a classical computer. So, it is an

algorithm that only simulate certain type of quantum system. Gottesman-Knill theo-

rem displays that some quantum computations, including entangled states (but not all

types of entanglement) may be efficiently simulated classically. Hence, Gottesman-

Knill theorem is very interesting because there are connections to error correction

and only single particle operations are needed to turn stabilizer circuits into a form

of quantum computation.

Most people in this field believe that it is not possible to efficiently simulate

quantum systems classically. One reason is that factorization can be done efficiently

on quantum computer, in spite of the fact that over many years people have failed

to find an efficient factorization algorithm on a classical computer. But there is no

proof of this fact nor the fact that quantum system cannot be efficiently simulated

classically.

In this thesis, we aim to develop a new method of classically simulating certain

types of quantum system that are previously unknown to be efficiently simulatable

on classical computers.

1.1 Basic mathematics

In this section, we are going to explain the definitions and the formulas of all the

mathematical terms used in this research.

1.1.1 Hilbert space

We begin with the definition of the fundamental mathematical concept, “the Hilbert

Space” which is denoted by H.

The Hilbert spaces permit generalising the linear algebra and calculus methods

from the two and three dimensional Euclidean spaces to other dimensions spaces and

to spaces that have an infinite dimension, but we will only be concerned with finite

dimensional systems. Hilbert space is a complex inner product space which means

that it is a complex vector space endowed with an inner product operation, we will

shortly explain the meaning of these terms.

The vector state space is a set of elements, called vectors such that the set must

satisfies the following properties:

2

1. Any vector |v〉 can be multiplied by any number called scalar. Then the vector

is denoted by α|v〉, where α can be a real or complex scalar depending upon

the vector space. If the scalar is a real number, then the space is called a real

vector space, and if the scalar is a complex number, then the space is a complex

vector space.

2. For any vector |v1〉 and any two scalars α, β, it holds that (α + β)|v1〉 =

α|v1〉+ β|v1〉.

3. For any vector α|v〉 and any scalar β, there is a vector denoted by β(α|v〉) =

(βα)|v〉 = (αβ)|v〉.

4. The vectors can be added together. For instance, for any two vectors |v1〉 and

|v2〉, there is a vector |w〉 denoted by |w〉 = |v1〉+ |v2〉.

5. The sum of vectors must be associative and commutative. For instance, by

associative and commutative, we mean (|v1〉+ |v2〉) + |v3〉 = |v1〉+ (|v2〉+ |v3〉)
and |v1〉+ |v2〉 = |v2〉+ |v1〉 respectively.

6. The multiplication by α is distributive such that α(|v1〉+ |v2〉) = α|v1〉+ α|v2〉.

7. By multiplying any vector |v〉 by 1, |v〉 remains the same.

8. There exists a zero vector 0 such that by adding any |v〉 to 0, the same |v〉 will

be given, i.e. |v〉+ 0 = |v〉.

9. For any vector |v〉, there is an inverse for this vector denoted −|v〉, such that

|v〉+ (−|v〉) = 0.

A set of vectors |a1〉, |a2〉, . . . , |ad〉 is a spanning set of a vector space E if ∀u ∈
E,∃β1, β2, . . . , βd ∈ K such that u = β1|a1〉+ β2|a2〉+ . . .+ βd|ad〉. A set of vectors is

said to be Linearly Independent if one of the following two equivalent cases holds:

• if the basis vectors give a unique expansion,

• if the zero vector 0 has a unique expansion, 0 = m|a1〉+n|a2〉+p|a3〉+. . .+q|ad〉,
where the coefficients, m,n, p, . . . , q must be zeros.

Hence, a set of vectors is a basis if the set is a linearly independent spanning set.

The total number of vectors, which is d in the above basis set, represents the

dimension of a vector space.

3

Some vector spaces can be given an inner product which is a map of two input

vectors to a complex output number. Using the Dirac notation or bra-ket notation,

which is a language that match the needs of expressing states in quantum mechanics,

an inner product is obtained by combining two vectors, the bra and the ket vectors,

denoted by 〈g| and |h〉 respectively. The bra vector 〈g|, is a linear map that takes a

vector |h〉 and gives 〈g|h〉 which represents the inner product.

The inner product is defined to satisfy the following axioms:

1. The inner product 〈g|h〉 must be equal to its adjoint 〈g|h〉∗ = 〈h|g〉. This

equality is called the conjugate symmetry. By adjoint, we mean that it is a

linear transformation from a vector space to itself and this linear map leads to

the transpose conjugate.

2. When a vector 〈v| acts on a sum of two vectors (|h〉 + |w〉), 〈v|h〉 + 〈v|w〉 will

be given.

3. When a vector |h〉 is multiplied by a scalar t, then 〈g| (t|h〉) = t〈g|h〉.

4. For all vectors |h〉, 〈h|h〉 ≥ 0.

5. If |h〉 is a zero vector, then 〈h|h〉 = 0.

6. If 〈h| acts on a zero vector |0〉, then 〈h|0〉 = 〈0|h〉 = 0.

If the inner product of two vectors, |g〉 and |h〉 is 0, which means that 〈g|h〉 =

〈g|h〉∗ = 〈h|g〉 = 0, then these two vectors are defined to be orthogonal.

In vector spaces, the norm, which is a non-negative real valued function, is used

to define lengths of vectors. The norm which is denoted by || |v〉 ||, satisfies three

conditions; for instance, by taking a vector |x〉 in H:

1. For all vectors |x〉, || |x〉 || ≥ 0 which means || −|x〉 || = || |x〉 || with || |x〉
|| = 0 if |x〉 = 0 .

2. By multiplying the vector |x〉 by a scalar w, then the norm is given by || w|x〉||
= |w|× || |x〉 ||.

3. By taking two vectors |x〉 and |y〉, the norm of the sum of these two vectors is

given by || |x〉+|y〉 || ≤ || |x〉 ||+|| |y〉 || which represents the triangle inequality.

4

The inner product automatically leads to a type of norm. Then the norm of a vector

space that has an inner product is given by:

|| |x〉||2 =
√
〈x|x〉 =

√∑
i=1

|xi|2.

Let’s consider a basis of vectors |a1〉, |a2〉, |a3〉, If the inner product of two vectors

〈ai|aj〉 = 0

for all i 6= j and if the norm of all vectors√
〈ai|ai〉 = 1 = 〈ai|ai〉

then the set is an orthonormal basis.

Vectors can be described in terms of expansion coefficients in an orthonormal basis.

Let’s consider any two vectors |h〉 =
∑
i

αi|hi〉 and |g〉 =
∑
i

βi|gi〉 where |gi〉 = |hi〉,

then the inner product between the two vectors is given by:

〈g|h〉 =
∑
i

β∗i αi〈gi|hi〉

=
∑
i

β∗i αi ; where 〈gi|hi〉 = 1 because they are normalised.

The inner product can be written as a product of two matrices:

〈g|h〉 =
(
β∗1 β∗2 . . .

)

α1

α2

...


Therefore, the two vectors |h〉 and |g〉, also can be written as matrices. |h〉 which

is the ket vector, is a column vector in a complex vector space and the bra vector 〈g|
is the adjoint of |g〉, these vectors are given by

|h〉 =


h1

h2
...



5

and

〈g| =
(
g∗1 g∗2 . . .

)
.

1.1.2 Operator

An operator O maps input vectors into output vectors that are in two different Hilbert

spaces,O: Hin → Hout. For instance, we denote this transformation by the following

equation

|w〉 = O |v〉.

• An operator is linear, if the output vector |w〉 is the sum of all the output

vectors, if |v〉 = a|v1〉+ b|v2〉+ . . ., then

|w〉 = O |v〉 = aO |v1〉+ bO |v2〉+ . . .

• By considering an operator A that maps two vectors in two different Hilbert

spaces, from H1 → H2, its adjoint operator denoted A† maps from H2 → H1

such that 〈Av1|v2〉 = 〈v1|A†v2〉. We will only be concerned with an adjoint

operator that maps from a Hibert space to itself.

• A Hermitian operator is an operator A that satisfies A† = A where A† is the

adjoint operator of A which also can be called Hermitian conjugate.

• Unitary operators U are linear transformation that maps an input vector |φ〉 in

H1 to an output vector |ψ〉 in H2. The two Hilbert spaces H1 and H2, must

be equivalent, which means H1 = H2 and U has an inverse U † which is the

Hermitian conjugate, then

U †U = I.

• A projector or a projection operator P is a linear operator that maps a vector

in vector space V to itself such that P 2 = P which means that if P 2 is applied

to a vector, the same outcome is obtained as if only one P is applied.

Operators can be represented as matrices when their actions are expressed in

terms of orthonormal basis. Let’s consider a linear operator O that maps an input

vector |v〉 to an output vector |w〉. The input vector |v〉 can be expanded in terms of

6

an orthonormal basis:

|v〉 =
∑
i

αi|vi〉

= α1|v1〉+ α2|v2〉+ . . . ,

The coefficients column vector is given by
α1

α2

...


After applying the operator on |v〉, it is the same as applying O on each vector

|v1〉, |v2〉, . . ., these output vectors that also can be expanded as a sum of basis vectors,

are presented by

|w〉 = O|v〉

=
∑
i

αiO|vi〉

= α1O|v1〉+ α2O|v2〉+ . . . ,

= α1(β1,1|w1〉+ β2,1|w2〉+ . . .) + α2(β1,2|w1〉+ β2,2|w2〉+ . . .) + . . . ,

= α1

(∑
j

βj,1|wj〉

)
+ α2

(∑
j

βj,2|wj〉

)
+ . . . ,

=
∑
i

αi

(∑
j

βj,i|wj〉

)

=
∑
j

(∑
i

βj,iαi

)
|wj〉

=
∑
j

γj|wj〉

7

where γj =
∑
i

βj,iαi, it can be written as


γ1

γ2

γ3
...

 =


β1,1 β1,2 β1,3 . . .

β2,1 β2,2 β2,3 . . .

β3,1 β3,2 β3,3 . . .
...

. . .




α1

α2

α3

...

 ,

Then |w〉 can be represented by|w〉
 =

|w1〉 |w2〉 |w3〉 . . .




γ1

γ2

γ3
...


Hence, the linear operator O can be represented by a matrix that takes input column

vectors and gives output column vectors.

1.1.3 Tensor product

The tensor product is a map that take a pair of vector spaces, V and W with dimen-

sions c and d respectively to a single vector space V ⊗W that has a dimension of cd.

The sign “⊗” is the tensor product symbol.

The tensor product satisfies these axioms:

1. By taking two vectors |v〉 ∈ V and |w〉 ∈ W , it holds that: a(|v〉 ⊗ |w〉) =

a(|v〉)⊗ |w〉 = |v〉 ⊗ a(|w〉) where a is a scalar.

2. By adding two vectors |v1〉+ |v2〉, for a vector |w〉 ∈ W , we have (|v1〉+ |v2〉)⊗
|w〉 = |v1〉 ⊗ |w〉+ |v2〉 ⊗ |w〉.

3. If we consider a vector |v〉 ∈ V and (|w1〉 + |w2〉), then |v〉 ⊗ (|w1〉 + |w2〉) =

|v〉 ⊗ |w1〉+ |v〉 ⊗ |w2〉.

Let’s consider |v〉 and |w〉 two column vectors in vector space V and W . These

8

two vectors have xi and yi as components where i = 1, 2, . . . , n,

|v〉 =


x1

x2
...

xn

 ∈ Rn and |w〉 =


y1

y2
...

yn

 ∈ Rn

When a tensor product is applied between these two vectors, a joint vector has been

formed:

|v〉 ⊗ |w〉 =



x1 ×


y1

y2
...

yn


...

xn ×


y1

y2
...

yn





=



x1y1

x1y2
...

x1yn
...

xny1

xny2
...

xnyn


In general, if we have E ∈ M1 and F ∈ M2, where M1 and M2 are the spaces of

c× d and m× n matrices respectively, then E ⊗ F is a cm× dn matrix.

E ⊗ F =


E11F E12F . . . E1dF

E21F E22F . . . E2dF
...

...
...

...

Ec1F Ec2F . . . EcdF


For example, by taking c = d = 3 then

E ⊗ F =

E11F E12F E13F

E21F E22F E23F

E31F E32F E33F


To simplify many calculations, the fact about tensor product is that

(E ⊗ F)(G⊗H) = EG⊗ FH.

9

1.1.4 Quantum states

An observable is a physical property of a system that can be measured in the lab.

In quantum mechanics, an observable is described by a Hermitian operator and the

eigenvalues of this operator represent the possible outcomes of measurement that

correspond to the vectors in the orthonormal basis. The observable is said to be

degenerate when eigenvectors correspond to one eigenvalue and when there is one

eigenvector for only one eigenvalue then the observable is non-degenerate.

A projective measurement can be constructed from an observable denoted M ,

which is a Hermitian operator. The observable M has a decomposition:

M =
∑
m

mPm (1.1)

where Pm is the projector on the eigenspace of the observable that has an eigenvalue

m. By eigenspace we mean the set of eigenvectors that correspond to the same

eigenvalue.

In quantum information theory, we are only interested in labelling these m eigen-

values, then we are going to use Pi where i are integer numbers that represent the

possible outcomes. Pi must satisfy the following properties:

• P †i = Pi,

• PiPi′ = δi,i′Pi

•
d∑
i

Pi = I,

The probability of getting a measurement outcome i is given by the following Born

Rule.

The Born Rule

The Born Rule or the Probability Rule is the rule that gives the probabilities of

getting possible outcomes of measurement.

Let’s consider an operator O that has real eigenvalues λi that correspond to eigen-

vectors |λi〉, then the operator O can be defined by

O =
∑
i

λiPi

10

where Pi =
∑
k

|λk〉〈λk| is the projector. If a measurement acts on a quantum system

that is in a state |ψ〉, the probability of getting an outcome i is presented by:

prob(i) = 〈ψ|Pi|ψ〉 (1.2)

Instead of taking a single state |ψ〉, we consider an ensemble of state |ψj〉 with

probabilities pj, then the probability of getting an outcome i is given by:

prob(i) =
∑
j

pj〈ψj|Pi|ψj〉 (1.3)

We can derive from equation (1.3) the following:

prob(i) =
∑
j

pj〈ψj|Pi|ψj〉

=
∑
j

pj
∑
k

〈ψj|λk〉〈λk|ψj〉

=
∑
j

pj
∑
k

〈λk|ψj〉〈ψj|λk〉

=
∑
k

〈λk|
∑
j

pj|ψj〉〈ψj|λk〉

=
∑
k

〈λk|ρ|λk〉

= tr(ρ
∑
k

|λk〉〈λk|)

= tr(ρPi)

where “tr” is the trace of an operator matrix. ρ =
∑

j pj|ψj〉〈ψj| is the density

matrix (or a density operator) which describes the quantum state and it has the

following properties:

• Hermitian, it means that ρ = ρ†,

• a positive semi-definite which means that the eigenvalues are non-negative. It

can be denoted as ρ ≥ 0,

• has trace one.

Using the Born’s rule, a quantum state is a mathematical structure that allows us

to calculate probabilities of the outcomes of each possible measurement on a system.

11

States that can’t be written as a mixture of states are called pure quantum states but

others are called mixed quantum states.

If ρ =
n∑
j

pj|ψj〉〈ψj| = |ψ〉〈ψ|, where n = 1 and p1 = 1, then ρ represents a pure

quantum state; but if it is not the case then ρ is called a mixed quantum state. This

is the first way in which mixed states can arise and we will shortly discuss the second

way, which is the partial trace of a pure state, that can be used to obtain a mixed

state.

Pure quantum state is described by a single vector |k〉 or by a superposition of

basis states |Ψ〉 =
∑

i ci|ki〉 where ci are the probabilities corresponding to |ki〉 and∑
i |ci|2 = 1.

If tr(ρ2)


= 1, then ρ is a pure state

< 1, then ρ is a mixed state.

The Qubit

The classic binary bit has a quantum version which is called quantum bit or qubit.

Qubit is in a two dimensional Hilbert space and it can be in states labelled 0, 1, or

a superposition of these. The superposition stated that any two or more quantum

states can be added together, we end up with another quantum state, for example,

|Ψ〉 = α|0〉 + β|1〉, where α and β are two complex numbers and |0〉 and |1〉 are the

ket-0 and ket-1 respectively. So, The qubit is represented by a column vector of two

elements, where these elements should satisfy the normalisation condition, from the

previous example, |α|2 + |β|2 = 1. By using the Dirac notation, where the ket is |0〉,

|1〉 and the bra is the conjugate transpose, we have: |0〉 :=

(
1

0

)
; |1〉 :=

(
0

1

)
and

these two are the orthonormal basis states. |0〉, |1〉 together is called computational

basis.

For instance, the qubit state |+〉 is a superposition of the basis state which means

that it can be described by a linear combination of |0〉 and |1〉:

|+〉 =
|0〉+ |1〉√

2
.

Multi-particle system

A multiparticle system can be defined by two axioms:

12

1. Tensor product is crucial in the understanding of multiparticle systems. If there

are two Hilbert spaceHA andHB on two different particles A and B respectively,

then a Hilbert space HAB is described by a tensor product between these two

spaces. HAB has two different types of states:

• a product state which is given by,

|φ1〉 ⊗ |φ2〉

where |φ1〉 and |φ2〉 are two independent states.

• a joint state that has the possibility of being an entangled state. This

specific state cannot be written as a product state, as we will shortly

explain.

2. If a measurement will be applied on one particle, then in the joint system,

the measurement is extended by the identity operator which is applied on the

second particle.

For instance, if a measurement Pj is applied on A, then we need to apply a tensor

product between PjA and the identity operator IB which is applied on the second

particle B. The probability of getting the measurement outcome j is given by

Pr(j) = tr((PjA ⊗ IB)ρAB) = tr(PjAtrB(ρAB)) = tr(PjAρA) (1.4)

where ρA is defined as

ρA := trB(ρAB) :=

dB∑
k

(IA ⊗ 〈kB|)ρAB(IA ⊗ |kB〉)

dB is the dimension of HB, |kB〉 is any orthonormal basis on B and IA is the identity

operator in HA. ρA is called The reduced state or the reduced density matrix of A

which is computed by taking the partial trace over B, denoted by trB.

POVM

As mentioned above, the Born’s rule states that the probability of the outcome for

measurement, is represented by

prob(i) =
∑
j

pj〈ψj|Pi|ψj〉 = tr(ρPi)

13

where ρ =
∑
j

pj|ψj〉〈ψj| and Pi =
∑
k

|λk〉〈λk|. The projective measurements Pi have

the axioms that we mentioned in the beginning of this part:

• P †i = Pi,

•
∑
i

Pi = I where I is the identity operator because the sum of all probabilities

must be equal to 1.

