
On Evolution of Relatively Large Combinational Logic Circuits

E. Stomeo1, T. Kalganova1, C. Lambert1, N. Lipnitsakya2, Y. Yatskevich2

Brunel University UK1, Belarusian State University2

emanuele.stomeo@brunel.ac.uk

The authors thank EPSRC for financial support (Grant GR/S17178).

Abstract

Evolvable hardware (EHW) [1] is a technique
introduced to automatically design circuits where the
circuit configuration is carried out by evolutionary
algorithms. One of the main difficulties in using EHW
to solve real-world problems is the scalability. Until
now, several strategies have been proposed to avoid
this problem, but none of them completely tackle the
issue. In this paper three different methods for evolving
the most complex circuits have been tested for their
scalability. These methods are Bi-directional
incremental evolution (SO-BIE) [2]; generalised
disjunction decomposition (GD-BIE) [3] and
evolutionary strategies (ES) with dynamic mutation
rate [4]. In order to achieve the generalised
conclusions the chosen approaches were tested using
multipliers, traditionally used in EHW, but also logic
circuits taken from MCNC [5] benchmark library and
randomly generated circuits. The analysis of the
approaches demonstrated that PLA-based ES is
capable of evolving logic circuits of up to 12 inputs.
The use of SO-BIE allows the generation of fully
functional circuits of 14 inputs and GD-BIE is
estimated to be able to evolve circuits of 21 inputs.

1. Introduction

Evolvable hardware (EHW) [1] is a technique
introduced to automatically design circuits, where the
circuit configuration is under the control of an
evolutionary algorithm (EA) [6]. Initially, evolvable
hardware was introduced to be applied to real-world
applications, but to date no relatively large applications
have been developed. This is mainly due to the fact that
EHW is not scalable to larger problems [1], [7], [8],
[9]. Let us focus on the investigation of scalability
issues applied to the design of combinational logic
circuits. The existing EHW systems introduced to

evolve combinational logic circuits are generally not
scalable by the following factors:

• the length of chromosome representation of
logic circuits [10]

• the number of input-output combinations in
the truth table

• The computational complexity of EA [2].
The length of the chromosome depends on the

number of logic gates used and the connectivity
between logic gates. The number of input-output
combinations increases exponentially with the increase
of the number of inputs in the evolved logic circuit.

The computational complexity of evolutionary
algorithms appears mainly due to “stalling” effect that
emerges in evolutionary processes for complex
problems. Recently these issues have been tackled
predominately in two directions: the improvement of
evolutionary processes and the development of multi-
evolutionary processes using the principles of problem
decomposition. Previously, the performance of EHW
on the evolution of 3-bit multiplier has been studied.
Both PLA-based and FPGA-based circuits have been
considered. For example, the 3-bit multiplier
containing 26 logic gates has been evolved for FPGA
structure after 3,000,000 generations using gate-level
EHW approach [11]. Function-level EHW was first
introduced by Higuchi et al. in [12] and further
extended in [13] which the reduction of the number of
generations required to evolve successfully the 3-bit
multiplier to 30 generations. Although the proposed
approach allowed the significant reduction of the
number of generations required to obtain fully
functional solution, the evolvability of logic circuits
with a higher number of inputs remained to be the
actual issue. For example, the analysis of the
complexity of evolved logic circuits revealed that the
most complex multiplier currently evolved is the 4 digit
multiplier (8 inputs; 8 outputs) [14]. This circuit was
evolved by using the logic gates as building blocks for

