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Abstract—Due to physical layer compression, and consequently, 

the failure to produce uniform radiation patterns, it is not possible 

to develop fast Fourier-based image reconstruction algorithms 

using the raw measurements collected from metasurface antennas. 

An effective solution in the literature is a sub-wavelength sampling 

of the aperture. However, this solution is currently limited to a 

panel-to-probe model which requires a mechanical raster scan. On 

the other hand, existing works are based on time-division 

multiplexing. This means that only a single transmit/receive 

channel is active in each time slot. In this paper, we introduce a 

panel-to-panel model in a multistatic structure. Based on this 

model, two pre-processing (for two different individually 

measured signal and combined measured signal (CMS) scenarios) 

are derived to convert the raw measurements into the space-

frequency domain. Then, by using the output data from the pre-

processing stage and according to the configuration of the 

introduced imaging system, the range migration algorithm is 

adapted. The importance of the proposed solution for the CMS 

scenario is that, for the first time, it demonstrates the capability of 

using dynamic metasurface antennas diversity to achieve 

simultaneous data acquisition. The performance of the proposed 

approach is compared with state-of-art works in terms of 

reconstructed image quality and computational complexity using 

numerical simulations and analytical discussions. 

Index Terms—Three-dimensional image reconstruction, 

adapted range migration algorithm, combined measured signal, 

dynamic metasurface antennas, multistatic imaging. 

I. INTRODUCTION

UMEROUS applications of microwave (300 MHz to 

300 GHz) imaging in biomedical, concealed weapon 

detection, nondestructive testing, remote monitoring 

of people, etc. have led to the significant development of its 

hardware and software components in recent years [1-4]. 

Conventional imaging systems typically use an array of 

independent antennas [5, 6]. A mechanical or electronic raster 

scan (by sequentially-switched arrays) of the scene is 

performed to create a two-dimensional (2D) aperture in the 
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horizontal and vertical directions [5, 6]. Although electronic 

scanning greatly improves data acquisition rates compared to 

mechanical scanning, large-aperture electronic-scanning arrays 

are still expensive and typically have high power consumption; 

because they require complex control circuitry and a large 

number of radio frequency components to perform a point-by-

point raster scan of a scene to be imaged. In contrast, 

metasurface antennas exhibit a low profile, offer a drastically 

reduced low power consumption, and are easy to fabricate [7-

9]. Furthermore, from the perspective of imaging schemes, it 

has been demonstrated that a frequency-diverse metasurface is 

able to produce a sequence of arbitrary field patterns with a low 

spatial correlation that can be used to acquire scene information 

without the need for a raster scan [10, 11]. Recently, the concept 

of dynamic metasurface antenna (DMA) [12], as a sample of 

waveguide-fed metasurfaces, has been proposed for modern 

computational imaging [4, 8, 13, 14]. DMAs may contain a 

large number of tunable metamaterial antenna elements that can 

be packed in small physical areas for a wide range of operating 

frequencies [15, 16]. 

In the literature, there are various techniques for image 

reconstruction [17-19]. It has been demonstrated that those 

techniques that offer a solution to the electromagnetic inverse 

scattering problem in the Fourier domain are much more 

computationally efficient than others [20, 21]. Despite the 

hardware advantages of metasurface antennas mentioned 

above, due to the physical layer compression and consequently 

the failure to produce uniform radiation patterns, instead of 

doing a point-to-point raster scan, quasi-random modes are used 

to probe and compress the scene information [22]. Therefore, 

the information received by the DMA is not capable of direct 

conversion on a Fourier basis and consequently does not allow 

the development of fast Fourier-based image reconstruction 

algorithms. To address this, an effective solution based on the 

sub-wavelength sampling of the aperture is presented in [11, 21, 
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23, 24], which provides the expression of measurements in the 

spatial domain. However, these works are based on a so-called 

panel-to-probe model in which a single 1D DMA on the 

transmitter (Tx)-side and a rectangular waveguide probe (point 

source) on the receiver (Rx)-side are used. Clearly, in such a 

scenario, it is necessary for Tx DMA and/or Rx to physically 

move to synthesize an electrically-large effective aperture and 

obtain 2D/3D images of the scene with the collected data. Such 

a mechanism still reduces data acquisition rates and is not 

suitable for real-time applications. Moreover, these works are 

based on time-division multiplexing. This means that only a 

single transmit/receive channel can be active at any instant. 

This can further reduce the data acquisition rate, especially 

when the total number of channels is large. Frequency-division 

[25] can be an alternative solution; however, its use may lead to

a reduction of the range resolution because practically each Tx

is allowed to access only a part of the total bandwidth [26].

Another method is to encode the transmitted signals in such a

way that all Tx antennas can be turned on at the same time.

Recently in [27, 28], a coding-based mechanism for imaging

applications was provided. Although the mechanism developed

in [27, 28] minimizes bandwidth and sampling rate

requirements, it brings several drawbacks. Firstly, it has

considerable complexity both in the Tx part (to generate

orthogonal signals) and in the Rx part (to process the received

signals based on multi-resolution analyses). Secondly, it was

developed for, and is only applicable to, a conventional

mechanical/electronic scanning structure with phased array

antennas.

To address the above challenges, in this paper, we introduce, 

for the first time, a panel-to-panel model based on a multistatic 

structure and develop an efficient algorithm for 3D image 

reconstruction corresponding to this model. In addition, for the 

case where Txs are transmitting simultaneously, a solution is 

derived by which the receiver will be able to separate the 

corresponding signals of each individual Tx from the combined 

measured signal (CMS). In more detail, the main contributions 

of this paper include the following: 

• Mathematical introduction of a panel-to-panel model

based on multistatic structure for microwave imaging using 

DMAs. 

