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Abstract: θ-Al13Fe4 particles form as a primary Fe intermetallic compound (Fe-IMC) during the
casting of commercial Al metals and alloys that inevitably contain Fe and Si as impurities. Moreover,
the excellent mechanical performances of the Al-Cu alloys demand knowledge about the structural
chemistry of the Fe-IMCs, including the θ-phase in the quaternary Al-Cu-Fe-Si system. Here, we
investigate the stability, crystal structure, and electronic and mechanical properties of the Cu and Si
co-doped θ-phase using a first-principles density-functional theory approach. The calculations reveal
high stability of a quaternary θ-phase with chemical composition (Al0.8718Cu0.0256Si0.1026)13Fe4 at
ambient conditions. Thermodynamics and statistical analysis show a broad range of Si content in the
structure at the casting temperature. The Cu and Si (co-)doping enhances the bulk modulus of the
compounds. The calculated bulk modulus of the quaternary θ-phase is 129 GPa. The findings help
characterize the θ-phase in the quaternary Al-Si-Fe-Cu system and understand the formation of the
θ-phase and related phase transformations in the various Al alloys during casting.

Keywords: Fe-intermetallic compounds; Si-Cu co-doping; θ-Al13Fe4; quaternary Al-Fe-Cu-Si com-
pound; structural chemistry; physical properties; first-principles calculations

1. Introduction

Commercial aluminum metals and alloys inevitably contain impurities such as iron
(Fe) and silicon (Si) [1–3]. Fe has low solubility in aluminum (<0.05 wt%), which persuades
its existence in the forms of iron intermetallic compounds (Fe-IMCs), including the pri-
mary θ-Al13Fe4. During casting, first θ-Al13Fe4 particles form and then they transform to
other Fe-IMCs with the decreasing temperature [2,4–9]. Si is often added to Al alloys to
improve the mechanical performance of the cast parts [1,2,7,8]. Si may dissolve into the
Fe-IMCs [4,6–10]. These Fe-IMCs have nontrivial impacts on the mechanical performances
of the cast parts [2,7–11]. It is, thus, essential to remove the Fe-IMCs in Al-metal/alloys
during liquid handling and to cast processes in the industry [2,8,9]. This becomes even
more important for recycling Al scraps for our circular economy [12–14]. To reach these
goals, knowledge about the formation, stability and structural and physical properties of
the Fe-IMCs, particularly the primary θ-Al13Fe4 phase in various Al alloys, is crucial.

There have been many experimental efforts on the formation and phase transforma-
tions in Al-based metals and alloys during casting [2,5–10], as well as the thermal stabil-
ity [15–18] and its crystal structure [19,20] and the physical properties [21] of θ-Al13Fe4.
Crystalographically, θ-Al13Fe4 is rich in variation. It has a monoclinic lattice with space
group C2/m (nr. 12). The experimental lattice parameters are, a = 15.492 Å, b = 8.078 Å,
c = 11.471 Å and β = 107.69◦ [19]. This cell contains 102 atoms (78 Al and 24 Fe) in 20
different Wyckoff positions (15 Al and 5 Fe). Each Fe atom has nine to eleven Al neighbors;
meanwhile, the Al atoms have 10 to 12 neighbors, with the exception of Al2, which has six
neighbors with bonds shorter than 3.0 Å [19].

θ-Al13Fe4 is also the prototype of the family of θ-M13Fe4 (M = Co, Fe, Ni, Pt) [22].
Moreover, the rich volatility of the metallic species indicates the possibility of dissolving
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other metallic atoms into this structure to form multicomponent crystals, including the
solution of the transition metals, Co, Cr, Ni, and Pt, at the Fe sites [21,23]. Experimental
and theoretical studies have also found Si solution at the Al sites in θ-Al13Fe4 [2–4,6–11].
Moreover, to improve the mechanical performances of the cast parts, Cu is often added to
produce Al-Cu alloys [1,3,15]. Experiments have revealed Cu solution in θ-Al13Fe4 [24,25].

Theoretical approaches, especially parameter-free first-principles methods, have been
successfully applied to investigate the stability, structural and electronic properties of
various Fe-IMCs [16,17,26–28]. First-principle calculations have also been used for the
bulk [22,28–30], its surfaces [31,32], as well as the intrinsic defects in θ-Al13Fe4 [33,34].
Recently, more interest was drawn to Si [35] and Cu [36] solutions in θ-Al13Fe4.

In the present study, we investigate Si-Cu co-doping in θ-Al13Fe4 using the first-
principles density-functional theory within generalized gradient approximation (DFT-
GGA). Hubbard U correction was included to describe the Cu 3d electrons, which is
important for adequately describing the local chemical bonding [36]. Our study reveals
Cu-Si co-solution in the θ-phase, forming a stable quaternary θ-Al68Cu2Si8Fe24 at ambient
conditions. Thermodynamics analysis shows the dependence of chemical compositions
on preparation conditions. The calculations also provide the bulk modulus of the stable
θ-phases. The findings here help us to understand the formation, stability, crystal structure,
and properties of the θ-phase in the quaternary Al-Fe-Cu-Si system for the properties of
cast Al alloys.