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE

FPGA target structure. The introduction of the dynamic
mutation rate allowed the improvement of the achieved
results by evolving 12-input 8-output logic circuits
from MCNC benchmark library [5]. This circuit was
generated for AND-OR PLA structure. Unfortunately it
is difficult to compare the evolution of PLA- and
FPGA-based logic circuits due to the fact that FPGA-
based circuits have larger search space. Therefore they
are more difficult to evolve. The main drawback of the
last approach is that the dynamic mutation is
specifically designed based on the behaviour of PLA-
based logic circuits during the evolutionary process.
Therefore, it is not applicable for the evolution of
FPGA-based logic circuits. Based on decomposition
strategies, several approaches to overcoming scalability
problem have been introduced such as: divide-and-
conquer [15]; bi-directional incremental evolution (SO-
BIE) [2] and the generalised disjunction
decomposition, a new decomposition strategy for
evolvable hardware introduced by the author in [3].
Regarding the divide and conquer method, so called
increased incremental evolution [16] has been
introduced to reduce the search space. This method has
been demonstrated complete evolve of logic circuits of
10 inputs (5-bit multiplier) introducing partioned
training vector and partioned training set [17].
However a significant weakness is also present, that is
the difficulties in defining the fitness function for the
initial stages of the evolution, which makes it less
suitable for completely automatic systems. SO-BIE
evolution is a completely automatic system which does
not require any knowledge from the designer and is not
scalable to really large circuits due to the limitations of
EHW-oriented output and Shannon decompositions
[2]. The first attempt to use this approach in EHW was
achieved by the evolution of 7-inputs 10 outputs logic
function from MCNC benchmark and has been further
improved by introduction a new assembling techniques
[18]. Furthermore, the introduction of generalized
disjunction decomposition into SO-BIE improved
design and optimization of logic circuits to 16 inputs 1
output. The drawback is the imposition to the system to
use multiplexers. In this paper bi-directional
incremental evolution, the “generalised disjunction
decomposition” and ES with variable mutation rate are
evaluated in an attempt to establish the advantages and
disadvantages of each of them.

This paper is organized as follow: the next section
gives a brief description of these three methods
together with the evolutionary algorithms,
chromosomes structures and fitness functions used.
Section 3 gives the experimental results, followed by
the conclusions.

2. Extrinsic EHW approaches

Bi-directional incremental evolution, applied to
design of combinational logic circuits, combines the
evolutionary processes carried out by extrinsic EHW
with EHW-oriented circuit decomposition that
identifies the sub-tasks to be evolved. Let us consider
the main features of BIE with Shannon and output
decompositions (SO-BIE), extended BIE with
generalised disjunction decomposition (GD-BIE) and
ES with dynamic mutation rates applied to the
evolution of combinational logic circuits. Each circuit
and sub-circuit, defined by decomposition, is
consequently evolved using extrinsic EHW.

2.1 Extrinsic EHW

In this section the evolutionary algorithm used to
evolve logic circuits, together with the fitness function
and chromosome representations are presented.

2.1.1 Evolutionary algorithm. The evolutionary
algorithm used is the (1+λ) rudimentary evolutionary
strategy with cell and circuit geometry mutation, where
λ represents the population size [19], [20]. Once the
fitness function of each individual is calculated, the
fittest individual is selected and duplicated for the
population of the next generation and it is brought up
to date by using both cell and circuit geometry
mutation operators.

2.1.2 Encoding. The chromosome encoding used takes
into account the aspects of any combinational logic
network: cell functionality and inter-connectivity of the
cells between the inputs and outputs of the circuit. In
our approach the logic circuit is presented as a
rectangular array of logic gates. Each logic cell in this
array is uncommitted and can be removed from the
network if it is redundant. All the logic functions are
chosen from the set of AND, OR, XOR, NOT and
multiplexer. The chromosome is represented by a 3
level structure: geometry, circuit and gate. At the first
level the global characteristics of the circuit are
defined: the internal connectivity and the number of
rows and columns of the rectangular array. At the
second level the array of cells is created and the
circuit's outputs are determined. The third level
represents the structures of each cell in the circuit [19].

2.1.3 Dynamic fitness function. The fitness
function evaluates the evolved circuits in terms of their
functionality. In our experiment a dynamic fitness
function has been considered. It has two main criteria:

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE

first design and second, once the circuit is fully
functional evolved, optimization which leads to
reduced numbers of active logic gates used in the
circuit configuration. The dynamic fitness function f is
calculated as:







≥+

<
=

onoptimizaticircuit 100 21

designcircuit 100 1
fff

ff
f (1)

where f1 is a design criterion that defines the
percentage of correct bits in the evolved circuit, f2 is
the optimization criterion for the optimization stage.