• Providing a pre-processing step to convert the raw

measurements collected by the above model to the spatial-

frequency domain and create a specific set of aperture modes, 

and consequently generate input data for the image 

reconstruction algorithm. 

• Adaptation of the range migration algorithm (RMA)

according to the introduced imaging structure and output data 

from the pre-processing stage to reconstruct a 3D image of the 

scene based on fast Fourier calculations. To the best of our 

knowledge, this is the first time that an RMA-based algorithm 

is successfully developed and adopted for a multistatic DMA-

based computational microwave imaging system. 

• Deriving and presenting a mathematical solution for

retrieving channel information individually in a CMS scenario. 

The novel idea here is that we use DMA diversity to achieve 

simultaneous data acquisition from all channels, which is 

significant for real-time operation. To the best of our 

knowledge, this is the first time that the modal diversity of 

DMA apertures is leveraged as an encoding mechanism to 

achieve simultaneous data acquisition from all channels. This 

can substantially improve the data acquisition rate, which is a 

key requirement for real-time operation. 

The rest of this paper is organized as follows: Section II 

presents the details of the proposed approach including the 

system model, pre-processing procedure, 3D image 

reconstruction algorithm, and solution to face the CMS 

scenario; Section III is devoted to the presentation of simulation 

results and discussion; finally, a conclusion is provided in 

Section IV. 

Notation: Throughout the paper, superscripts ( ). T
and ( )†

.

represent the transpose and pseudo-inverse, respectively. The 

symbols j , δ , 
m

I , min
x

 and 
2

.
F

 denote the imaginary unit,

Dirac delta function, m m×  identity matrix, minimum value

with decision variable x  and Frobenius norm, respectively. 

II. FUNDAMENTALS OF PROPOSED APPROACH

A. Imaging System Model

Fig. 1 shows a general schematic of the multistatic imaging

system in the proposed approach. The system includes 
T

n

DMAs as Tx along the x-axis (horizontal) and a DMA along the 

y-axis (vertical) as the Rx. Each Tx and Rx DMA is a 1D

aperture consisting of 
x

n  and 
yn  sub-wavelength-sized 

metamaterial elements [29, 30] spaced at intervals 
x

d  and yd , 

respectively. It is assumed that the distance between the two 

adjacent Txs is 
T

d . By changing the operating frequency or 

voltage tuning, the radiation patterns from the Txs that 

illuminate the scene change. Voltage tuning here means the 

random on/off of each element by an external stimulus, which 

produces a set of masks [23, 31]. Each Tx DMA at any given 

frequency f  can provide multiple measurements by cycling 

through 
T

M  masks. Scene objects scatter the incident fields 

and generate a backscattered field that can be detected by Rx 

DMA (with 
R

M  masks). The number of masks affects the 

overall diversity and complexity of the system. 

Considering the use of DMA instead of independent dipoles 

in both Txs and Rx, the measurement signal [11] can be 

expressed as follows: 

( ) [ ] ( ) ( ) [ ] ( ), , , ; ; ,

1, 2,..., , 1,2,..., , 1,2,..., ,

m m

l m m T l R

V

T T R

g f U y r f r U r f dV

l n m M m M

ρ ′
′ ∝

′= = =


� � �

(1) 

where dV dxdydz= , 
1l T

y y ld= +  corresponds to the vertical

position of the l -th Tx, ρ  represents the reflectivity of the

target, and r
�

 is the position vector to a point in the scene. In
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the above equation, 
T

U  and 
R

U  are the radiated fields from the 

aperture, which can be expressed as the superposition of all 

metamaterial elements in each DMA as follows [24, 32]: 

[ ] ( ) ( )

[ ] ( ) ( )

ˆ ˆ0

1

ˆ0

1

, ; sin ,
ˆ ˆ4

; sin ,
ˆ4

i l
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N
m jk r x x y yi

T l

i i l

N
m jk r y yi

R

i i

e fZ k
U y r f e

r x x y y

e fZ k
U r f e

r y y

ω θ
π

ω θ
π

′

− − −

=

′ ′ − −

′= ′

∝
− −

∝
−





�

�

�
�

�

�
�

�

 (2) 

where 2 fω π= , and 0Z , k cω= , c , θ , x̂  and ŷ  denote the

wave impedance in free space, wavenumber, the speed of light, 

the angle between e
�

 and r
�

, and the unit vector in the x - and

y -directions, respectively. In the above equation, ( )i
e f
�

represents the relationship between each metamaterial element 

and the reference wave, which depends on the polarizability 

( )i
fα . See [24, 32, 33] for more details.

Fig. 1.  General schematic of the multistatic imaging system in 

the proposed approach. 

B. Image Reconstruction Algorithm

Assuming that the measured signal on the aperture plane can

be expanded in terms of the fields associated with all the masks, 

we have 

( ) ( ) ( ) ( )
,, ,

1 1

; , ; ; ,
yx

l m m

nn

l m m T i l i i R i

i i

g f x f s x y f y f
′′ ′ ′

′= =

= Φ Φ    (3) 

where ( ), ;
l i i

s x y f′  denotes the incident field at the element’s 

location corresponding to the l -th Tx, and 
i

x  and 
i

y ′

correspond to the positions of Tx and Rx. 
,l mT

Φ and
mR ′

Φ

represent the field over the aperture corresponding to the m -th 

mask of the l -th Tx and the m′ -th mask of Rx, respectively,

and can be expressed as follows [23, 33, 34]: 

( ) ( ) ( )