• PiPi′ = δi,i′Pi. This property together with the above two axioms, imply that

the operator Pi is positive and therefore the probability will be non-negative.

If we add ancilla particle which is used in the measurement, to the probability

equation, these axioms can be modified. Let’s try to interact the quantum system

with an external one, so we are going to add an ancilla |0〉〈0|. Then, we have

Prob(i) = tr[(ρ⊗ |0〉〈0|)Pi] ≡ tr(ρM) (1.5)

where Pi = |λk〉〈λk| and M =
∑
a,b

λb0λ
∗
a0|b0〉〈a0|.

Proof. By taking |λk〉 =
∑
k,j

λkj|kj〉, then the probability of getting i is

Prob(i) = tr[(ρ⊗ |0〉〈0|)Pi]
= tr[(ρ⊗ |0〉〈0|)|λk〉〈λk|]

= tr

[∑
a,b,k,j,m,l

(ρab ⊗ |a0〉〈b0|)λkjλ∗ml|kj〉〈ml|

]

= tr

[∑
a,b

(ρab ⊗ |a0〉〈b0|)λb0λ∗a0|b0〉〈a0|

]
by taking k = b,m = a, j = l = 0;

= tr

[∑
a,b

λb0λ
∗
a0|b0〉〈a0|ρab

]
= tr(ρM); where M =

∑
a,b

λb0λ
∗
a0|b0〉〈a0|

M is a Positive Operator Valued Measure element because when a projective mea-

surement Pi is applied on a particle and an ancilla, we end up with a statistic defined

by POVM where only the third axiom has been modified, which means that the

orthogonality property is removed and the positivity is retained.

14

Therefore Positive Operator Valued Measure or Generalized measurement is de-

scribed by the set of positive operators Pi that sum to the identity matrix:
n∑
i=1

Pi = I.

Bloch sphere

Let’s consider a system of a single qubit that has a 2×2 density matrix ρ. This matrix

is Hermitian, has trace one and can be expanded in the basis I, σ1, σ2, σ3 where I is

the identity matrix, σ1 = X, σ2 = Y and σ3 = Z are the Pauli matrices (as will be

defined on page 19). The coefficient of I in the expansion of the ρ is 1
2

to end up with

tr(ρ) = 1. The expansion is given by:

ρ =
1

2
(I + xX + yY + zZ) =

1

2

(
1 + z x− iy
x+ iy 1− z

)

The coefficients x, y and z are found using the Hilbert Schmidt inner product which

is presented by tr(A†B). Hence, they are computed as follow

1

2
tr(ρσi).

Then the determinant of the ρ must be computed to find the eigenvalues λi. Hence,

the eigenvalues are given by

λi =
1

2
±
√
x2 + y2 + z2

2
.

The non-negativity of the eigenvalues will be holding if x2 + y2 + z2 ≤ 1. Thus a

quantum state can be represented by a vector (x, y, z), where these values are the

coefficients of the above decomposition. These coefficients correspond to a point on

the so-called a Bloch sphere which is considered as a unit 2-sphere and the standard

basis vectors |0〉 and |1〉 are represented by the north and south poles of the Bloch

sphere respectively [50].

The pure quantum states of the system are the points on the surface of the sphere

where the norm of the Bloch vector must be equal to 1, while the internal points

correspond to the mixed states where the norm of the vector must be less than 1.

15

Figure 1.1: This image represents the Bloch sphere. It is taken from “Wikipedia”,
https://commons.wikimedia.org/wiki/File:Bloch_sphere.svg, February 2022.

Entangled and separable quantum states

Let’s consider two quantum systems A and B in two different Hilbert spaces HA and

HB. If the pure state |χAB〉 ∈ HA⊗HB can be written in the form |χAB〉 = |χA〉⊗|χB〉
where |χj〉 is a pure state of the jth subsystem, then the state is separable, but if it

can not be written in the showed form then the state is entangled. For instance, let’s

take a state

|ψ〉 =
1√
2

(|00〉+ |11〉).

This state cannot be written as a product state because the state should have the

following form

(a|0〉+ b|1〉)⊗ (A|0〉+B|1〉)

where aA and bB should be equal to 1√
2
, aB and bA should be equal to 0,which

means that two of these coefficients must be equal to 0 but this cannot be done, for

instance, by taking a product between aB = 0 and bA = 0 and a second product

between aA = 1√
2

and bB = 1√
2
, then we have:

aB = 0

bA = 0

 abAB = 0 ;

aA = 1√
2

bB = 1√
2

 abAB =
1

2

we find that these products are inconsistent. Then

1√
2

(|00〉+ |11〉) 6= (a|0〉+ b|1〉)⊗ (A|0〉+B|1〉)

16

Therefore, |ψ〉 is an entangled quantum state.

Let’s consider the density matrix ρ, which corresponds to a mixed state, is separa-

ble if there is pk is greater or equal to 0, ρk1 and ρk2 are mixed states of the subsystems:

ρ =
∑
k

pkρ
k
1 ⊗ ρk2

where ∑
k

pk = 1,

The state is called simply separable or product state when the state can be expressed

as ρ = ρ1 ⊗ ρ2. If the two conditions, pk ≥ 0 and ρ =
∑

k pkρ
k
1 ⊗ ρk2, are not attained

then ρ is entangled mixed state. In the next chapter, we will define and use the notion

of generalised separability.

Local hidden variable model

The original motivation for investigating separability [63] was to understand local

hidden variables [26, 8]. Let’s consider a source that creates particles λ. These

particles are sent to two distant detectors D1 and D2 controlled by two people. By

assuming that each person can choose his measurement, M1 and M2, the two detectors

generate two outcomes A1 and A2 respectively. Hence, λ holds local hidden variables

that have a probability distribution pλ.

Figure 1.2: Local hidden variables

Local hidden variable models can be presented by the following equation,∑
λ

pλp
λ(A1|M1)p

λ(A2|M2)

where pλ(Ai|Mi) is the probability of getting an outcome Ai given a measurement

Mi. Bell [15] showed that local hidden variables are inconsistent with the statistical

predictions of quantum mechanics. Experiments have been performed to demonstrate

17

non-locality [24, 21].

Positive partial transpose

In general, it is difficult to test whether a state ρAB is separable or not [25], in our

case the so-called PPT test will be sufficient for this research. The positive partial

transpose test or PPT test is one of the useful tests that works to find whether the

state is separable [47]. For instance, if we have

XAB =
∑
i,j,k,l

ci,j,k,l|i〉〈j|A ⊗ |k〉〈l|B

then the partial transpose of XAB is

XTA
AB =

∑
i,j,k,l

ci,j,k,l|i〉〈j|TA ⊗ |k〉〈l|B =
∑
i,j,k,l

ci,j,k,l|j〉〈i|A ⊗ |k〉〈l|B

If we consider ρ is a separable state

ρ =
∑
i

pi|ψi〉〈ψi|A ⊗ |φi〉〈φi|B,

then

ρTA =
∑
i

pi|ψ∗i 〉〈ψ∗i |A ⊗ |φi〉〈φi|B

where |ψ∗i 〉 are pure states and their coefficients, that are in the computational basis,

are the complex conjugates of |ψi〉. After finding the partial transpose, if ρTA is

positive semi-definite then ρ is PPT. Therefore, ρ is separable which implies that ρ ∈
PPT. If ρ /∈ PPT then ρ is an entangled quantum state but if ρ ∈ PPT then ρ can

be separable. However, 2 × 2 and 2 × 3 systems is known to be equivalent to PPT

separability [34]. But in the case of 3 × 3 and 2 × 4 systems, the eigenvalues of the

partial transpose of entangled mixed states are found to be positive [35].

1.1.5 Controlled gates

The manipulation of qubits can be done with the help of quantum logic gates. So

quantum logic gates are basic quantum circuits that operate on a small number of

qubits. Quantum logic gates are represented by unitary operators,

U †U = UU † = I

18

where U † is the conjugate transpose matrix of U .

A gate acting on n qubits is represented by a 2n×2n unitary matrix. There exists

an uncountable infinite number of gates but the most used gates are the Identity and

the Pauli gates. The Identity gate is the identity matrix, and it is defined for a single

qubit:

I =

(
1 0

0 1

)

The Pauli gates are the Pauli matrices and act on a single qubit. The Pauli “X”,

“Y” and “Z” correspond to rotations around the x, y and z axes of the Bloch sphere.

1. The Pauli-X gate is sometimes called the bit flip as it maps |0〉 to |1〉 and |1〉
to |0〉.

X = σx =

(
0 1

1 0

)

2. The Pauli-Y gate maps |0〉 to i|1〉 and |1〉 to −i|0〉.

Y = σy =

(
0 −i
i 0

)

3. The Pauli-Z gate leaves the basis state |0〉 unchanged and maps |1〉 to −|1〉.

Z = σz =

(
1 0

0 −1

)

The square of a Pauli matrix is the identity matrix,

I2 = X2 = Y 2 = Z2 = −iXY Z = I

Also, they anti-commute, for example, ZX = iY = −XZ.

There is also the Hadamard gate that maps the basis state |0〉 to |0〉+|1〉√
2

and |1〉
to |0〉−|1〉√

2
,

H =
1√
2

(
1 1

1 −1

)

Controlled gates are the gates that act on two or more qubits, where one or more

qubits act as a control. In general, let’s consider U is a gate that acts on one single

19

qubit. The matrix of this gate is represented by

U =

(
U00 U01

U10 U11

)
. (1.6)

Then the controlled gate operates on two qubits where the first qubit acts as a

control. So the matrix that represents CU is

CU =


1 0 0 0

0 1 0 0

0 0 U00 U01

0 0 U10 U11

 . (1.7)

For example, the controlled-NOT gate or CX acts on two qubits and performs

the X on the second qubit only when the first qubit is |1〉 and when the first qubit is

|0〉 leaves it unchanged, which means

|00〉 → |00〉

|01〉 → |01〉

|10〉 → |11〉

|11〉 → |10〉

It is represented by the following matrix:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


The Controlled-Z gate or CZ acts on two qubits and performs the Z operation

on the second qubit only when the first qubit is |1〉 and when the first qubit is |0〉
leaves it unchanged, which means

|00〉 → |00〉

|01〉 → |01〉

|10〉 → |10〉

20

|11〉 → −|11〉

The matrix is given by:

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



1.1.6 Affine and convex sets

In this section, we are going to define the convex hull that we are going to use in

following chapters.

Let’s take two different points x1 and x2 in Rn and these points are of the form

y = λx1 + (1− λ)x2

where λ ∈ R. The previous equation forms the line passing through x1 and x2. If the

parameter λ = 0 then the equation y = x2, and if λ = 1, then y = x1. So the values

of λ between 0 and 1 represent the closed line segment between the two points x1 and

x2.

Now, let’s consider a set C ⊆ Rn. C is affine if the line between any two different

points in C lies in C, which means that if for any x1, x2 ∈ C and λ ∈ R, there is

λx1 +(1−λ)x2 ∈ C. C has the linear combination of any two points in C, and all the

coefficients in the linear combination sum to one. In general, by taking more than

two points in the following form

λ1x1 + λ2x2 + . . .+ λkxk,

where

λ1 + λ2 + . . .+ λk = 1,

the equation is defined as an affine combination of the points x1, x2, . . . , xk.

Moreover, if C is an affine set, x1, x2, . . . , xk ∈ C and λ1 + λ2 + . . .+ λk = 1, then

the point

λ1x1 + λ2x2 + . . .+ λkxk ∈ C.

21

The affine hull (aff) is the set of all affine combinations of points in the set C.

aff C = {λ1x1 + λ2x2 + . . .+ λkxk|x1, x2, . . . , xk ∈ C, λ1 + λ2 + . . .+ λk = 1}

By taking a line segment between two points in C, C is convex set if this line

segment lies in C, it means that for any x1, x2 ∈ C, any λ between 0 and 1, it hold

that

λx1 + (1− λ)x2 ∈ C

Every affine set is a convex set because the set contains the whole line between two

different points in the set.

A convex combination of the points x1, x2, . . . , xk has a form

λ1x1 + λ2x2 + . . .+ λkxk

where λ1 + λ2 + . . .+ λk = 1 and λi ≥ 0 for i = 1, 2, . . . , k.

The set of all convex combinations of points in a set C is called the convex hull

(conv) of C,

convC = {λ1x1+λ2x2+. . .+λkxk|xi ∈ C, λi ≥ 0, i = 1, 2, . . . , k, λ1+λ2+. . .+λk = 1}

.

1.1.7 Cluster States

In quantum information and quantum conputation, a cluster state is not a single

quantum state, it is a family of quantum state that can support quantum computa-

tion. It can be explained as follows: any graph that contains a number of vertices, n,

we can set n-qubit cluster state, it means that each vertex corresponds to a qubit in

the state |0〉+|1〉√
2

. Each edge that represents the CZ gate, connect two vertices or two

qubits. For two dimensions, the cluster state is considered as rectangular lattice and

for n dimensions, it corresponds to a graph with n-dimensional lattice. Initially, the

“cluster state” [53, 54, 45] is a type of quantum computation and it is made of one

qubit measurements.

Cluster states can be defined as graph states which is a particular sort of multi-

qubit state that can be shown as a graph.

In this thesis, we are going to consider what happens if we change the inputs and

22

Figure 1.3: 9-qubit cluster state

the gates of the cluster state quantum computation and we will show that there are

regions that can be efficiently simulated classically.

23

1.2 Classical simulation

In general, it is not believed that quantum system can be efficiently simulated classi-

cally [57]. But for several years great effort has been devoted to the study of efficient

simulation on a classical computer. These studies have offered rich contributions to

the field of research. In this section, we will review a non-exhaustive selection of

quantum systems that have been shown to be classical simulatable.

1. Stabilizer circuit

A stabilizer formalism can be described by an example. Let’s consider a state

of two qubits,

|ψ〉 =
|00〉+ |11〉√

2
.

By applying two operators X ⊗ X and Z ⊗ Z on |ψ〉, we find that the state

remains the same,

(X ⊗X)|ψ〉 = |ψ〉 and (Z ⊗ Z)|ψ〉 = |ψ〉

then the state |ψ〉 is stabilized by these two operators [46]. The stabilizer

formalism has an important concept which states that a quantum state can be

presented by using Pauli operators that stabilize it. By applying unitary gates

on the quantum state, it means that these gates act on the string of the Pauli

operators. But if these unitary gates are made of CNOT , Hadamard and phase

gates, these Pauli operators are transformed into new set of stabilizer Pauli

operators. Then a circuit that consists only of these gates is called a stabilizer

circuit [1].

Gottesman-Knill theorem shows that a quantum computation, that consists of

state preparations in the computational basis, gates in the so-called Clifford

group [27], Pauli gates and measurements in the Pauli basis, may be efficiently

simulated on a classical computer.

This theorem has been extended in a variety of ways [64, 13, 14, 40]. It also has

been extended to quantum circuits that are composed of Clifford and a single

type of non-Clifford gates [19]. For instance, in [19], the classical algorithm that

simulate the system is polynomial in the number of qubits and the number of

Clifford gates but it is exponential in the limited number of the non-Clifford

gates.

24

2. Matrix product states and tensor networks

The product state |ψ〉1...n can be written in the following form,

|ψ〉1...n = |α〉1|β〉2 . . . |κ〉n (1.8)

where this state consists of n qubits. A matrix product state or MPS is a one

dimension quantum state of n qubits and it is a generalisation of the above

equation. Each state in equation (1.8) is replaced by a matrix of state; for

instance, the state |α〉 is changed into |αij〉. Therefore, the matrix product of

n matrices is given by the following form:

|ψ〉 =
∑

i,j,k,...,m

|αij〉|βjk〉 . . . |κmi〉 (1.9)

If the matrix of states, |αij〉, . . . , |κmi〉, are written as A,B . . . ,K, then the state

|ψ〉 = tr(AB . . .K). In the standard basis, states can be written as,

|αij〉 =
∑
i1

A
(i1)
ij |i1〉, . . . , |κmi〉 =

∑
in

K
(in)
mi |in〉,

then the matrix product state |ψ〉 will be given by

|ψ〉 =
∑

i,...m,i1...in

A
(i1)
ij B

(i2)
jk . . . K

(in)
mi |i1〉|i2〉 . . . |in〉. (1.10)

As mentioned above, the MPS is a one dimension state [48] but there is another

description of MPS, which is called Projected entangled pairs state or PEPS.

PEPS extends the MPS in two and higher dimensions.

Using MPS, Jozsa [37] considered any poly sized qauntum circuit of n qubits

and has shown that this circuit can be efficiently simulated classically only

if it is logarithmic in the number of qubit gates. Using the matrix product

state representation, a classical methodology is presented to simulate cluster

state quantum computation that has a polynomial number of qubits and an

exponential number in the width of the cluster [66]; then it is shown that any

logarithmic depth quantum computation with gates that relates only near qubits

can be efficiently simulated classically.

The tensor network which is a generalisation of matrix product states, can be

described by a graphical notation [16]. The matrix product state |ψ〉 which is

presented by equation (1.10) can be illustrated by the following graph:

25

Figure 1.4: This image presents the tensor network. The MPS can also be written
as:

∑
i1,...,in

ci1,...,in|i1, . . . , in〉.

Markov and Shi [41] proved that a quantum circuit with a non-Clifford gates

whose graph is close to a tree graph as measured by the treewidth, can be

simulated in an exponential time. In addition, any quantum circuit can be

efficiently simulated using the tree tensor network contraction can only produce

a limited amount of entanglement[65].

3. Matchgates

A matchgate can be defined as a gate G of two qubits that takes the following

form in the computational basis,

G =


m 0 0 n

0 r s 0

0 t w 0

p 0 0 q

 ;

where

A =

(
m n

p q

)
and B =

(
r s

t w

)
are the inner and the outer block of G respectively and they are in the special

unitary group or SU(2) which is a 2×2 unitary matrix with a determinant equal

to 1. Valiant [60, 59] defines the notion of matchgate and demonstrates that

matchgate circuits can be classically simulated in polynomial time under specific

conditions. Then Terhal and Divincenzo [58] analyze the class of quantum

computations demonstrated by Valiant [60] and show that this class is related to

a fermions model in one dimension. Matchgate circuits in which these gates are

only applied to neighbour qubit lines can also be efficiently simulated classically

[39]. Instead of taking a circuit that has product input and the output consists

26

of a single qubit measurement [39], Brod [20] displays that even if the input is

product states and the output has measurements of many qubits, matchgates

can be simulated on a classical computer.