The fitness function for the functionality of the
evolved circuit f1, or so called design criterion is
calculated as follows:

∑∑
− −

=

− −⋅
⋅

=

12 1

0

1
1 2

100
n

cf

m

i
ii

i dy
pm

f (2)

where m and n are the number of outputs and the
number of inputs of the given logic function,
respectively; p is the number of input-output
combinations; yi is the ith digit of the output
combination produced by the evaluation of the circuit,
di is the desired output for the fitness case fc. |yi-di| is
the absolute difference between the actual and the
required outputs. The fitness function for the
optimization stage is calculated as:

() lglglg2 pa NNNf ⋅−= (3)

where Nlg is the total number of logic gates, Nplg is
the number of primitive logic gates and Nalg is the
number of active logic gates.

2.2 Bi-directional incremental evolution

Bi-directional incremental evolution [2] operates by
gradually decomposing a complex system into a series
of simpler ones when the evolution does not bring any
improvement in terms of fitness function value, see
Figure 1. These simpler blocks are evolved separately,
and then merged together once completely developed.
If, during the evolution of each single subsystem, the
stalling effect occurs again, the single sub-circuits will
be decomposed another time, until all the sub-circuits
are simple enough to be evolved. The systems are
decomposed by using Shannon and output
decomposition [2].

Figure 1. Bi-directional Incremental Evolution (BIE)
approach

As can be seen the evolution is in both sides: firstly
towards modularization (having simpler and smaller
logic circuits) and secondly towards an optimized
system, by assembling the simpler sub-circuits
together. For example, the output decomposition
guarantees that each sub-system is synthesized
separately and is completely independent. In the case
of functional decomposition, the corresponding outputs
generated for various input combinations in different
sub-systems have to be connected together using one-
control multiplexer. Analysis of experimental results
show that it is reasonable to assemble the subsystems
decomposed by functional decomposition first and then
the sub-systems separated using output decomposition
[18].

2.3 Generalised disjunction decomposition

The “generalised disjunction decomposition”
proposed in [3] is based on the statement that:

• the number of generations required to
completely evolve logic circuits is mainly
dependant on the number of inputs instead of
the number of outputs, which is shown in [3].

• The decomposition of a complex system into
smaller ones in BIE is done by using output
decomposition.

So, supposing that a complex system F with n inputs
and m outputs, see Figure 2, requires numerous
generations to be evolved. This could be decomposed
into two sub-systems as reported in Figure 3; where the
subsystem G with r inputs and s outputs represents the
evolvable part of the newly created system. The
number of input-output combinations is:

 rq 2= (4)

and the number of output is:
rnms −⋅= 2 (5)

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE

The sub-system H with (s+n-r) inputs and m outputs
represents the fixed part of the circuit that is mainly
generated using multiplexers. This part does not
participate in the evolutionary process.

The structure of this sub-circuit depends on the
number of used inputs and outputs. By using this
decomposition strategy the number of generations
required to evolve the circuits is much smaller;
furthermore this method allows the evolution of larger
circuits [3]. This sub-system G, which has fewer inputs
and more outputs than the original ones, can be evolved
using either the traditional EHW approach or any other
scalable approach such as divide-and-conquer, bi-
directional incremental evolution, etc.

Figure 2. General description of a system with n
inputs and m outputs (a); truth table of the system (b),
where p is equal to all the possible input-output
combinations.

Figure 3. Generalized disjunction decomposition of
the initial logic circuit. (a) Schemata r and g refer to the
number of inputs and outputs respectively. (b) Truth
table of the evolved part of the proposed sub-system

The complexity of the evolutionary process will
depend on the type of method used.

2.4 Evolving PLA structures using ES with
dynamic mutation rate

This approach is based on the idea of evolving logic
circuits using a dynamic mutation rate that adapts to the
evolved circuit structure [4]. This technique uses
evolutionary strategy with uniform mutation, roulette
wheel selection and binary chromosome representation
to generate the AND-OR PLA structure. The mutation
rate is changed according how good the evolved
solutions are. The chromosome encodes the structure of
Programmable Logic Array (PLA) by describing the
connections between lines in AND and OR planes.
Therefore, the PLA structure is encoded using 2 arrays
of genes as shown in Figure 4.

