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Abstract 

Evolvable hardware (EHW) [1] is a technique 
introduced to automatically design circuits where the 
circuit configuration is carried out by evolutionary 
algorithms. One of the main difficulties in using EHW 
to solve real-world problems is the scalability. Until 
now, several strategies have been proposed to avoid 
this problem, but none of them completely tackle the 
issue. In this paper three different methods for evolving 
the most complex circuits have been tested for their 
scalability. These methods are Bi-directional 
incremental evolution (SO-BIE) [2]; generalised 
disjunction decomposition (GD-BIE) [3] and 
evolutionary strategies (ES) with dynamic mutation 
rate [4]. In order to achieve the generalised 
conclusions the chosen approaches were tested using 
multipliers, traditionally used in EHW, but also logic 
circuits taken from MCNC [5] benchmark library and 
randomly generated circuits. The analysis of the 
approaches demonstrated that PLA-based ES is 
capable of evolving logic circuits of up to 12 inputs. 
The use of SO-BIE allows the generation of fully 
functional circuits of 14 inputs and GD-BIE is 
estimated to be able to evolve circuits of 21 inputs.  

1. Introduction 

Evolvable hardware (EHW) [1] is a technique 
introduced to automatically design circuits, where the 
circuit configuration is under the control of an 
evolutionary algorithm (EA) [6]. Initially, evolvable 
hardware was introduced to be applied to real-world 
applications, but to date no relatively large applications 
have been developed. This is mainly due to the fact that 
EHW is not scalable to larger problems [1], [7], [8], 
[9]. Let us focus on the investigation of scalability 
issues applied to the design of combinational logic 
circuits. The existing EHW systems introduced to 

evolve combinational logic circuits are generally not 
scalable by the following factors: 

• the length of chromosome representation of 
logic circuits [10] 

• the number of input-output combinations in 
the truth table 

• The computational complexity of EA [2]. 
The length of the chromosome depends on the 

number of logic gates used and the connectivity 
between logic gates. The number of input-output 
combinations increases exponentially with the increase 
of the number of inputs in the evolved logic circuit. 

The computational complexity of evolutionary 
algorithms appears mainly due to “stalling” effect that 
emerges in evolutionary processes for complex 
problems. Recently these issues have been tackled 
predominately in two directions: the improvement of 
evolutionary processes and the development of multi-
evolutionary processes using the principles of problem 
decomposition. Previously, the performance of EHW 
on the evolution of 3-bit multiplier has been studied. 
Both PLA-based and FPGA-based circuits have been 
considered. For example, the 3-bit multiplier 
containing 26 logic gates has been evolved for FPGA 
structure after 3,000,000 generations using gate-level 
EHW approach [11]. Function-level EHW was first 
introduced by Higuchi et al. in [12] and further 
extended in [13] which the reduction of the number of 
generations required to evolve successfully the 3-bit 
multiplier to 30 generations. Although the proposed 
approach allowed the significant reduction of the 
number of generations required to obtain fully 
functional solution, the evolvability of logic circuits 
with a higher number of inputs remained to be the 
actual issue. For example, the analysis of the 
complexity of evolved logic circuits revealed that the 
most complex multiplier currently evolved is the 4 digit 
multiplier (8 inputs; 8 outputs) [14]. This circuit was 
evolved by using the logic gates as building blocks for 
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FPGA target structure. The introduction of the dynamic 
mutation rate allowed the improvement of the achieved 
results by evolving 12-input 8-output logic circuits 
from MCNC benchmark library [5]. This circuit was 
generated for AND-OR PLA structure. Unfortunately it 
is difficult to compare the evolution of PLA- and 
FPGA-based logic circuits due to the fact that FPGA-
based circuits have larger search space. Therefore they 
are more difficult to evolve. The main drawback of the 
last approach is that the dynamic mutation is 
specifically designed based on the behaviour of PLA-
based logic circuits during the evolutionary process. 
Therefore, it is not applicable for the evolution of 
FPGA-based logic circuits. Based on decomposition 
strategies, several approaches to overcoming scalability 
problem have been introduced such as: divide-and-
conquer [15]; bi-directional incremental evolution (SO-
BIE) [2] and the generalised disjunction 
decomposition, a new decomposition strategy for 
evolvable hardware introduced by the author in [3]. 
Regarding the divide and conquer method, so called 
increased incremental evolution [16] has been 
introduced to reduce the search space. This method has 
been demonstrated complete evolve of logic circuits of 
10 inputs (5-bit multiplier) introducing partioned 
training vector and partioned training set [17]. 
However a significant weakness is also present, that is 
the difficulties in defining the fitness function for the 
initial stages of the evolution, which makes it less 
suitable for completely automatic systems. SO-BIE 
evolution is a completely automatic system which does 
not require any knowledge from the designer and is not 
scalable to really large circuits due to the limitations of 
EHW-oriented output and Shannon decompositions 
[2]. The first attempt to use this approach in EHW was 
achieved by the evolution of 7-inputs 10 outputs logic 
function from MCNC benchmark and has been further 
improved by introduction a new assembling techniques 
[18]. Furthermore, the introduction of generalized 
disjunction decomposition into SO-BIE improved 
design and optimization of logic circuits to 16 inputs 1 
output. The drawback is the imposition to the system to 
use multiplexers. In this paper bi-directional 
incremental evolution, the “generalised disjunction 
decomposition” and ES with variable mutation rate are 
evaluated in an attempt to establish the advantages and 
disadvantages of each of them. 

