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Abstract. We present an illustration of a method to ensure reliable un-
certainty percolation, within supervised learning performed using Gaus-
sian Processes (GP), and Markov Chain Monte Carlo based inference.
We show the effect of variously propagating the uncertainty, on predic-
tions undertaken on the output variable, at test inputs, subsequent to
the learning of the functional relationship between the input and the
output, where this functional relation is modelled as a realisation from
a GP. The efficiency of imposing a physically motivated constraints on
the output - via priors imposed on the GP covariance kernel hyperpa-
rameters - is compromised under certain strategies adopted to propagate
uncertainty. Tools such as DNNs, that are relatively more blind to un-
certainty learning/propagation, are found to be diversely inaccurate in
their output prediction.

Keywords: Covariance kernel hyperparameter · MCMC · Learning un-
der constraint · Gaussian Process · Uncertainty Propagation.

1 Introduction

Learning the functional relationship between the response and the predictor
variables is a crucial task in any supervised mechanistic learning set up, where
automated and reliable learning of this function is sought, given a training data
set. Probabilistic learning provides the framework for undertaking inference on
models that explain the data under consideration, while also quantifying un-
certainties objectively. Reliable learning of the uncertainties in the learning of
the sought function is crucial, since multiple models can be consistent with the
data [3], and the data itself can include uncertainties due to measurement errors.
There could be further complications owing to hidden variables [3] that cannot
be addressed just by gathering more data under the same data collection set up.
The prediction of new outputs using the learnt functional relationship, is also
uncertain, where such uncertainties can be interpreted to reflect on limitations
of the model; misrepresentative training set; noise in the test inputs; and possi-
bility of the input-output relationship to be non-bijective. Hence the uncertainty
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quantification has enormous significance, especially in sensitive domains [1] and
when the available training data is small and/or expensive to procure. Exam-
ples of sensitive domains include medicine [1]; traffic management systems [7];
information security [13], etc.

However, despite its importance, uncertainty quantification is still an emerg-
ing area and requires careful addressing, in order to achieve high quality intelli-
gence from the data [4]. A poorly chosen representation of uncertainty can affect
prediction greatly. In this work we illustrate what we imply by a poorly chosen
way of addressing uncertainties and show the effect of the same on the quality
of predictions.

In this paper, we undertake learning and prediction within Gaussian Process
(GP) regression [11]. GP-based regression was introduced in [9]; however, it
gained popularity as a non-parametric modelling approach following [8]. [10]
states that GP predictive performance is comparable to several other state-of-
the-art modelling approaches including neural networks. Predictive distributions
are computed for each test point in GP regression, and we consider the mean of
these predictive as the predicted output value, while the closed-form prediction
of the respective variance provides the uncertainty on the prediction. Treating
a function - of unknown form, and therefore treated as random in the Bayesian
setting - as a sample from a GP implies that the joint probability of a finite
number of realisations of this function - if scalar-valued - is multivariate Normal
with a mean vector and variance-covariance matrix. This covariance matrix, if
parameterised using a covariance kernel may be of a chosen parametric form, with
hyper-parameter(s) assigned to this chosen form. Values of such hyperparameters
are unknown and need to be learned from the data, rather than imposed by hand,
to avoid erroneous predictions. In this work, we have used Squared Exponential
Kernel (SQE) with length-scale hyperparameter ` for the GP. We learn ` from
data using Markov Chain Monte Carlo (MCMC) inference techniques. Generally
a GP does not pose any constraint on its predictive computation; however, when
the application demands the outputs to abide by certain physically-motivated
constraints, then said constraints need to be taken on board to render predictions
correct. For example, if in the application, the output is a probability, then we
need the GP output prediction to lie between 0 to 1. Here we present the learning
of ` using MCMC, under the constraint that the output predictions lie in the
range of 0 to 1.