The chromosome is composed of three genes:
connection genes in AND plane, input line genes in
AND plane and connection in OR plane. The
evolutionary process is divided into 2 sub-processes,
where different fitness functions are activated. The
functionality of the evolved logic function is used
during the PLA design process. The number of product
lines in the PLA structure is minimized during the PLA
optimization process.

Dynamic fitness function similar to one introduced
earlier in the extrinsic EHW approach, is used to
evaluate the quality of the evolved circuits. The
difference is that the quality of the evolved fully
functional circuits is defined by the number of product
lines actually used in the obtained solution.

Figure 4. The chromosome encoding of a PLA
structure

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE

3. Experimental results

Evolvable hardware and Digital Logic Design are
two competitive areas that have the common goal: to
design of logic circuits. Evolvable hardware attempts to
introduce completely automated circuit design
processes in contrast to traditional Digital Logic
Design where even today the human intervention plays
a vital role in the design of logic circuits. Although
both areas have the same goal, the algorithms proposed
in these two areas are analyzed using different libraries.
For example, the approaches proposed in the area of
Digital Logic Design are validated using MCNC
benchmark library [5], [21] in contrast to Evolvable
hardware, where validation is mainly based on the
evolution of multipliers with different complexity and
randomly generated logic circuits [8][11][15]. Through
our experimental work we have attempted to merge a
validation process used in Evolvable Hardware and
Digital Logic Design. Therefore, the evolvability of
logic circuits randomly generated, as well as circuits
taken from MCNC benchmark library and multipliers
of different complexity are analyzed. This provides an
indication on how EHW-based approaches perform in
general for the evolution of combinational logic
circuits. In this work, only the logic circuits given on
complete set of input-output combinations have been
considered. For example a 3-bit multiplier has 6 inputs
and 6 outputs and it is described with 64 input-output
combinations. Similarly a 6-bit multiplier contains 12
inputs and 12 outputs and it is described by 4096 input-
output combinations. The presented results are
obtained based on the analysis of the truth table of
completely specified switching functions. The aim of
these experiments is to illustrate:

• the maximum possible size of evolvable logic
circuits for each method discussed earlier;

• the performance of methods discussed earlier
during optimization process;

The experiments have been carried out separately
for methods evolved FPGA- and PLA-based circuits.

3.1 Experimental results: BIE and generalized
disjunction decomposition

In this section the experimental results obtained with
the use of BIE and the generalised disjunction
decomposition are presented. The initial data used for
those experiments are given in Table 1. The system
used for evolving circuits with SO-BIE is shown in
Figure 1, while the schema shown in Figure 5 is used
for the generalized disjunction decomposition.

Table 1. Initial data for the experiments carried out
using BIE and the generalized disjunction
decomposition

Evolutionary algorithm (1+λ) rudimentary ES

Population size 5

Number of Generations 500000
Number of runs for each
experiments

≥100

Elitism is applied
Cell mutation rate 0.05
Geometry Mutation Rate 0.05
Termination criteria for
evolutionary process

2000 generations without
any improvement in fitness
function

Figure 5. System used for evolving logic circuits

The experimental results obtained by using BIE and
the generalised disjunction decomposition are shown in
Table 2. In that table all the characteristics of the
circuit are given. For example, by looking at the logic
circuit 9sym.pla, it has 9 inputs, 1 output and 512
input-output combinations. Then, the number of
generations (average out of 100 experiments and “best
solution”) required to evolve the logic circuits, is
reported. The next two columns give the average and
best time (values are expressed in seconds) for each
experiment. The next two columns provide the value of
fitness function for the final optimized solutions. The
last three columns give information on the circuit
layout used to evolve the logic circuits, such as number
of rows, columns and level’s back [22]. For each
circuit different results are given, this is because two
different methodologies are used.