1.3 Quantum supremacy

The term quantum supremacy describes the goal of building controllable quantum

devices with well understood dynamics that cannot be efficiently simulated on classical

computers [32, 17]. The Martinis-Google group claimed a demonstration of quantum

supremacy by taking a random quantum circuit and seeing whether the outcome of

measurements can be sampled on a classical computer [6]. However, there have been

number of attempts to replicate their work on classical computers [9, 2], and so the

debate is far from being conclusive.

1.4 Preview of the thesis results

In this thesis, we will begin by changing the inputs of cluster state quantum com-

putation to end up with some inputs that allow the system to be efficiently simulated

classically. If different pure state choices for |ψ〉 = |+〉 = |0〉+|1〉√
2

are made, two facts

are well known already:

1. If |ψ〉 = |0〉 or |ψ〉 = |1〉 then the system is classically simulatable efficiently.

2. If |ψ〉 is a state from the XY plane of the Bloch sphere then the system has the

power of quantum computation.

We explore questions related to this in the various chapters of the thesis:

• In chapter 2, we will show that if |ψ〉 has the (unormalised) form |0〉 + ε|1〉
where ε is a small non-zero number, the system can be efficiently simulated

classically. We are going to use new state spaces that involve cylinders rather

than Bloch sphere and these cylinders are parameterized by radius r. We must

grow the radius in order to get separable decomposition. However, the radius

cannot grow too much. Then instead of CZ gates, we will try to apply diagonal

gates V (θ) = |0〉〈0| ⊗ I + |1〉〈1| ⊗ Zθ on two cylindrical state spaces and we

will find that almost all inputs can be simulated classically when θ is small. In

addition, it turns out that CZ gate requires the most growth factor λ, which is

27

the ratio of the output radius to the input radius, to maintain separability. My

contribution was the computation of the growth factors for the V (θ) gates.

• In chapter 3, by taking some examples of alternative local state spaces and by

growing the size of these specific states, we will find that the setup can also

be efficiently simulated on a classical computer. Then, we tried optimize our

classical simulation over these state spaces that we tried and it turns out that

the cylinder requires the least growth. My contribution was to perform all these

calculations using linear programming.

• In chapter 4, we attempt to improve the radius of a system that can be efficiently

simulated classically. By using the coarse graining, we will find that the value of

the radius of four particles in a block is greater than the radius of two particles.

We will discover that by adding more vertices in a block, the value of the

radius, that can be efficiently simulated classically, increases slightly [7]. My

contribution was to calculate the radius threshold for four particles, assuming a

conjecture about which measurements determine when certain invalid negative

probabilities arise.

28

Chapter 2

Efficient Classical Simulation of quantum

circuits with alternative inputs
A typical quantum computer is a sequence of unitary quantum gates acting on

qubits. Quantum gates are capable of generating entanglement between these qubits.

But real quantum gates suffer from noise which can destroy the creation of entangle-

ment.

This means that very noisy systems cannot be used for better than classical com-

putation, because it is known that gate model quantum computers with gates that

don’t generate entanglement can be efficiently simulated classically [33] (this is a part

of variety of works that investigate when classical simulation is possible if there is a

limited number of entanglement [38, 62]). Here, by efficiently classical simulation, we

mean sampling in polynomial time from a probability distribution that approximates

the probability distribution of measurement outcomes to arbitrary accuracy.

When we say that a gate doesn’t generate entanglement, we mean that a quantum

gate E takes a product input, ρ⊗ σ, to a separable output state. We then say that E
is a separable gate. So, it preserves the separability.

One of the motivations of the above classical algorithm of [33] was to obtain upper

bounds on the value of the fault-tolerance threshold, which is the noise level below

which quantum computation can be achieved, because once the noise level is high

enough to make the gate separable the device can be efficiently simulated classically.

If we assume that quantum computers cannot be efficiently simulated classically, the

fault-tolerance threshold must be lower than this.

This algorithm cannot be used to simulate pure entangled quantum systems. How-

ever, we will see later in this chapter that by modifying the notion of separability,

the algorithm in Harrow and Nielsen [33] can be used to simulate some entangled

quantum systems. Specifically, we will consider particular entangled quantum sys-

tems that are variant of cluster state quantum computation. As discussed in chapter

1, in cluster state, we initialize in the state |ψ〉 = |+〉 = |0〉+ε|1〉√
2

; but we are going

29

to show that if we initialize in the state |ψ〉 = |0〉 + ε|1〉 where ε is a small enough

non-zero number, instead of the |+〉 state, the system can be efficiently simulated on

a classical computer. It means that by providing a small enough ε, it turns out that

we can give a classical simulation algorithm that uses cylindrical separability rather

than normal separability. Then we will replace the CZ gates by other diagonal gates

V (θ) = |0〉〈0| ⊗ I + |1〉〈1| ⊗ Zθ where Zθ = |0〉〈0|+ eiθ|1〉〈1| and we will find similar

results that hold for these diagonal gates.

First, we are going to describe the algorithm of Harrow and Nielsen [33] which

we use in the research. Then we are going to modify the pure states of the cluster

state quantum computation to end up with a system that can be efficiently simulated

classically using the new notion of generalised separability. Finally, we will apply

diagonal gates instead of CZ gates on the two inputs and it turns out that almost all

inputs can be simulated classically.

2.1 Description of the algorithm in Harrow and

Nielsen[33]

The algorithm of [33] starts with an assumption that the input is a product state,ρA⊗
ρB⊗ρC . . ., acted upon by separable quantum gates, E1, . . . , Ep(n) where the polynomial

p(n) is the number of gates and n is the measure of problem size. For instance, if the

first gate,E1, which is assumed to be separable, acts on two qubits A and B,

E1 (ρA ⊗ ρB) =
∑
k

pkρ
k
A ⊗ ρkB

The input is taken to be a separable output state. Then the algorithm samples

the probability distribution, pk, gets one outcome and stores the product state which

corresponds to the obtained outcome, ρkA⊗ρkB. This product state is considered as an

input for the next separable gate, for instance, E2. These gates may act not only on

the stored product state but also on different qubits. This process is repeated until

it reaches the final outcome which is produced from the final separable gate Ep(n).

At the end of the process, qubits are measured at the output of the quantum

computation, where the output is a string of product states. Using the trace, the

probability distribution of each one of the products is computed. Because these

computations involve a linear number of 2× 2 matrices, they can be computed clas-

sically. The algorithm simulates the final measurement when it samples from those

30

probability distributions and produces a classical outcome for measurements of each

qubit. It ends up with an equivalence between the classical simulation and certain

measurement on quantum states.

Now let’s describe in detail how the classical simulation is performed in the pa-

per of [33]. The initial state of the computer is assumed to be in a computational

basis state. The algorithm uses variables in the classical simulation, that are three

dimensional real vectors −→s j for each j = 1, . . . , q(n) where the polynomial q(n) is the

number of qubits. These vectors represent the bloch vectors of qubits in the quan-

tum computers which the algorithm simulates. Each −→s j is valid which means that it

satisfies many properties. Two of these properties are: each component of the vector

is in [-1, 1] and the norm of the vector is less than or equal to 1. ρ(−→s) is defined to

be the density matrix of q(n) qubits when −→s is valid.

W.l.o.g. a single qubit gate can be considered as a two qubit product gate. Then

the algorithm assumes that E1, . . . , Ep(n) are two-qubit separable gates. It starts to

simulate the first separate gate E1 that acts on two qubits A and B, using the input
−→s in the gate simulation procedure.

The gate simulation procedure is described as followed. The input was represented

by the three dimensional vector −→s as mentioned above. The body of the procedure

consisted of finding valid vectors, −→sA
j

and −→sB
j

on the output. The equation can be

written as:

E1 (ρ(−→sA)⊗ ρ(−→sB)) =
∑
k

pkρ(−→sA
j
)⊗ ρ(−→sB

j
)

.

These separable decompositions are computed to a certain accuracy, which is

introduced to be less than or equal to 2−l where l is the number of bits of precision.

To find the probabilities and the vectors, it requires operations that are poly(2l) which

turns out to be sufficient (as explained in [33] in section 3.B) and l is picked to be

logarithmic in the circuit; because if the circuit is large, more gates, that introduce

more errors, are required; so l needs to be large.

By Caratheodory’s theorem, there are at most 16 terms in the sum; we mean that

if a point of Rd is in a convex hull of a set, this point can be written as the convex

combination of at most d+ 1 in the set. Then the algorithm samples the probability

distribution,pk, and stores the obtained product state, ρ(−→sA
j
)⊗ ρ(−→sB

j
), and it is used

as an input for the following gate. This process is repeated many times until the gate

Ep(n) is reached and a final output is produced. At the end, this procedure produced

a valid vector as an output. And this vector is the set of all three dimensional real

vectors of n qubits.

31

Finally, the final measurement is simulated in the computational basis. The algo-

rithm measures all qubits at the output of the quantum computation. The probability

distribution is computed of each one of the products. The algorithm samples from

those probability distributions and produces a classical outcome for measurements of

each qubit.

As a conclusion, [33] prove that a quantum device built from noisy quantum gates,

that don’t generate entanglement, can be efficiently simulated classically.

2.2 Cylinder separability

Explicitly, as we mentioned in the introduction, we will be studying a variant of cluster

state quantum computation and we will show that it could be efficiently simulated

on a classical computer. The algorithm of [33] cannot be used because these cluster

state circuits lead to pure entangled quantum states; and these quantum states cannot

be approximated by a separable decomposition. But we develop a new method; we

are going to use a different notion of separability to show that these states can be

efficiently simulated classically.

Separable states are quantum states that can be decomposed into individual states

which belong to separate particles [63]. In the multipartite case, a pure state |φ〉 is

separable if it has the form: |φ〉 = |φ1〉 ⊗ . . .⊗ |φn〉.

And a mixed state ρ is separable if it has the following form

ρ =
∑
i

piρ
i
A ⊗ ρiB ⊗ ρiC ⊗ . . . (2.1)

where ρiA, ρiB, ρiC , . . ., are positive density matrices. In normal quantum state, these

density matrices contain bloch vectors that come from the bloch sphere.

In generalised separability [52, 51],

ρ =
∑
j

pjσ
j
A ⊗ σ

j
B ⊗ σ

j
C ⊗ . . .

where σjA, σjB, σjC , . . ., are positive density matrices that are drawn from a set Q of

quantum states. We relax this condition by allowing this set to be a new state space.

For instance, instead of the Bloch sphere, we will consider Bloch vectors drawn from

a cylindrical state space with a specific radius r ≤ 1 and a height h = 1. This is the

new notion of generalised separability, the so-called “cylinder separability”, which is

32

going to lead to efficient classical simulation. Generalised separability has also been

previously used to construct efficient simulation on a classical computer of certain

type of PEPS [3] where these states are in general, hard to simulate[55].

As we will see later in this chapter, by taking two of these cylindrical state spaces

acting with the controlled-Z gate, we will end up with a separable output state with

respect to two cylindrical state spaces with larger radii “R”. Then the system could

be efficiently simulated on a classical computer only when the output radii are large

enough for the input radii, which means that the output radii should be less than or

equal to 1 because of the negativity that always appears [5, 4].

Note that, even though we have systems that are close to product state, it does

not mean that the setup can be efficiently simulated classically [61, 29, 28]. It has also

been shown that variant of the systems that we are considering can enable quantum

computation under the assumption that repeated measurements on any given qubit

are allowed [43, 12], however no previous work has shown the efficient classical simula-

tion results that we present. In addition, our framework does not fit into Generalized

probabilistic theories or GPTs because if CZ gates are applied many times, the radius

will grow and we will end up with negative probabilities. By GPT, we mean that it

is a framework for generalizing quantum theory to explore the cause of its unusual

features [49, 36, 31, 10, 11].

2.3 Cylinders and the restricted measurements

For a specific set of measurement operators, denoted by {M}, the dual is a set of

operators ρ, that give positive numbers under the Born rule, tr(Mρ). For instance,

motivated by the cluster state quantum computation schemes, if we measure in the

X −Y plane and Z directions, the dual is a cylinder. To demonstrate how a cylinder

is obtained, we start by measuring in the Z direction, we need to compute the trace,

that should be positive,

tr

(
I ± Z

2
ρ

)
= tr

{(
I ± Z

2

)(
I + xX + yY + zZ

2

)}
=

1± z
2

,

By adding a constraint that the operators are unit trace, we end up with two

parallel horizontal planes that should be orthogonal to the Z axis where Z is in

the range [−1, 1], and all the operators of the bloch space between these planes give

33

positive probabilities. Then we add the X − Y measurement to the Z measurement,

tr

(
I ±X

2
ρ

)
= tr

{(
I ±X

2

)(
I + xX + yY + zZ

2

)}
=

1± x
2

,

and

tr

(
I ± Y

2
ρ

)
= tr

{(
I ± Y

2

)(
I + xX + yY + zZ

2

)}
=

1± y
2

,

X and Y are in the range [−1, 1]. Therefore, the intersection of all these planes

makes a cylindrical state space. We are using this specific non-physical input state

space because we are only considering the restricted measurements, Z and XY mea-

surements. So, we are interested in quantum and non-quantum operators that give

valid and positive probabilities for these measurements under the born rule.

Thus, the same process of [33] algorithm is applied with this new type of state

space, that allows us to express entangled pure states as separable states. Instead of

the bloch sphere, we can use the cylinder because of the measurement restrictions,

and those cylinder states still give us a valid probability distribution.

2.4 Bloch vectors of the cylinder

In this section, we discuss two ways in which we characterize the cylinder.

The Bloch vectors of the cylinder can be characterized by

{
(x, y, z)|z ∈ [−1, 1], x2 + y2 ≤ 1

}
(2.2)

Also, the cylinder can be defined as:

Cyl(r) :=
{
ρ|ρ = ρ†, trρ = 1, ||ρ−DZ(ρ)|| ≤ r

}
(2.3)

where DZ(ρ) := 1
2
(ρ+ ZρZ†) is the dephasing of ρ.

Equation (2.3) is a description of a cylinder with radius r; it doesn’t consist of

bloch vectors, it’s about density matrices, that are a 2× 2 matrices. Hence, equation

(2.3) is equivalent to the equation (2.2), which is a description in terms of bloch vector

X, Y and Z coordinates.

34

If we compute ρ−DZ(ρ) where

ρ =

(
ρ00 ρ01

ρ10 ρ11

)

so

ρ−DZ(ρ) =

(
ρ00 ρ01

ρ10 ρ11

)
− 1

2

{(
ρ00 ρ01

ρ10 ρ11

)
+

(
1 0

0 −1

)(
ρ00 ρ01

ρ10 ρ11

)(
1 0

0 −1

)}

=

(
ρ00 ρ01

ρ10 ρ11

)
− 1

2

{(
ρ00 ρ01

ρ10 ρ11

)
+

(
ρ00 −ρ01
−ρ10 ρ11

)}

ρ−DZ(ρ) =

(
0 ρ01

ρ10 0

)

By taking A = ρ−DZ(ρ), we have to compute the determinant of A− λI to find

the eigenvalues:

A− λI =

(
0 ρ01

ρ10 0

)
− λ

(
1 0

0 1

)
=

(
−λ ρ01

ρ10 −λ

)

Determinant (A− λI) = λ2 − ρ01ρ10, then

λ2 − ρ01ρ10 = 0

λ2 = ρ01ρ10

λ = ±
√
|ρ01||ρ10|

where, ρ01 = x+iy
2

, ρ10 = x−iy
2

and |ρ01| = |ρ10| because they are the complex conjugate

of each other, so we have |ρ01|2 = |ρ10|2 = x2+y2

4
,

λ = ±
√
|ρ01|2 = ±

√
x2 + y2

4
= ±1

2

√
x2 + y2

so,

λ1 =
1

2

√
x2 + y2;λ2 = −1

2

√
x2 + y2

The trace norm is the sum of the absolute values of these eigenvalues where |λ| =

35

|λ1| = |λ2| = 1
2

√
x2 + y2

Trace norm(A− λI) = |λ1|+ |λ2| = 2|λ| = 2× 1

2
×
√
x2 + y2 =

√
x2 + y2

By replacing r in equation (2.3) with 1, so we end up with equation (2.2).

2.5 Cylinder state space with different radii

To develop efficient classical simulation, we have to demonstrate how the generalised

separable decomposition can be obtained in terms of cylinder state spaces.

2.5.1 CZ gate acting on two input qubits

The important idea in this section is to show that if there are two inputs represented

by two cylindrical state spaces with radii r to which the CZ gate has been applied,

the output is separable with respect to two different cylindrical state spaces with

larger radii R. It can be illustrated as follow:

Figure 2.1: A CZ gate acts on two cylindrical state spaces with two radiirA and rB,
the output is separable with respect to two cylindrical state spaces with larger radii
RA and RB

36

Also, it can be demonstrated by the following Lemma:

Lemma 1. Consider a CZ gate acting on two cylindrical state spaces with two

different radii. Let’s us state this more precisely: let’s take CZ(cyl(rA) ⊗ cyl(rB))

and any operator, as being cyl(rA) and cyl(rB) separable, can be written in the

generalised separable form if and only if (where we define fA := rA
RA

and fB := rB
RB

)

(fA + fB)2 + f 2
Af

2
B ≤ 1 (2.4)

Before starting with the proof, a question can be asked: when the CZ can be

considered as a separable operation?

Let’s define the growth factor as:

gi :=
Ri

ri
(2.5)

As we mentioned previously, if CZ gate acting on two cylindrical state spaces with

different radii r, then the output that consists of two new cylindrical state spaces with

larger radii R is separable. It means that gi is large enough.

Let’s consider the growth factors of the two states are equivalent. By applying

the ratio to the determinant equation of the outer block we get:

1− 4

g2
− 1

g4
≥ 0

The value of g is

g ≥ λ :=

√
2 +
√

5 ≈ 2.05817

so,

R ≥ 2.05817r

This means that the radii of the output should be minimum twice the radii of the

input, then the CZ can be considered a separable operation.