( ) ( ) ( )
, 0 0 , ,

0 0 ,

; ,

; ,

i

l m

i

m

j f x

T i i l m

j f y

R i i m

x f Z H f e

y f Z H f e

β

β

α

α ′

′

−

−
′ ′ ′

Φ ∝

Φ ∝
 (4) 

where 1,2,...,
x

i n=  and 1, 2,..., yi n′ = . 
0H , gn cβ ω=  and gn

represent the guided magnetic field, the propagation constant of 

the waveguide and the waveguide index, respectively. The 

value of polarizability ( )fα  depends on the coupling factor

(oscillator strength) F , resonance frequency 
0ω  and damping 

factor ( )0
2Qγ ω= , where Q  is the quality factor of the 

metamaterial elements [33-35]. In fact, aperture fields mainly 

depend on the magnetic dipole moment induced in each element 

(for more details, refer to [34]). By assuming the creation of a 

set of aperture modes with some degrees of orthogonality, 

mathematically we have 

( ) ( ) [ ] [ ]

( ) ( ) [ ] [ ]

, ,

†

1

†

1

; ; , 1, ,

; ; , 1, .

x

l m l m

y

m m

n

T i T i T

i

n

R i R i R

i

x f x f m m m M

y f y f m m m M

δ

δ
′ ′

=

′ ′
′=

Φ Φ − ∈

′ ′ ′Φ Φ − ∈





ɶ

ɶ

ɶ ɶ≃

ɶ ɶ≃

 (5) 

In practice, the method used in the dynamic metasurface 

aperture to generate a set of radiated fields with some degree of 

orthogonality is to employ different masks with random tuning 

states (random assignment of metamaterial elements 

throughout the array aperture). In (5), 
T

Φ  and 
R

Φ represent

the field distributions across the aperture of the metasurface 

realized by the random tuning states of the metasurface 

aperture, which are called “masks”. If these masks exhibit some 

degree of orthogonality, then, (5) will apply. On a metasurface 

layer, such a dynamic modulation of the aperture can be 

achieved using metamaterial elements loaded with switch 

circuits, such as PIN diodes and varactors to name a few [36, 

37]. Such a method (i.e. dynamic modulation of radiated fields) 

can be leveraged as an alternative to the frequency-diversity 

approach to generate a set of random sensor fields with spatial 

diversity [38]. In (5), the pseudo-inverse is needed to mitigate 

the effect of correlations, especially for magnitude 

compensation. The matched-filtering is a robust alternative to 

phase matching only [39, 40]. Coherent summation of 

frequency information in the final target estimation also helps 

to mitigate artifacts due to the correlation of aperture fields for 

different mask states. 

According to (3), by multiplying ( ), ,l m mg f′  by ( )
,

† ;
l mT i

x fΦ ɶ

and ( )† ;
mR i

y f
′ ′Φ ɶ , where [ ]1,

x
i n∈ɶ  and 1, yi n′  ∈  

ɶ , and then

summing over the masks in the aperture domain 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

,

, ,

† †

, ,

1 1

†

1 1 1 1

†

; ;
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; ; .

T R

l m m

yxT R
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For i i= ɶ  and i i′ ′= ɶ , and with respect to (5), (6) can be rewritten

as follows: 

( ) ( ) ( )

[ ] ( ) [ ]

,

† †

, ,

1 1

1 1

; ;

, ; ,

T R

l m m

T R

M M

T l m m Ri i
m m

M M

l i i

m m

x f g f y f

m m s x y f m mδ δ

′′ ′
′= =

′
′= =

Φ Φ

′ ′− −





ɶ ɶɶ ɶ

ɶ ɶ≃

(7) 

Finally, using the delta function screening property, (7) can be 

simplified as follows: 

( ) ( ) ( ) ( )
,

† †

, ,

1 1

, ; ; ; .
T R

l m m

M M

l i i T i l m m R i

m m

s x y f x f g f y f
′′ ′ ′

′= =

Φ Φ≃   (8) 

Equation (8) states that by using a collection of measurements 

obtained by several dynamic metasurfaces (i.e. ( ), ,l m m
g f′ ), the

field at the aperture plane can be estimated at points of equal 

spacing, which can be considered as effective dipole sources, 

(i.e. ( ), ;
l i i

s x y f′ ). Therefore, we now have data consistent

with fast Fourier calculations. Equation (8) can be written in 

matrix form and as a function of frequency as follows: 

( ) ( ) ( ) ( )† ,
ll T l R

f f f f′s Φ g Φ≃  (9) 

so that 

( ) ( )
( ) ( )

†
,

,

l l T

R

T T M

T

R R M

f f

f f

=

′ =

Φ Φ I

Φ Φ I
  (10) 

where ( ) ( )( )†
T

R R
f f′Φ Φ≜ , ( ) x yn n

l
f

×∈s ℂ , ( ) T x

l

M n

T f
×∈Φ ℂ

, ( ) R yM n

R
f

×∈Φ ℂ and ( ) T RM M

l
f

×∈g ℂ . We have provided an 

analysis about the realization of (10) in Section III. 

According to the geometry of the system in Fig. 1, the 

incident field ( ) ( ), , ; , ;
i l i l i i

s x y y f s x y f′ ′= can be written as

follows: 

( ) ( )
2

, ,
, , ; ,

16

Tl R

l

jkR jkR

i l i

T RV

x y z
s x y y f e e dV

R R

ρ
π

− −
′ =     (11) 

where 

( ) ( )

( )

2 2 2

22 2

,

.

lT i l

R i

R x x y y z

R x y y z′

= − + − +

= + − +
  (12) 

By taking the 3D Fourier transform (FT) of both sides in (11) 

on the aperture coordinates, the representation of the signal s  

in the wavenumber domain can be expressed as 

( ) ( ){ }
( )

( )

1

2

3D

2

I

I

, , , FT , , ;

, , ;
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16
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R
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′
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−
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′
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≜

��������	

����������	

(13) 

where 
T i l

dA dx dy= . By expressing integrals
1I  and 

2I  in 

particular oscillatory integral forms [41], respectively, in order 

to use the method of stationary phase for single and double 

integrals [42], and applying some mathematical operators, 

approximations and simplifications, the result can be written as 

follows: 

( )
2 2

2 2 2

2 2

1
2 2

2
2 2 2

2 2 2

I 1 , ,
4

2
I ,

.

yRyR

xT yTyTxT

j k k zjk y

yR

yR

j k k k zjk yjk x

xT yT

xT yT

j e e k k
k k k

j
e e e

k k k

k k k

π

π

− −−

− − −−−

− ≥
−

−

− −

≥ +

≃

≃ (14) 

Details of the steps for calculating integrals such as 
1I  and 

2I

can be found in [34] and [43], respectively. These calculations 

mainly involve convolution theory, second-order 2D Taylor 

expansion, and first- and second-order partial derivatives. By 

substituting (14) in (13), the following simplified equation is 

obtained: 

( )
( ) ( )

( )
( )

2 2 2 2 2

1
2 2 2 2 24

2 2 2 2 2

, , ,

1 , ,

16

, , .

yT yRxT

xT yT yR

xT yT yR

j k k yjk x

V
yR xT yT

j k k k z j k k z

yR xT yT

S k k k k

j x y z
e e

k k k k k k

e e dV k k k k k

ρ

π

− +−

− − − − −

− +
×

− − −

≥ ≥ +



≃

(15) 

The interpolated signal Ŝ  can be written as follows:

( ) ( )

( )
( )

1
2 2 2 2 24

1
ˆ , ,

16

, , ,yx z

x y z

yR x yT

jk yjk x jk z

z y x

j
S k k k

k k k k k k

x y z e e e dxdydz

π

ρ −− −

− +
=

− − −

  

(16) 

where 
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, , ,

, .

x xT y yT yR z x yT yR

yR x yT
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k k k k k

= = + = − − + −

≥ ≥ +
(17) 

Mapping ( ), , ,xT yT yRS k k k k  to ( )ˆ , ,x y zS k k k  is performed by 

the Stolt interpolation operation [44] according to the 

dispersion relation in (17). From (16) it can be found that to 

recover the reflectivity ( ), ,x y zρ , a filtering in the Fourier

domain (corresponding to the term 

( ) ( ) ( )1 2 1 4
2 2 2 2 21

xT yT yR
k j k k k k kπ π

− −
− + − − − ) must be 

applied to Ŝ  with a 3D inverse FT (IFT).

Remark 1: Note that in a conventional imaging system, when 

faced with a collection of independent antennas (point-like 

isotropic sources), considering the first Born approximation 

[45], the total field can be written mathematically in the 

following form: 

( ) ( ) ( ) ( ), , ; , , ; , ; ,i l i i l i

V

s x y y f G x y r f r G y r f dVρ′ ′= 
� � �

 (18) 

where ( ) ( ), ; 4
jk r r

G r r f e r rπ′− −′ ′= −
� �� � � �

represents Green's 

function [46] and r ′�  is the dipole’s location. However, the 

transceiver antennas considered in this paper (i.e. DMAs) 

cannot be modeled as individual dipoles. This is because the 

DMA concept relies on a physical layer compression [15, 47]. 

In other words, the scene information is sampled and encoded 

by the random transfer function of the DMA without the 

necessity to sample the aperture on a point-by-point (raster 

scan) basis. As a result, whereas reducing the number of 

channels to collect the backscattered data, in such a case, a more 

complex description of the signal is required for analysis, which 

is mathematically expressed in (1) and (2). It is clear that in (1), 

unlike (18), we do not have access to the field corresponding to 

r ′�  (the fields corresponding to the positions 
i

x , 
i

y  and 
i

y ′ ).

The pre-processing presented in this section is an effective way 

to transform the measurements provided by DMAs into a set 

equivalent to the spatial measurements emanating from a 

collection of effective dipole sources [34]. In fact, the 

operations after the presented pre-processing stage can be 

generalized and applied to the data collected from conventional 

antenna arrays. 

C. CMS Scenario

According to the multiple-input single-output structure in

Fig. 1, the above relationships are established when the receiver 

has access to the information corresponding to each Tx 

individually (individually measured signal (IMS) scenario). In 

fact, since we are dealing with multiple channels, we need to 

find a way to access the information of each channel. The 

simplest method is the time-division technique [48], in which 

only one Tx transmits at a time slot. However, this method may 

not be optimal for real-time applications. Coding-based 

methods can be an effective alternative [27, 28]. However, the 

advantage here is that in the previous section, we somehow 

encoded the aperture field, so we can use the same information 

to retrieve the data of each channel independently, without 

having to get involved in designing another coding mechanism. 

Mathematically, CMS (the sum of the contributions of 

measurements for all Txs) can be written as follows: 

( ) ( ), , ,

1

.
Tn

m m l m m

l

g f g f′ ′
=
≜   (19) 

The goal here is to get ( ), , ;
i l i

s x y y f′  (or ( )l
fs ) from signal 

( ),m m
g f′  (or ( )fg ), in which case we will be able to apply the

image reconstruction algorithm described in Section II-B to the 

CMS scenario as well. In the matrix form, by multiplying the 

left- and right-hand sides of ( )l
fs  in (9) by ( )

lT
fΦ  and

( )T

R
fΦ , respectively, considering (10) and expanding ( )fg ,

we have 

( ) ( ) ( ) ( )
1

.
T

l

n

T

T l R

l

f f f f
=

 
=  
 
g Φ s Φ   (20) 

By multiplying the left- and right-hand sides of ( ) T RM M
f

×∈g ℂ

in (20) by ( )†

lT
f

′
Φ and ( )R

f′Φ , respectively, where

1,2,...,
T

l n′ = , and naming the result as ( )l
f′sɶ , we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1

2

†

†

1

†

1

†

2

†

...

.

l

T

l l

l

l n TT

l T R

n

T

T T l R R

l

T

T T R R

T

T T R R

T

T T n R R

f f f f

f f f f f

f f f f f

f f f f f

f f f f f

′

′

′

′

′

′

=

′

  ′=  
 

′=

′+ +

′+



s Φ g Φ

Φ Φ s Φ Φ

Φ Φ s Φ Φ

Φ Φ s Φ Φ

Φ Φ s Φ Φ

ɶ ≜

  (21) 

By calculating ( )l
f′sɶ for all l ′ s, we will have

T
n  matrix 

equations that can be written as a system of equations in block 

matrix form (as presented in (22)), and its equivalent is given in 

(23) 
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( )
( )

( )
( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

( )
( )

( )
( )

1

2

1,1 1, 2 1, 1

2,1 2, 2 2, 2

,1 , 2 ,

,

T

n n nT x y

T

T

TT T T T

n n nT x yn n n nT x T x

n

f

n

n

nn n n n

ff

f

f

f

f f f f

f f f f

ff f f

×

××

 
 
  =
 
 
  

   
   
   
   
   
     

G

ΨΠ

s

s

s

Θ Θ Θ Ω

Θ Θ Θ Ω

ΩΘ Θ Θ

ɶ

ɶ

⋮

ɶ
����	

⋯

⋯

⋮⋮ ⋮ ⋱ ⋮

⋯
����	����������������	

(23) 

where ( ) ( ) ( )†

, l ll l T T
f f f

′′Θ Φ Φ≜ , ( ) ( ) ( )l l
f f fΩ s β≜ and 

( ) ( ) ( )T

R R
f f f′β Φ Φ≜ . The unknown of the above system of

equations (i.e. ( ) ( ) ( ) ( )1 2, ,...,
T x y T

T

n n n n
f f f f×   Σ s s s≜ ) is

retrieved as follows: 

( ) ( ) ( )† ,f f f=Σ Ψ β  (24) 

where block matrix ( )fΨ  can be computed by solving the

following least-squares problem (see (23)): 

( )
( ) ( ) ( ) 2

min .
Ff

f f f−
Ψ

Π Ψ G    (25) 

Remark 2: According to (4), since the value of ( )
lT

fΦ  is 

dependent on i  (index of elements) and 
i

x , therefore, 

regardless of the state of the masks, ( )
lT

fΦ  must be a full 

column rank matrix; so ( ), xl l n
f =Θ I . As a result, the rank of

( )fΠ  is at least equal to 
x

n . Therefore, ( )fΠ  is not

necessarily invertible and the calculation of ( )fΨ  using a

generalized inverse does not lead to a unique solution. For this 

reason, in (25) we use a minimum norm least-squares technique 

[49, 50], which minimizes the norm of ( )fΨ  in addition to

minimizing the norm of ( ) ( ) ( )f f f−Π Ψ G . In this

technique, complete orthogonal decomposition is used to find a 

low-rank approximation of ( )fΠ . For more details, refer to

[49, 50]. 

Note that †
Π  and β  can be calculated once and stored in 

memory, so they are not part of the online calculations in 

processing. It is also worth emphasizing that one dimension of 

the raw data corresponds to the frequency samples; therefore, 

all the above matrix calculations are done independently for 

each frequency sample. 

III. SIMULATION RESULTS AND DISCUSSION

In this section, to examine the performance of the proposed 

approach, the results of numerical simulations in MATLAB are 

presented. All computations are performed in MATLAB 

R2020b running on a 64-bit Windows 11 operating system with 

16 GB of random-access memory and a Core-i7 central 

processing unit at 2.8 GHz. The data of the numerical examples 

are simulated with the model presented in (1) and (2) under the 

Born approximation [51]. The values of the simulation 

parameters are given in Table I, where λ  is the wavelength

corresponding to the highest frequency in free space, 
fn  

represents the number of frequency samples, 0z  is the target 

range, and 
z

D  is the length of target space in the range 

direction. According to the Nyquist theorem, the frequency 

sampling step must satisfy the condition ( )2
f z

c D∆ ≤  [52]. 

According to the values of 
z

D , bandwidth and number of 

frequency samples presented in Table I, the Nyquist condition 

is satisfied in the simulations. Also, according to the values in 

Table I, the theoretical resolutions of cross-range and range [11] 

are approximately equal to 1.07 cm and 3.33 cm respectively. 

Before image reconstruction, let us check the condition of 

(10), i.e., having a set of aperture modes with some degrees of 

orthogonality. For this purpose, as an instance, we extract the 

singular values (SVs) of ( )
1T

fΦ , denoted by 

1 2 ... Pσ σ σ +≥ ≥ ≥ ∈ℝ , where ( )min ,
x T

P n M= . In general, 

the corresponding SVs matrix is quasi-diagonal so that the SVs 

are arranged from largest to smallest on its main diagonal. If 

-------------------------------------------------------------------------------------------------------------------------------------------------------- 

( )
( )

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1

2 1 2 2 2

1 2

† † †

1 1

† † †

2 2

† † †

.

nT

nT

T T
n n n nT T T T

T
T T T T T T

R R

T

T T T T T T R R

T

n n R RT T T T T T

f f f f f ff f f f

f f f f f ff f f f

f f f ff f f f f f

  ′  
     ′     =     
    
  ′      

Φ Φ Φ Φ Φ Φs s Φ Φ

Φ Φ Φ Φ Φ Φs s Φ Φ

s s Φ ΦΦ Φ Φ Φ Φ Φ

⋯ɶ

ɶ ⋯

⋮ ⋮⋮ ⋮ ⋱ ⋮
ɶ ⋯

  (22) 

TABLE I 

VALUES OF SIMULATION PARAMETERS 
Parameter 

x y
N N=

x y
d d= T

N
T

d f
f

n T R
M M= Q

0
Z

g
n F 0

z
z

D

Value 105 6.81 mm ( 2λ ) 3 354.3 mm ( 26λ ) 17.5-22 GHz 51 105 50 120π  2.5 1 0.5 m 0.5 m 
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( ) ( )
1 1

H

T T
f fΦ Φ  is invertible (in other words, ( )( )

1
rank T fΦ  is 

P ), then 
1 11 1 ... 1

P P
σ σ σ−≥ ≥ ≥  will be the SVs of ( )

1

†

T
fΦ

. The closer the SVs of the aperture field matrix are to each 

other, the more equally the singular vectors are weighted in 

signal reconstruction. In other words, masks become more 

independent. Fig. 2(a) shows the aperture field matrix 
1T

Φ  at 

22 GHz in the case created by a set of masks with only one 

unique element on in each mask (here called the identity case). 

Fig. 3 shows the spectrum of the corresponding SVs. Also, the 

ratio of the largest SV to the smallest, which is called the 

condition number r , has been calculated. As can be seen, the 

corresponding diagram has a very small slope. The value r  also 

confirm this. According to the above explanation, this indicates 

that the identity case is very favorable in terms of orthogonality 

required for the aperture field matrix. However, it results in very 

little radiated power. Therefore, in practice, more elements need 

to be turned on. Fig. 2(c) shows a case (called random) in which 

half of the elements in each mask are randomly turned on. In 

this case, more energy is radiated to the scene, which leads to a 

more robust system against the noise. This comes at the cost of 

relative correlation between the radiation patterns, the effect of 

which can be seen in Fig. 3 as a steeper slope of the 

corresponding diagram as well as an increase in the value of r

. Also, by comparing the largest SVs, it can be concluded that 

the random case has more radiated power than the identity case. 

Fig. 4 shows a representation of 
1 1

†

T T
Φ Φ  in different cases at 22 

GHz. It can be seen that although the second case is not perfect 

in terms of orthogonality compared to the identity case, the 

condition of (10) is still fulfilled. In other words, both above 

can be used for the pre-processing step. However, this degree 

of freedom is not unlimited. Fig. 2(c) shows the case in which 

99% of the elements (almost all of them) are on (here it is called 

the full case). As shown in Fig. 3, the corresponding diagram 

experiences a steep slope in the areas related to large SVs. In 

addition, after the 64th SV, there is a sharp drop towards very 

small values. This means that the aperture field matrix has a 

rank equal to 64 (it has suffered a rank loss); while in both 

identity and random cases, the aperture field matrix is of full 

rank ( ( )
1

rank 105
T

=Φ ). It can also be seen that the value of r  

in the third case is almost infinite. Note that in Fig. 3, for a 

clearer comparison, only a part of the green diagram is shown. 

What can be concluded is that only the third case does not 

satisfy condition of (10) (see Fig. 4) and is not suitable for use 

in the proposed pre-processing step. Note that similar analyzes 

can be performed for other aperture field matrices 

corresponding to other Tx and Rx DMAs. To further study, we 

extended the results presented in Fig. 3; in this way, we 

calculated the average value of r  in 1000 independent 

experiments for the different number of masks and different 

percentages of on elements (denoted by P ). The relevant 

results are shown in Fig. 5. It can be seen that, in general, as P  

increases, the value of r  increases; in other words, the lower 

the percentage of on elements, the more reliable conditions are 

provided in terms of orthogonality. On the other hand, as 

mentioned in the discussions related to Fig. 3, a low percentage 

of the number of on elements means low radiated power (hence 

a low signal-to-noise ratio). Therefore, considering a moderate 

value for P  (in this case half of the elements off) can provide a 

reasonable compromise between both orthogonality and 

robustness against noise. By considering the efficient features 

of the random case mentioned above, the results presented in 

the rest of this paper are obtained based on it. 

(a) (b) 

(c) 

Fig. 2. 
1T

Φ  at 22 GHz; (a) in identity case, (b) in random case, 

(c) in full case.

Fig. 3. SVs spectra and condition numbers corresponding to the 

outputs of Fig. 2. 

(a) (b) 

S
V

s
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(c) 

Fig. 4. Checking the realization of (10) in the case of the 

aperture field matrix 
1T

Φ  for the outputs of Fig. 2; (a) 
1 1

†

T T
Φ Φ

in identity case, (b) 
1 1

†

T T
Φ Φ  in random case, (c) 

1 1

†

T T
Φ Φ  in full 

case. 

Fig. 5. Average value of r  in 1000 independent experiments 

for the different number of masks and different percentages of 

on elements. 

In the next experiment, we consider five point scatterers 

located at ( )00.1,0.08, 0.1z− − , ( )00.05,0.04, 0.05z− − ,

( )00,0, z , ( )00.05, 0.04, 0.05z− +  and ( )00.1, 0.08, 0.1z− + ,

all in meters, as targets. The reconstructed images in IMS and 

CMS cases after applying all the processing steps are shown in 

Figs. 6(a) and 6(b) respectively (in different 2D and 3D views). 

As can be seen in both cases, the proposed approach has been 

able to successfully reconstruct the image of all point scatterers 

in their correct positions. The reason that the detected points 

become smaller with increasing distance from the radar is the 

propagation loss effect, which is consistent with the analyzes 

and findings presented in [34, 53]. 

(a) (b) 

Fig. 6. Reconstructed images of five point scatterers by the 

proposed approach in different 3D and 2D views; (a) in the IMS 

scenario, (b) in the CMS scenario. Isovalue: -10 dB. 

Now let us compare the performance of the image 

reconstruction algorithms. A scissor (see Fig. 1) is under test as 

a 3D distributed target in the near-field [54, 55]. Fig. 7 shows 

the reconstructed images by approaches [5, 6], [11, 23] and 

[21], and the proposed approach in 3D and 2D views. Visually, 

it can be seen that Fig. 7(d) (output of the proposed approach in 

the IMS scenario), in both views, provides the lowest level of 

sidelobe and distortion compared to the other figures. Although 

Fig. 7(c) (output of approach [21]) shows good quality in 2D 

view (x-y), in 3D view it is clear that it does not have a good 

range resolution compared to the output of other approaches. 

The reason for this is to use the nonuniform inverse fast Fourier 

transform (NUIFFT) + 2D IFFT operation instead of the Stolt 

interpolation + 3D IFFT operation in the image reconstruction 

algorithm. Although it reduces computational complexity, it 

provides lower quality [21]. Fig. 7(f) shows that in the CMS 

scenario, when the proposed pre-processing technique is not 

applied to the raw measured data, the reconstructed image is 

meaningless (with no indication of the target). The reason for 

this is obvious because the raw signal measured in this scenario 

is superposition of data from all Txs, and the processing 

algorithm lacks access to the information of each channel 

separately. However, when the proposed pre-processing 

(presented in Section II-C) is applied to the raw data, the 

reconstructed image correctly reveals the target information 

(see Fig. 7(e)). Clearly, in this case, the output cannot be 

expected to have the quality obtained in the IMS scenario; 

because in practice the orthogonalities between the field 

matrices are not perfect. Note that in the case of Fig. 7(a), the 

results were obtained based on using conventional linear arrays 

with independent antennas (and with an aperture size equivalent 

r
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to those other results), and employing the generalized synthetic 

aperture focusing technique (GSAFT) [5, 6] to reconstruct the 

image. The number of voxels considered in this case to render 

the scene is equal to 53 53 53x y zN N N′ ′ ′× × = × × .

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Fig. 7. Images reconstructed by different methods in 3D and 2D 

views; (a) GSAFT [5, 6], (b) approach [11, 23], (c) approach 

[21], (d) proposed approach (IMS), (e) proposed approach 

(CMS), (f) CMS without proposed pre-processing. Isovalue: -

10 dB. 

We also evaluated the quality of the reconstructed images 

with quantitative measures (normalized mean squared error 

(NMSE) [56], image contrast (IC) [57] and image entropy (IE) 

[57]: 

( ) ( )

( )

2

Rec Ref

1 1

2

Ref

1 1

, , , ,

NMSE ,

,

yxx z

yx z

NN N

i i i i i i

i i i

NN N

i i

i i i

x y z x y z

x y

ρ ρ

ρ

′′ ′

′ ′′ ′ ′′
′ ′′= =

′′ ′

′
′ ′′= =

−
=



  (26) 

( ) max minIC ,I I I= −  (27) 

( ) ( ) ( )
1

2

0

IE log ,
L

k

I p k p k
−

=

= −  (28) 

where 
Recρ ,

Refρ ,
maxI , 

minI , ( )p k  and 2q
L =  denote the 

reconstructed image, reference image, maximum value 

intensity, minimum value intensity, the probability of 

occurrence of the value k  in the image I  and the number of 

different gray levels. The results are given in Table II. Contrast 

and entropy values are calculated based on values averaged 

from 2D reconstructed images (on the xy-plane) focused on 

different ranges (when the pixel values are normalized by 8q =
). For the NMSE measure, two metrics NMSE 1 and NMSE 2 

have been calculated, respectively, when Fig. 7(b) and Fig. 7(d) 

are used as reference images. The results in Table II are 

consistent with the visual findings described in the previous 
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paragraph. By comparing the proposed approach in the CMS 

scenario with the approach [21], it can be seen that although the 

approach [21] has better contrast and entropy, the NMSE value 

is still higher. The reason for this is the low range resolution in 

the approach [21], which was also mentioned in the previous 

paragraph. 

In addition to comparing the quality of the reconstructed 

images, we calculated the major complexities involved in the 

implementation steps of the algorithms in the various 

approaches, as well as the corresponding computational times. 

These steps in the case of Fourier-based algorithms include a 

pre-processing operation to convert the raw measured data to 

the spatial-frequency domain, FFT, IFFT, NUIFFT and Stolt 

interpolation. In the case of GSAFT, the calculations lack the 

above steps (it has a Fourier calculation-free scheme). Its 

complexity is mainly involved in excessive computations of 

received signal phase compensation based on the calculation of 

vectors between the position of each pair of Tx and Rx antennas 

and each voxel of the target by discretizing the target space into 

multiple voxels. The number of these voxels has a decisive role 

in the computational time and the quality of the image in the 

GSAFT outputs. The computational times are given separately 

in Table III. As can be seen and expected, in the case of Fourier-

based approaches, most of the computational load is related to 

the Stolt interpolation stage. The longer computational time of 

this step in the proposed approach than the approach [11, 23] is 

due to an increase in the interpolation dimensions. In the 

approach [11, 23], a 3D to 3D interpolation is required, while 

in the proposed approach, a 4D to 3D interpolation is needed. 

However, the proposed approach takes advantage of panel-to-

panel configuration without the need for mechanical scanning 

as well as improved reconstructed image quality. Although 

processing time can provide an initial idea of computational 

efficiency, computational complexity provides a more reliable 

picture. In Table IV the computational complexities are listed 

by steps in different approaches. 
yN , 

pn , 
i

n , 
s

M  and 
r

M , 

respectively, represent the number of point source sampling 

points along the y-axis, padded signal length, order of the 

multiplicative complexity for one Stolt’s mapping [58], 

spreading parameter [21, 59] and oversampling number [21, 

59]. Based on the information in Table IV, Figs. 8(a) and 8(b) 

show the total computational complexity of the different 

approaches versus the number of frequency samples and the 

number of DMA elements, respectively. It is clear that as the 

number of samples/elements increases, so does the complexity. 

As expected, the computational complexity of the proposed 

approach is greater than that of the approaches [11, 23] and 

[21]. The main reason is related to the Stolt interpolation stage, 

which, in a multistatic structure, contributes to the overall 

diversity of the system, whereas inevitably increasing the 

interpolation dimensions. In any case, the proposed approach 

TABLE II 

COMPARISON OF NMSE, IMAGE CONTRAST AND IMAGE ENTROPY VALUES CALCULATED IN DIFFERENT METHODS 
Approach NMSE 1 NMSE 2 Contrast Entropy 

GSAFT [5, 6] 2.28 1.17 98.68 5.61 

[11, 23] Reference image 0.55 136.74 6.25 

[21] 2.29 1.08 117.52 6.19 

Proposed (IMS) 0.44 Reference image 163.97 6.36 

Proposed (CMS) 0.75 0.65 105.3 5.77 

CMS without proposed pre-processing 15.82 21.49 96.48 5.58 

TABLE III 

COMPARISON OF AVERAGE COMPUTATIONAL TIMES FOR PERFORMING MAJOR COMPUTATIONAL STEPS (SEC) 
 Operation 

Approach 

Pre-processing FFT Stolt Interpolation NUIFFT IFFT Total 

[11, 23] 0.64 0.022 2.44 - 0.058 3.16 

[21] 0.64 0.022 - 1.14 0.0078 1.81 

Proposed (IMS) 1.56 0.64 11.07 - 0.058 13.33 

Proposed (CMS) 3.97 0.64 11.07 - 0.058 15.74 

GSAFT [5, 6] Compensation of the received signal phase 888.75 

TABLE IV 

COMPARISON OF MAJOR COMPUTATIONAL COMPLEXITIES 
Operation

Approach 

Pre-processing FFT Stolt 

Interpolation 

NUIFFT IFFT 

[11, 23] ( )f y x Tn N n MO ( )( )2
log

f x y x y
n n N n NO ( )x y in N nO - ( )( )2

log
x y z x y z

n N n n N nO

[21] ( )f y x T
n N n MO ( )( )2

log
f x y x y

n n N n NO
- ( )( )0.5

x y s f r r
n N M n M logM+O ( )( )2

log
x y x y

n N n NO

Proposed 

(IMS) 
( )( )T f x R T y

n n n M M n+O ( )( )2
log

f x y p x y p
n n n n n n nO ( )x y p i

n n n nO
- ( )( )2

log
x p z x p z

n n n n n nO

Proposed 

(CMS) 
( )( )T f x R T R y T x y y y

n n n M M M n n n n n n+ + +O ( )( )2
log

f x y p x y p
n n n n n n nO ( )x y p in n n nO

- ( )( )2
log

x p z x p z
n n n n n nO

GSAFT ( )T f x y x y z
n n n n N N N′ ′ ′O
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still has the significant advantage of fast Fourier computations 

compared to GSAFT [5, 6]. 

(a) 

(b) 

Fig. 8. The total computational complexity of different 

approaches; (a) versus the number of frequency samples, (b) 

versus the number of DMA elements. 

IV. CONCLUSION AND FUTURE WORKS

In this paper, a panel-to-panel model with DMAs based on a 

multistatic structure is introduced; then two pre-processing 

were provided to convert the raw measurements collected by 

the above model to the spatial-frequency domain (for both IMS 

and CMS scenarios); finally, according to the introduced 

imaging system and the output data from the pre-processing 

stage, the RMA algorithm was developed to reconstruct a 3D 

image of the scene based on fast Fourier calculations. The idea 

and capability of using DMA diversity to achieve simultaneous 

data acquisition presented in this paper add a new purpose to 

the DMA concept in addition to diverse DMA modes for 

computational imaging. The performance of the proposed 

approach was evaluated in terms of the visual quality of the 

reconstructed image and computational complexity, and 

compared with state-of-art works. A summary of key features 

(including imaging configuration, aperture layout, scanning 

type, reconstructed image quality by NMSE measure (average 

NMSE values in Table II), and computational time) of the 

proposed approach compared to other works is given in Table 

V.  
Although the proposed approach has more computational 

complexity compared to other Fourier-based approaches, in 

addition to eliminating mechanical scanning and improving the 

data acquisition mechanism, it provides better visual quality of 

the reconstructed image. Moreover, it still has the significant 

advantage of fast Fourier calculations and is much more 

efficient compared to conventional techniques such as GSAFT. 

The development of a proposed approach for multiple-input 

single-output (MIMO) and massive MIMO structures, as well 

as the improvement of the computational cost of the Stolt 

interpolation process, will be studied in future work. 

In this paper, DMA aperture simulations were performed 

based on the mathematical models developed in the literature, 

whose main formulas, details, and references were mentioned 

in Section II-A and the beginning of Section II-B. Naturally, in 

the simulations performed in MATLAB, it cannot be expected 

that all the physical properties of materials will be taken into 

account in the same way as a full-wave simulator. However, our 

focus in this paper was on the processing layer with the specific 

goal of developing an image reconstruction algorithm based on 

fast Fourier calculations compatible with data collected in two 

practical scenarios of multistatic imaging using DMAs. For 

future works, the proposed approach will be studied, evaluated, 

analyzed and discussed with experimental data. 
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