For the circuits 9sym it can be observed that it is
evolved using BIE (first row, 9 input and 1 output) and
the generalised disjunction decomposition (second and
third rows respectively with 6 input and 8 outputs and 4
inputs and 32 outputs).

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE

Table 2. Experimental results from SO-BIE and generalized disjunction decomposition (GD-BIE), where in, out and
p are the number of inputs, outputs and products (input-output combinations) in the given logic function. Each logic
circuit (except for Mult6) has been evolved 100 times with a success rate of 100%. The last three columns give
dimension size: number of rows (R), columns (C) and level back (L) [22] of the circuit layout used during simulations

Experimental results Info circuit
Number of generations
performed

Total time spent per each
 experiment in seconds

Final fitness function Circuit layout
parameter:

name method in out p average best average best average best R C L
Randomly generated logic circuits

SO-BIE 6 5 64 40,425 26,381 1,194 624 15,658 25,088
6-5

GD-BIE 4 20 16 16,121 9,446 410 257 13,815 17,931
3 80 80

SO-BIE 6 4 64 30,095 14,587 1,099 442 11,866 20,456
6-4

GD-BIE 4 16 16 10,507 6,744 321 159 23,937 34,030
3 80 80

SO-BIE 6 3 64 30,754 16,099 366 229 3,498 6,404
6-3

GD-BIE 4 12 16 8,251 4,489 129 64 7,458 10,972
10 10 10

SO-BIE 6 2 64 12,886 4,160 289 94 1,598 3,486
6-2

GD-BIE 4 8 16 3,500 564 54 12 2,152 5,614
10 10 10

SO-BIE 6 1 64 10,784 4,406 136 59 1,483 3,887
6-1

GD-BIE 3 8 8 3,684 1,575 62 25 3,049 5,102
10 10 10

Logic circuits taken from MCNC benchmark library
SO-BIE 5 1 32 1,323 17 17 0.5 608 1,385

majority
GD-BIE 3 4 8 237 19 8 1 1,139 1,957

10 10 10

SO-BIE 9 1 512 67,041 44,261 2,852 2,204 15,976 32,790
6 8 64 28,741 13,771 745 412 15,971 26,448 9sym

GD-BIE
4 32 16 10,142 5,540 323 185 28,034 39,128

3 80 80

SO-BIE 7 4 128 28,121 10,535 269 112 3,036 5,268
5 16 32 11,665 4,358 90 29 7,465 14,190 add2_7

GD-BIE
4 32 16 7,448 4,541 52 32 13,248 20,455

10 10 10

SO-BIE 7 10 128 43,643 22,623 1,878 1,003 16,994 30,008
5xp1

GD-BIE 5 40 32 24,560 13,116 884 518 51,659 77,001
3 80 80

SO-BIE 9 8 512 168,053 127,206 10,713 8,039 40,847 68,204
addm4

GD-BIE 7 32 128 132,414 103,563 4,908 3,753 73,027 94,339
3 80 80

SO-BIE 14 1 16,384 184,476 150,838 70,877 64,222 5,024 7,531
co14

GD-BIE 10 16 10,24 50,733 14,139 6,240 3,479 13,179 33,075
3 80 80

SO-BIE 7 2 128 6,584 2,177 286 126 3,015 8,881
5 8 32 7,092 2,307 212 79 10,036 17,760 con1

GD-BIE
3 32 8 4,893 2,553 136 71 22,358 30,441

3 80 80

SO-BIE 8 4 256 87,752 58,640 781 568 13,571 24,545
6 16 64 56,764 35,698 410 256 16,473 22,388 rd84

GD-BIE
5 32 32 38,533 15,808 250 126 23,701 35,104

3 80 80

SO-BIE 16 1 65,536 Not evolved
t841

GD-BIE 9 128 512 597,469 463,396 20,250 13,482 396,399 445,554 4 100 100
Multiplier circuits