Proof. Let’s start by writing the Pauli decomposition of two qubit operators that is

represented by:

37

ρAB =
1

4

∑
i,j

ρi,jσi ⊗ σj (2.6)

where σ0, σ1, σ2 and σ3 are the 2×2 matrices representing I,X, Y and Z operators

respectively. The above equation can also be represented as a 4× 4 matrix with rows

and columns numbered from 0, . . . , 3:


ρ00 ρ01 ρ02 ρ03

ρ10 ρ11 ρ12 ρ13

ρ20 ρ21 ρ22 ρ23

ρ30 ρ31 ρ32 ρ33


By applying the CZ gate on the matrix we get:


ρ00 ρ01 ρ02 ρ03

ρ10 ρ11 ρ12 ρ13

ρ20 ρ21 ρ22 ρ23

ρ30 ρ31 ρ32 ρ33

→

ρ00 ρ31 ρ32 ρ03

ρ13 ρ22 −ρ21 ρ10

ρ23 −ρ12 ρ11 ρ20

ρ30 ρ01 ρ02 ρ33


The product operator can be written as:

1

2
(σ0 + xAσ1 + yAσ2 + zAσ3)⊗

1

2
(σ0 + xBσ1 + yBσ2 + zBσ3),

for conciseness, we will represent it by the following vector notation

(1, xA, yA, zA)⊗ (1, xB, yB, zB)

To determine if the output of a CZ gate lead to cylindrical separable states that

have different radii, we need to consider only the extremal input points from the top

and the bottom faces of the cylinder. The reason for this consideration is that CZ

gate is a linear transformation which is a mapping between two vector spaces that

preserves the operations of vector addition; so a linear transformation commutes with

addition. Furthermore, when CZ is applied on the the extremal input, the output is

separable; then if a mixture of the extremal points is taken and CZ has been applied,

the output is also separable because CZ is linear into a mixture of the original parts

and those are separable. So the output for all the inputs will be separable.

We will take advantage of the symmetry around the Z axis. Let’s consider a

38

cylinder separable decomposition:

CZ(ρA ⊗ ρB) =
∑
i

piω
i
A ⊗ ωiB

where ωiA ∈ Cyl(RA) and ωiB ∈ Cyl(RB). We know that CZ gate commutes with Z

rotation Uz and cylinders are invariant under Z rotations, because of these properties,

we have the following separable decomposition:

CZ(UA
z (ρA)⊗ UB

z (ρB)) =
∑
i

piU
A
z (ωA)⊗ UB

z (ωB)

This is used to reduce the number of inputs that we need to test. First, we set the

Pauli operator y = 0 because if we take two inputs (1, rA, 0,±1) and (1, rB, 0,±1) and

we apply the Z rotation, we notice that these inputs are similar to other inputs, such

as (1, rA cosφX, rA sinφY,±1) and (1, rB cosφX, rB sinφY,±1) where φ 6= 0. Then,

if we obtain a separable decomposition for the first two inputs, we will end up with

separable decompositions for the other inputs by applying the Z rotation.

So now, we can concentrate on the two inputs that have the form (1, rA, 0,±1)

and (1, rB, 0,±1).

Let’s see which value of z we need to take for the both inputs particles. If we take

z = 1 for particle A, we will have:

CZ(1, rA, 0, 1)⊗ (1, rB, 0,±1) =
∑
i

piω
i
A ⊗ ωiB

But if we take z = −1 for particle A, the separable decomposition will be

CZ(1, rA, 0,−1)⊗ (1, rB, 0,±1) =
∑
i

piXω
i
AX

† ⊗ ZωiBZ†

So, we need to take z = 1 because changing z to −1 when y = 0, is the same as doing

a Z rotation on the second particle. And because CZ is symmetric, the value of z in

the second input will be equal to 1 as well.

The two input state particles are given by:

1

2
(I + rAX + 0Y + 1)⊗ 1

2
(I + rBX + 0Y + 1) (2.7)

After applying CZ on the input, the matrix will be represented by:

39


1 rB 0 1

rA 0 0 rA

0 0 rArB 0

1 rB 0 1

 (2.8)

We need to show that the above matrix can be written as the outer product:

∑
i

pi


1

RA cos(θi)

RA sin(θi)

1

(1 RB cos(θi) RB sin(θi) 1
)

If we take θi = 0 and if we multiply the previous matrix by two 4 × 4 diagonal

matrices: 
1 0 0 0

0 1
RA

0 0

0 0 1
RA

0

0 0 0 1

 and


1 0 0 0

0 1
RB

0 0

0 0 1
RB

0

0 0 0 1


one on the left and the other on the right respectively, we end up with two cylinders

with radii equal to 1, Cyl(1).

By multiplying these two matrices by matrix (2.8), one on the right and the other

on the left, we get the following matrix:


1 rB

RB
0 1

rA
RA

0 0 rA
RA

0 0 rArB
RARB

0

1 rB
RB

0 1

 (2.9)

So, The matrix (2.8) is Cyl(rA), Cyl(rB) separable if and only if matrix (2.9) is

Cyl(1), Cyl(1) separable.

If a cylinder decomposition exists for matrix (2.9), then all the z components in

the matrix are replaced by 0 to obtain a quantum separable decomposition of a two

qubit quantum operator, which means that by taking a vector in the X − Y plane

where z = 0, we end up with a bloch vector decomposition. On the contrary, if a

40

quantum separable decomposition exists,∑
i

pi(1, x
i
A, y

i
A, z

i
A)⊗ (1, xiB, y

i
B, z

i
B)

then all the z components are replaced by 1 to get a cylinder decomposition. So

we know that determining the operator presented by matrix (2.9) is equivalent to

determining a two qubit quantum operator.

When we replace all z components by 0, the above matrix can be seen as follows:


1 rB

RB
0 0

rA
RA

0 0 0

0 0 rArB
RARB

0

0 0 0 0

 (2.10)

This means that if matrix (2.10) has a quantum separable decomposition then

(2.9) has cylinders separable decomposition with radii “1”:

∑
i

pi(1, x
i
A, y

i
A, 1)⊗ (1, xiB, y

i
B, 1)

Then (2.9) is Cyl(1) separable which makes (2.8) is a Cyl(rA), Cyl(rB) separable

if and only if (2.10) corresponds to a positive and PPT operator.

Now let’s calculate and check the minimal eigenvalues of the operator represented

by the matrix (2.10) are non-negative. In the form of Pauli operators, the equation

is displayed as follows:

I + (
rA
RA

X ⊗ I +
rB
RB

I ⊗X) +
rArB
RARB

Y ⊗ Y

And its partial transpose

I + (
rA
RA

X ⊗ I +
rB
RB

I ⊗X)− rArB
RARB

Y ⊗ Y

When the partial transpose has been applied, we noticed a changed in the third

column which is the same as doing an X rotation. Now, we will work out the eigenval-

ues of one equation because we found that all the eigenvalues of these two operators

are equivalent. Before computing the eigenvalues, we used the Hadamard gate on

both qubits to get the following equation:

41

I + (
rA
RA

Z ⊗ I +
rB
RB

I ⊗ Z)− rArB
RARB

Y ⊗ Y (2.11)

In computational basis, this is equal to


1 + fA + fB 0 0 fAfB

0 1 + fA − fB −fAfB 0

0 −fAfB 1− fA + fB 0

fAfB 0 0 1− fA − fB

 (2.12)

Now, we can find the eigenvalues by dividing the matrix into two blocks: the inner

block and the outer block. The determinant of the inner and the outer block are:

1− (fA − fB)2 − f 2
Af

2
B

1− (fA + fB)2 − f 2
Af

2
B

Between these two blocks, the determinant of the outer block is the lowest as

fA and fB are positive. As we conclude, if the determinant of the outer block is

non-negative then the output of the two cylindrical state spaces will be separable.

2.5.2 The diagonal gates acting on two input qubits

In this section, instead of applying the CZ gate, we will consider a diagonal gate that

acts on two qubits. This specific gate, V (θ), is represented by the following matrix:

V (θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiθ

 (2.13)

This matrix can be written in the form:

V (θ) = |0〉〈0| ⊗ I + |1〉〈1| ⊗ Zθ

where θ goes from 0 to 2π and Zθ =

(
1 0

0 eiθ

)
.

42

As mentioned previously, to show that the output of this diagonal gate lead to

cylindrical separable states that have different radii, we need to consider only extremal

input points of the cylinder because if the output from the extremal inputs is separable

then the output from all the inputs can be separable because the V (θ) gate is linear

transformation.

To reduce the number of inputs, we take advantage of the symmetry around the

z axis. By considering a cylinder separable decomposition,

V (θ)(ρA ⊗ ρB) =
∑
j

pjm
j
A ⊗m

j
B

where mj
A ∈ Cyl(RA) and mj

B ∈ cyl(RB), we know that V (θ) gate commutes with Z

rotation Uz and cylinders are invariant under Z rotations; we have the decomposition:

V (θ)(UA
z (ρA)⊗ UB

z (ρB)) =
∑
j

pjU
A
z (mA)⊗ UA

z (mB)

If we take two inputs with y = 0 and we apply the Z rotation, we notice that these

inputs can be taken to other inputs. Then, if we have a separable decomposition for

the first two inputs, we can obtain separable decompositions for all other inputs by

applying the Z rotation.

So, we will concentrate on the two inputs and we will consider all possibilities of

Z, (1, rA, 0,±1) and (1, rB, 0,±1).

By taking the first possibility where z = 1 for both inputs,

V (θ)((1, rA, 0, 1)⊗ (1, rB, 0, 1)) =
∑
j

pjm
j
A ⊗m

j
B

In pauli basis, these two inputs are given by

1

2
(I + rAX + 0Y + Z)⊗ 1

2
(I + rBX + 0Y + Z) =


1 rB 0 1

rA rArB 0 rA

0 0 0 0

1 rB 0 1


In the previous part, we could reduce the number of inputs because when z = −1

in the first particle is the same as applying an X rotation and a Z rotation to the

first and the second particle respectively. Then, the PPT criterion is used when CZ

acted on the product term in which z = 1 in both particles.

Lemma 2. After applying the V (θ) gate on the matrix (ρA ⊗ ρB) i.e. this state is

43

represented by the following matrix in the pauli basis,
1 rB 0 1

rA rArB 0 rA

0 0 0 0

1 rB 0 1


we end up with the following:

• the output top row is identical to the bottom row,

• the left column and the right column of the output are the same.

Hence, PPT criterion can be applied in the possibility where z = 1 for both inputs.

Proof. We consider V (θ)(ρA ⊗ ρB)V (θ)† = ρout. We need to find if the top and the

bottom row are the same. So, we subtract these two rows to see if we will end up

with 0. The top row is given by trA[(IA ⊗ IB)ρout] and the bottom row is given by

trA[(ZA ⊗ IB)ρout].

Top - bottom row = trA[(IA ⊗ IB)ρout − (ZA ⊗ IB)ρout]

= trA[(IA − ZA)⊗ IBρout]
= trA[(I − Z)A ⊗ IBV (θ)(ρA ⊗ ρB)V (θ)†]

= trA[2|1〉〈1| ⊗ IB (|0〉〈0| ⊗ I + |1〉〈1| ⊗ Zθ) (ρA ⊗ ρB)V (θ)†]

= trA[2|1〉〈1| ⊗ IB (|1〉〈1| ⊗ Zθ) (ρA ⊗ ρB)V (θ)†]

= trA[2|1〉〈1| ⊗ IB(ρA ⊗ ZθρB)V (θ)†]

= trA[2|1〉〈1|ρA ⊗ ZθρBZ†θ]
= 2〈1|ρA|1〉ZθρBZ†θ ; where 〈1|ρA|1〉 = 0 because it is on the surface of the cylinder.

= 0

By obtaining that the top and the bottom row are the same, this argument is the

main factor for the use of PPT criterion when z = 1 for both inputs.

Explicitly, we can go through the same argument for all other possibilities (1, rA, 0,±1)⊗
(1, rB, 0,±1), and we find that we end up with the same result. Therefore we know

that PPT can be applied in this section.

44

The growth factors of different thetas

In this part, we will attempt to find the growth factors for each gate V (θ) where θ

will change from 0 to 2π. We will first work out the action of V (θ) gate on all product

of pauli. So, we have to apply a tensor product between each two pauli matrices from

the first and the second inputs respectively. For example, we choose I from the first

input and then we do a tensor product between the chosen pauli matrix and the I,

X, Y , and Z from the second input. The same is applied for X, Y , and Z from the

first input (i.e.I ⊗ I, I ⊗X, I ⊗ Y , I ⊗ Z, X ⊗ I, X ⊗X, etc). Then, we obtained

a 4× 4 matrix. Then, we multiply the matrix V (θ) with each of the calculated 4× 4

pauli matrix and with the conjugate matrix of V (θ). That’s how We end up with

matrices of 4× 4. For more details, see Appendix A.

After written out these matrices in terms of pauli operators, we note down all the

coefficients in this 16× 16 matrix, that we called “V V (θ)”





1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (I ⊗ I)

0 a b 0 0 0 0 0 0 0 0 0 0 c d 0 (I ⊗X)

0 d a 0 0 0 0 0 0 0 0 0 0 b c 0 (I ⊗ Y)

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 (I ⊗ Z)

0 0 0 0 e 0 0 j p 0 0 q 0 0 0 0 (X ⊗ I)

0 0 0 0 0 e p 0 0 p j 0 0 0 0 0 (X ⊗X)

0 0 0 0 0 q e 0 0 k p 0 0 0 0 0 (X ⊗ Y)

0 0 0 0 j 0 0 e q 0 0 p 0 0 0 0 (X ⊗ Z)

0 0 0 0 q 0 0 p e 0 0 j 0 0 0 0 (Y ⊗ I)

0 0 0 0 0 q k 0 0 e p 0 0 0 0 0 (Y ⊗X)

0 0 0 0 0 j q 0 0 q e 0 0 0 0 0 (Y ⊗ Y)

0 0 0 0 p 0 0 q j 0 0 e 0 0 0 0 (Y ⊗ Z)

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 (Z ⊗ I)

0 c d 0 0 0 0 0 0 0 0 0 0 a b 0 (Z ⊗X)

0 b c 0 0 0 0 0 0 0 0 0 0 d a 0 (Z ⊗ Y)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 (Z ⊗ Z)

where

a =
1

2
+

1

2
cos θ; b =

1

2
sin θ; c =

1

2
− 1

2
cos θ; d = −1

2
sin θ;

45

e =
1

2
+

1

4
exp (−iθ)+1

4
exp (iθ); j =

1

2
−1

4
exp (−iθ)−1

4
exp (iθ); k = −1

2
+

1

4
exp (−iθ)+1

4
exp (iθ);

p =
1

4
i exp (−iθ)− 1

4
i exp (iθ); q = −1

4
i exp (−iθ) +

1

4
i exp (iθ)

Our goal is to check whether the output is within the output state space which

is the convex hull of all the points on the cylinder. So, we are going to theoretically

and numerically work out the required growth factor g for different values of θ, where

g is a function of theta, to make the output separable. We know two values of g:

• When θ is 0, the growth factor g is 1. Because when θ = 0, V (1) is the identity

gate and there is no entangling.

• By taking z = 1 for both inputs (1, rA/B, 0, 1), we know from the previous

section we got g ≥ 2.05817 when θ is equal to π.

Product input with component z=1

We will start by computing the growth factor theoretically. As we showed previously,

to determine if the output of V (θ) gate leads to cylindrical separable state, we only

need to consider extremal input points of the cylinder. We know that V (θ) gate

commutes with Z rotation Uz and cylinders are invariant under Z rotations; which

means that we are dealing with the two inputs used in the previous section:

1

2
(I + rAX + 0Y + 1)⊗ 1

2
(I + rBX + 0Y + 1)

46

When we apply V (θ) to the product input, the matrix is given by:

1

rB

0

1

rA

(1
2

+ 1
4
e−iθ + 1

4
eiθ)rArB

(−1
4
ie−iθ + 1

4
ieiθ)rArB

rA

0

(−1
4
ie−iθ + 1

4
ieiθ)rArB

(1
2
− 1

4
e−iθ − 1

4
eiθ)rArB

0

1

rB

0

1





I ⊗ I
I ⊗X
I ⊗ Y
I ⊗ Z
X ⊗ I
X ⊗X
X ⊗ Y
X ⊗ Z
Y ⊗ I
Y ⊗X
Y ⊗ Y
Y ⊗ Z
Z ⊗ I
Z ⊗X
Z ⊗ Y
Z ⊗ Z


If we represent the above 16× 1 matrix by a 4× 4 matrix, we have:

1 rB 0 1

rA (1
2

+ 1
4
e−iθ + 1

4
eiθ)rArB (−1

4
ie−iθ + 1

4
ieiθ)rArB rA

0 (−1
4
ie−iθ + 1

4
ieiθ)rArB (1

2
− 1

4
e−iθ − 1

4
eiθ)rArB 0

1 rB 0 1

 (2.14)

As we mentioned in the previous section,we will show that the matrix can be

written as the outer product:

∑
i

pi


1

RA cos(θi)

RA sin(θi)

1

(1 RB cos(θi) RB sin(θi) 1
)

47

So, we multiply the previous matrix by two 4× 4 diagonal matrices:
1 0 0 0

0 1
RA

0 0

0 0 1
RA

0

0 0 0 1

 and


1 0 0 0

0 1
RB

0 0

0 0 1
RB

0

0 0 0 1


one on the left and the other on the right respectively, we end up with two cylinders

with radii equal to 1, Cyl(1).

We get the following matrix:


1 rB

RB
0 1

rA
RA

(1
2

+ 1
4
e−iθ + 1

4
eiθ) rArB

RARB
(−1

4
ie−iθ + 1

4
ieiθ) rArB

RARB

rA
RA

0 (−1
4
ie−iθ + 1

4
ieiθ) rArB

RARB
(1
2
− 1

4
e−iθ − 1

4
eiθ) rArB

RARB
0

1 rB
RB

0 1

 (2.15)

So, The matrix (2.14) is Cyl(rA), Cyl(rB) separable if and only if matrix (2.15)

is Cyl(1), Cyl(1) separable.

Then, we replace all z components by 0 to obtain a quantum separable decompo-

sition of a two qubit quantum operators, the above matrix can be seen as follows:
1 rB

RB
0 0

rA
RA

(1
2

+ 1
4
e−iθ + 1

4
eiθ) rArB

RARB
(−1

4
ie−iθ + 1

4
ieiθ) rArB

RARB
0

0 (−1
4
ie−iθ + 1

4
ieiθ) rArB

RARB
(1
2
− 1

4
e−iθ − 1

4
eiθ) rArB

RARB
0

0 0 0 0

 (2.16)

The partial transpose of the above matrix will be equal to:
1 rB

RB
0 0

rA
RA

(1
2

+ 1
4
e−iθ + 1

4
eiθ) rArB

RARB
−(−1

4
ie−iθ + 1

4
ieiθ) rArB

RARB
0

0 (−1
4
ie−iθ + 1

4
ieiθ) rArB

RARB
−(1

2
− 1

4
e−iθ − 1

4
eiθ) rArB

RARB
0

0 0 0 0

 (2.17)

Using the the pauli operators, the matrix (2.16) can be written as :

I + rB
RB
I ⊗ X + rA

RA
X ⊗ I + [(1

2
+ 1

4
e−iθ + 1

4
eiθ)X ⊗ X + (1

2
− 1

4
e−iθ − 1

4
eiθ)Y ⊗

Y] rArB
RARB

+ (−1
4
ie−iθ + 1

4
ieiθ)(X ⊗ Y + Y ⊗X) rArB

RARB

48

And the partial transpose is given by:

I + rB
RB
I ⊗ X + rA

RA
X ⊗ I + [(1

2
+ 1

4
e−iθ + 1

4
eiθ)X ⊗ X − (1

2
− 1

4
e−iθ − 1

4
eiθ)Y ⊗

Y] rArB
RARB

+ (−1
4
ie−iθ + 1

4
ieiθ)(−X ⊗ Y + Y ⊗X) rArB

RARB

When the partial transpose has been applied, we noticed only a change in the

third column which is the same as doing an X rotation. When the X rotation is

applied, the eigenvalues of the two matrices (2.16) and (2.17) are the same. We

checked numerically if the minimum eigenvalues don’t change and we found that they

are equivalent for different values of theta starting from 0 ending at 2π.

Now, by taking the symmetric case RA = RB = R and for each value of R going

from 1 to 2.1 where the input radius is 1, we store the value of R only when the

minimum eigenvalue for each value of theta becomes negative, it means that when

the minimum eigenvalue of a specific theta is negative, it requires a the growth R to

be separable. We end up with a graph that represents the storing value of R for each

theta.

0 20 40 60 80 100 120 140 160 180

values of theta

1

1.2

1.4

1.6

1.8

2

2.2

v
a
lu

e
s
 o

f
g
ro

w
th

Figure 2.2: The required growth for each θ to end up with a separable gate.

It turns out that the CZ gate, where θ = π, requires the most growth in R.

49

In these following parts, the same procedure will be repeated but for different

product inputs.

Product input with component z=1 and z=-1

We will start by applying the diagonal V (θ) gate on the product input that can be

written in the form:

1

2
(I + rAX + 0Y + 1)⊗ 1

2
(I + rB + 0Y − 1)

So V (θ)(1, rA, 0, 1)⊗ (1, rB, 0,−1)V (θ)† is given by a 4× 4 matrix:
1 rB 0 −1

(1
2
e−iθ + 1

2
eiθ)rA (1

2
+ 1

4
e−iθ + 1

4
eiθ)rArB (−1

4
ie−iθ + 1

4
ieiθ)rArB (−1

2
e−iθ − 1

2
eiθ)rA

(−1
2
ie−iθ + 1

2
ieiθ)rA (−1

4
ie−iθ + 1

4
ieiθ)rArB (1

2
− 1

4
e−iθ − 1

4
eiθ)rArB (1

2
ie−iθ − 1

2
ieiθ)rA

1 rB 0 −1


This matrix is separable if and only if the following matrix is cyl(1), cyl(1) sepa-

rable
1 rB

RB
0 −1

(1
2
e−iθ + 1

2
eiθ) rA

RA
(1
2

+ 1
4
e−iθ + 1

4
eiθ) rArB

RARB
(−1

4
ie−iθ + 1

4
ieiθ) rArB

RARB
(−1

2
e−iθ − 1

2
eiθ) rA

RA

(−1
2
ie−iθ + 1

2
ieiθ) rA

RA
(−1

4
ie−iθ + 1

4
ieiθ) rArA

RBRB
(1
2
− 1

4
e−iθ − 1

4
eiθ) rArB

RARB
(1
2
ie−iθ − 1

2
ieiθ) rA

RA

1 rB
RB

0 −1


By replacing all z component by 0, a quantum separable decomposition is ob-

tained,
1 rB

RB
0 0

(1
2
e−iθ + 1

2
eiθ) rA

RA
(1
2

+ 1
4
e−iθ + 1

4
eiθ) rArB

RARB
(−1

4
ie−iθ + 1

4
ieiθ) rArB

RARB
0

(−1
2
ie−iθ + 1

2
ieiθ) rA

RA
(−1

4
ie−iθ + 1

4
ieiθ) rArA

RBRB
(1
2
− 1

4
e−iθ − 1

4
eiθ) rArB

RARB
0

0 0 0 0


The matrix can be written as:

I + rB
RB
I ⊗X + [(1

2
e−iθ + 1

2
eiθ)X ⊗ I + (−1

2
ie−iθ + 1

2
ieiθ)Y ⊗ I] rA

RA
+ [(1

2
+ 1

4
e−iθ +

1
4
eiθ)X ⊗X + (−1

4
ie−iθ + 1

4
ieiθ)(X ⊗ Y + Y ⊗X) + (1

2
− 1

4
e−iθ − 1

4
eiθ)Y ⊗ Y] rArB

RARB

The partial transpose of the matrix is given by
1 rB

RB
0 0

(1
2
e−iθ + 1

2
eiθ) rA

RA
(1
2

+ 1
4
e−iθ + 1

4
eiθ) rArB

RARB
(−1

4
ie−iθ + 1

4
ieiθ) rArB

RARB
0

−(−1
2
ie−iθ + 1

2
ieiθ) rA

RA
−(−1

4
ie−iθ + 1

4
ieiθ) rArA

RBRB
−(1

2
− 1

4
e−iθ − 1

4
eiθ) rArB

RARB
0

0 0 0 0


50

it is same as:

I + rB
RB
I ⊗X + [(1

2
e−iθ + 1

2
eiθ)X ⊗ I − (−1

2
ie−iθ + 1

2
ieiθ)Y ⊗ I] rA

RA
+ [(1

2
+ 1

4
e−iθ +

1
4
eiθ)X ⊗X + (−1

4
ie−iθ + 1

4
ieiθ)(X ⊗ Y − Y ⊗X)− (1

2
− 1

4
e−iθ − 1

4
eiθ)Y ⊗ Y] rArB

RARB

As before, when we apply PPT criterion to the matrix, we end up with negative

signs in the third row or in the third column, which also can be the same as applying

the X rotation. Then, we will check numerically the eigenvalues of these last two

matrices if they are equal. We notice that the minimum eigenvalues are the same. In

addition, we notice that the minimum eigenvalues of these matrices are identical to

those of matrices (2.16) and (2.17).

As mentioned in the previous part, we are going to find the necessary value of

growth for each theta to end up with separable gates.

By taking the symmetric case, RA = RB = R and by changing the z component

of the second particle in the product input, it turns out that the same graph (2.2) is

obtained and the CZ gate requires the most growth in R.

For the two remaining cases where the product input has

• component z = −1 and z = 1 for the first and second particle respectively,

• and z = −1 for both particles,

the same procedure has been applied. A 4 × 4 matrix is obtained after V (θ) act-

ing on the product input. This matrix is Cyl(rA), Cyl(rB) separable if and only if

Cyl(1), Cyl(1) is separable. Then all the components of z in the matrix are replaced

by 0, to have a quantum separable decomposition. PPT is applied, as before, we

notice that all minimum eigenvalues are identical. We compare all the minimum

eigenvalues with the previous two cases, where z = 1 for both particles and z = −1

for the second particle, we notice that these eigenvalues remain the same.

By considering the symmetric case where RA = RB = R, we produce the graph

that represents the required value of growth or R for each θ going from 0 to 2π to

have separable gates. The obtained graphs of these two cases are exactly the same as

the graph (2.2).

2.6 Summary of chapter 2

We started by relaxing the notion of separability to get a new generalised notion

that we called cylinder separability, where, instead of Bloch sphere, we had cylinders.

51

Then we applied this notion to systems where we changed the inputs |ψ〉 of the cluster

state quantum computation, i.e. the modified input state has the unormalised form

|ψ〉 = |0〉+ ε|1〉. Then we find that, after applying CZ gates on two cylindrical state

spaces with radii r, the output is separable with respect to two different cylindrical

state spaces with larger radii R = λr. Separability can be maintained by growing

the cylinder by λ but we must not grow beyond radius 1, because this state space

should be in the dual of the cylinder measurements. Then, instead of the CZ gates,

we applied diagonal gates V (θ) on two cylindrical state spaces. We tried to find

the minimum growth required for separability for each value of θ and it turned out

that the CZ gate is the gate that requires the most growth factor λ to maintain

separability. In the following chapter, we will find that, by growing the size of new

state spaces, the system can be efficiently simulated classically.

52

Chapter 3

Different state spaces
To efficiently simulate a complex quantum system on a classical computer, we ap-

proximate a pure entangled quantum state by a separable decomposition. As we

mentioned in the previous chapter, we use a state space as the cylinder instead of

Bloch sphere to get a separable decomposition.

In this chapter, we will try to find a non-quantum state space that is better than

the cylinder. So, we are going to try to find a state space that starts with greater

quantum inputs than the cylinder, but grows more slowly each time CZ gate has been

applied to maintain the separable decomposition, so that we do not exit the dual of

the allowed measurement. However, it turns out that the cylinder is the most optimal

state space among all the state spaces that we searched through, which means that

the cylinder requires the lowest growth of
√

2 +
√

5 ≈ 2.05817.

3.1 State spaces

We consider state spaces that are convex hull of N(5 − 2) + 2 vertices where N is

an integer number and these vertices are described by Bloch vectors. The considered

state spaces are chosen because of the symmetry about the z axis and they are

among the simplest we could try for relatively small number of extremal points. This

study requires small number of extremal points because we are going to use Linear

Programming on Matlab on a regular laptop to work out numerically the growth

factors to see if there is a state space grows less than the cylinder. If our trial shapes

have too many points, the algorithms run prohibitively slowly.

We will begin by describing the boundary of these state spaces in the positive x

part of the X − Z plane only. Then this cross-section will be rotated around the z

axis N times to construct the whole shape.

The boundary of these state spaces in the positive x part of the X − Z plane is

defined by five points. These points are Q = (0, 1), S = (0,−1), which represent

53

the top and the bottom of the state space respectively, T = (1, 0) which represents

a point at the “equator”, and two other points K = (w, h) and L = (w,−h) where

“h” represents a chosen height and “w” represents a related width. For instance, the

following two dimensional graph illustrates the boundary we get in the X − Z plane

for h = 0.5 and w =
√

3
4
.

Figure 3.1: The boundary of the state space in the X − Z plane for h = 0.5 and

w =
√

3
4

54

We will repeat this boundary by rotating it N times about the z axis, at regular

azimuthal angle intervals θ = n2π
N

, where n = 0, . . . , N − 1, so overall, the vertices of

the state spaces will be given by:

• (0, 0, 1) represents the top of the state space

• (0, 0,−1) represents the bottom of the state space

• (w cos(θ), w sin(θ), ±h)

• (cos θ, sin(θ), 0) where these points are located on the horizontal plane

The following image illustrates the state space with h = 0.5, w =
√

3
4

and N = 6

which is the total number of angles.

Figure 3.2: The state space for N = 6, h = 0.5 and w =
√

3
4

55

This means that the shape of the state space that we will consider, is parameterized

by three numbers: N , h and w. We will change these values to find the growth factor

needed to maintain separability.

But, to see the relationship between these shapes and the bloch sphere, we are

going to define a new parameter ε to replace the parameter w, where we have:

w = (
√

1− h2)(1 + ε) (3.1)

When ε = 0 all the vertices are on the bloch sphere surface. When ε is bigger than 0,

some of the vertices protrude outside the Bloch sphere. Then we will vary the value

of ε, which does not need to be small, to see what happens to the growth factor when

we step away from the Bloch sphere. Note however that when the value of ε is too

high, where w > 1,

ε >
1√

1− h2
− 1 (3.2)

the shape of these state spaces changes, and we end up with a non-convex shape. For

instance, the following graph represents the obtained boundary in the X − Z plane

for h = 0.5 and w =
√

3
4

when ε = 1.1; in theses cases, we are going to take the

convex hull which reduce the number of extremal points and change the outermost

boundary to a flat vertical face as illustrated in the figure,

Figure 3.3: The boundary of the convex hull in the X − Z plane for h = 0.5, ε = 1.1

and w =
√

3
4

As a conclusion, we are going to use three parameters: N , h and ε. When ε ≤
1√

1−h2 − 1, we end up with cross-section which is illustrated by the following graph,

and when ε > 1√
1−h2 − 1, we end up with cross-section with a flat boundary as

56

Figure 3.4: The boundary of the convex hull in the X−Z plane for h = 0.75, ε = 0.1

and w =
√

7
16

illustrated, for example, in the following figure,

Figure 3.5: The boundary of the convex hull in the X−Z plane for h = 0.75, ε = 1.1

and w =
√

7
16

Our goal in this chapter is to use Linear Programming to work out numerically the

growth factors for different values of N , h and ε to see whether any of these shapes

may grow slower than the cylinder.

57

3.2 Using Linear Programming to decide the con-

vex hull membership

The problem that we are working on is whether we end up with separability, it means

that we need to work out whether a point is in the convex hull of a set of points, in

our case we are going to use the Linear Programming [18].

In this section, we will describe a general method of using Linear Programming to

decide if a point is inside the convex hull. We start by considering a set G of vectors

where G = {g1, . . . , gd} where the gi ∈ Rn. The state space is the convex hull of G

and we attempt to work out whether a vector v is in the convex hull of G. So we

use the Linear Programming to check if the vector is inside the convex hull and if the

problem is feasible.

The Linear Programming consists of minimizing CTx where C is Linear objec-

tive function. The minimisation is subject to a linear equality and linear inequality

constraints where both of them consist of a matrix and a vector.

The equality constraint states that
∑

i xigi = v. This constraint can be presented

as:  g1 g2 . . .




x1

x2
...

xd

 = v

If x satisfies this equality constraint, it means that v can be written as a linear

combination of gi vectors.

In order to have v inside the convex hull of G, x should be positive numbers and∑
i xi = 1. Then in our case, the linear inequality constraint consists of an identity

matrix I and a zero vector b, where we have,
1 0 0 0 . . . 0

0 1 0 0 . . . 0

0 0 0 0 . . . 1




x1

x2
...

xd

 ≥ b

So v is not just a linear combination but it is a convex combination of gi vectors.

We are not interested in optimization, we only care whether these constraints can

58

be satisfied to get v in the convex hull of G. So we can choose any vector for the

linear objective function but we pick the zero vector.

After applying the Linear Programming, if the problem is feasible then the vector

v is inside the convex hull but if the problem is infeasible, then v /∈ G.

3.3 Linear Programming

In this section, we will see how to cast our problem in the form that we discussed in

the previous section. For a particular shape, the set G contains vectors gi. g1 and g2

are the vectors that represent the top and the bottom of the state space,

g1 =


1

0

0

1

 and g2 =


1

0

0

−1


For gj where j ≥ 3, these vectors have two forms. The first form is given by

1

Rw(1 + ε) cos(θ)

Rw(1 + ε) sin(θ)

±h


where R is the output radius, θ = n2π

N
and n = 0, . . . , N − 1, and the second form

represents the points located on the horizontal plane,
1

cos(θ)

sin(θ)

0


Note that gi begin always with 1 which is the coefficient of the pauli operator I

because of normalisation.

After putting all these gi together, we end up with a 4 × (N(5 − 2) + 2) output

matrix, moutput state space. This matrix describes the shape, for instance by using Mat-

lab, we take R = 2.468, h = 0.5, w =
√

3
4
, ε = 0 and N = 6, we obtain the following

59

output matrix,

moutput state space =


1 1 1 1 . . . 1

0 0 2.14 1.07 . . . 1.07

0 0 0 1.85 . . . −1.85

1 −1 0.5 0.5 . . . −0.5


Each of these columns represents a vertex in the state space.

In our case, G is going to be the product of moutput state space. So, the set G which is

represented by a (16× (N(5− 2) + 2)2) matrix, is given by,

G = moutput state space ⊗moutput state space

.

The matrix minput state space has the same coefficients as moutput state space but the X

and Y coordinates are not multiplied by R. Each column in minputstatespace represents

a vector ti where i = 1, . . . , N(5 − 2) + 2. Then v is constructed from a particular

pair of inputs ti ⊗ tj acting with the CZ gate. Explicitly, each v is is going to be in

the following form,

v = CZ(ti ⊗ tj)

We need to work out whether all the ti ⊗ tj inputs are taken to separable outputs.

But we are not going to test the (N × (5 − 2) + 2)2 inputs, we only need to take 52

inputs because the CZ commutes with the Z rotation; because of this property, we

have the following separable decomposition:

CZ(Uzi(ti)⊗ Uzj(tj)) =
∑
k

pkUzi(λi)⊗ Uzj(λj)

If CZ is applied on the measurement operators, X and Y measurements will be

rotated. Then if we apply the Z rotation on a separable decomposition for inputs

with y = 0, we find that the other inputs with y = sin(θ) as a coefficient of Y will

have separable decomposition.

So the inputs ti are the following vectors where y has the coefficient 0,

t1 =


1

0

0

1

 , t2 =


1

0

0

−1

 , t3 =


1

1

0

0

 and for tj ≥ 4 tj =


1

w(1 + ε)

0

±h


where t1, t2 represent the top and the bottom of the state space respectively, t3

60

represents the point on the horizontal line and the other vectors have the form tj.

For example, by using Matlab, we take R = 2.468, h = 0.5, w =
√

3
4
, ε = 0 and

N = 6, we present one pair of input minput state space,

minput state space =


1 1 1 1 . . . 1

0 0 0.866 0.433 . . . 0.433

0 0 0 0.75 . . . −0.75

1 −1 0.5 0.5 . . . −0.5


We will vary the output radiusR across a range until the problem becomes feasible,

then this specific R is taken as the minimum growth required to have separability.

We start by fixing the output radius on the first value of the chosen range for a

specific value of N . We will fix the first input t1 and apply the CZ gate on a tensor

product between the fixed input and itself. Then we use the Linear Programming to

check if it ends up with a separable decomposition. So we have two cases:

1. If it has such decomposition, we do the same process but we change the tensor

product, which will occur between the fixed and the second input t2. If we

get a separable decomposition, the same procedure will be repeated until we

end up with a separable decomposition for all the 5 inputs. Then, we fix the

second input instead of the first and re-do the same technique until we obtain a

separable decomposition for a tensor product between the final input and itself.

If all these tensor products have separable decomposition then the output radius

is considered as the optimal one. But if in the middle of this procedure, we don’t

reach a separable decomposition, the second case will be applied.

2. If we don’t obtain a separable decomposition, then the same procedure will

be replicated with the second value of output radius until it reaches the last

required output radius in the range.

The same procedure is repeated but for different values of N . If the procedure ends

up by giving us a minimum value of the growth factor (or a minimum output radius

by taking input radius equal to 1), this value will be compared with the growth (or

the output radius) of the cylinder to choose which state space is optimal. But if the

process has gone through all the radii and we don’t have a separable decomposition,

we know that the cylinder is the optimal state space.

61

3.4 Results

Our state spaces are characterised by h, N and ε. We vary these parameters to

get a minimum growth factor. The following table shows, for each state space, the

minimum radius growth required for all the pairs of inputs to end up with a separable

output.

height ε N Growth factor or R
0.5 0 6 2.468

10 2.442
15 2.442
20 2.415

0.1 6 2.507
10 2.434
15 2.443
20 2.415

1.1 6 2.528
10 2.434
15 2.443
20 2.415

0.75 0 6 2.514
10 2.439
15 2.443
20 2.415

0.1 6 2.528
10 2.452
15 2.443
20 2.415

1.1 6 2.528
10 2.452
15 2.443
20 2.415

Table 3.1: The radius growth for different state spaces

62

h ε N Growth factor or R
0.8 0 6 2.528

10 2.434
15 2.443
20 2.415

0.1 6 2.528
10 2.452
15 2.443
20 2.415

1.1 6 2.528
10 2.452
15 2.443
20 2.415

0.6 0 6 2.484
10 2.447
15 2.439
20 2.415

0.1 6 2.515
10 2.447
15 2.441
20 2.415

1.1 6 2.528
10 2.447
15 2.441
20 2.415

0.4 0 6 2.465
10 2.436
15 2.441
20 2.415

0.1 6 2.500
10 2.448
15 2.441
20 2.415

1.1 6 2.500
10 2.448
15 2.441
20 2.415

Table 3.2: The radius growth for different state spaces

63

h ε N Growth factor or R
0.1 0 6 2.488

10 2.432
15 2.432
20 2.415

0.1 6 2.484
10 2.429
15 2.429
20 2.415

1.1 6 2.484
10 2.429
15 2.429
20 2.415

0.25 0 6 2.458
10 2.431
15 2.438
20 2.415

0.1 6 2.468
10 2.444
15 2.443
20 2.415

1.1 6 2.468
10 2.444
15 2.443
20 2.415

Table 3.3: The radius growth for different state spaces

As a conclusion of this section, when we change the height for N = 20, which is

the total number of points around the equator, we notice that the minimum value of

growth factor is 2.145 for all the considered state spaces in both cases: within and

outside the Bloch sphere. This means that the cylinder with a growth factor 2.05817

is the most optimal state space among all the state spaces that we studied.

3.5 Summary of chapter 3

In this chapter, we started by considering new state spaces that are the convex hull

of N(5 − 2) + 2 vertices. Then, we grew the size of these spaces to maintain the

non-entangled representation. We also used the Linear programming to work out

numerically the growth factors to see whether any of these state spaces may grow

slower than the cylinder. It turned out that the minimum value of growth factor for

the considered state spaces is 2.145 which is bigger than the cylinder growth factor.

64

Therefore, the cylinder that requires the least growth, is the most optimal state space

among all the state spaces that we studied. In the following chapter, we will try to

increase the region that can be efficiently simulated classically, using the method of

the coarse graining.

65

Chapter 4

Coarse Graining

When a CZ gate is applied on two cylindrical state spaces, we must grow the radius

r in order to describe the system with separable decomposition. However, r cannot

grow too much, i.e. r must not grow beyond 1, because the separable decomposition

must use state spaces that are in the dual of the cylinder measurements. In this

chapter, we are going to introduce a method where we put particles into blocks and

these blocks are treated as single systems. This method is called coarse graining. So,

we are going to try to use coarse graining to increase the size of the region that we

can simulate efficiently, and we will find that this enables us to improve the value of

the radius r by putting two particles and then four particles in a block.

4.1 Description of coarse graining

We start by taking a lattice similar to the cluster state and we divide it into blocks.

Each block contains vertices that are connected by several CZ gates. The CZ gates

that are within the block, are defined as “internal CZ gates”. We also connect vertices

from different blocks by CZ gates that we called “external CZ gate”. For instance,

we are considering a 4× 4 lattice in each block:

· · · ◦ ◦ · · ·
· · · ◦ ◦ · · ·
· · · ◦ ◦ · · ·
· · · ◦ ◦ · · ·

In this diagram, the dots and the circles within each block are related by internal CZ

gates. The circles in the first block are connected to those in the second block by the

external CZ gates.

In each block that is considered as a single particle, we are going to grow the radii

66

of the cylindrical state spaces according to the applied external CZ gates to maintain

separable decomposition. By taking the previous example, where we considered a 4×4

lattice in each block, Cyl(r) are represented by the dots and Cyl(rλ) are represented

by the circles where λ =
√

2 +
√

5 ' 2.05817, which was found in the previous

chapter, then r ≤ 1
λ
.

Then the operators, that are within the block, are created from these cylindrical

state spaces Cyl(rλi), where i is the number of the external CZ gates, and the internal

CZ gates that are applied on these state spaces. The set of these operators is defined

as “block state space”.

By growing the radii of the state spaces, we construct separable decomposition

before applying the internal CZ gates. Now, we work out whether the separable

decomposition has positive outcomes for allowed measurements.

We start by taking one particle in the block state space, it means that the internal

CZ gate cannot be applied, only four external CZ gates are applied to this cylindrical

state space.

· · ·
· ◦ ·
· · ·

Cyl(rλ4) are given by the circle and the dots may grow only by λ or they don’t

grow. But we won’t consider cylinder presented by dots because if Cyl(rλ4) satisfies

the dual constraint then the other cylinders that have r or rλ will be in the dual.

By taking the allowed measurements, we compute the trace that should be positive.

Then rλ4 must be less than 1 which means that r ≤ 1
rλ4
≈ 0.0557.

Now we consider the case where a block consists of two particles. Then, we have

only one internal gate and three external gates.

· · ·
◦ © ◦
◦ © ◦
◦ © ◦
◦ © ◦
· · ·

Cyl(rλ3) are given by the big circles and the small circles may grow only by λ or λ2

and the dots represent Cyl(r). As mentioned above, we won’t consider cylinders that

are presented by dots and small circles.

67

All the extremal inputs of a cylindrical state space have the following form:

(1, r2cylinders cos θ, r2cylinders sin θ,±1)

where r2cylinders is defined by r2cylinders := rλ3 and θ varies between 0 and 2π . We

are going to work out the maximum value r2cylinders to see whether the separable

decomposition has positive measurement outcomes.

Instead of taking all the possible inputs, we use the following to reduce the number

of inputs:

• If we apply CZ on two Z measurements, there is no negativity because we end

up with the same operators. However, if the CZ gate acts on a Z and an X−Y
measurements, we end up with a rotation of the X − Y measurement. Then

the product measurement on the two particles does not affect the positivity of

the outcomes. Explicitly, we assume that r2cylinders should not grow beyond 1

in order to satisfy the dual constraint. Therefore we do not need to consider

the Z measurement.

• We consider that y components of Cyl(r2cylinders) are equal to 0. Hence, if we

consider Cyl(r2cylinders) with z = −1, we find that it is the same as applying

an X rotation on the first particle with z = 1 and Z rotation on the second

particle.

• CZ commutes with the Z rotation. If we take the projectors of X − Y plane

measurements and we apply the Z rotation, we end up with projectors that are

in a different direction. Instead of taking Cyl(r2cylinders) with component y = 0,

we are going to consider the measurement projector
(
I−X
2

)
.

Now, we need to compute the tr(ρP) ≥ 0, where

ρ = CZ(1, r2cylinders cos θAX, r2cylinders sin θAY, Z)⊗(1, r2cylinders cos θBX, r2cylinders sin θBY, Z),

where

z = 1 and P =

(
I −X

2

)⊗2
.

So we end up with the following equation,

tr(ρP) = r22cylinders sin θA sin θB − r2cylinders(cos θA + cos θB) + 1 ≥ 0.

68

Also, it can be written as

−r22cylinders cos (θA − θB) + (1− r2cylinders cos θA)(1− r2cylinders cos θB) ≥ 0

By taking θA = θB = 0, we have r2cylinders ≤ 1
2
. Therefore, all the allowed

measurements and all the inputs have positive outcomes if and only if r2cylinders ≤ 1
2
.

By taking r2cylinders = rλ3, then r will be less than or equal to 1
2λ3
' 0.0573.

We find that r of the block that contains only one particle is less than r of the

block of two particles, 1
λ4
' 0.0557 ≤ 1

2λ3
' 0.0573. Therefore, the value of r increases

as long as it satisfies the dual constraints.

We will show under certain assumptions which we believe to be true how we

compute the maximum value of r for a block state space that contains only four state

spaces. These assumptions are:

1. the measurement projector is
(
I−X
2

)
,

2. instead of considering all possible inputs, we take the input (I, rX, 0Y, 1Z)

4.2 Block state space of four cylindrical state spaces

In this section, we are going to combine four cylindrical state spaces into the block

state space and apply four internal CZ gates, to work out the maximum radius of the

block rpos, such that the block state space belongs to the dual of cylinder measurement.

We will find this maximum value by computing the trace(ρP), where ρ is the set of

state spaces and P is the set of the allowed measurements.

To work out rpos, we assume that the Bloch vector for each particle is (r, 0, 1) and

all the angles are equal to zero. Then, without applying CZ, ρ(1,2,3,4) is equal to:

ρ(1,2,3,4) =
1

2
(I + rX +Z)⊗ 1

2
(I + rX +Z)⊗ 1

2
(I + rX +Z)⊗ 1

2
(I + rX +Z) (4.1)

After applying the CZ1 on the first and the second qubits, CZ2 on the second and

third qubits, CZ3 on the third and the fourth qubits and finally CZ4 on the fourth

and first qubits, we obtained the following ρ(1,2,3,4)
′
:

ρ(1,2,3,4)
′
= 1

16
[I⊗I⊗I⊗I+rZ⊗I⊗Z⊗X+I⊗I⊗I⊗Z+rI⊗Z⊗X⊗Z+r2Z⊗Z⊗

69

First qubit Second qubit

Third qubitFourth qubit

Figure 4.1: The block state space that consists of four cylinder state spaces with four
CZ gates

Y ⊗Y +rI⊗Z⊗X⊗I+I⊗I⊗Z⊗I+rZ⊗I⊗I⊗X+I⊗I⊗Z⊗Z+rZ⊗X⊗Z⊗I+r2I⊗
X⊗I⊗X+rZ⊗X⊗Z⊗Z+r2Z⊗Y⊗Y⊗Z+r3I⊗Y⊗X⊗Y +r2Z⊗Y⊗Y⊗I+rZ⊗X⊗
I⊗I+r2I⊗X⊗Z⊗X+rZ⊗X⊗I⊗Z+I⊗Z⊗I⊗I+rZ⊗Z⊗Z⊗X+I⊗Z⊗I⊗Z+rI⊗
I⊗X⊗Z+r2Z⊗I⊗Y ⊗Y +rI⊗I⊗X⊗I+I⊗Z⊗Z⊗I+rZ⊗Z⊗I⊗X+I⊗Z⊗Z⊗Z+

rX⊗Z⊗I⊗Z+r2Y⊗Z⊗Z⊗Y+rX⊗Z⊗I⊗I+r2X⊗I⊗X⊗I+r3Y⊗I⊗Y⊗X+r2X⊗
I⊗X⊗Z+rX⊗Z⊗Z⊗Z+r2Y ⊗Z⊗I⊗Y +rX⊗Z⊗Z⊗I+r2Y ⊗Y ⊗Z⊗Z+r3X⊗Y ⊗
I⊗Y +r2Y ⊗Y ⊗Z⊗I+r3Y ⊗X⊗Y ⊗I+r4X⊗X⊗X⊗X+r3Y ⊗X⊗Y ⊗Z+r2Y ⊗Y ⊗
I⊗Z+r3X⊗Y⊗Z⊗Y +r2Y⊗Y⊗I⊗I+rX⊗I⊗I⊗Z+r2Y⊗I⊗Z⊗Y +rX⊗I⊗I⊗I+

r2X⊗Z⊗X⊗I+r3Y ⊗Z⊗Y ⊗X+r2X⊗Z⊗X⊗Z+rX⊗I⊗Z⊗Z+r2Y ⊗I⊗I⊗Y +

rX⊗I⊗Z⊗I+Z⊗I⊗I⊗I+rI⊗I⊗Z⊗X+Z⊗I⊗I⊗Z+rZ⊗Z⊗X⊗Z+r2I⊗Z⊗Y ⊗
Y +rZ⊗Z⊗X⊗I+Z⊗I⊗Z⊗I+rI⊗I⊗I⊗X+Z⊗I⊗Z⊗Z+rI⊗X⊗Z⊗I+r2Z⊗X⊗
I⊗X+rI⊗X⊗Z⊗Z+r2I⊗Y ⊗Y ⊗Z+r3Z⊗Y ⊗X⊗Y +r2I⊗Y ⊗Y ⊗I+rI⊗X⊗I⊗
I+r2Z⊗X⊗Z⊗X+rI⊗X⊗I⊗Z+Z⊗Z⊗I⊗I+rI⊗Z⊗Z⊗X+Z⊗Z⊗I⊗Z+rZ⊗
I⊗X⊗Z+r2I⊗I⊗Y ⊗Y +rZ⊗I⊗X⊗I+Z⊗Z⊗Z⊗I+rI⊗Z⊗I⊗X+Z⊗Z⊗Z⊗Z].

rpos can be calculated by studying the trace, that should be positive, of ρ(1,2,3,4)
′

70

and the measurement projector P :

tr(ρ(1,2,3,4)
′
P) ≥ 0 (4.2)

where

P = [
1

2
(I −X)]⊗4 (4.3)

the computation of trace is given by

tr(ρ(1,2,3,4)
′
P) =

1

16
(r4pos + 2r2pos − 4rpos + 1) ≥ 0 (4.4)

The maximum value of rpos satisfying the equation of trace is:

rpos ≤ 0.295597743 ' 0.2956

Figure 4.2: maximum radius required in the block state space to be separable.

In this block, we can only apply two external CZ gates which means that r will

be taken to rλ2 to maintain the separable decomposition. Hence, rλ2 ≤ 0.2956, then

r is given by

r ≤ 0.2956

λ2
=

0.2956

2.058172
≈ 0.0698.

The value 0.0698 is computed based on the assumptions that the negativity will first

appear for measurement (I−X)
2

.

71

It turns out that when we add more vertices in the block state space, the value of

r increases as long as it satisfies the dual constraints to maintain separability [7].

4.3 Block state space of many cylindrical state spaces

This section is a review of further progress which was made by my co-authors and

described in article [7]. We are going to increase the size of the block state space and

we will obtain two sequences (upper and lower) of optimization problems. The lower

sequence is non-decreasing while the upper sequence is non-increasing. The lower

sequence represents the values of the input radius where the system can be efficiently

simulated classically and the upper sequence represents the input radius where the

system gives negative probabilities. In the case of 2D lattice, these two sequences

converge to limits that are close but we do not know if both sequences have the same

limits, i.e. if they have the same limit then below this specific value the system can

be efficiently simulated classically and above it the system has negative probabilities.

We consider a block B that has H ×W qubits, where H and W are greater than

2. To initialise the qubits, we consider two ways:

1. All cylinders have the same state (1, r, 0, 1). After applying internal CZ,the

resulting operator is denoted by ρ(B, r).

2. All cylinders that are in the corner of the block, are prepared in a state with

λ2r and the boundary cylinders are in a state with λr, while the remaining

cylinders are in a state with input radius r. All these states have z = 1. After

applying the internal CZ, the resulting operator is denoted by ρλ(B, r).

We will also define the following:

s(B) := max{r|ρ(B, r) ≥M 0}

sλ(B) := max{r|ρλ(B, r) ≥M 0}

where ρ(B, r) ≥M 0 and ρλ(B, r) ≥M 0 means that these operators are in the dual of

the set M of the allowed measurements.

We are interested in sλ(B) to implement the coarse graining scheme. If r ≤ sλ(B)

in a block B, then cylinders with radius r can be efficiently simulated classically

because they lead to positive probabilities. But if r ≥ s(B) in a block B, then

cylinders with radius r lead to negative probabilities which mean that we won’t end

up with separable decomposition. So, we will try to find blocks where sλ(B) is large.

72

Lemma 3. Let’s consider a region KL of qubits in a lattice and we divide this region

into two disjoint subregions K and L. By disjoints we mean that we remove all the

CZ gates that relate these two regions. For any region F , we have

s(F) ≥ sλ(F) (4.5)

Then for the region KL, we have:

s(KL) ≤ min{s(K), s(L)} (4.6)

sλ(KL) ≥ min{sλ(K), sλ(L)} (4.7)

If we consider that the two regions are identical, K = L, then

s(LL) ≤ s(L) (4.8)

sλ(LL) ≥ sλ(L) (4.9)

This tells us that every time we join the subregions together, we increase the size of

a region, then s will only decrease and sλ will only increase.

Proof. To end up with equation (4.5), we start by obtaining ρ(F, r) from ρλ(F, r) by

dephasing the edges of the corner of qubits, i.e. we need to remove λ2 and λ. Hence,

if ρλ(F, r) ≥ 0 then ρ(F, r) ≥ 0. When ρ(F, r) becomes negative, the value of r has

to be greater than the value of r when ρλ(F, r) becomes negative. So, as dephasing

maintains positivity, s(F) ≥ sλ(F).

To end up with equation (4.6), we begin by considering a cylinder with z = 1 that

has the form |0〉〈0| + a|0〉〈1| + b|1〉〈0| where a, b ∈ C. Now suppose we interact this

cylinder with two other particles in an arbitrary state T using two CZ. Then we have

|0〉〈0| ⊗ T + a|0〉〈1| ⊗ (TZ⊗2) + b|1〉〈0| ⊗ (Z⊗2T)

If we trace out the first particle, then the remaining particles are in their original

marginal state T . So, cutting the external CZ gates that join the two regions K

and L, does not change the marginal operators on K or L, trK{ρ(KL, r)} = ρ(L, r).

If...ρ(KL, r) ≥M 0 then we have trK{ρ(KL, r)} ≥M 0, but as trK{ρ(KL, r)} =

ρ(L, r) this means that ρ(KL, r) ≥M 0 implies ρ(L, r) ≥M 0 and ρ(K, r) ≥M 0. So

by taking the minimum between s(L) and s(K), s(KL) must be less than or equal

to the minimum to have ρ(KL, r) ≥M 0.

To end up with equation (4.7), we have ρlambda(KL, r) is in the convex hull of

73

ρλ(K, r)⊗ ρλ(L, r). Hence ρλ(KL, r) on the block must be positive if ρλ(K, r) ≥M 0

and ρλ(L, r) ≥M 0 and so the equation sλ(KL) ≥ min{sλ(K), sλ(L)} must hold.

This lemma allows us to define sequences that capture when r is classically simu-

lated classically using the coarse graining approach. Let’s consider that we construct

a sequence of blocks and we start with a 2 × 2 block B1 and then construct larger

blocks by joining two copies of Bn−1 to make Bn. We define the sequences as follows

un := s(Bn) (4.10)

ln := sλ(Bn) (4.11)

From equation (4.5), we have un ≥ ln where ln is non-decreasing and un is non-

increasing and hence both sequences converge. We denote the limits as:

u := limun

l := lim ln

If r < l then r is classically simulatable efficiently but if r > u then we end up

with negative probabilities. If it turns out that u = l then for r < l the system is

classically simulated and for r > l the system has negative probabilities. But we

do not know whether or not u is equal to l for any system. For a 2D lattice with

the interaction of CZ gates, we calculated the lower and the upper bounds using

trial measurements and inputs on rectangles of size 6 × 7. These numbers indicates

that 0.0698 ≤ l ≤ u ≤ 0.139 for a 2D square lattice. For this specific lattice, the

numerical experiments seem to suggest these two assumptions: the upper and lower

sequences are determined by taking a measurement projector that has the form I−X
2

and the input that has the form (1, α, 0, 1) in the Pauli basis where α includes r and

any growth factors λ applied in the coarse graining approach. When these inputs and

measurements give positive probabilities, the maximum r appears to be the maximum

in the following equations s(B) = max{r|ρ(B, r) ≥M 0}.

4.4 Summary of chapter 4

By using the method of coarse graining, we tried to expand the size of the region of

the system that can be efficiently simulated classically. It turns out that the value of

the radius increases slightly for two particles. But for four particles in a block, the

system can be efficiently classically simulated under the following two assumptions:

74

the measurement projector is
(
I−X
2

)⊗4
and the input is (1, r, 0, 1) in the Pauli basis.

We use this measurement projector because it seems for numerical experiments that

the negativity appears first for this measurement, i.e. if, by applying this measure-

ment, we end up with positivity then the remaining allowed measurements will give

positive values. In [7], we found that by adding more vertices in a block, the value of

the radius increases, however it doesn’t exceed 1.

75

Chapter 5

Summary
It is unknown if quantum computers are better than classical computers. We can

proceed one of two ways to understand this problem. The first way is that we can

try to find that quantum computers cannot be efficiently simulated classically and

the second is that we can try to develop an algorithm that can classically simulate a

quantum system.

It is believed that quantum computers, built with quantum system, can efficiently

solve hard problems that are unknown whether they can be efficiently solved on

classical computers. If it is found that simulating a quantum computing can be

done classically, then any algorithm that can be done in quantum computers can be

efficiently simulated on a classical computer.

In this thesis, our goal is to develop a new method of classically simulating certain

types of quantum system that are previously unknown to be efficiently simulatable

on classical computers.

We started by defining cylinder separability which is a new generalised notion of

separability. Then we applied this notion to systems where we vary the inputs of

cluster state quantum computation and we end up with some inputs that allow the

system to be efficiently simulated classically. As we mentioned previously, the cluster

state has input states |ψ〉 = |+〉 = |0〉+|1〉√
2

, but we have shown that if we change |ψ〉
into the unormalised form |0〉+ ε|1〉 where ε is a small non-zero number, the system

can be efficiently simulated classically.

The classical simulation is achieved by demonstrating that if we take CZ gate

acting on two inputs that are presented by two cylindrical state spaces with radii

r, the output is separable with respect to two different cylindrical state spaces with

larger radii R = λr where λ =
√

2 +
√

5. We can maintain a separable decomposition

by growing the cylinder by λ each time but we must not grow beyond radius 1, because

this state space should be in the dual of the cylinder measurements. This work forms

the basis of the classical simulation.

76

We also considered, instead of CZ gates, diagonal gates V (θ) that acts on two

cylindrical state spaces. Our goal is to try to find the minimum growth required for

separability. After working out the required growth factor as a function of θ for all

the diagonal gates, we discover that the CZ gate is the gate that requires the most

growth factor λ to maintain separability. This work can be taken further. Instead

of using V (θ) gates of two qubits, we could try to use different diagonal gates such

as |0〉〈0| ⊗ zθ + |1〉〈1| ⊗ zθ where zθ = |0〉〈0| + eiθ|1〉〈1|, or we could try other gates

with number of qudits to see whether or not it is possible to efficiently simulated on

a classical computer.

Then, we tried to find if there are other state spaces require a lower growth factor.

So, we considered new state spaces that are the convex hull of N(5− 2) + 2 vertices.

We chose these state spaces because of the symmetry about the z axis and they

are among the simplest we could try for small number of extremal points. Then

we grew the size of these state spaces to maintain separability and we used Linear

programming to compute the required growth factors to see if any of the state spaces

that we studied can grow slower than the cylinder. But it turns out that, among all

these state spaces that we tried, the cylinder is the most optimal state space that

needs the least growth. In further work, we could try different state spaces rather

than the ones we studied but these state spaces have to be also symmetric about the

z axis.

Finally, we introduce the method of coarse graining and we try to improve the

value of the radius of a system that can be efficiently simulated on a classical computer

using this specific method. Then we find that the radius that can be simulated

efficiently, increases slightly for two particles and then even further subject to the

following two assumptions for four particles in a block: the measurement projector

has the form I−X
2

and instead of taking all the possible inputs, we consider the input

(I, rX, 0Y, Z). If we end up with positivity using this measurement projector then the

remaining allowed measurements will give positive values. We will also find that by

adding more vertices in a block, the value of the radius will increase slightly [7]. Two

open problems are whether the upper and lower sequences converge and whether there

are other ways of coarse graining that can improve the classical simulation. These

open problems need further investigations.

77

Appendix A

Representation of V(θ) in the Pauli basis

In this part, we will compute the representation of V (θ) in Pauli basis that we called

V V (θ). It is a 16× 16 matrix and is used in chapter 2.

First, we take two inputs in the following Pauli basis:

(I,X, Y, Z)

where we have:

I =

(
1 0

0 1

)
;X =

(
0 1

1 0

)
;Y =

(
0 −i
i 0

)
I and Z =

(
1 0

0 −1

)

Then, we act the Controlled gate V (θ) on these two qubits by taking one Pauli

operator from the first and second input; where V (θ) and V †(θ) are represented as

the following:

V (θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiθ

 and V †(θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−iθ



• Let’s start by taking I from the first input and changing the Pauli operators of

the second input.

78

V (θ)(I ⊗ I)V †(θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(iθ)




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(−iθ)



=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


= I ⊗ I.

• V (θ) is acting on I and X where X is the second input considered.

V (θ)(I ⊗X)V †(θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(iθ)




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(−iθ)



=


0 1 0 0

1 0 0 0

0 0 0 e−iθ

0 0 eiθ 0


= (

I + Z

2
)⊗X + (

I − Z
2

)⊗ (cos θX + sin θY)

= aI ⊗X + bI ⊗ Y + cZ ⊗X + dZ ⊗ Y

• Let’s take Y the second input.

79

V (θ)(I ⊗ Y)V †(θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(iθ)




0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(−iθ)



=


0 −i 0 0

i 0 0 0

0 0 0 −ie−iθ

0 0 ieiθ 0


= (

I + Z

2
)⊗ Y + (

I − Z
2

)⊗ (cos θY − sin θX)

= aI ⊗ Y + dI ⊗X + bZ ⊗X + cZ ⊗ Y

• The second input considered is Z.

V (θ)(I ⊗ Z)V †(θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(iθ)




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(−iθ)



=


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −e−iθeiθ


= I ⊗ Z

Instead of I, we consider X as the first input and change the second input.

• The second input is I.

80

V (θ)(X ⊗ I)V †(θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(iθ)




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(−iθ)



=


0 0 1 0

0 0 0 e−iθ

1 0 0 0

0 eiθ 0 0


= (

X + iY

2
)⊗ (

I + Z

2
+
I − Z

2
e−iθ) + (

X − iY
2

)⊗ (
I + Z

2
+
I − Z

2
eiθ)

= eX ⊗ I + jX ⊗ Z + pY ⊗ I + qY ⊗ Z

• X is considered as the second input.

V (θ)(X ⊗X)V †(θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(iθ)




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(−iθ)



=


0 0 0 e−iθ

0 0 1 0

0 1 0 0

eiθ 0 0 0


=
X + iY

2
⊗ (

X − iY
2

+
X + iY

2
e−iθ) +

X − iY
2

⊗ (
X + iY

2
+
X − iY

2
eiθ)

= eX ⊗X + pX ⊗ Y + pY ⊗X + jY ⊗ Y

• The second input taken is Y .

81

V (θ)(X ⊗ Y)V †(θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(iθ)




0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(−iθ)



=


0 0 0 −ie−iθ

0 0 i 0

0 −i 0 0

ieiθ 0 0 0


=
X + iY

2
⊗ (

iX + Y

2
+
−iX + Y

2
e−iθ) +

X − iY
2

⊗ (
−iX + Y

2
+
iX + Y

2
eiθ)

= qX ⊗X + eX ⊗ Y + kY ⊗X + pY ⊗ Y

• The last operator is Z which is considered for the second input.

V (θ)(X ⊗ Z)V †(θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(iθ)




0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(−iθ)



=


0 0 1 0

0 0 0 −e−iθ

1 0 0 0

0 −eiθ 0 0


= (

X + iY

2
)⊗ (

I + Z

2
− I − Z

2
e−iθ) + (

X − iY
2

)⊗ (
I + Z

2
− I − Z

2
eiθ)

= jX ⊗ I + qY ⊗ I + eX ⊗ Z + pY ⊗ Z

The third operator is Y which is taken as the first unchangeable input.

• Let’s start by taking I the second input.

82

V (θ)(Y ⊗ I)V †(θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(iθ)




0 0 −i 0

0 0 0 −i
i 0 0 0

0 i 0 0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(−iθ)



=


0 0 −i 0

0 0 0 −ie−iθ

i 0 0 0

0 ieiθ 0 0


= qX ⊗ I + pX ⊗ Z + eY ⊗ I + jY ⊗ Z

• The second input is X.

V (θ)(Y ⊗X)V †(θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(iθ)




0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(−iθ)



=


0 0 0 −ie−iθ

0 0 −i 0

0 i 0 0

ieiθ 0 0 0


= qX ⊗X + kX ⊗ Y + eY ⊗X + pY ⊗ Y

83

• Let’s take Y the second input.

V (θ)(Y ⊗ Y)V †(θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(iθ)




0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(−iθ)



=


0 0 0 −e−iθ

0 0 1 0

0 1 0 0

−eiθ 0 0 0


= jX ⊗X + qX ⊗ Y + qY ⊗X + eY ⊗ Y

• Z is considered as the second input.

V (θ)(Y ⊗ Z)V †(θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(iθ)




0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(−iθ)



=


0 0 −i 0

0 0 0 ie−iθ

i 0 0 0

0 −ieiθ 0 0


= pX ⊗ I + qX ⊗ Z + jY ⊗ I + eY ⊗ Z

And finally, V (θ) is acting on the last operator Z which is taken as the first input.

84

• The second input considered is I.

V (θ)(Z ⊗ I)V †(θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(iθ)




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(−iθ)



=


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −eiθe−iθ


= Z ⊗ I

• X is taken as the second input.

V (θ)(Z ⊗X)V †(θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(iθ)




0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(−iθ)



=


0 1 0 0

1 0 0 0

0 0 0 −e−iθ

0 0 −eiθ 0


= cI ⊗X + aZ ⊗X + dI ⊗ Y + bZ ⊗ Y

85

• The second changeable input is Y .

V (θ)(Z ⊗ Y)V †(θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(iθ)




0 −i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(−iθ)



=


0 −i 0 0

i 0 0 0

0 0 0 ie−iθ

0 0 −ieiθ 0


= cI ⊗ Y + aZ ⊗ Y + bI ⊗X + dZ ⊗X

• The last operator Z is taken as the second input.

V (θ)(Z ⊗ Z)V †(θ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(iθ)




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e(−iθ)



=


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 eiθe−iθ


= Z ⊗ Z

After applying V (θ) to these inputs, we get the 16 × 16 matrix, that we called

V V (θ).

86





1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (I ⊗ I)

0 a b 0 0 0 0 0 0 0 0 0 0 c d 0 (I ⊗X)

0 d a 0 0 0 0 0 0 0 0 0 0 b c 0 (I ⊗ Y)

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 (I ⊗ Z)

0 0 0 0 e 0 0 j p 0 0 q 0 0 0 0 (X ⊗ I)

0 0 0 0 0 e p 0 0 p j 0 0 0 0 0 (X ⊗X)

0 0 0 0 0 q e 0 0 k p 0 0 0 0 0 (X ⊗ Y)

0 0 0 0 j 0 0 e q 0 0 p 0 0 0 0 (X ⊗ Z)

0 0 0 0 q 0 0 p e 0 0 j 0 0 0 0 (Y ⊗ I)

0 0 0 0 0 q k 0 0 e p 0 0 0 0 0 (Y ⊗X)

0 0 0 0 0 j q 0 0 q e 0 0 0 0 0 (Y ⊗ Y)

0 0 0 0 p 0 0 q j 0 0 e 0 0 0 0 (Y ⊗ Z)

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 (Z ⊗ I)

0 c d 0 0 0 0 0 0 0 0 0 0 a b 0 (Z ⊗X)

0 b c 0 0 0 0 0 0 0 0 0 0 d a 0 (Z ⊗ Y)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 (Z ⊗ Z)

where

a =
1

2
+

1

2
cos θ; b =

1

2
sin θ; c =

1

2
− 1

2
cos θ; d = −1

2
sin θ;

e =
1

2
+

1

4
exp (−iθ)+1

4
exp (iθ); j =

1

2
−1

4
exp (−iθ)−1

4
exp (iθ); k = −1

2
+

1

4
exp (−iθ)+1

4
exp (iθ);

p =
1

4
i exp (−iθ)− 1

4
i exp (iθ); q = −1

4
i exp (−iθ) +

1

4
i exp (iθ)

87

Appendix B

Matlab code

B.1 Matlab code for Chapter 2

When the gate V (θ) acts on cylindrical state spaces in chapter 2, we end up with

identical minimum eigenvalues. We check this result using Matlab code:

clear

%for the two inputs (1,rA,0,1)tensor (1,rB,0,1)

% pauli matrices

i = complex(0,1);

I = [1 0; 0 1];

X = [0 1; 1 0];

Y = [0 -i; i 0];

Z = [1 0; 0 -1];

rA = 1;

rB = 1;

j = 1;

array_min = zeros(5,361*numel(0:0.1:1.5));

%cs = cosd(theta)+ i*sind(theta);

%cs_m = cosd(theta) - i* sind(theta);

II = kron(I,I);%II

IX = kron(I,X);%IX

IY = kron(I,Y);%IY

IZ = kron(I,Z);%IZ

XI = kron(X,I);%XI

XX = kron(X,X);%XX

XY = kron(X,Y);%XY

88

XZ = kron(X,Z);%XZ

YI = kron(Y,I);%YI

YX = kron(Y,X);%YX

YY = kron(Y,Y);%YY

YZ = kron(Y,Z);%YZ

ZI = kron(Z,I);%ZI

ZX = kron(Z,X);%ZX

ZY = kron(Z,Y);%ZY

ZZ = kron(Z,Z);%ZZ

for K = 0:0.1:1.5

%add 1 to RA: going from 1 to 2.5 by 0.1

RA = 1+K;

RB = 1+K;

for theta = 0:360

cs = cosd(theta)+ i*sind(theta);

cs_m = cosd(theta) - i* sind(theta);

%this matrix is similar to equation 8 in the paper, where all the Z components are 0:

matrix_1 = II + (rB/RB)*IX + (rA/RA)* XI +

((0.5+0.25*cs_m+0.25*cs)*((rA*rB)/(RA*RB)))* XX + ((-0.25*i*cs_m

+0.25*i*cs)*((rA*rB)/(RA*RB)))*XY + ((-0.25*i*cs_m

+0.25*i*cs)*((rA*rB)/(RA*RB)))*YX

+((0.5-0.25*cs_m-0.25*cs)*((rA*rB)/(RA*RB)))*YY ;

%this matrix is the partial transpose:

%3rd column is minus

matrix_2 = II + (rB/RB)*IX + (rA/RA)* XI +

((0.5+0.25*cs_m+0.25*cs)*((rA*rB)/(RA*RB)))* XX - ((-0.25*i*cs_m

+0.25*i*cs)*((rA*rB)/(RA*RB)))*XY + ((-0.25*i*cs_m

+0.25*i*cs)*((rA*rB)/(RA*RB)))*YX

-((0.5-0.25*cs_m-0.25*cs)*((rA*rB)/(RA*RB)))*YY ;

%or 3rd row is minus

matrix_3 = II + (rB/RB)*IX + (rA/RA)* XI +

((0.5+0.25*cs_m+0.25*cs)*((rA*rB)/(RA*RB)))* XX + ((-0.25*i*cs_m

+0.25*i*cs)*((rA*rB)/(RA*RB)))*XY - ((-0.25*i*cs_m

89

+0.25*i*cs)*((rA*rB)/(RA*RB)))*YX

-((0.5-0.25*cs_m-0.25*cs)*((rA*rB)/(RA*RB)))*YY ;

%min eigenvalues of matrix_1

eigenvalues_1 = eig(matrix_1);

min_eig_1 = min(eigenvalues_1);

eigenvalues_2 = eig(matrix_2);

min_eig_2 = min(eigenvalues_2);

eigenvalues_3 = eig(matrix_3);

min_eig_3 = min(eigenvalues_3);

array_min(1,j) = theta;

array_min(2,j) = min_eig_1;

array_min(3,j) = min_eig_2;

array_min(4,j) = min_eig_3;

array_min(5,j) = RA;

j = j+1;

end

end

90

The graph (2.2) which represents the required growth for each theta, is given by the

following code:

clear

%for the two inputs (1,rA,0,1)tensor (1,rB,0,1)

% pauli matrices

i = complex(0,1);

I = [1 0; 0 1];

X = [0 1; 1 0];

Y = [0 -i; i 0];

Z = [1 0; 0 -1];

rA = 1;

rB = 1;

j = 1;

array_R = zeros(1,numel(0:0.1:1.1));

array_theta = zeros(1,numel(0:0.1:1.1));

%cs = cosd(theta)+ i*sind(theta);

%cs_m = cosd(theta) - i* sind(theta);

II = kron(I,I);%II

IX = kron(I,X);%IX

IY = kron(I,Y);%IY

IZ = kron(I,Z);%IZ

XI = kron(X,I);%XI

XX = kron(X,X);%XX

XY = kron(X,Y);%XY

XZ = kron(X,Z);%XZ

YI = kron(Y,I);%YI

YX = kron(Y,X);%YX

YY = kron(Y,Y);%YY

YZ = kron(Y,Z);%YZ

ZI = kron(Z,I);%ZI

ZX = kron(Z,X);%ZX

ZY = kron(Z,Y);%ZY

ZZ = kron(Z,Z);%ZZ

91

for K = 0:0.00001:1.1

%add 1 to RA: going from 1 to 2.1 by 0.00001

RA = 1+K;

RB = 1+K;

for theta = 0:360

cs = cosd(theta)+ i*sind(theta);

cs_m = cosd(theta) - i* sind(theta);

%this matrix is similar to equation 8 in the paper, where all the Z components are 0:

matrix_1 = II + (rB/RB)*IX + (rA/RA)* XI +

((0.5+0.25*cs_m+0.25*cs)*((rA*rB)/(RA*RB)))* XX + ((-0.25*i*cs_m

+0.25*i*cs)*((rA*rB)/(RA*RB)))*XY + ((-0.25*i*cs_m

+0.25*i*cs)*((rA*rB)/(RA*RB)))*YX

+((0.5-0.25*cs_m-0.25*cs)*((rA*rB)/(RA*RB)))*YY ;

%min eigenvalues of matrix_1

eigenvalues_1 = eig(matrix_1);

min_eig_1 = min(eigenvalues_1);

if min_eig_1 < 0

array_R(1,j) = RA;

array_theta(1,j) = theta;

else

continue

end

if min_eig_1 < 0

break

else

continue

end

end

j = j + 1;

end

92

plot(array_theta, array_R)

%title(’Required growth to be separable’)

xlabel(’values of theta’)

ylabel(’values of growth’)

93

B.2 Matlab code for Chapter 3

The Matlab code, which is shown below, is the same code applied to the section of

Different state spaces. The difference is that we are changing values of ”N”, epsilon,

heights and radii:

r = 1; %(radius of the input)

h = 1; %(height of the input)

M = 5; %(number of points going down the Z axis (with (1,0,0,1) and (1,0,0,-1)))

N = 15; %(number of angles going around the equator)

epsilon = 0.1;

theta = 360/N;

height = [1 0.75 0 -0.75 -1]; %(heights of the five inputs)

width = [0, (\sqrt(7)/4)*(1+epsilon), 1, (\sqrt(7)/4)*(1+epsilon), 0]; %(Radii of the five inputs)

CZ = \begin{blockarray}{*{17}{c}}

\begin{block}{(*{16}{c})c}

1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ($I\otimes I$)

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & ($I\otimes X$)

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & ($I\otimes Y$)

0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ($I\otimes Z$)

0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ($X\otimes I$)

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & ($X\otimes X$)

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & ($X\otimes Y$)

0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ($X\otimes Z$)

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & ($Y\otimes I$)

0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ($Y\otimes X$)

0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ($Y\otimes Y$)

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ($Y\otimes Z$)

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & ($Z\otimes I$)

0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ($Z\otimes X$)

0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ($Z\otimes Y$)

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & ($Z\otimes Z$)

\end{block}

\end{blockarray}

output_shape = zeros(4,N(M-2)+2); % a (4\times N(M-2)+2) matrix

94

% Linear programming in Matlab: linprog(f, A, b, A’, b’)

C = zeros((N(M-2)+2)^2,1); % the objective function

I = - eye((N(M-2)+2)^2) ; % A inequality

O = zeros((N(M-2)+2)^2,1) ; % b inequality

for R = 2.4:0.001:2.46

% Output

init = 3;

for k = 2: M-1

for phi = 0:360/N:360-360/N

output_shape(:, init) = [1; R*width(k)*cos(phi); R*width(k)*sin(phi); height(k)];

init = init+1;

end

end

output_shape(:,1) = [1; 0; 0;1]; %((:,1) means rows of a specific col (in this case is the first column))

output_shape(:,2) = [1; 0; 0;-1];

out_shape = kron(output-shape,output-shape); %(out_shape is A equality in linear programming) and kron is the tensor product.

% Input

number_R = 0;

optimal_R = 0;

for ll = 1:M

for mm = 1: M

input = kron([1; width(ll); 0; height(ll)],[1; width(mm); 0; height(mm)]);

input_CZ = CZ*input; %(input_CZ is b equality in linear programming)

Xopt = linprog(C, I, O, out_shape, input_CZ);

if Xopt >= 0

number_R = number_R + 1;

if mm == M and ll == M and number_R == M^2

optimal_R = R;

end

95

else

break

end

end

if Xopt >= 0

continue

else

break

end

end

if number_R == M^2

break

else

continue

end

end

% For the linear programming, the formula that we need to use is as follow: linprog(f, A, b, A’, b’, lb, ub)

where

% C = zeros((N(M-2)+2)^2,1); % which is the objective function,

% I = - eye((N*(M-2)+2)^2); % which is the A inequality,

% O = zeros((N*(M-2)+2)^2,1); % which is the b inequality,

% The out_shape is the A equality,

% The input_CZ is b equality,

% lb=ub=0; that are the lower and the upper bound respectively.

% So by replacing the above formula by the equivalent notation, we have

Xopt = linprog(C, I, O, out-shape, input-CZ).

96

List of Figures

16

1.2 Local hidden variables . 17

1.3 9-qubit cluster state . 23

1.4 This image presents the tensor network. The MPS can also be written

as:
∑

i1,...,in

ci1,...,in|i1, . . . , in〉. 26

2.1 A CZ gate acts on two cylindrical state spaces with two radiirA and

rB, the output is separable with respect to two cylindrical state spaces

with larger radii RA and RB . 36

2.2 The required growth for each θ to end up with a separable gate. . . . 49

3.1 The boundary of the state space in the X − Z plane for h = 0.5 and

w =
√

3
4

. 54

3.2 The state space for N = 6, h = 0.5 and w =
√

3
4

. 55

3.3 The boundary of the convex hull in the X − Z plane for h = 0.5, ε

= 1.1 and w =
√

3
4

. 56

3.4 The boundary of the convex hull in the X − Z plane for h = 0.75, ε

= 0.1 and w =
√

7
16

. 57

3.5 The boundary of the convex hull in the X − Z plane for h = 0.75, ε

= 1.1 and w =
√

7
16

. 57

4.1 The block state space that consists of four cylinder state spaces with

four CZ gates . 70

4.2 maximum radius required in the block state space to be separable. . . 71

97

List of Tables

3.1 The radius growth for different state spaces 62

3.2 The radius growth for different state spaces 63

3.3 The radius growth for different state spaces 64

98

Bibliography

[1] Scott Aaronson and Daniel Gottesman. “Improved simulation of stabilizer circuits”.

In: Physical Review A 70.5 (2004), p. 052328.

[2] Scott Aaronson and Sam Gunn. “On the classical hardness of spoofing linear cross-

entropy benchmarking”. In: arXiv preprint arXiv:1910.12085 (2019).

[3] Hussain Anwar et al. “Families of pure PEPS with efficiently simulatable local hidden

variable models for most measurements”. In: arXiv preprint arXiv:1412.3780 (2014).

[4] Hussain Anwar et al. “Generalised versions of separable decompositions applicable

to bipartite entangled quantum states”. In: New Journal of Physics 21.9 (2019),

p. 093031.

[5] Hussain Anwar et al. “Smallest state spaces for which bipartite entangled quantum

states are separable”. In: New Journal of Physics 17.9 (2015), p. 093047.

[6] Frank Arute et al. “Quantum supremacy using a programmable superconducting pro-

cessor”. In: Nature 574.7779 (2019), pp. 505–510.

[7] Sahar Atallah et al. “Efficient classical simulation of cluster state quantum circuits

with alternative inputs”. In: arXiv preprint arXiv:2201.07655 (2022).

[8] Remigiusz Augusiak, Maciej Demianowicz, and Antonio Acın. “Local hidden–variable

models for entangled quantum states”. In: Journal of Physics A: Mathematical and

Theoretical 47.42 (2014), p. 424002.

[9] Boaz Barak, Chi-Ning Chou, and Xun Gao. “Spoofing linear cross-entropy bench-

marking in shallow quantum circuits”. In: arXiv preprint arXiv:2005.02421 (2020).

[10] Jonathan Barrett. “Information processing in generalized probabilistic theories”. In:

Physical Review A 75.3 (2007), p. 032304.

[11] Jonathan Barrett et al. “The computational landscape of general physical theories”.

In: npj Quantum Information 5.1 (2019), pp. 1–10.

[12] Sean D Barrett et al. “Transitions in the computational power of thermal states

for measurement-based quantum computation”. In: Physical Review A 80.6 (2009),

p. 062328.

[13] Stephen D Bartlett and Barry C Sanders. “Efficient classical simulation of optical

quantum information circuits”. In: Physical review letters 89.20 (2002), p. 207903.

[14] Stephen D Bartlett et al. “Efficient classical simulation of continuous variable quan-

tum information processes”. In: Physical Review Letters 88.9 (2002), p. 097904.

99

[15] John S Bell. “On the einstein podolsky rosen paradox”. In: Physics Physique Fizika

1.3 (1964), p. 195.

[16] Jacob Biamonte and Ville Bergholm. “Tensor networks in a nutshell”. In: arXiv

preprint arXiv:1708.00006 (2017).

[17] Sergio Boixo et al. “Characterizing quantum supremacy in near-term devices”. In:

Nature Physics 14.6 (2018), pp. 595–600.

[18] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university

press, 2004.

[19] Sergey Bravyi and David Gosset. “Improved classical simulation of quantum circuits

dominated by Clifford gates”. In: Physical review letters 116.25 (2016), p. 250501.

[20] Daniel J Brod. “Efficient classical simulation of matchgate circuits with generalized

inputs and measurements”. In: Physical Review A 93.6 (2016), p. 062332.

[21] Nicolas Brunner et al. “Bell nonlocality”. In: Reviews of Modern Physics 86.2 (2014),

p. 419.

[22] Andrew M Childs. “Lecture notes on quantum algorithms”. In: Lecture notes at Uni-

versity of Maryland (2017).

[23] Andrew M Childs and Wim Van Dam. “Quantum algorithms for algebraic problems”.

In: Reviews of Modern Physics 82.1 (2010), p. 1.

[24] John F Clauser et al. “Proposed experiment to test local hidden-variable theories”.

In: Physical review letters 23.15 (1969), p. 880.

[25] Andrew C Doherty, Pablo A Parrilo, and Federico M Spedalieri. “Distinguishing

separable and entangled states”. In: Physical Review Letters 88.18 (2002), p. 187904.

[26] Albert Einstein, Boris Podolsky, and Nathan Rosen. “Can quantum-mechanical de-

scription of physical reality be considered complete?” In: Physical review 47.10 (1935),

p. 777.

[27] Daniel Gottesman. “The Heisenberg representation of quantum computers”. In: arXiv

preprint quant-ph/9807006 (1998).

[28] D Gross and J Eisert. “Novel schemes for measurement-based quantum computation”.

In: Physical review letters 98.22 (2007), p. 220503.

[29] Daivd Gross et al. “Measurement-based quantum computation beyond the one-way

model”. In: Physical Review A 76.5 (2007), p. 052315.

[30] Lov K Grover. “A fast quantum mechanical algorithm for database search”. In: Pro-

ceedings of the twenty-eighth annual ACM symposium on Theory of computing. 1996,

pp. 212–219.

[31] Lucien Hardy. “Quantum theory from five reasonable axioms”. In: arXiv preprint

quant-ph/0101012 (2001).

100

[32] Aram W Harrow and Ashley Montanaro. “Quantum computational supremacy”. In:

Nature 549.7671 (2017), pp. 203–209.

[33] Aram W Harrow and Michael A Nielsen. “Robustness of quantum gates in the pres-

ence of noise”. In: Physical Review A 68.1 (2003), p. 012308.

[34] Micha l Horodecki, Pawe l Horodecki, and Ryszard Horodecki. “Separability of mixed

states: necessary and sufficient conditions”. In: Physics Letters A 223.1 (1996), pp. 1–

8. issn: 0375-9601. doi: https://doi.org/10.1016/S0375-9601(96)00706-2. url:

https://www.sciencedirect.com/science/article/pii/S0375960196007062.

[35] Pawel Horodecki. “Separability criterion and inseparable mixed states with positive

partial transposition”. In: Physics Letters A 232.5 (1997), pp. 333–339.

[36] Peter Janotta and Haye Hinrichsen. “Generalized probability theories: what deter-

mines the structure of quantum theory?” In: Journal of Physics A: Mathematical and

Theoretical 47.32 (2014), p. 323001.

[37] Richard Jozsa. “On the simulation of quantum circuits”. In: arXiv preprint quant-

ph/0603163 (2006).

[38] Richard Jozsa and Noah Linden. “On the role of entanglement in quantum-computational

speed-up”. In: Proceedings of the Royal Society of London. Series A: Mathematical,

Physical and Engineering Sciences 459.2036 (2003), pp. 2011–2032.

[39] Richard Jozsa and Akimasa Miyake. “Matchgates and classical simulation of quan-

tum circuits”. In: Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences 464.2100 (2008), pp. 3089–3106.

[40] Richard Jozsa and Maarten Van den Nest. “Classical simulation complexity of ex-

tended Clifford circuits”. In: arXiv preprint arXiv:1305.6190 (2013).

[41] Igor L Markov and Yaoyun Shi. “Simulating quantum computation by contracting

tensor networks”. In: SIAM Journal on Computing 38.3 (2008), pp. 963–981.

[42] Ashley Montanaro. “Quantum algorithms: an overview”. In: npj Quantum Informa-

tion 2.1 (2016), pp. 1–8.

[43] Caterina E Mora et al. “Universal resources for approximate and stochastic measurement-

based quantum computation”. In: Physical Review A 81.4 (2010), p. 042315.

[44] Michele Mosca. “Quantum algorithms”. In: arXiv preprint arXiv:0808.0369 (2008).

[45] Michael A Nielsen. “Cluster-state quantum computation”. In: Reports on Mathemat-

ical Physics 57.1 (2006), pp. 147–161.

[46] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum informa-

tion. 2002.

[47] Asher Peres. “Separability criterion for density matrices”. In: Physical Review Letters

77.8 (1996), p. 1413.

101

[48] David Perez-Garcia et al. “Matrix product state representations”. In: arXiv preprint

quant-ph/0608197 (2006).

[49] Martin Plávala. “General probabilistic theories: An introduction”. In: arXiv preprint

arXiv:2103.07469 (2021).

[50] John Preskill. “Lecture notes for physics 229: Quantum information and computa-

tion”. In: California Institute of Technology 16.1 (1998), pp. 1–8.

[51] N Ratanje and S Virmani. “Exploiting non-quantum entanglement to widen appli-

cability of limited-entanglement classical simulations of quantum systems”. In: arXiv

preprint arXiv:1201.0613 (2012).

[52] N Ratanje and Shashank Virmani. “Generalized state spaces and nonlocality in fault-

tolerant quantum-computing schemes”. In: Physical Review A 83.3 (2011), p. 032309.

[53] Robert Raussendorf and Hans J Briegel. “A one-way quantum computer”. In: Physical

Review Letters 86.22 (2001), p. 5188.

[54] Robert Raussendorf, Daniel E Browne, and Hans J Briegel. “Measurement-based

quantum computation on cluster states”. In: Physical review A 68.2 (2003), p. 022312.

[55] Norbert Schuch et al. “Computational complexity of projected entangled pair states”.

In: Physical review letters 98.14 (2007), p. 140506.

[56] Peter W Shor. “Introduction to quantum algorithms”. In: Proceedings of Symposia in

Applied Mathematics. Vol. 58. 2002, pp. 143–160.

[57] Peter W Shor. “Polynomial-time algorithms for prime factorization and discrete log-

arithms on a quantum computer”. In: SIAM review 41.2 (1999), pp. 303–332.

[58] Barbara M Terhal and David P DiVincenzo. “Classical simulation of noninteracting-

fermion quantum circuits”. In: Physical Review A 65.3 (2002), p. 032325.

[59] Leslie G Valiant. “Expressiveness of matchgates”. In: Theoretical Computer Science

289.1 (2002), pp. 457–471.

[60] Leslie G Valiant. “Quantum circuits that can be simulated classically in polynomial

time”. In: SIAM Journal on Computing 31.4 (2002), pp. 1229–1254.

[61] Maarten Van den Nest. “Universal quantum computation with little entanglement”.

In: Physical review letters 110.6 (2013), p. 060504.

[62] Guifré Vidal. “Efficient classical simulation of slightly entangled quantum computa-

tions”. In: Physical review letters 91.14 (2003), p. 147902.

[63] Reinhard F Werner. “Quantum states with Einstein-Podolsky-Rosen correlations ad-

mitting a hidden-variable model”. In: Physical Review A 40.8 (1989), p. 4277.

[64] Mithuna Yoganathan, Richard Jozsa, and Sergii Strelchuk. “Quantum advantage of

unitary Clifford circuits with magic state inputs”. In: Proceedings of the Royal Society

A 475.2225 (2019), p. 20180427.

102

[65] Nadav Yoran. “Efficiently contractable quantum circuits cannot produce much entan-

glement”. In: arXiv preprint arXiv:0802.1156 (2008).

[66] Nadav Yoran and Anthony J Short. “Classical simulation of limited-width cluster-

state quantum computation”. In: Physical review letters 96.17 (2006), p. 170503.

103