2. Methods

The previous first-principles study revealed the high stability of θ-Al76Cu2Fe24 in
the ternary Al-Fe-Cu system [36]. This compound is used here as the starting point. The
solid-solid reactions with Si solution at the Al sites can be defined as,

θ-Al76Cu2Fe24 + n Si − n Al = θ-(Al76-nSin)Cu2Fe24 + ∆H (1)

The related formation energy of Si-containing configurations is,

∆E = E(θ-(Al76-nSin)Cu2Fe24) − {E(θ-Al76Cu2Fe24) + n [E(Si) − E(Al)]} (2)

Here ∆H is the enthalpy of the reaction (1). E(θ-(Al76-nSin)Cu2Fe24), E(θ-Al76Cu2Fe24),
E(Si), and E(Al) represent the calculated total valence-electron energies of θ-(Al76-nSin)Cu2Fe24,
θ-Al76Cu2Fe24, and the elemental solids Si and α-Al, respectively. The unit in Equation (2)
is eV/cell. A negative value of ∆E means that the reaction (1) is exothermal and favored.
At ambient conditions (T = 0 K, P = 0 Pa), the formation energy is equal to the negative
value of the reaction enthalpy in Equation (1), ∆E = −∆H, when the zero-point vibration
energy term is ignored.

For the calculations, we employ a plane-wave method implemented in the first-
principles code VASP (Vienna Ab initio Simulation Package) [37,38]. We also use the spin-
polarized generalized gradient approximation [39] within the projector-augmented wave
method [40] for the exchange and correlation energy terms. This is because the generalized
gradient approximation describes the 3d transition metals well [41,42]. Considering the
localized nature of the Cu 3d electrons, we employed the Hubbard U correction [43,44]
with U = 4 eV, according to the previous study, to avoid the unphysical interaction of the
localized Cu 3d electrons with the neighboring atoms [36,45]. The cut-off energy of the
wave functions was set at 550.0 eV and the cut-off energy of the augmentation functions
was 700.0 eV. These energies are significantly higher than the corresponding default values
for the elements. The electronic wave functions were sampled on a 4 × 8 × 6 grid with
70–110 k-points in the irreducible Brillouin zone of the conventional cell of the θ-phase,
depending on the symmetry using the Monkhorst–Pack scheme [46]. Both the lattice
parameters and the coordinates of the atoms were fully relaxed. Different k-meshes and
cut-off energies were used for the waves and augmentation waves, respectively. The tests
showed good convergence (<1 meV/atom).



Metals 2022, 12, 2112 3 of 14

3. Results and Discussions

Using the above mentioned code and settings, the calculations produced lattice pa-
rameters for the elemental solids [47]: a = 3.039 Å for α-Al with a face-centered cubic cell
(experimental value, a = 3.0325 Å at 0 K [48], the same for the rest); a = 5.468 Å for Si of the
diamond-type structure (a = 5.42982 Å [48]); a = 2.831 Å for the ferromagnetic α-Fe with a
body-centered cubic cell (a = 2.8607 Å [48]); and a = 3.622 Å for Cu (a = 3.6032 Å [48]). The
calculated magnetic moment for α-Fe is 2.18 µB/Fe, the same as the previous work [27]. The
calculated lattice parameters agree with the experimental values with deviations within 1%.
The calculations also produced total valence-electron energies for these elemental solids,
which will be used to study the formation energies of the related θ-phases.

Calculations for the Si solutions in the Fe sites in θ-Al76Cu2Fe24, with respect to this
parent ternary compound and the elemental solids, α-Al and α-Fe, showed that the Si
solution at the Fe sites is costly, with formation energies high than 0.5 eV/Si. This indicates
that it is unlikely for the Si solution to form in the Fe sites in the θ-phase.

3.1. Si Solution in θ-Al76Cu2Fe24

The Al atoms at each Al site are fully replaced by Si. In this way, the symmetry of the
systems is maintained. The calculations revealed non-spin-polarized solutions for all the
θ-phases. The obtained results (lattice parameters, cell volume, and formation energies,
according to Equation (2)) are listed in Table 1. The coordination numbers of the nearest
neighbors for the Si atoms in the optimized structures are included in Table 1.

Table 1. The calculated results (lattice parameters, atomic coordinates, cell volumes, coordination
numbers (CNN), Bader’s charges at the Si sites (q) and formation energies according to Equation (2)
for Si solutions at the Al sites. The Wyckoff sites are fully replaced by Si and thus, the symmetry of
the systems is the same as that of the θ-Al13Fe4 (space group, C2/m) [19].