SO-BIE 6 6 64 21,948 9,030 288 126 4,279 2,373
Mult3

GD-BIE 4 24 16 9,156 4,434 123 67 8,820 14,219
10 10 10

SO-BIE 8 8 256 146,663 117,495 1,718 1,468 13,019 20,592
Mult4

GD-BIE 6 32 64 87,411 70,999 1,040 594 23,554 30,926
10 10 10

SO-BIE 10 10 1,024 740,164 685,372 16,033 15,338 48,786 52,860
Mult5

GD-BIE 8 40 256 506,347 482,789 24,088 17,458 152,372 171,368
3 80 80

Mult6 SO-BIE 12 12 4,096 2,582,678 2,582,678 190,450 190,450 537,322 537,322 3 80 80

Based on the results found, one may conclude that
the main advantages of using the generalized
disjunction decomposition are:

• a smaller amount of generations are required
during evolution

• a better values of fitness functions are
achieved, therefore the circuits are better
optimized

• it solves the tasks quicker than by using BIE
All the circuits (except of the multiplier 6x6, which

has been evolved only once, because of the high
computational time required) have been evolved 100
times with an achievement rate of 100%.

3.2 Experimental results: ES with dynamic
mutation rate

In this section the results obtained with the use of
the evolutionary strategy with variable mutation rate
are presented. In Table 3 the initial data together with
the experimental results are shown. In that table Imax is
the initial given number of products lines in PLA; Nmax

refers to the maximum number of generations given for
each evolutionary process: PLA design and
optimization; Ndesign and Nopt are the average number of
generations for design and optimization processes,
respectively; Idesign and Iopt are the average number of
product lines in PLA obtained after the completion of

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE

design and optimization processes respectively;
Ibest_design and Ibest_opt are the minimum number of
product lines over 100 runs obtained for design and
optimization processes respectively. Iimp gives the value
in percentage of improvements in terms of fitness
function. The experimental results have been obtained
based on the analysis of 100 runs for each logic
function, except of the circuits with the number of
inputs higher than 10. Those functions have been
evolved 5 times each. This is because the
computational requirements needed to complete the
evolution are too high for a desktop PC. It should be
observed that this method was not able to evolve logic
circuits with 14 inputs and higher, so the most difficult
task solved was the 6-digit multiplier. In several cases,
no significant improvement during optimization
process has been noticed, see Table 3 last column
(which gives the improvements in terms of fitness
function during optimization). This can be explained by
the use of a low number of generations during the
evolutionary process.

4 Conclusion

In this paper a comparison of evolving logic circuits
using three different methodologies has been presented.
The performance of these three different techniques has
been tested on the evolution of logic circuits taken
from different sources: some of them were randomly
generated, others were taken from MCNC benchmark
and others describe the behaviour of multipliers of
different complexities. The experimental results show
that, the generalised disjunction decomposition used
together with BIE:

• requires fewer of generations
• the evolved circuits are better optimized
• speeds up the evolutionary algorithm
• gives the possibility to completely evolve

circuits of 16 inputs (which means 65536
input-output combinations), which is the
biggest logic circuits completely evolved until
now, by using a desktop PC.

The most complex logic circuit evolved for SO-BIE
has 14-inputs. This may indicate the current limitations
of SO-BIE. Since the evolution of evolvable part in
GD-BIE is carried out by SO-BIE, the limitations
implied to SO-BIE also are implied to GD-BIE.
Therefore, GD-BIE can successfully perform evolution
while the evolvable part of the circuit G remains no
more complex than 14-inputs. Considering that
currently we have managed to reduce the number of
inputs in the evolvable part by 7, than one can predict
that the most complex logic circuit that GD-BIE is
capable to evolve should have no more than 21 input.
ES, with a dynamic mutation rate, performs far better
when compared with a BIE-based approach. This is
because the statistical method evolves logic circuits
using the AND and OR planes, which are simpler than
the FPGA based logic circuits evolved with the BIE
approach. The largest circuit evolved with this method
is a 6-digit multiplier. The method was not able to
evolve more complex circuits. Both approaches
discussed in the paper have demonstrated the capability
to evolve more complex logic functions than the ones
reported earlier. The analysis of experimental results
demonstrated that there is a potential for improvements
in these algorithms.