This paper is organized as follow: the next section 
gives a brief description of these three methods 
together with the evolutionary algorithms, 
chromosomes structures and fitness functions used. 
Section 3 gives the experimental results, followed by 
the conclusions. 

2. Extrinsic EHW approaches 

Bi-directional incremental evolution, applied to 
design of combinational logic circuits, combines the 
evolutionary processes carried out by extrinsic EHW 
with EHW-oriented circuit decomposition that 
identifies the sub-tasks to be evolved. Let us consider 
the main features of BIE with Shannon and output 
decompositions (SO-BIE), extended BIE with 
generalised disjunction decomposition (GD-BIE) and 
ES with dynamic mutation rates applied to the 
evolution of combinational logic circuits. Each circuit 
and sub-circuit, defined by decomposition, is 
consequently evolved using extrinsic EHW. 

2.1 Extrinsic EHW

In this section the evolutionary algorithm used to 
evolve logic circuits, together with the fitness function 
and chromosome representations are presented. 

2.1.1 Evolutionary algorithm. The evolutionary 
algorithm used is the (1+λ) rudimentary evolutionary 
strategy with cell and circuit geometry mutation, where 
λ represents the population size [19], [20]. Once the 
fitness function of each individual is calculated, the 
fittest individual is selected and duplicated for the 
population of the next generation and it is brought up 
to date by using both cell and circuit geometry 
mutation operators.

2.1.2 Encoding. The chromosome encoding used takes 
into account the aspects of any combinational logic 
network: cell functionality and inter-connectivity of the 
cells between the inputs and outputs of the circuit. In 
our approach the logic circuit is presented as a 
rectangular array of logic gates. Each logic cell in this 
array is uncommitted and can be removed from the 
network if it is redundant. All the logic functions are 
chosen from the set of AND, OR, XOR, NOT and 
multiplexer. The chromosome is represented by a 3 
level structure: geometry, circuit and gate. At the first 
level the global characteristics of the circuit are 
defined: the internal connectivity and the number of 
rows and columns of the rectangular array. At the 
second level the array of cells is created and the 
circuit's outputs are determined. The third level 
represents the structures of each cell in the circuit [19].

2.1.3 Dynamic fitness function. The fitness 
function evaluates the evolved circuits in terms of their 
functionality. In our experiment a dynamic fitness 
function has been considered. It has two main criteria: 
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first design and second, once the circuit is fully 
functional evolved, optimization which leads to 
reduced numbers of active logic gates used in the 
circuit configuration. The dynamic fitness function f is 
calculated as: 
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where f1 is a design criterion that defines the 
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where m and n are the number of outputs and the 
number of inputs of the given logic function, 
respectively; p is the number of input-output 
combinations; yi is the ith digit of the output 
combination produced by the evaluation of the circuit, 
di is the desired output for the fitness case fc. |yi-di| is 
the absolute difference between the actual and the 
required outputs. The fitness function for the 
optimization stage is calculated as: 

( ) lglglg2 pa NNNf ⋅−= (3) 

where Nlg is the total number of logic gates, Nplg is 
the number of primitive logic gates and Nalg is the 
number of active logic gates. 

2.2 Bi-directional incremental evolution 

Bi-directional incremental evolution [2] operates by 
gradually decomposing a complex system into a series 
of simpler ones when the evolution does not bring any 
improvement in terms of fitness function value, see 
Figure 1. These simpler blocks are evolved separately, 
and then merged together once completely developed. 
If, during the evolution of each single subsystem, the 
stalling effect occurs again, the single sub-circuits will 
be decomposed another time, until all the sub-circuits 
are simple enough to be evolved. The systems are 
decomposed by using Shannon and output 
decomposition [2]. 

Figure 1. Bi-directional Incremental Evolution (BIE) 
approach

As can be seen the evolution is in both sides: firstly 
towards modularization (having simpler and smaller 
logic circuits) and secondly towards an optimized 
system, by assembling the simpler sub-circuits 
together. For example, the output decomposition 
guarantees that each sub-system is synthesized 
separately and is completely independent. In the case 
of functional decomposition, the corresponding outputs 
generated for various input combinations in different 
sub-systems have to be connected together using one-
control multiplexer. Analysis of experimental results 
show that it is reasonable to assemble the subsystems 
decomposed by functional decomposition first and then 
the sub-systems separated using output decomposition 
[18]. 

2.3 Generalised disjunction decomposition 

The “generalised disjunction decomposition” 
proposed in [3] is based on the statement that: 

• the number of generations required to 
completely evolve logic circuits is mainly 
dependant on the number of inputs instead of 
the number of outputs, which is shown in [3]. 

• The decomposition of a complex system into 
smaller ones in BIE is done by using output 
decomposition. 

So, supposing that a complex system F with n inputs 
and m outputs, see Figure 2, requires numerous 
generations to be evolved. This could be decomposed 
into two sub-systems as reported in Figure 3; where the 
subsystem G with r inputs and s outputs represents the 
evolvable part of the newly created system. The 
number of input-output combinations is: 

     rq 2=  (4) 

and the number of output is: 
rnms −⋅= 2 (5) 
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The sub-system H with (s+n-r) inputs and m outputs 
represents the fixed part of the circuit that is mainly 
generated using multiplexers. This part does not 
participate in the evolutionary process. 

The structure of this sub-circuit depends on the 
number of used inputs and outputs. By using this 
decomposition strategy the number of generations 
required to evolve the circuits is much smaller; 
furthermore this method allows the evolution of larger 
circuits [3]. This sub-system G, which has fewer inputs 
and more outputs than the original ones, can be evolved 
using either the traditional EHW approach or any other 
scalable approach such as divide-and-conquer, bi-
directional incremental evolution, etc. 

Figure 2. General description of a system with n 
inputs and m outputs (a); truth table of the system (b), 
where p is equal to all the possible input-output 
combinations. 

Figure 3. Generalized disjunction decomposition of 
the initial logic circuit. (a) Schemata r and g refer to the 
number of inputs and outputs respectively. (b) Truth 
table of the evolved part of the proposed sub-system 

The complexity of the evolutionary process will 
depend on the type of method used. 

2.4 Evolving PLA structures using ES with 
dynamic mutation rate 

This approach is based on the idea of evolving logic 
circuits using a dynamic mutation rate that adapts to the 
evolved circuit structure [4]. This technique uses 
evolutionary strategy with uniform mutation, roulette 
wheel selection and binary chromosome representation 
to generate the AND-OR PLA structure. The mutation 
rate is changed according how good the evolved 
solutions are. The chromosome encodes the structure of 
Programmable Logic Array (PLA) by describing the 
connections between lines in AND and OR planes. 
Therefore, the PLA structure is encoded using 2 arrays 
of genes as shown in Figure 4. 

The chromosome is composed of three genes: 
connection genes in AND plane, input line genes in 
AND plane and connection in OR plane. The 
evolutionary process is divided into 2 sub-processes, 
where different fitness functions are activated. The 
functionality of the evolved logic function is used 
during the PLA design process. The number of product 
lines in the PLA structure is minimized during the PLA 
optimization process. 

Dynamic fitness function similar to one introduced 
earlier in the extrinsic EHW approach, is used to 
evaluate the quality of the evolved circuits. The 
difference is that the quality of the evolved fully 
functional circuits is defined by the number of product 
lines actually used in the obtained solution. 

Figure 4. The chromosome encoding of a PLA 
structure 
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3. Experimental results 

Evolvable hardware and Digital Logic Design are 
two competitive areas that have the common goal: to 
design of logic circuits. Evolvable hardware attempts to 
introduce completely automated circuit design 
processes in contrast to traditional Digital Logic 
Design where even today the human intervention plays 
a vital role in the design of logic circuits. Although 
both areas have the same goal, the algorithms proposed 
in these two areas are analyzed using different libraries. 
For example, the approaches proposed in the area of 
Digital Logic Design are validated using MCNC 
benchmark library [5], [21] in contrast to Evolvable 
hardware, where validation is mainly based on the 
evolution of multipliers with different complexity and 
randomly generated logic circuits [8][11][15]. Through 
our experimental work we have attempted to merge a 
validation process used in Evolvable Hardware and 
Digital Logic Design. Therefore, the evolvability of 
logic circuits randomly generated, as well as circuits 
taken from MCNC benchmark library and multipliers 
of different complexity are analyzed. This provides an 
indication on how EHW-based approaches perform in 
general for the evolution of combinational logic 
circuits. In this work, only the logic circuits given on 
complete set of input-output combinations have been 
considered. For example a 3-bit multiplier has 6 inputs 
and 6 outputs and it is described with 64 input-output 
combinations. Similarly a 6-bit multiplier contains 12 
inputs and 12 outputs and it is described by 4096 input-
output combinations. The presented results are 
obtained based on the analysis of the truth table of 
completely specified switching functions. The aim of 
these experiments is to illustrate: 

• the maximum possible size of evolvable logic 
circuits for each method discussed earlier; 

• the performance of methods discussed earlier 
during optimization process; 

The experiments have been carried out separately 
for methods evolved FPGA- and PLA-based circuits. 

3.1 Experimental results: BIE and generalized 
disjunction decomposition 

In this section the experimental results obtained with 
the use of BIE and the generalised disjunction 
decomposition are presented. The initial data used for 
those experiments are given in Table 1. The system 
used for evolving circuits with SO-BIE is shown in 
Figure 1, while the schema shown in Figure 5 is used 
for the generalized disjunction decomposition. 

Table 1. Initial data for the experiments carried out 
using BIE and the generalized disjunction 
decomposition 

Evolutionary algorithm (1+λ) rudimentary ES 

Population size 5 

Number of Generations  500000 
Number of runs for each 
experiments 

≥100 

Elitism is applied 
Cell mutation rate 0.05 
Geometry Mutation Rate 0.05 
Termination criteria for 
evolutionary process 

2000 generations without 
any improvement in fitness 
function 

Figure 5. System used for evolving logic circuits

The experimental results obtained by using BIE and 
the generalised disjunction decomposition are shown in 
Table 2. In that table all the characteristics of the 
circuit are given. For example, by looking at the logic 
circuit 9sym.pla, it has 9 inputs, 1 output and 512 
input-output combinations. Then, the number of 
generations (average out of 100 experiments and “best 
solution”) required to evolve the logic circuits, is 
reported. The next two columns give the average and 
best time (values are expressed in seconds) for each 
experiment. The next two columns provide the value of 
fitness function for the final optimized solutions. The 
last three columns give information on the circuit 
layout used to evolve the logic circuits, such as number 
of rows, columns and level’s back [22]. For each 
circuit different results are given, this is because two 
different methodologies are used. 

For the circuits 9sym it can be observed that it is 
evolved using BIE (first row, 9 input and 1 output) and 
the generalised disjunction decomposition (second and 
third rows respectively with 6 input and 8 outputs and 4 
inputs and 32 outputs). 
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Table 2. Experimental results from SO-BIE and generalized disjunction decomposition (GD-BIE), where in, out and 
p are the number of inputs, outputs and products (input-output combinations) in the given logic function. Each logic 
circuit (except for Mult6) has been evolved 100 times with a success rate of 100%. The last three columns give 
dimension size: number of rows (R), columns (C) and level back (L) [22] of the circuit layout used during simulations 

Experimental results Info circuit 
Number of generations 
performed 

Total time spent per each 
 experiment in seconds 

Final fitness function Circuit layout 
parameter: 

name method in out p average best average best average best R C L 
Randomly generated logic circuits 

SO-BIE 6 5 64 40,425 26,381 1,194 624 15,658 25,088
6-5 

GD-BIE 4 20 16 16,121 9,446 410 257 13,815 17,931 
3 80 80 

SO-BIE 6 4 64 30,095 14,587 1,099 442 11,866 20,456
6-4 

GD-BIE 4 16 16 10,507 6,744 321 159 23,937 34,030 
3 80 80 

SO-BIE 6 3 64 30,754 16,099 366 229 3,498 6,404 
6-3 

GD-BIE 4 12 16 8,251 4,489 129 64 7,458 10,972 
10 10 10 

SO-BIE 6 2 64 12,886 4,160 289 94 1,598 3,486 
6-2 

GD-BIE 4 8 16 3,500 564 54 12 2,152 5,614 
10 10 10 

SO-BIE 6 1 64 10,784 4,406 136 59 1,483 3,887 
6-1 

GD-BIE 3 8 8 3,684 1,575 62 25 3,049 5,102 
10 10 10 

Logic circuits taken from MCNC benchmark library 
SO-BIE 5 1 32 1,323 17 17 0.5 608 1,385 

majority 
GD-BIE 3 4 8 237 19 8 1 1,139 1,957 

10 10 10 

SO-BIE 9 1 512 67,041 44,261 2,852 2,204 15,976 32,790 
6 8 64 28,741 13,771 745 412 15,971 26,448 9sym 

GD-BIE 
4 32 16 10,142 5,540 323 185 28,034 39,128 

3 80 80 

SO-BIE 7 4 128 28,121 10,535 269 112 3,036 5,268 
5 16 32 11,665 4,358 90 29 7,465 14,190 add2_7 

GD-BIE 
4 32 16 7,448 4,541 52 32 13,248 20,455 

10 10 10 

SO-BIE 7 10 128 43,643 22,623 1,878 1,003 16,994 30,008 
5xp1 

GD-BIE 5 40 32 24,560 13,116 884 518 51,659 77,001 
3 80 80 

SO-BIE 9 8 512 168,053 127,206 10,713 8,039 40,847 68,204 
addm4 

GD-BIE 7 32 128 132,414 103,563 4,908 3,753 73,027 94,339 
3 80 80 

SO-BIE 14 1 16,384 184,476 150,838 70,877 64,222 5,024 7,531 
co14 

GD-BIE 10 16 10,24 50,733 14,139 6,240 3,479 13,179 33,075 
3 80 80 

SO-BIE 7 2 128 6,584 2,177 286 126 3,015 8,881 
5 8 32 7,092 2,307 212 79 10,036 17,760 con1 

GD-BIE 
3 32 8 4,893 2,553 136 71 22,358 30,441 

3 80 80 

SO-BIE 8 4 256 87,752 58,640 781 568 13,571 24,545 
6 16 64 56,764 35,698 410 256 16,473 22,388 rd84 

GD-BIE 
5 32 32 38,533 15,808 250 126 23,701 35,104 

3 80 80 

SO-BIE 16 1 65,536 Not evolved 
t841 

GD-BIE 9 128 512 597,469 463,396 20,250 13,482 396,399 445,554 4 100 100 
Multiplier circuits 

SO-BIE 6 6 64 21,948 9,030 288 126 4,279 2,373 
Mult3 

GD-BIE 4 24 16 9,156 4,434 123 67 8,820 14,219 
10 10 10 

SO-BIE 8 8 256 146,663 117,495 1,718 1,468 13,019 20,592 
Mult4 

GD-BIE 6 32 64 87,411 70,999 1,040 594 23,554 30,926 
10 10 10 

SO-BIE 10 10 1,024 740,164 685,372 16,033 15,338 48,786 52,860 
Mult5 

GD-BIE 8 40 256 506,347 482,789 24,088 17,458 152,372 171,368 
3 80 80 

Mult6 SO-BIE 12 12 4,096 2,582,678 2,582,678 190,450 190,450 537,322 537,322 3 80 80 

Based on the results found, one may conclude that 
the main advantages of using the generalized 
disjunction decomposition are: 

• a smaller amount of generations are required 
during evolution 

• a better values of fitness functions are 
achieved, therefore the circuits are better 
optimized 

• it solves the tasks quicker than by using BIE 
All the circuits (except of the multiplier 6x6, which 

has been evolved only once, because of the high 
computational time required) have been evolved 100 
times with an achievement rate of 100%. 

3.2 Experimental results: ES with dynamic 
mutation rate 

In this section the results obtained with the use of 
the evolutionary strategy with variable mutation rate 
are presented. In Table 3 the initial data together with 
the experimental results are shown. In that table Imax is 
the initial given number of products lines in PLA; Nmax

refers to the maximum number of generations given for 
each evolutionary process: PLA design and 
optimization; Ndesign and Nopt are the average number of 
generations for design and optimization processes, 
respectively; Idesign and Iopt are the average number of 
product lines in PLA obtained after the completion of 
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design and optimization processes respectively; 
Ibest_design and Ibest_opt are the minimum number of 
product lines over 100 runs obtained for design and 
optimization processes respectively. Iimp gives the value 
in percentage of improvements in terms of fitness 
function. The experimental results have been obtained 
based on the analysis of 100 runs for each logic 
function, except of the circuits with the number of 
inputs higher than 10. Those functions have been 
evolved 5 times each. This is because the 
computational requirements needed to complete the 
evolution are too high for a desktop PC. It should be 
observed that this method was not able to evolve logic 
circuits with 14 inputs and higher, so the most difficult 
task solved was the 6-digit multiplier. In several cases, 
no significant improvement during optimization 
process has been noticed, see Table 3 last column 
(which gives the improvements in terms of fitness 
function during optimization). This can be explained by 
the use of a low number of generations during the 
evolutionary process. 

4 Conclusion 

In this paper a comparison of evolving logic circuits 
using three different methodologies has been presented. 
The performance of these three different techniques has 
been tested on the evolution of logic circuits taken 
from different sources: some of them were randomly 
generated, others were taken from MCNC benchmark 
and others describe the behaviour of multipliers of 
different complexities. The experimental results show 
that, the generalised disjunction decomposition used 
together with BIE: 

• requires fewer of generations 
• the evolved circuits are better optimized 
• speeds up the evolutionary algorithm 
• gives the possibility to completely evolve 

circuits of 16 inputs (which means 65536 
input-output combinations), which is the 
biggest logic circuits completely evolved until 
now, by using a desktop PC. 

The most complex logic circuit evolved for SO-BIE 
has 14-inputs. This may indicate the current limitations 
of SO-BIE. Since the evolution of evolvable part in 
GD-BIE is carried out by SO-BIE, the limitations 
implied to SO-BIE also are implied to GD-BIE. 
Therefore, GD-BIE can successfully perform evolution 
while the evolvable part of the circuit G remains no 
more complex than 14-inputs. Considering that 
currently we have managed to reduce the number of 
inputs in the evolvable part by 7, than one can predict 
that the most complex logic circuit that GD-BIE is 
capable to evolve should have no more than 21 input. 
ES, with a dynamic mutation rate, performs far better 
when compared with a BIE-based approach. This is 
because the statistical method evolves logic circuits 
using the AND and OR planes, which are simpler than 
the FPGA based logic circuits evolved with the BIE 
approach. The largest circuit evolved with this method 
is a 6-digit multiplier. The method was not able to 
evolve more complex circuits. Both approaches 
discussed in the paper have demonstrated the capability 
to evolve more complex logic functions than the ones 
reported earlier. The analysis of experimental results 
demonstrated that there is a potential for improvements 
in these algorithms.

Table 3. Experimental results obtained by making use of statistical model 
Experimental results 

Initial parameters PLA design PLA optimization Name in out p 

Imax Nmax 

Success 
rate (%) Ndesign Idesign Ibest_design Nopt Iopt Ibest_opt

Iimp

Logic circuits randomly generated 
6-5 6 5 64 64 10,000 12 1232.4 63.7 62 10,000 62.8 59 1.4 
6-4 6 4 64 64 10,000 61 101.6 61.9 56 10,000 56.8 50 8.2 
6-3 6 3 64 64 10,000 100 5.7 57. 47 10,000 47.4 40 16.8 
6-2 6 2 64 64 10,000 100 2.7 48.9 34 10,000 30.9 26 36.8 
6-1 6 1 64 64 10,000 100 1.7 37.5 23 10,000 21.5 18 42.7 

Logic circuits taken from MCNC benchmark 
Majority 5 1 32 32 10,000 100 1.3 24.7 15 10,000 12.3 8 50.2 
con1 7 2 128 96 10,000 100 5.5 86.7 60 10,000 60.9 49 29.8 
Add2_7 7 4 128 128 10,000 100 10.8 117 96 10,000 101.2 91 13.5 
5xp1 7 10 128 128 10,000 62 108.3 127.7 126 10,000 124.2 118 2.8 
rd84 8 4 256 256 10,000 0 - - - - - - - 
9sym 9 1 512 512 10,000 100 8.5 301.0 252 10,000 253.8 239 15.7 
addm4 9 8 512 384 10,000 89 30.8 379.6 365 10,000 369.4 350 2.7 
alu1 12 8 4,096 4,096 10,000 100 16.6 3506.0 3417 10,000 3,203.2 3,169 8.6 
co14 14 1 16,384 16,384 10,000 0 - - - - - - - 
rd84 16 1 65,536 65,536 10,000 0 - - - - - - - 

Multiplier circuits 
Mult3 6 6 64 64 10,000 100 7.1 56.9 47 10,000 49.4 42 13.2 
Mult4 8 8 256 256 10,000 100 15.5 240.1 222 10,000 225.1 210 6.2 
Mult5 10 10 512 512 10,000 100 26.4 990.5 954 10,000 965.7 936 2.5 
Mult6 12 12 4,096 4,096 10,000 100 53.0 3997.2 3991 10,000 3,983.2 3,979 0.4 

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05) 
0-7695-2399-4/05 $ 20.00 IEEE



6. References 

[1]X. Yao, T. Higuchi. “Promises and challenges of 
evolvable hardware”. IEEE Trans. Systems, Man and 
Cybernetics, Part C, vol. 29, pp. 87 - 97, February 1999. 

[2]T. Kalganova. “Bidirectional incremental evolution in 
evolvable hardware”. Proc. of The Second NASA/DoD 
Workshop on Evolvable Hardware. IEEE Computer Society. 
Palo Alto, California, USA. 

[3]E. Stomeo and T. Kalganova. “Improving EHW 
performance introducing a new decomposition strategy”. 
2004 IEEE Conference on Cybernetics and Intelligent 
Systems. Pp. 439-444. Singapore, 1-3 December 2004. 

[4]T. Kalganova, N. Lipnitsakya, Y. Yatskevich. “Evolving 
PLA structures using evolutionary strategy with dynamic 
mutation rate”. Proceedings of the 5th International 
Conference on Recent Advances in Soft Computing, 
Nottingham, United Kingdom December 2004. pp. 466 -
471. ISBN: 1-84233-110-8 

[5]S. Yang. “Logic synthesis and optimisation benchmark 
user guide version 3.0, MCNC, 1991”. 

[6]D. E. Goldberg. Genetic algorithm in search, optimization 
and machine learning. Addison-Wesley Publishing 
Company, Incorporated, Reading, Massachusetts, 1989

[7]J. Dinerstein, N. Dinerstein, H. de Garis. “Automatic 
Multi-Module Neural Network Evolution in an Artificial 
Brain”. NASA/DoD Conf. on Evolvable Hardware, EH-2003, 
USA, 2003. 

[8]V. K. Vassilev, J. F. Miller “Scalability problems of 
digital circuit evolution”. Proc. of the 2nd NASA/DOD 
Workshop on Evolvable Hardware, pp. 55-64. Los Alamitos, 
CA: IEEE Computer Society 

[9]C. A. Coello, A. D. Christiansen and A. A. Hernández. 
“Towards automated evolutionary design of combinational 
circuits”. Computers and Electrical Engineering, Pergamon 
Press, Vol. 27, No. 1, pp. 1-28, January 2001 

[10]A. Thompson, I. Harvey, and P. Husbands. 
“Unconstrained evolution and hard consequences”, in 
Toward Evolvable Hardware: The Evolutionary Engineering 
Approach, vol. 1062, E. Sanchez and M. Tomassini, Eds. 
Berlin, Germany: Springer-Verlag, 1996, pp. 136–165. 

[11]C. A. Coello, A. D. Christiansen and A. A. Hernández. 
“Use of evolutionary techniques to automate the design of 
combinational circuits” International Journal of Smart 
Engineering System Design, 1999 

[12]T. Higuchi, M. Murakawa, M. Iwata, I. Kajitani, Weixin 
Liu, M. Salami, “Evolvable hardware at function level”; 

IEEE International Conference on Evolutionary 
Computation, pp. 187 - 192, April 1997 

[13]T. Kalganova. “An Extrinsic Function-Level Evolvable 
Hardware Approach”. Proc. of the Third European 
Conference on Genetic Programming, EuroGP2000, 
Edinburgh, UK. Eds. R. Poli, W. Banzhaf. Springer-Verlag. 

[14]D. Job V. Vassilev and J. Miller. “Towards the automatic 
design of more e_cient digital circuits”. Proc. of the 2nd 
NASA/DoD Workshop on Evolvable Hardware, pp. 151-160. 
IEEE Computer Society, Silicon Valley, USA. 

[15]J. Torresen, “A divide-and-conquer approach to 
evolvable hardware”, Evolvable Systems: From Biology to 
Hardware. Second International Conference, ICES 98, 
volume 1478 of Lecture Notes in Computer Science, pp 57-
65. Springer-Verlag, 1998. 

[16]J. Torresen, “Increased complexity evolution applied to 
evolvable hardware”, ANNIE'99, November 1999, St. Louis, 
USA. 

[17]J. Torresen. “Evolving multiplier circuits by training set 
and training vector partitioning”. In proc. of Fifth Int. Conf. 
on Evolvable Hardware (ICES03), Springer LNCS 2606, pp. 
228-237, March 2003 

[18]I. Baradavka and T. Kalganova. “Assembling Strategies 
in Extrinsic Evolvable Hardware with Bi-directional 
Incremental Evolution”. Proc. of the 6th European 
Conference on Genetic Programming, EuroGP2003, Essex, 
UK. Published by Springer-Verlag. Vol. 2610. pp. 276-285. 

[19]T. Kalganova, J. Miller, “Evolving more efficient digital 
circuits by allowing circuit layout evolution and multi-
objective fitness”. Proc. of the First NASA/DoD Workshop 
on Evolvable Hardware. IEEE Computer Society, pp. 54–63. 
July 1999 

[20]J. Miller. “An empirical study of the efficiency of 
learning Boolean functions using a Cartesian genetic 
programming approach” In Proc. of the Genetic and 
Evolutionary Computation Conference, volume 1, pp. 1135–
1142, Orlando, USA, July 1999. 

[21]P.K, Samudrala, J. Ramos, S. Katkoori, S.; “Selective 
triple Modular redundancy (STMR) based single-event upset 
(SEU) tolerant synthesis for FPGAs”.IEEE Transactions on 
Nuclear Science, Volume: 51 , Issue: 5 , Oct. 2004 
Pages:2957 – 2969 

[22]J. Miller, P. Thomson. “Cartesian genetic programming”. 
In Riccardo Poli, Wolfgan Banzhaf, William B. Langdon, 
Julian F. Miller, Peter Nordin and Terence C. Forgaty, eds, 
Genetic Programming, Proc. of EuroGP 2000, vol. 1802 of 
LNCS, pp 121-132, Edinburg, 16-16 April 2000. Springer-
Verlag 

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05) 
0-7695-2399-4/05 $ 20.00 IEEE