We will also present the comparative results for regression undertaken with
Deep Neural Network (DNN) systems (which do not account for uncertainties),
with varying architecture. Such a comparative exercise will indicate the sensi-
tivity of the results to the chosen architectural details.

2 Data and Model

In 1986, the Space Shuttle Challenger exploded very soon after launch, killing all
seven astronauts on board. The explosion was the result of an O-ring failure. An
O-ring is a rubber ring that seals parts of the Shuttle. The O-rings are made of
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a material that stiffen at the ambient coldness [2], thereby causing these O-rings
to fail to provide the required sealing, resulting in the explosion of the Shuttle.
The accident was believed to have been caused by the unusually cold weather
(with ambient temperatures of about 31◦F) at the time of the launch.

We use the real test flight data on O-ring failure status Y . Here the input is
a scalar, namely, temperature X ∈ R at which test flights of the Space Shuttle
were undertaken, The failure status variable, i.e. the output variable, is binary,
and is coded to attain 1 if the O-ring fails; else Y = 0.

Table 1 depicts this test flight data, [12]. We refer to this data as D. Given
that the output is binary, its regression against the predictor variable (tempera-
ture X) will be modelled with the logistic regression model [12, 15]. Thus, given
that we have only one predictor variable, the linear predictor in this regression
model has two regression coefficients, namely, the slope β ∈ R and the intercept
parameter α ∈ R. Under the assumption of iid data points, likelihood is the
product of the probability of each value of Y , at the corresponding temperature.
This probability is the Bernoulli probability mass function, with parameter that
is a function of temperature. We use Gaussian priors on each parameter, and
ultimately write down the joint posterior of the slope and intercept parameters
given the test flight data. Inference on model parameters is undertaken via pos-
terior sampling with MCMC. We compute marginal posterior of each parameter
given data D, using which we learn the 95% Highest Probability Density credible
region (HPDs) [5] on each parameter.

Our learning of the parameters of this logistic regression model will al-
lows us to compute the probability for O-ring failure at given temperatures.
Such computation is relevant to our supervised learning endeavour, in which
this Pr(Y = 1||X = x) is the output and X is the input variable. The set
Dtrain := {(xi,Pr(Y = 1|xi))}Mi=1 of M pairs of value of this design input
X = xi and the corresponding output will constitute the training data using
which we will learn the functional relationship between this output and input,
by modelling the said relationship as a random function that is realisation from
a GP. Thus, our supervised learning endeavour will reduce to the learning of
the parameters of the covariance structure of this GP. As we will parameterise
the covariance structure using a parametric kernel, our supervised learning will
basically reduce to our learning of the hyperparameters of this covariance ker-
nel. There is in fact only one such hyperparameter that is relevant - this is the
length scale `. So we will learn ` using Dtrain, where Dtrain is arrived at from
the learning of α and β, as motivated above.

In our work, we know the parametric form of how output values - {Pr(Y =
1|X = xi)}Mi=1 - are distributed across the range of the input temperature values;
this is the logistic function in X, with parameters α and β. This knowledge
will benefit the inspection of the learnt input-output functional relation that is
modelled with a GP, (and learnt using generated training data Dtrain). The point
is that the GP-based learning of this function permits prediction of the output
at test temperatures, and as we know the theoretical distribution of the output
against temperatures, we can check for the veracity of our predictions. Also, the
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uncertainty on the output value computed at a design temperature is available
from the uncertainty in our learning of the slope and intercept parameters, (β
and α), of the logistic regression model. This offers us a tool to check how noise
in the training set affects the prediction performance.

As stated in the previous section, we could compute the output, i.e. proba-
bility of O-ring failure at a design temperature, by using a summary (eg. mean,
median, etc.) of the marginal of the slope and intercept parameters - as learnt
using the MCMC. We could alternatively compute the output using any value
of the slope and intercept parameters from within the 95% HPDs on each such
parameter, that are learnt by MCMC. We will show that with different choices
from within the 95% HPD range, parameterisation of the GP covariance struc-
ture varies, thereby affecting the final prediction. This method of computing the
probability of O-ring failure at a design temperature then appears unsatisfactory.

One way to avoid this is by using a pipe-lined algorithm, in which we learn
the slope and intercept parameters at each iteration of MCMC, given the test
flight data D, and then proceed in that same iteration, to predict the probability
Pr(Y = 1|vertX = xi) of O-ring failure at each design temperature xi, at the
values of α and β that are current as of this iteration. This is repeated across
iterations and uncertainties in each probability value accrued across post-burnin
iterations of the chain. This pipe-line enables best propagation of uncertainties
in our learning of parameters of the original (logistic) model, towards generation
of Dtrain.

In the next section we will present the results obtained using the former
approach towards training set generation, namely, by computing output using
summaries of the parameters. We display results of predictions made following
the GP-based learning of the relation between probability of O-ring failure and
temperature, as well as with the DNNs. Then, in Section 4 we will present the
pipe-lined architecture for prediction.

Table 1: Test flight data D reproduced from page 15 of [12]. O-ring failure status
is presented with temperature (in ◦F) in the second row.
Failure 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0

Temperature 53 57 58 63 66 67 67 67 68 69 70 70 70 70 72 73 75 75 76 76 78 79 81

2.1 Learning Parameters of the Logistic Regression Model

For binary response variable Y ∈ {0, 1} that represents O-ring failure status,
and the temperature X ∈ R, we want to model the probability of failure given a
temperature, assuming that Y follows a Bernoulli distribution. The probability
of failure given the temperature X = x is modeled within logistic regression
using the slope and intercept parameters β ∈ R and α ∈ R in general. P (Y =

1|X = x) =
e(α+βx)

1 + e(α+βx)
. Then likelihood is depicted as follows, (with n being

the number of data points which is 23 here).

L(α, β|D) ∝
n∏
i=1

(
e(α+βx)

1 + e(α+βx)

)yi (
1

1 + e(α+βx)

)1−yi
(1)
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We use Normal priors for both α and β:

π0(α) =
1

σPα
√

2π
e−(α−µα)2/2σPα

2

; π0(β) =
1

σPβ
√

2π
e−(β−µβ)2/2σPβ

2

.

Thus, the unscaled joint posterior π(α, β|D,π0(α), π0(β)) of the model parame-
ters, given the test flight data D is given as the product of the aforementioned
likelihood and priors. Fig. 1 displays results of learning α and β given data D.
The 95% HPDs on the parameters are: [14.8, 15.19], (with a mean of 14.995) for
α and [-0.249, -0.216], (with a mean of -0.2325) for β.

(a) (b) (c) (d) (e) Dmean

Fig. 1: Results of learning α, β using O-ring data D. From left, (a,b) trace (vari-
ation with iteration index) of α, β respectively; (c) histogram of marginal poste-
rior of α (upper), β (lower) and log of their joint posterior; (d) histograms of α
(upper) and β (lower) values sampled during the MCMC chain, over three dis-
tinct (colored in blue, red and black), equally-wide (covering 20000 consecutive
iterations), non-overlapping iteration windows for convergence test which are
overplotted; (e) Pr(Y = 1|X = xi) computed at 16 different temperatures using
the mean of the α and β learnt in this chain, using data D. This MCMC chain
was run using a Metropolis-within-Gibs algorithm. Total number of iteration in
this chain is 200000; the variances of the truncated Normal proposal densities
for α and β are 0.0742, and 0.0082 respectively with Normal priors on α and β.

3 Generating Training Data Sets at Parameter
Summaries

In this section we first discuss the generation of training data Dtrain comprising
pairs of values of design input, and the probability for Y to be 1 at that design
temperature. As motivated above, we will undertake this generation in two dis-
tinct ways - for the Dtrain generated under a given approach, we refer to it by
its updated name.

In the first approach, at the end of the MCMC chain that is used to learn
the parameters α and β of the logistic regression model, we compute the mean
of the sampled α and β, to generate the Pr(Y = 1|X = x), at the design
temperature value x; such (x,Pr(Y = 1|x)) pairs will constitute a training set
Dmean (depicted in Fig. 1). Dmean is one of the training data sets that we will
use to learn the functional relationship between this output (i.e. Pr(Y = 1|x)
and the input X. (As stated above, such supervised learning will reduce to our
learning of the length scale hyperparameter ` of the covariance structure of the
GP that we will model our sought function with).
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Another training data Dright will be built by using the learnt values of α and
β at the right edge of the 95% HPD learnt on α and β using data D. In principle,
any values from within the 95% HPDs on α and β - inferred upon using data D
- can be used in this context.

We will perform with-uncertainty learning of the kernel hyperparameter `,
to undertake predictions on the output variable - which is Pr(Y = 1|X = x) - at
test inputs. When making this learning of the relationship between the output
Pr(Y = 1||x) and input X, there is no information available to our learning
mechanism to have the output predictions - at test temperatures - to remain
confined to the interval [0,1]. In other words, the supervised learning algorithm
does not distinguish on the basis of the nature of the output variable. We will
impose such a constraint on the learning to ensure meaningful predictions, using
MCMC-based inference.

3.1 Learning ` Under the Constraint Given Dmean

We attempt learning the function f(·), where W = f(X), with the output W ≡
Pr(Y = 1|X = x), s.t. the unknown f : R −→ [0, 1]. We do this by treating
f(·) as an unknown, which in the Bayesian paradigm translates to f(·) being
modelled as a random variable, or rather a random function in this case. Then by
definition, f(·) is ascribed a probability distribution. A probability distribution
on the space of functions is a stochastic process. So we model f(·) as a realisation
from a process. For maxima generalisability and ease of computation, we choose
this process to be a GP, s.t. minimal constraints are imposed on the sample
function f(·). So f ∼ GP (µ(x), cov(x, x/), where µ(·) and cov(·, ·) are mean
and covariance functions of this GP. Then by definition, the joint probability
of a finite number of realisations of f(·) - such as the M realisations of f(·) at
each of the design points in the training data Dtrain - is Multivariate Normal,
with the M -dimensional mean vector µ and covariance matrix Σ(M×M). We
parameterise matrix Σ by saying that the ij-Th element of this matrix that
represents the covariance between Wi and Wj , is modelled as a declining function
K(·, ·) of the distance between the inputs si and xj at which these outputs are
realised. Here i, j = 1, . . . ,M .This distance is chosen to be Euclidean, and K(·, ·)
a Squared Exponential (or SQE) kernel function, s.t. Σ = [cov(Wi,Wj)] =
[K(xi, xj)], with K(xi, xj) := exp(−(xi − xj)2/`2), ` > 0. We choose to model
the covariance structure of this GP using an SQE kernel with a fixed length
scale hyperparameter ` > 0. We compute the empirical mean w̄ of the output
values f(x1) = w1, . . . , f(xM ) = wM that live in the training data Dtrain, as
each component of µ.

So as the joint of f(x1), . . . , f(xM ) is Multivariate Normal, with mean µ, and
covariance matrix Σ = [K(xi, xj)], it implies that the joint of w1, . . . , wM is this
Multivariate Normal. But the joint of these M values of the output W that live
in training data, is the probability of the data on W . In fact, it is a conditional
probability - conditional on the parameters of the mean and covariance, i.e. on `.
But the probability of the data conditional on model parameters is the likelihood.
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(a) (b) (c) (d) (e)

Fig. 2: Results of learning ` using training data Dmean. Here the 2-stepped prior
is imposed on `. From left, (a,b) traces of learned values of ` and logarithm of
posterior of ` respectively; (c,d) histogram representations of the marginal of `
and posterior values respectively; (e) 3-window convergence test, (see caption of
Fig. 1) to confirm convergence of the MCMC chain.

Thus, the likelihood is Multivariate Normal with mean µ and the covariance ma-
trix Σ that is kernel parameterised as above, with hyperparameter `,i.e. the
likelihood is L(`|Dtrain) = (1/

√
(2π)M |Σ|) exp

(
−(w − µ)TΣ−1(w − µ)/2

)
,

where w = (w1, . . . , wM )T , and Σ is kernel parametrised using the SQE kernel
with hyperparameter `. We impose Gaussian priors on `. Then the unscaled pos-
terior on ` given the training data is this likelihood times the Gaussian prior. We
perform learning with Metropolis Hastings in which ` is proposed from a trun-
cated Normal density, and training data that is generated as the data Dmean,
using the mean of the sampled α and β that are learnt using D. We update `
in each iteration of the chain, and subsequently, predict the mean and variance
of the output W at test values of the input. However, these predictions do not
necessarily offer output values to remain in [0,1].

To remedy this, we impose the constraint that we learn only those ` that
predict outputs at any test input, to lie in [0,1]. We accomplish this by inputting
a prior on ` that offers a density of ρhi > 0 if the predictions on an arbitrarily
chosen set of test temperatures are within [0,1], and the prior is set at the value
ρlo.

In the t-th iteration of the MCMC chain, after proposing ` as `?,t ∼ Truncated
Normal(0, `(t−1), 0.032), a 2-stepped prior is invoked, as discussed below. Here
`(t−1) is the current value of ` in the t− 1-th iteration of the MCMC chain.

fstepPrior(`prop) =

{
ρhiπ0,Normal, if W predicted using ` = `prop is ∈ [0, 1]

ρloπ0,Normal, otherwise,

(2)
where π0,Normal = N (0.9, 0.082) prior placed on `. We choose ρhi = 1, and

ρlo ≤ e−103 . The MCMC chain that we run comprises 100000 iterations; and
the 95% HPD learnt on the ` using Dmean is [0.79509924, 1.10960904], with
mean 0.9523 approximately. Fig. 2 shows results obtained by running this chain.
Fig. 5a shows the GP prediction for this set up using ` ≈ 0.9523.
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3.2 DNN Results

We have also implemented Deep Neural Network systems with varying archi-
tectures to make prediction of output W ≡ Pr(Y = 1|X = xtest) at test tem-
peratures. Here the DNN architecture varies in number of hidden layers (one to
four), with 64 neurons in each layer. We make these predictions using Tensor-
flow, following the code that is available in the official documentation/tutorial
cite of Tensorflow [14]. To allow for compatible comparison, here we perform
predictions at the same test data, as used when output predictions were made
following the learning of ` using MCMC, as in subsection 3.1. We perform these
DNN-based predictions using Adam optimiser that has a learning rate=0.001,
loss function=‘mean absolute error’, epoch=500.

All the four predictive plots from DNN are shown in Fig. 3. The comparative
results of DNN and GP are presented in the Table 2 and it is to be noted that
DNN results are sensitive to the choice of architecture, even for this simplistic
data set. Such sensitivity is cause for worry when reliable and robust ML imple-
mentation is sought. For more complex real-world data sets with higher noise,
such sensitivity is likely to be more pronounced. Also, DNN does not produce
the (probability) predictions within the strict range of 0 and 1, while predic-
tions following GP-based learning could be successfully constrained to lie in this
interval.

Fig. 3: DNN predictions with varying hidden layers, from left, DNN with 1, 2, 3
and 4 hidden layers with 64 neurons in each layer.

Fig. 4: Results as in Fig. 2, except obtained using Dright, from left: (a) to (e).

3.3 Learning ` Under Constraint, with MCMC, using Dright

Instead of using the training data Dmean one could potentially use any value of
α and β from within 95% HPDs learnt on these parameters, in the chain run
with test flight data D, to compute Pr(Y = 1|X = xi) where xi is the i-th design
temperature; i = 1, . . . ,M . The training data that will then result, will not be
Dmean since the output at any design temperature in Dmean is computed at
the mean of the α and β samples generated in the MCMC chain run with test
flight data D. As stated above, when we populate a training data by computing



Title Suppressed Due to Excessive Length 9

Pr(Y = 1|X = xi) using the value of α=15.19 and of β=-0.216 from the right-
most edge of their respective 95% HPD that is learnt in this MCMC chain, for
i = 1, . . . ,M , we get the training set that we refer to as Dright. Results of GP-
based learning of ` undertaken with training data Dright are presented in Fig. 4.
From this chain, we learn the 95% HPD on ` to be [0.7999134, 1.11657139], with
mean ` of 0.9582 approximately. Fig. 5b shows the GP prediction for this set up
using ` = 0.9582.

Table 2: Prediction of output W at test inputs -
with DNNs of varying architectures, and follow-
ing GP-based learning of hyperparameter (`) of
the covariance kernel that parameterises the GP
covariance structure. HL: number of Hidden Lay-
ers in the DNN, N: number of Neurons.

1 HL, 64N 2 HL, 64N each 3 HL, 64N each 4 HL, 64N each GP mean

1.0310167 0.9359667 0.938025 0.9486213 0.9323123
0.9939897 0.91862655 0.91935253 0.9286917 0.934071
0.9569628 0.90128636 0.90068007 0.9093453 0.926627
0.9199359 0.8839463 0.8820075 0.8906931 0.911141
0.88290906 0.86660624 0.863335 0.87204087 0.888929
0.8458822 0.84823 0.8443388 0.8533887 0.861319
0.8088551 0.8216592 0.818619 0.82862586 0.82952
0.7718283 0.79057 0.78710705 0.80185705 0.794533
0.7348015 0.7537405 0.75483435 0.77277607 0.757104
0.6977744 0.7143501 0.7184024 0.73662823 0.717731
0.6607475 0.6749598 0.6793759 0.69309384 0.676709
0.62372065 0.6355695 0.63738376 0.6467888 0.634208
0.5862205 0.5937305 0.59471357 0.599609 0.590366
0.5407498 0.5457597 0.54709804 0.55195147 0.545373
0.4952766 0.49778882 0.4992079 0.5042205 0.49954
0.44980314 0.44990715 0.45125672 0.45653468 0.453327
0.40433016 0.4031423 0.40382358 0.40979505 0.407338
0.3588567 0.35748953 0.35848558 0.36351866 0.362288
0.31549928 0.31303966 0.31533292 0.32044703 0.318933
0.27524063 0.2705538 0.27200228 0.2804457 0.277996
0.23979539 0.23742433 0.24069557 0.2418064 0.240096
0.20099688 0.19988464 0.20456474 0.2145113 0.205685
0.16196822 0.16679865 0.17303263 0.18275131 0.175016
0.14389752 0.14620048 0.14776252 0.15101965 0.148136
0.12673585 0.12363774 0.12680508 0.12768927 0.124907
0.10957434 0.10223782 0.1055288 0.10772515 0.105044
0.09241267 0.08653921 0.09068373 0.08748056 0.088173
0.07525112 0.07084078 0.07638919 0.0738593 0.073881
0.06405788 0.05796587 0.06551494 0.06084543 0.06177
0.05543705 0.04907831 0.0565593 0.0475015 0.05149
0.04681628 0.04019085 0.04897907 0.04064081 0.042759
0.03819548 0.03227264 0.04272956 0.03435563 0.035364
0.02957465 0.02511932 0.03683984 0.02806261 0.029157
0.02095388 0.0179661 0.03095011 0.0229567 0.024029
0.0123331 0.01081278 0.02506035 0.01791653 0.0198959

Prediction Once ` is
updated in any iteration
of the MCMC chain run
with training data Dtrain

- which could be Dmean

or Dright - we predict the
output W at a test input.
These predicted mean out-
puts at each of the con-
sidered test temperatures
are plotted against temper-
ature, in green stars, in
Fig. 5a, and Fig. 5b;W from
the training data at a design
temperature is depicted in
these figures in red trian-
gles, while the uncertainty
predicted at a test input,
on the output, is depicted
as the salmon-pink shaded
region. This depicted “un-
certainty” is 2.5 times the
standard deviation that is
predicted - in a closed form
way, along with the mean
- at any test temperature.
This is an advantage of performing learning with GPs; the output mean and vari-
ance predictions are closed-form. One concern that we have about this learning
is that the choice of the training set that was employed in undertaking this learn-
ing appears ambiguous. In fact, percolation of the uncertainties in the learning
of α and β is not correct in the formulation of these training data. In particular,
when we examine the values of the predicted outputs and the uncertainties pre-
dicted on the outputs at any test temperature, we can firstly see that the result
varies depending on which training data we have considered in the learning, and
secondly, the result shows that some probabilities within the uncertainty bands,
are predicted as being in excess of 1. This is in spite our 2-stepped prior that we
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imposed to ensure that all output values stay restricted to [0,1]. Fig. 5a depicts
the result of predictions using Dmean while Fig. 5b shows the same with Dright.

4 Pipe-Lined Architecture for Efficient Uncertainty
Percolation

(a) ` ≈ 0.9523. (b) ` ≈ 0.9582 (c)

Fig. 5: (a,b) show GP predictions with 2.5
standard deviation of uncertainties with dif-
ferent `s with non pipe-lined architecture and
pipe-lined architecture (c).

As we have seen in the pre-
vious section, predictions fol-
lowing GP-based learning can
result in unacceptable uncer-
tainties, and ambiguous results
stemming from generation of
training sets based on ambigu-
ity in summarising uncertainties
in the earlier stages. In this sec-
tion we will illustrate a pipeline
architecture for efficient han-
dling of uncertainties which can also be extended to higher dimensional data.
Fig. 6 represents the two approaches of uncertainty modelling and percolation as
flow charts. The pipeline architecture consists of three blocks within the MCMC
chain that we run. These blocks are executed sequentially within each iteration of
the MCMC chain, so that uncertainty gets propagated through the stages with-
out incorporating further errors that can creep in via arbitrary summarisation
of learning outcomes in previous stages.

Broadly, inside an iteration of the MCMC chain, in the first block, α, β are
updated - as within an iteration of Metropolis Hastings - using the test flight
data D. In the second block of this iteration, the training data Dtrain is then
computed at the current α and β values, and subsequently the GP kernel hy-
perparameter ` is updated using this current training data Dtrain, under the
2-stepped prior to ensure that output predictions remains within 0 and 1 at all
considered temperatures. Then in the third block of this iteration, with the cur-
rent value of `, closed form mean and variance predictions of output values are
undertaken, at each test temperatures. Hence, after the full iteration is over, we
get traces of the predictive means at each test temperature. We use the range of
values of the output W ≡ Pr(Y = 1|X = xtest) sampled across the iterations, at
each test input xtest, to compute the 95% HPD credible region. We compute the
mean and the standard deviation of this sample, as the central prediction at test
temperature xtest, with uncertainties of 2.5 times this sample standard deviation
on either side of the mean, as the uncertainty in the prediction. The predicted
variance at each test temperature is also recorded, and this is compared to the
uncertainty of predictions obtained using the variation across MCMC samples.
First block: In an iteration of the MCMC chain, in the first block α, β are
learnt using data D, with Metropolis Hastings, with the same configuration that
is used in Subsection 2.1. The log of the posterior defined in this subsection is
used. Gaussian priors are used for both α, β. Once, the burnin phase is over,
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then next stages are switched on.
Second block: In this current iteration of the MCMC chain, the O-ring failure
probability is computed at design temperatures x1, . . . , xM using the current
values of α, β as in Section 2.1. This newly computed failure probability now be-
comes the output computed at a design input. When performed over the whole
set of design inputs, the training data Dtrain is generated. this is employed in
learning the GP kernel hyperparameter `, as depicted in the earlier Subsec-
tion 3.1.
Third block: In the third block of this iteration, predictive mean and variance
of the output at each test temperature is computed, using the current `.

Fig. 7 represents the results of learning the parameters α and β, using the test
flight data, within the MCMC chain - to update the training set {(xi, wi)}Mi=1

- that simultaneously learns the hyperparameter (`) of the covariance structure
of the GP that models the functional relation between output W and input X.
Here, the output W here is the probability of the O-ring failure and the input X
is the ambient temperature to which such an O-ring is exposed. At each iteration
of the MCMC chain, the uncertainty-included outputs are predicted at each test
temperature. Thus, at the end of the MCMC chain, we predict values of mean
and standard deviation of the output at each xtest; such predictions are shown
in Fig. 5c. Traces of predicted values of the output W at few of the considered
test temperatures are depicted in Fig. 8, along with uncertainties.

Algorithm 1 depicts the algorithm of the pipeline with the following inputs.
α0, β0, `0 are seeds; σα, σβ , σ` are jump scales for α, β, ` respectively; µα, µβ prior
mean and σpα, σ

p
β are prior standard deviation for α and β respectively, number

of maximum iterations N ; N` is starting iteration for learning `, n number of
test data points, ε noise in GP.

(a) Trace of α. (b) Trace of β. (c) C. test (d) Trace of `. (e) ` histogram

Fig. 7: Traces and plots for learning α, β, ` in pipe-lined architecture; in c)
C.:convergence test for α(top); β

Fig. 8: Variation of predicted mean of the output W with iteration index, at few
values of xtest, from left 0th, 8th, 16th, 24th and 28th test point.

5 Discussion and Conclusions
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(a) Non pipe-lined. (b) Pipe-lined.

Fig. 6: Approaches of dealing uncertainty

In this work we present a robust
method of uncertainty percolation in
the context of a simple data situ-
ation; however the methodology is
generic, and applicable to real-world
complex datasets. This kind of in-
tegrated uncertainty percolation is
useful for domains such as health-
care, where correct uncertainty ac-
knowledgement is crucial. Results
from our undertaken Bayesian ap-
proach have been compared to methods that consider uncertainty differently,
and this comparison is the basic premise of the work. Importantly, we have
also made comparison of our results with those obtained using against DNNs.
In fact, the prediction performance in our work is benchmarked against DNN
performance. Results obtained from DNNs are sensitive to the architectural pa-
rameters of the DNN. Indeed, the prediction made with DNNs could improve
with further hyperparameter tuning; however, this very need for such tuning is
our exact worry in regard to the employment of DNNs, when making prediction.
We are not arguing against the possibility of enhancing prediction performance
with DNNs; our quibble is that DNN prediction performance is sensitive to the
choice of its architectural parameters, and when the correct answer is not known
- as is always the case in real-world problems - we do not know which architec-
tural details are optimal for the considered prediction task, given the data at
hand. So the quality of the prediction made with DNNs is rendered questionable
in general and tuning the DNN for a test case in a chosen data context, does not
directly inform on how well such a tuned DNN will perform in a different data
context. Such difficulties with DNN usage are corroborated by the works of [6]
and references therein. As stated above, our small example can be generalised
to broader real-world data situations. Indeed, depending on the architectural
parameters, DNNs can produce diversely inaccurate predictions.

Via our simple illustration, we also show how the Bayesian setting allows
for priors on the unknowns to facilitate the undertaken GP-based learning, such
that the outputs - predicting which is the objective of the undertaken learning
- can abide by relevant constraints.
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