Table 3. Experimental results obtained by making use of statistical model
Experimental results

Initial parameters PLA design PLA optimization Name in out p

Imax Nmax

Success
rate (%) Ndesign Idesign Ibest_design Nopt Iopt Ibest_opt

Iimp

Logic circuits randomly generated
6-5 6 5 64 64 10,000 12 1232.4 63.7 62 10,000 62.8 59 1.4
6-4 6 4 64 64 10,000 61 101.6 61.9 56 10,000 56.8 50 8.2
6-3 6 3 64 64 10,000 100 5.7 57. 47 10,000 47.4 40 16.8
6-2 6 2 64 64 10,000 100 2.7 48.9 34 10,000 30.9 26 36.8
6-1 6 1 64 64 10,000 100 1.7 37.5 23 10,000 21.5 18 42.7

Logic circuits taken from MCNC benchmark
Majority 5 1 32 32 10,000 100 1.3 24.7 15 10,000 12.3 8 50.2
con1 7 2 128 96 10,000 100 5.5 86.7 60 10,000 60.9 49 29.8
Add2_7 7 4 128 128 10,000 100 10.8 117 96 10,000 101.2 91 13.5
5xp1 7 10 128 128 10,000 62 108.3 127.7 126 10,000 124.2 118 2.8
rd84 8 4 256 256 10,000 0 - - - - - - -
9sym 9 1 512 512 10,000 100 8.5 301.0 252 10,000 253.8 239 15.7
addm4 9 8 512 384 10,000 89 30.8 379.6 365 10,000 369.4 350 2.7
alu1 12 8 4,096 4,096 10,000 100 16.6 3506.0 3417 10,000 3,203.2 3,169 8.6
co14 14 1 16,384 16,384 10,000 0 - - - - - - -
rd84 16 1 65,536 65,536 10,000 0 - - - - - - -

Multiplier circuits
Mult3 6 6 64 64 10,000 100 7.1 56.9 47 10,000 49.4 42 13.2
Mult4 8 8 256 256 10,000 100 15.5 240.1 222 10,000 225.1 210 6.2
Mult5 10 10 512 512 10,000 100 26.4 990.5 954 10,000 965.7 936 2.5
Mult6 12 12 4,096 4,096 10,000 100 53.0 3997.2 3991 10,000 3,983.2 3,979 0.4

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE

6. References

[1]X. Yao, T. Higuchi. “Promises and challenges of
evolvable hardware”. IEEE Trans. Systems, Man and
Cybernetics, Part C, vol. 29, pp. 87 - 97, February 1999.

[2]T. Kalganova. “Bidirectional incremental evolution in
evolvable hardware”. Proc. of The Second NASA/DoD
Workshop on Evolvable Hardware. IEEE Computer Society.
Palo Alto, California, USA.

[3]E. Stomeo and T. Kalganova. “Improving EHW
performance introducing a new decomposition strategy”.
2004 IEEE Conference on Cybernetics and Intelligent
Systems. Pp. 439-444. Singapore, 1-3 December 2004.

[4]T. Kalganova, N. Lipnitsakya, Y. Yatskevich. “Evolving
PLA structures using evolutionary strategy with dynamic
mutation rate”. Proceedings of the 5th International
Conference on Recent Advances in Soft Computing,
Nottingham, United Kingdom December 2004. pp. 466 -
471. ISBN: 1-84233-110-8

[5]S. Yang. “Logic synthesis and optimisation benchmark
user guide version 3.0, MCNC, 1991”.

[6]D. E. Goldberg. Genetic algorithm in search, optimization
and machine learning. Addison-Wesley Publishing
Company, Incorporated, Reading, Massachusetts, 1989

[7]J. Dinerstein, N. Dinerstein, H. de Garis. “Automatic
Multi-Module Neural Network Evolution in an Artificial
Brain”. NASA/DoD Conf. on Evolvable Hardware, EH-2003,
USA, 2003.