Si-Sites Local Sym. Lattice Parameters and Volume
a(Å), b(Å), c(Å), β(◦); V(Å3) CNN(Si) q(e/Si) ∆E

(eV/Cell)

θ-Al76Cu2Fe24 - 15.501, 7.928, 12.459, 108.15; 1455.08 - - 0.00

4Si at Al1 4i, m 15.446, 7.978, 12.346, 108.24; 1444.98 3Fe,7Al −0.79 +0.48

4Si at Al2 4i, m 15.449, 7.909, 12.540, 108.18; 1455.64 2Fe, 10Al −0.27 +0.95

4Si at Al3 4i, m 15.373, 7.995, 12.541, 109.31; 1454.38 2Fe, 10Al −0.59 +1.25

4Si at Al4 4i, m 15.412, 7.930, 12.403, 107.90; 1442.54 4Fe, 1Si, 6Al −0.77 +0.17

4Si at Al5 4i, m 15.228, 7.992, 12.532, 107.60; 1453.68 2Fe, 10Al −0.64 +1.45

4Si at Al6 4i, m 15.446, 7.967, 12.356, 108.37; 1443.11 3Fe, 7Al −0.66 −0.22

4Si at Al8 4i, m 15.454, 7.906, 12.385, 107.97; 1439.44 4Fe, 7Al −0.88 −0.63

4Si at Al9 4i, m 15.454, 7.926, 12.395, 108.27; 1441.69 4Fe, 7Al −1.18 −0.45

8Si at Al10 8j, 1 15.421, 7.959, 12.385, 109.18; 1435.65 3Fe, 9Al −0.88 +1.41

8Si at Al11 8j, 1 15.419, 7.958, 12.289, 107.70; 1436.54 3Fe, 9Al −0.85 +1.41

8Si at Al12 8j, 1 15.275, 7.943, 12.376, 107.01; 1436.02 3Fe, 9Al −0.70 +1.45

8Si at Al13 8j, 1 15.249, 7.955, 12.518, 108.78; 1437.56 3Fe, 1Cu, 8Al −0.52 +1.41

8Si at Al14 8j, 1 15.461, 7.957, 12.295, 108.21; 1436.78 2Fe, 1Si, 9Al −0.79 +0.92

4Si at Al15 4g, 2 15.422, 7.891, 12.481, 108.09; 1443.70 4Fe, 8Al −0.46 +0.50

Table 1 shows the overall trends of the calculated results with the Si solutions in the Al
sites in θ-Al76Cu2Fe24. There are only three configurations with Si at the Al8 (denoted as
Si8, same for the rest), whereas Al9 and Al6 sites have negative formation energies (Table 1).
We also employ the (n Si m) to represent the condition of the calculation; ‘n’ means the
number of Si atoms, and ‘m’ the Al sites. The 4Si4 has a small positive formation energy
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(0.174 eV/cell). The remaining configurations have high values of positive formation
energies ranging between 0.48 eV/cell and 1.50 eV/cell. The order of the stability of the
stable configurations (from high to low) is 4Si8 > 4Si9 > 4Si6. This order of stability is
different from that of Si solutions in pristine θ-Al78Fe24, where the configuration with 4Si9
is the most stable one [35].

The coordination of the Si atoms in the configuration of 4Si8 is similar to that of 4Si9.
Each Si in the configurations has four Fe neighbors and seven Al neighbors (Table 1). In the
4Si4, each Si also has four Fe neighbors. In 4Si6, each Si atom has three Fe neighbors. The
analysis indicates that each Si has three or four Fe neighbors in the stable configurations.

As shown in Table 1, the volume of the Si solutioned configurations decreases with
increasing Si contents in general, with the exception of the highly unstable configuration of
4Si2. This corresponds to the smaller atomic volume of Si with respect to Al [48]. Table 1
also shows that the most stable configuration (4Si8) has the smallest volume among the
configurations with the four Si solutions at the Al1 sites.

Next, we focused on the stable configurations with Si solutions at Al8, Al9 and Al6. We
performed structural optimizations and total energy calculations for the Si solutions with
various contents at the three Al sites. Moreover, we also investigated the configurations
of the Si solutions at the mixed Al8, Al9, and Al6 sites. The obtained configurations and
related formation energies for the more stable structures are shown in Figure 1.
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Figure 1 shows that the formation energy decreases with the increased Si content for 
Si solutions at the individual Al sites and with the same order of stability, as shown in 
Table 1, (from high to low): Si8 > Si9 >> Si6, being consistent with the results in Table 1. 

Figure 1. The calculated formation energies on Si contents (n) in θ-Al76-nCu2SinFe24 with respect to
θ-Al76Cu2Fe24 and the elemental solids Al and Si (Equation (2). In the figure, the (n Si m) was used
to represent the condition of the calculation. ‘n’ means the number of Si atoms, and ‘m’ the Al sites.
In details, the marks represent the formation energies for the configurations with (the order of) Si
atoms at the corresponding Al sites: The black filled spheres represent the formation energies relating
to that Si atoms first occupy the Al8 sites and gradually the Al9 sites secondly, and the Al6 at last,
the red spheres that Si atoms occupy the Al9 sites first and gradually the Al8 sites secondly, the blue
spheres that Si first occupies the Al6 sites and gradually the Al8 sites secondly, and the Al9 at last.
The yellow spheres represent the formation energies with the configurations with Si atoms at the Al8
and Al9 sites in a mixed way. The green sphere represents the formation energy of the 4Si8, 3Si9 and
1Si6 configuration.

Figure 1 shows that the formation energy decreases with the increased Si content for
Si solutions at the individual Al sites and with the same order of stability, as shown in
Table 1, (from high to low): Si8 > Si9 >> Si6, being consistent with the results in Table 1.
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The Si solutions at mixing Al8 and Al9 have the formation energies in-between those at the
corresponding Al8 and Al9 sites with the same Si content.

The investigation revealed that the most stable configurations have 4Si8 and 4Si9 with
the composition θ-Al68Cu2Si8Fe24. This has been justified for more arrangements with the
same Si content. The next stable configuration with this composition has 4Si8 + 3Si9 + 1Si,
the formation energy of which is approximately 0.16 eV/cell higher than the stable one, as
shown in Figure 1.

The solutions of Si at the Al6 sites in θ-Al68Cu2Si8Fe24 produced the most stable
configurations with the same Si content. The calculations showed that the formation energy
increases with the Si content. The maximum Si content with negative formation energy is
12Si at the Al9, Al8, and Al6 sites. The calculations also showed that further Si solutions
at the other Al sites, e.g., Al4 in θ-Al68Cu2Si8Fe24, increase the formation energy notably,
indicating such solutions as being unfavored.

3.2. Crystal Chemistry of θ-Al68Cu2Si8Fe24

The optimized structure for the most stable θ-Al68Cu2Si8Fe24, schematically along its
[010] orientation, is shown in Figure 2. The atomic coordinates are shown in Table 2.
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Figure 2. Schematic structure of θ-Al68Cu2Si8Fe24 along its [010] projection (a). The schematic
coordination of Cu (b) and Si (c) is shown, respectively. The pink lines in (a) represent a-axis (parallel)
and c-axis (upwards) of the unit cell.

Table 2. Calculated results for θ-Al68Cu2Si8Fe24. The space group is C2/m (nr. 12). The calculated
lattice parameters are a = 15.390 Å, b = 7.910 Å, c = 12.309 Å, β = 108.06◦.

Label
Sites

Coordinates of Atoms
x, y, z Interatomic Distances (Å) q(e/atom)

Al1, 4i 0.0657, 0.0000, 0.1709 Al1-3Fe: 2.47, 2.50, 2.53; -1Si: 2.48;
-6Al: 2.79(×2); 2.81(×2); 2.84(×2) +1.24

Al2, 4i 0.3212, 0.0000, 0.2759
Al2-2Fe: 2.41(×2);

-10Al: 2.85(×2), 2.92(×2), 2.98(×2);
3.03(×2); 3.09(×2)

+1.17

Al3, 4i 0.2320, 0.0000, 0.5323
Al3-4Fe: 2.41, 2.55, 3.13(×2); -1Si: 2.81

-9Al: 2.66, 2.76(×2), 2.85(×2), 2.88(×2);
2.90(×2)

+1.07
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Table 2. Cont.

Label
Sites

Coordinates of Atoms
x, y, z Interatomic Distances (Å) q(e/atom)

Al4, 4i 0.0740, 0.0000, 0.5784 Al4-4Fe: 2.51, 2.56(×2), 2.57; -1Si: 2.48
-6Al: 2.49, 2.66(×3), 2.76(×2) +1.33

Al5, 4i 0.2378, 0.0000, 0.9503

Al5-4Fe: 2.39, 2.41, 3.05(×2); -2Si: 2.66,
2.74;

-8Al: 2.74(×2), 2.76(×2), 2.87(×2),
2.90(×2)

+1.49

Al6, 4i 0.4801, 0.0000, 0.8323 Al6-3Fe: 2.41, 2.49(×2); -1Si: 2.51;
-6Al: 2.79(×2), 2.80(×2), 2.84(×2) +1.34

Cu7, 2c 0.5000, 0.0000, 0.5000 Cu7-2Fe: 2.64(×2);
-8Al: 2.57(×4), 2.66(×4) −1.00

Si8, 4i 0.3089, 0.0000, 0.7716 Si8-4Fe: 2.42(×2), 2.46, 2.49;
-7Al: 2.51, 2.62(×2), 2.66(×2), 2.74, 2.81 −0.91

Si9, 4i 0.0800, 0.0000, 0.7823 Si9-4Fe: 2.38, 2.44(×2), 2.61;
-7Al: 2.48(×2), 2.63(×2), 2.66, 2.67(×2) −1.19

Al10, 8j 0.1849, 0.2172, 0.1094
Al10-3Fe: 2.49(×2), 2.64; -1Si: 2.66;

-8Al: 2.61, 2.74, 2.76, 2.79, 2.82(×2), 2.90,
2.98

+1.23

Al11, 8j 0.3684, 0.2131, 0.1090
Al11-3Fe: 2.47, 2.49, 2.68; -1Si: 2.63;

-8Al: 2.61, 2.76, 2.77, 2.79, 2.82, 2.83, 2.87,
2.92

+1.26

Al12, 8j 0.1767, 0.2206, 0.3352 Al12-3Fe: 2.46, 2.55, 2.61; -1Si: 2.62;
-8Al: 2.68, 2.81, 2.82, 2.85, 2.90(×3), 3.09 +1.22

Al13, 8j 0.4906, 0.2221, 0.3344
Al13-3Fe:2.45,2.55, 2.61; -1Cu:2.66;

-1Si:2.67
-7Al: 2.68, 2.76, 2.83, 2.84, 2.90, 2.96,3.03

+1.34

Al14, 8j 0.3660, 0.2056, 0.4758
Al14-2Fe: 2.46, 2.49; -1Cu: 2.57;

-9Al: 2.66, 2.68(×2), 2.76, 2.85, 2.88, 2.90,
2.92, 2.96,(3.25)

+1.09

Al15, 4g 0.0000, 0.2505, 0.0000
Al15-4Fe: 2.48(×4);

-8Al: 2.76(×2), 2.77(×2), 2.80(×2),
2.84(×2)

+1.32

Fe1, 4i 0.0782, 0.0000, 0.3762
Fe1-1Si: 2.61;

-10Al: 2.46(×2), 2.47, 2.51, 2.55 (×3),
2.57,2.92(×2)

−2.91

Fe2, 4i 0.3937, 0.0000, 0.6322
Fe2-1Cu: 2.64; -1Si: 2.46;

-8Al: 2.41(×2), 2.45(×2), 2.46(×2),
2.55(×2)

−3.54

Fe3, 4i 0.0900, 0.0000, 0.9792
Fe3-1Fe: 2.97; -1Si: 2.38;

-9Al: 2.41, 2.48(×2), 2.49(×2), 2.50, 2.53,
2.68(×2)

−3.14

Fe4, 4i 0.3986, 0.0000, 0.9786
Fe4-1Fe: 3.00; -1Si: 2.49;

-9Al: 2.39,
2.47(×2),2.48(×2),2.49(×2),2.64(×2)

−3.42

Fe5, 8j 0.3185, 0.3048, 0.2738
Fe5-1Fe: 3.09; -2Si: 2.42, 2.44;

-9Al: 2.41, 2.49(×3), 2.56, 2.61(×2), 3.05,
3.13

−2.82

The frame of the structure of θ-Al68Cu2Si8Fe24 is the same as that of the pristine
θ-Al78Fe24 [19,33]. Here, we focus on the special Al sites, Al7 (2Cu7), Al8 (4Si8), and Al9
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(4Si9), in the Cu-Si co-solutioned θ-phase. The chemical bonds of those selected atoms in
the different configurations are shown in Table 3.

Table 3. Comparison of the local coordination for the selected atoms in the pristine, Cu or/and Si
solutioned and Si-Cu co-solutioned θ-phase.

Site θ-Al78Fe24 θ-Al76Cu2Fe24 θ-Al74Si4Fe24 θ-Al68Cu2Si8Fe24

M7, 2c Al7-2Fe: 2.47(×2)
-8Al: 2.69(×4),2.80(×4)

Cu7-2Fe: 2.61(×2)
-8Al: 2.49(×4),2.80(×4)

Al7-2Fe: 2.46(×2)
-8Al: 2.69(×4),2.79(×4)

Cu7-2Fe: 2.64(×2);
-8Al: 2.57(×4), 2.66(×4)

M8, 4i
Al8-4Fe:2.47(×2), 2.61,2.70
-7Al: 2.56, 2.67(×4),
2.81(×2)

Al8-4Fe:2.47(×2),2.58,2.63
-7Al: 2.55, 2.66(×2),
2.67(×2), 2.79(×2)

Al8-4Fe:2.48(×2),2.59, 2.66
-7Al:2.54, 2.64(×2),
2.68(×2), 2.77, 2.84

Si8-4Fe: 2.42(×2), 2.46, 2.49
-7Al: 2.51, 2.62(×2),
2.66(×2), 2.74, 2.81

M9, 4i
Al9-4Fe:2.46,2.49(×2),2.86
-7Al: 2.53, 2.54,2.63(×2),
2.67(×3)

Al9-4Fe:2.49,2.50(×2),2.75
-7Al: 2.52 (×2), 2.52 (×2),
2.69, 2.70(×2)

Si9-4Fe: 2.37, 2.42(×2), 2.77
-7Al:2.51(×2),2.62(×2),
2.66 (×3)

Si9-4Fe: 2.38, 2.44(×2), 2.61
-7Al: 2.48(×2), 2.63(×2),
2.66,2.67(×2)

Tables 2 and 3 showed that the coordination numbers of the atoms at the same site
in the different compositions are the same. However, there are some subtle differences
between θ-Al68Cu2Si8Fe24 and the other configurations.

The Cu7-Fe bond length is 2.61 Å in θ-Al76Cu2Fe24, which is close to that of (2.64 Å) in
θ-Al68Cu2Si8Fe24. However, these Cu7-Fe bond lengths are larger than the corresponding
Al7-Fe bonds (~2.46 Å) in θ-Al78Fe24 and θ-Al74Si4Fe24. Meanwhile, the Cu7-Al bonds, on
average (~2.63 Å), in the Cu-containing configurations are shorter than the Al7-Al bonds in
the binary Al-Fe and the ternary Al-Fe-Si compounds (~2.74 Å), as shown in Table 3. This
phenomenon corresponds well to the smaller Cu volume than Al [44].

3.3. Electronic Properties of θ-Al68Cu2Si8Fe24

Using the settings in Section 2, we performed electronic band structure calculations
for the stable θ-Al68Cu2Si8Fe24. The obtained electron density distributions and partial
density of states (pDOS) for selected atoms and the total density of states (tDOS) are shown
in Figures 3 and 4, respectively.

To better understand the interatomic interactions in θ-Al68Cu2Si8Fe24, we also per-
formed Bader charge analysis, which divides an atom into solid via the zero-flux surfaces
between the atom and its surrounding atoms (δρ(r)/δr = 0) [49]. Based on the calculated
electron density distribution (Figure 3), the obtained charges at the atomic sites are included
in Table 2.

As shown in Figure 4, the Si 3s and 3p states are between −11.6 eV and −0.5 eV and
the conduction bands. There is a valley between −0.5 eV and 0 eV, such as a pseudo-gap.
The Si 3s states are positioned at the lower valence band (−11.6 eV to −6.0 eV). There are
also some Si 3s states at the lower part of the conduction band. Meanwhile, the Si 3p state
dominates the upper part of the valence bands and the conduction bands from 2.5 eV. There
is admixing between the Si 3s and 3p states, corresponding to the sp3 hybrid.

The Cu 3d states dominate the curve with a peak at −4.5 eV and with a bandwidth of
approximately 1.0 eV. This value peak is notably lower than that in pure Cu (−2.3 eV) from
the first-principles calculations with Hubbard U correction and the photoemission spectrum
measurements [45]. This indicates that the Cu in the structure gains electrons from the
environments, which is confirmed by Bader’s charge analysis (Table 2). Moreover, the
narrow bandwidth indicates the localized nature of the Cu 3d electrons, which contribute
little to the chemical bonding between the Cu and the neighboring atoms.

The Fe 3d states dominate the upper part of the valence band (from −4.0 eV to
−0.5 eV). A considerable density of Fe 3d states is located at the Fermi level. Such broad
peaks indicate the rather delocalized nature of the Fe 3d states in the compound. The Fe 3d
states are almost fully occupied, consistent with the significant gains of electrons from their
neighboring atoms. This also means that Fe atoms obtain electrons from the surrounding
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Al atoms. The Al 3s 3p states are all over the valence and conduction bands with lower
densities, corresponding to the metallic nature of the element, indicating their ionic and
covalent nature. This agrees with the non-spin-polarized state for the Fe atoms.
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Figure 4. Partial density of states (pDOS) of the selected atoms in and the total density of states (tDOS)
of θ-Al68Cu2Si8Fe24. The black lines for the pDOS of atoms represent s-characters, red p-characters
and green 3d-characters. The vertical dotted line represents the Fermi level (at zero eV). We observed
that the Fermi level is dominated by Fe 3d states.
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Moreover, from Figures 3 and 4, and Table 2, we obtained the following results:

(1) Al atoms have few electrons around them, corresponding to their metallic nature, as
such metals are composed of free electrons and ions. Bader’s charge analysis showed
the Al atoms are positively charged with a loss of 1.1 e/Al to 1.5 e/Al (Table 2).

(2) Cu atoms have almost spherically shaped clouds of dense electrons around them.
This is due to the itinerant 3d electrons (Figure 4). Each Cu gains 1.0 e/Cu (Table 2)
from neighboring Al atoms.

(3) Fe atoms also exhibit irregularly shaped clouds of high densities, indicating interac-
tions between Fe 3d states with neighboring atoms, including Si, Cu and Al. Bader
charge analysis showed more significant electron gains for the Fe atoms with charges
ranging between −2.82 e/Fe and −3.54 e/Fe, corresponding to its electronegativity
value being larger than Al. Correspondingly, the Fe atoms are non-spin-polarized in
the compounds.

(4) Si atoms have high electron density around them, and they connect to Fe atoms,
forming Si-Fe and Si-Fe-Cu clusters. They are negatively charged with −0.9 e/Si8 to
−1.2 e/Si9 from the neighboring Al atoms.

(5) The number of charge transfers between the atoms, Al, Cu, and Si also indicate the
covalent nature of θ-Al68Cu2Si8Fe24.

In brief, electronically Cu 3d states are fully occupied and positioned approximately
4.5 eV below the Fermi level with a small bandwidth, indicating little contribution to the
chemical bonding. The Fe 3d states dominate the upper valence band and the Fermi level.
The Al atoms are positively charged, whereas the Si, Fe, and Cu atoms are negatively
charged. This compound exhibits ionic, covalent, and metallic triple nature.

3.4. Stability and Mechanical Properties of the θ-Phases

The dependences of the total valence-electron energies on the volumes are investi-
gated for the binary, ternary and quaternary θ-phases. Using the Murnaghan equation
of states [50,51], we obtained the parameters (ground electronic energies, ground state
volume, bulk modulus) of the related compounds. The obtained relation between the total
valence-electron energies and volumes is plotted in Figure 5 and Table 4.
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Table 4. The obtained results for the related configurations using the Murnaghan equation of state.
V0 represents the optimized volume, E0 the energy, B0 the bulk modulus and B0′ the first derivative.
The formation energies (∆Eform) with respects to the elemental solids according to Equation (3)
also included.

Composition V0(Å3/Cell) E0(eV/Cell) B0(GPa) B0′
∆Eform (eV/cell)
in () kJ/mol

θ-Al78Fe24 1466.4 −523.54 121.8 4.3 −33.52(−31.7)

θ-Al76Cu2Fe24 1457.2 −521.10 122.5 4.3 −33.84(−32.0)

θ-Al74Si4Fe24 1450.8 −530.42 124.3 4.4 −33.69(−31.9)

θ-Al72Cu2Si4Fe24 1439.6 −528.45 127.3 4.2 −34.24(−32.4)

θ-Al68Cu2Si8Fe24 1424.6 −535.34 129.2 4.4 −34.65(−32.8)

As shown in Figure 5, the energy-volume values fit well using the Murnaghan equation
of states [51]. As summarized in Table 4, the solutions of the Si-Cu atoms at the Al sites
decrease the volume of the pristine θ-Al13Fe4 unit cell. This corresponds to the shorter
M-Al and M-Fe (M = Si or Cu) than the corresponding Al-Al and Al-Fe bonds (Table 3).

Table 4 also shows that solutions of Si or Cu enhance the bulk modulus of the θ-phases.
The quaternary θ-Al68Cu2Si8Fe24 has the maximum bulk modulus (129 GPa) which is
higher than that (122 GPa) of the pristine θ-Al13Fe4 and those of the ternary compounds
(123 to 127 GPa).

To provide a comparison of the stability of the binary, ternary and quaternary θ-
structures, we investigated their formation energies with respect to the elemental solids in
a systematic way. The formation energy of a compound Al78-n-mSinCumFe24 (0 ≤ n, 0 ≤ m
≤ 2) with respect to the elemental solids, α-Al, α-Fe, Si and Cu is here defined as

∆E(Al78-n-mSinCumFe24) = E(Al76-n-mSinCumFe24) − [(76-n-m) E(Al) + 24 E(Fe) + n E(Si) + m E(Cu)], (3)

here, E(Al76-n-mSinCumFe24), E(Fe), E(Al), E(Si) and E(Cu) are, respectively, the calculated
total energy for θ-Al76-n-mSinCumFe24, and the elemental solids, α-Al, α-Fe, Si and Cu. The
calculated formation energies are shown in Table 4.

As shown in Table 4, the Si and Cu solutions in θ-Al13Fe4 form, respectively, the
ternary θ-Al74Si4Fe24 and θ-Al76Cu2Fe24 compounds, are more stable than the parent
binary phase. Table 4 also shows that the Si and Cu co-solution in θ-Al13Fe4 form, the
quaternary θ-Al72Cu2Si4Fe24 and θ-Al68Cu2Si8Fe24, are more stable than the binary and
the ternary phases, with the latter being the most stable under ambient conditions.

The calculated bulk modulus of the θ-phases provided us information about their
mechanical properties. Meanwhile, for better knowledge regarding the elastic properties
of these complex compounds, the related elastic constant coefficients and related phonon
spectra require further investigation.

3.5. Formation Range and Stability of θ-(Al76-nSinCu2)Fe24 at Casting Temperature

The first-principles calculations showed that Si atoms prefer the Al8 and Al9 sites in
the θ-phase. Meanwhile, the energy difference between the Si at the Al8 and Al at the Al9
sites is insignificant. For n = 1 in θ-(Al76-nSinCu2)Fe24, the energy difference value between
the 1Si8 and 1Si9 is small (0.05 eV/cell) and increases with the increasing the Si content.
The energy difference reaches its maximum value with n = 4 (0.184 eV/cell). Meanwhile,
the formation energies for configurations Si at the mixed Al8 and Al9 sites with -n = 2
to 4 are in-between those at Al8 or Al9. This indicates extra freedom of Si solutions in
θ-Al76Cu2Fe24 at elevated temperatures. With higher the Si concentration (n = 5 to 8), the
energy differences between the 4Si8 + mSi9 configurations and the mSi8 + 4Si9 (m = 1 to 3)
decrease with the Si content. For m = 1, the energy difference is 0.133 eV/cell and for m = 4
it becomes 0 eV. This analysis also means extra freedom for Si solutions in θ-Al76Cu2Fe24
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with higher Si contents. Next, we discuss the stability of the Cu-Si co-solutioned θ-phase at
the casting temperature.

The experiments showed that the θ-phases are formed during casting, typically at
around 1000 K, at which temperature the extra freedom of the Si solutions in the Fe-IMC
contributes to the free energy of the system:

∆G = ∆H − T ∆S (4)

where ∆S = R ln w, and w is the number of configurations of the same Si content and R
(= 8.617 × 10−5 eV/K) is the Boltzmann constant.

To simplify the analysis, we employed the random model to obtain the number of
configurations for the θ-(Al76-nSin)Cu2Fe24. The obtained dependence of the estimated free
formation energies on the Si content at 1000 K is shown in Figure 6.
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Thermodynamics and statistical analysis revealed that, at the casting temperature,
in a Si-poor alloy, the Si content ranges between 3.9 at.% and 6.0 at.% or n = 4 to 6 in the
θ-(Al76-nSin)Cu2Fe24. The exact composition depends on the chemical environment and the
formation temperature.

The present investigations revealed that the most stable configuration at ambient
conditions is θ-(Al68Si8)Cu2Fe24, with Cu at the Al7 and Si at the Al8 and Al9 sites. The
calculations also produced a bulk modulus to be 129 GPa for this stable configuration. The
study also provided detailed information about the structural and electronic properties of
this stable configuration. This obtained information is useful to characterize this phase in
the cast alloys and to obtain insight into the contribution of this phase to the mechanical
properties of the products.

Thermodynamics and statistical analysis revealed that the extra freedom of Si substitu-
tions at the Al sites strongly impacts the stability and chemical composition of the formed
θ-phase at the casting temperature. Using the random model for the Si at the Al8 and Al9
sites, we found that at 1000 K, the Si partial occupations at the Al8 and Al9 sites, particularly
the former, are preferred. The estimated chemical compositions are θ-(Al76-nSin)Cu2Fe24
with 4 < n < 6 at 1000 K. Moreover, the configurational entropy contributions further stabi-
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lize the θ-phase. This information is helpful in investigating the formation of the θ-phase at
the phase transformations of the θ-phase to other Fe-IMCs during the casting and related
annealing processes of various Al-based alloys [7,52,53].

4. Conclusions

The present first-principles study revealed a quaternary compound of high stability
with the chemical composition θ-Al68Si8Cu2Fe24 or θ-Al11.3333Si1.3333Cu0.3333Fe4 at ambient
conditions. The calculated lattice parameters are a = 15.390 Å, b = 7.910 Å, c = 12.309 Å,
β = 108.06◦ and volume = 1424.53 Å3/cell. The lengths of the axis and the cell volume
are smaller than the corresponding axis of the binary θ-Al13Fe4. This compound exhibits
a chemically ionic, metallic, and covalent triple nature. The calculated bulk modulus for
this quaternary compound is 129 GPa, higher than the related binary θ-Al13Fe4 (118GPa),
ternary θ-compounds θ-Al12.6667Cu0.3333Fe4 (122GPa) and θ-Al12.3333Si0.6667Fe4 (124 GPa).
The obtained information helps characterize the θ-phase in the quaternary Al-Fe-Si-Cu
system and the role of this phase in the mechanical performance of the related cast Al-
based alloys. The analysis also showed that configurational entropy enhances the stability
of the partially Si solutions in this phase, forming θ-(Al76-nSin)Cu2Fe24 with 4 < n < 6
at 1000 K. This information is helpful in investigating the formation of the θ-phase at
the phase transformations of the θ-phase to other Fe-IMCs during casting and related
annealing processes.
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