[8]V. K. Vassilev, J. F. Miller “Scalability problems of
digital circuit evolution”. Proc. of the 2nd NASA/DOD
Workshop on Evolvable Hardware, pp. 55-64. Los Alamitos,
CA: IEEE Computer Society

[9]C. A. Coello, A. D. Christiansen and A. A. Hernández.
“Towards automated evolutionary design of combinational
circuits”. Computers and Electrical Engineering, Pergamon
Press, Vol. 27, No. 1, pp. 1-28, January 2001

[10]A. Thompson, I. Harvey, and P. Husbands.
“Unconstrained evolution and hard consequences”, in
Toward Evolvable Hardware: The Evolutionary Engineering
Approach, vol. 1062, E. Sanchez and M. Tomassini, Eds.
Berlin, Germany: Springer-Verlag, 1996, pp. 136–165.

[11]C. A. Coello, A. D. Christiansen and A. A. Hernández.
“Use of evolutionary techniques to automate the design of
combinational circuits” International Journal of Smart
Engineering System Design, 1999

[12]T. Higuchi, M. Murakawa, M. Iwata, I. Kajitani, Weixin
Liu, M. Salami, “Evolvable hardware at function level”;

IEEE International Conference on Evolutionary
Computation, pp. 187 - 192, April 1997

[13]T. Kalganova. “An Extrinsic Function-Level Evolvable
Hardware Approach”. Proc. of the Third European
Conference on Genetic Programming, EuroGP2000,
Edinburgh, UK. Eds. R. Poli, W. Banzhaf. Springer-Verlag.

[14]D. Job V. Vassilev and J. Miller. “Towards the automatic
design of more e_cient digital circuits”. Proc. of the 2nd
NASA/DoD Workshop on Evolvable Hardware, pp. 151-160.
IEEE Computer Society, Silicon Valley, USA.

[15]J. Torresen, “A divide-and-conquer approach to
evolvable hardware”, Evolvable Systems: From Biology to
Hardware. Second International Conference, ICES 98,
volume 1478 of Lecture Notes in Computer Science, pp 57-
65. Springer-Verlag, 1998.

[16]J. Torresen, “Increased complexity evolution applied to
evolvable hardware”, ANNIE'99, November 1999, St. Louis,
USA.

[17]J. Torresen. “Evolving multiplier circuits by training set
and training vector partitioning”. In proc. of Fifth Int. Conf.
on Evolvable Hardware (ICES03), Springer LNCS 2606, pp.
228-237, March 2003

[18]I. Baradavka and T. Kalganova. “Assembling Strategies
in Extrinsic Evolvable Hardware with Bi-directional
Incremental Evolution”. Proc. of the 6th European
Conference on Genetic Programming, EuroGP2003, Essex,
UK. Published by Springer-Verlag. Vol. 2610. pp. 276-285.

[19]T. Kalganova, J. Miller, “Evolving more efficient digital
circuits by allowing circuit layout evolution and multi-
objective fitness”. Proc. of the First NASA/DoD Workshop
on Evolvable Hardware. IEEE Computer Society, pp. 54–63.
July 1999

[20]J. Miller. “An empirical study of the efficiency of
learning Boolean functions using a Cartesian genetic
programming approach” In Proc. of the Genetic and
Evolutionary Computation Conference, volume 1, pp. 1135–
1142, Orlando, USA, July 1999.

[21]P.K, Samudrala, J. Ramos, S. Katkoori, S.; “Selective
triple Modular redundancy (STMR) based single-event upset
(SEU) tolerant synthesis for FPGAs”.IEEE Transactions on
Nuclear Science, Volume: 51 , Issue: 5 , Oct. 2004
Pages:2957 – 2969

[22]J. Miller, P. Thomson. “Cartesian genetic programming”.
In Riccardo Poli, Wolfgan Banzhaf, William B. Langdon,
Julian F. Miller, Peter Nordin and Terence C. Forgaty, eds,
Genetic Programming, Proc. of EuroGP 2000, vol. 1802 of
LNCS, pp 121-132, Edinburg, 16-16 April 2000. Springer-
Verlag

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE

