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Abstract
Let X1, X2, . . . be independent identically distributed random points in a convex poly-
topal domain A ⊂ R

d . Define the largest nearest-neighbour link Ln to be the smallest
r such that every point ofXn := {X1, . . . , Xn} has another such point within distance
r . We obtain a strong law of large numbers for Ln in the large-n limit. A related thresh-
old, the connectivity threshold Mn , is the smallest r such that the random geometric
graph G(Xn, r) is connected (so Ln ≤ Mn). We show that as n → ∞, almost surely
nLd

n/ log n tends to a limit that depends on the geometry of A, and nMd
n / log n tends

to the same limit. We derive these results via asymptotic lower bounds for Ln and
upper bounds for Mn that are applicable in a larger class of metric spaces satisfying
certain regularity conditions.
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1 Introduction

This paper is primarily concerned with the connectivity threshold and largest nearest-
neighbour link for a random sample Xn of n points in a specified compact region A
in a d-dimensional Euclidean space.

The connectivity threshold, here denoted Mn , is defined to be the smallest r such
that the random geometric graph G(Xn, r) is connected. For any finite X ⊂ R

d the
graph G(X , r) is defined to have vertex set X with edges between those pairs of
vertices x, y such that ‖x− y‖ ≤ r , where ‖ ·‖ is the Euclidean norm. More generally,
for k ∈ N, the k-connectivity threshold Mn,k is the smallest r such that G(Xn, r) is
k-connected (see the definition in Sect. 2).

The largest nearest-neighbour link, here denoted Ln , is defined to be the smallest r
such that every vertex in G(Xn, r) has degree at least 1.

More generally, for k ∈ N with k < n, the largest k-nearest neighbour link Ln,k is
the smallest r such that every vertex inG(Xn, r) has degree at least k. These thresholds
are random variables, because the locations of the centres are random. We investigate
their probabilistic behaviour as n becomes large.

We shall derive strong laws of large numbers showing that nLd
n,k/ log n converges

almost surely (as n → ∞) to a finite positive limit, and establishing the value of the
limit. Moreover we show that nMd

n,k/ log n converges to the same limit. These strong
laws carry over to more general cases where k may vary with n, and the distribution
of points may be non-uniform. We give results of this type for A a convex polytope.

Previous results of this type (both for Ln,k and for Mn,k) were obtained for A
having a smooth boundary, and for A a d-dimensional hypercube; see Penrose (2003).
It is perhaps not obvious from the earlier results, however, how the limiting constant
depends on the geometry of ∂A, the topological boundary of A, for general polytopal
A, which is quite subtle.

It turns out, for example, that when d = 3 and the points are uniformly distributed
over a polyhedron, the limiting behaviour of Ln is determined by the angle of the
sharpest edge if this angle is less than π/2 (the angle of an edge is the angle between
the two faces meeting at that edge). We believe (but do not formally prove here)
that if this angle exceeds π/2 then the point of Xn furthest from the rest of Xn is
asymptotically uniformly distributed over ∂A, but if this angle is less than π/2 the
location of this point is asymptotically uniformly distributed over the union of those
edges which are sharpest.

Our motivation for this study is twofold. First, understanding the connectivity
threshold in dimension two is vital in telecommunications, for example, in 5G wire-
less network design, with the nodes of Xn representing mobile transceivers [see for
exampleBaccelli andBłaszczyszyn (2009)]. Second, detecting connectivity is a funda-
mental step for detecting all other higher-dimensional topological features in modern
topological data analysis (TDA), where the dimension of the ambient space may be
very high. See Bobrowski (2022), Bobrowski and Kahle (2018) for discussion of
issues related to the one considered here, in relation to TDA. General motivation for
considering random geometric graphs is discussed in Penrose (2003).

While ourmain results are presented (in Sect. 2) in the concrete setting of a polytopal
sample inR

d , our proofs proceed via general lower and upper bounds (Propositions 3.3
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and 3.7) that are presented in themore general setting of a random sample of points in a
metric space satisfying certain regularity conditions. This could be useful in possible
future work dealing with similar problems for random samples in, for example, a
Riemannian manifold with boundary, a setting of importance in TDA.

Mathematically, one contribution of this paper is to extend the range of problems
amenable to the techniqueofgranulation,wherebyR

d is discretized into cubes of equal
side length that is a small constant times rn , where (rn) is a sequence of proposed upper
or lower bounds for Mn or Ln . We use different sizes of cubes for different kinds of
regions within A (corresponding to the various faces of A). This technique was already
used to obtain SLLNs for the coverage threshold in Penrose (2023) and is here also
used for the largest nearest-neighbour link and connectivity threshold. It enables us to
reduce the problems of understanding these thresholds to determining the asymptotic
covering and packing numbers of different regions within that domain of interest, by
small balls, given knowledge about how themeasure of the balls decays with the radius
(this rate of decay depends on on how cornered the region is).

We shall use this method to provide asymptotic lower bounds for Ln in Proposi-
tion 3.3 and upper bounds for Mn in Proposition 3.7, both of which are stated not only
for R

d but in a more general class of metric spaces having a ‘measure doubling’ prop-
erty (not required for the lower bounds). These asymptotic lower and upper bounds
turn out to be sharp in the special case of a polytope that we are interested in here.

2 Statement of results

Throughout this paper, we work within the following mathematical framework. Let
d ∈ N. Suppose we have the following ingredients:

• A finite compact convex polytope A ⊂ R
d (i.e., one with finitely many faces).

• A Borel probability measure μ on R
d with probability density function f , sup-

ported by A (so f ≡ 0 on R
d \ A).

• On a common probability space (S,F , P), a sequence X1, X2, . . . of independent
identically distributed random d-vectors with common probability distribution μ.

For n ∈ N, let Xn := {X1, . . . , Xn} (we use := to denote definition). This is the
point process that concerns us here.

For x ∈ R
d and r > 0 set B(x, r) := {y ∈ R

d : ‖y − x‖ ≤ r}. Let Ao denote the
interior of A, and for r > 0, let A(r) := {x ∈ A : B(x, r) ⊂ Ao}, the ‘r -interior’ of A.

For any point set X ⊂ R
d and any D ⊂ R

d we write X (D) for the number of
points of X in D, and we use below the convention inf(∅) := +∞.

Given n, k ∈ N, and t ∈ (0,∞), define the largest k-nearest neighbour link Ln,k

by

Ln,k := inf({r > 0 : Xn(B(x, r)) ≥ k + 1 ∀x ∈ Xn}). (2.1)

Set Ln := Ln,1. Then Ln is the largest nearest-neighbour link.
We are chiefly interested in the asymptotic behaviour of Ln for large n. More

generally, we consider Ln,k where k may vary with n.
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Let θd := πd/2/�(1 + d/2), the volume of the unit ball in R
d . Given x, y ∈ R

d ,
we denote by [x, y] the line segment from x to y, that is, the convex hull of the set
{x, y}.

Given m ∈ N and functions g : N ∩ [m,∞) → R and h : N ∩ [m,∞) → (0,∞),
we write g(n) = O(h(n)) as n → ∞, if lim supn→∞ |g(n)|/h(n) < ∞.

We write g(n) = �(h(n)) as n → ∞ if lim infn→∞(g(n)/h(n)) > 0.
Given s > 0 and functions g : (0, s) → R and h : (0, s) → (0,∞), we write

g(r) = O(h(r)) as r ↓ 0 if lim supr↓0 |g(r)|/h(r) < ∞. We write g(r) = �(h(r))
as r ↓ 0, if lim infr↓0(g(r)/h(r)) > 0.

Throughout this section, assumewe are given a constant β ∈ [0,∞] and a sequence
k : N → N with

lim
n→∞ (k(n)/ log n) = β; lim

n→∞ (k(n)/n) = 0. (2.2)

We make use of the following notation throughout:

f0 := ess infx∈A f (x); f1 := inf
x∈∂A

f (x); (2.3)

H(t) :=
{
1 − t + t log t, if t > 0

1, if t = 0.
(2.4)

Observe that −H(·) is unimodal with a maximum value of 0 at t = 1. Given a ∈
[0,∞), we define the function Ĥa : [0,∞) → [a,∞) by

y = Ĥa(x) ⇐⇒ yH(a/y) = x, y ≥ a,

with Ĥ0(0) := 0. Note that Ĥa(x) is increasing in x , and that Ĥ0(x) = x and Ĥa(0) =
a.

Throughout this paper, the phrase ‘almost surely’ or ‘a.s.’ means ‘except on a set
of P-measure zero’. For n ∈ N, we use [n] to denote {1, 2, . . . , n}. We write f |A for
the restriction of f to A.

Let �(A) denote the set of all faces of the polytope A (of all dimensions up to
d − 1). Also, let �∗(A) := �(A) ∪ {A}; it is sometimes useful for us to think of A
itself as a face, of dimension d.

Given a face ϕ ∈ �∗(A), denote the dimension of this face by D(ϕ). Then 0 ≤
D(ϕ) ≤ d, and ϕ is a D(ϕ)-dimensional polytope embedded in R

d . Let ϕo denote
the relative interior of ϕ, and set ∂ϕ := ϕ \ ϕo (if D(ϕ) = 0 we take ϕo := ϕ). If
D(ϕ) < d then set fϕ := inf x∈ϕ f (x), and if ϕ = A then set fϕ := f0.

Given ϕ, we claim (and prove later as Lemma 3.1, and illustrate in Fig. 1) that
there is a unique cone Kϕ in R

d such that every x ∈ ϕo has a neighbourhood Ux

such that A ∩ Ux = (x + Kϕ) ∩ Ux . (Recall that a cone in R
d is a set that is closed

under nonnegative scalar multiplication.) Define the angular volume ρϕ of ϕ to be the
d-dimensional Lebesgue measure of Kϕ ∩ B(o, 1).

For example, if ϕ = A then ρϕ = θd . If D(ϕ) = d − 1 then ρϕ = θd/2. If
D(ϕ) = 0 then ϕ = {v} for some vertex v ∈ ∂A, and ρϕ equals the volume of
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Fig. 1 Illustration of the cone
Kϕ , when d = 2 and A is the
lightly shaded polygon shown,
and ϕ is the 0-dimensional face
{v}, where v is the vertex shown.
The cone Kϕ is the thickly
shaded sector between two
half-lines drawn from the origin
o as shown, extended to infinity.
The angle ωϕ is π/4 and for r
small the area of B(x, r) ∩ A is
πr2/8, so ρϕ = π/8

v

o

B(v, r) ∩ A, divided by rd , for all sufficiently small r . If d = 2, D(ϕ) = 0 and ωϕ

denotes the angle subtended by A at the vertex ϕ, then ρϕ = ωϕ/2 (see Fig. 1 for an
example). If d = 3 and D(ϕ) = 1, and αϕ denotes the angle subtended by A at the
edge ϕ [which is the angle between the two faces of A meeting at ϕ; see e.g. Penrose
(2023) for a more detailed definition], then ρϕ = 2αϕ/3 (e.g., for a cube in R

3, each
1-dimensional edge ϕ has αϕ = π/2 and ρϕ = π/3).

Theorem 2.1 Suppose A is a compact convex finite polytope in R
d . Assume that f |A

is continuous at x for all x ∈ ∂A, and that f0 > 0. Assume k(·) satisfies (2.2). Then,
almost surely,

lim
n→∞ nLd

n,k(n)/k(n) = max
ϕ∈�∗(A)

(
1

fϕρϕ

)
if β = ∞; (2.5)

lim
n→∞ nLd

n,k(n)/ log n = max
ϕ∈�∗(A)

(
Ĥβ(D(ϕ)/d)

fϕρϕ

)
if β < ∞. (2.6)

In the next three results, we spell out some special cases of Theorem 2.1.

Corollary 2.2 Suppose that d = 2, A is a convex polygon and f |A is continuous at x
for all x ∈ ∂A. Let V denote the set of vertices of A, and for v ∈ V let ωv denote
the angle subtended by A at vertex v. Assume (2.2) holds with β < ∞. Then, almost
surely,
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lim
n→∞

(
nL2

n,k(n)

log n

)
= max

(
Ĥβ(1)

π f0
,
2Ĥβ(1/2)

π f1
,max

v∈V

(
2β

ωv f (v)

))
. (2.7)

In particular, for any constant k ∈ N, limn→∞
(

nπL2
n,k

log n

)
= 1

f0
.

Corollary 2.3 Suppose d = 3 (so θd = 4π/3), A is a convex polyhedron and f |A is
continuous at x for all x ∈ ∂A. Let V denote the set of vertices of A, and E the set of
edges of A. For e ∈ E, let αe denote the angle subtended by A at edge e, and fe the
infimum of f over e. For v ∈ V let ρv denote the angular volume of vertex v. Suppose
(2.2) holds with β < ∞. Then, almost surely,

lim
n→∞

(
nL3

n,k(n)

log n

)
= max

(
Ĥβ(1)

θ3 f0
,
2Ĥβ(2/3)

θ3 f1
,

3Ĥβ(1/3)

2mine∈E (αe fe)
,max

v∈V

(
β

ρv f (v)

))
.

In particular, if β = 0 the above limit comes to max
(

3
4π f0

, 1
π f1

,maxe∈E
(

1
2αe fe

))
.

Corollary 2.4 (Penrose 2003) Suppose A = [0, 1]d , and f |A is continuous at x for all
x ∈ ∂A. For 1 ≤ j ≤ d let ∂ j denote the union of all (d − j)-dimensional faces of A,
and let f j denote the infimum of f over ∂ j . Assume (2.2) with β < ∞. Then

lim
n→∞

(
nLd

n,k(n)

log n

)
= max

0≤ j≤d

(
2 j Ĥβ(1 − j/d)

θd f j

)
, a.s. (2.8)

It is perhaps worth spelling out what the preceding results mean in the special case
where β = 0 (for example, if k(n) is a constant) and also μ is the uniform distribution
on A (i.e., f (x) ≡ f0 on A). In this case, the right hand side of (2.6) comes to
maxϕ∈�∗(A)

D(ϕ)
(d f0ρϕ)

. The limit in (2.7) comes to 1/(π f0), while the limit in Corollary

2.3 comes to f −1
0 max[1/π,maxe(1/(2αe))].

So far we have only presented results for the largest k-nearest neighbor link. A
closely related threshold is the k-connectivity threshold defined by

Mn,k := inf{r > 0 : G(Xn, r) is k-connected},

where a graph G of order n is said to be k-connected (k < n) if G cannot be dis-
connected by the removal of at most k − 1 vertices. Set Mn,1 = Mn . Then Mn is the
connectivity threshold.

Notice that for all k, n with k < n we have

Ln,k ≤ Mn,k . (2.9)

Indeed, if r < Ln,k , then there exists i ∈ [n] such that deg Xi < k in G(Xn, r).
Then the removal of all vertices adjacent to Xi disconnects G(Xn, r), implying that
r < Mn,k . This proves the claim.
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Our second main result shows that (Mn,k/Ln,k) → 1 almost surely as n → ∞. For
this result we need d ≥ 2.

Theorem 2.5 Suppose d ≥ 2. Suppose A is a compact convex finite polytope in R
d .

Assume that f |A is continuous at x for all x ∈ ∂A, and that f0 > 0. Assume k(·)
satisfies (2.2). Then, almost surely,

lim
n→∞ nMd

n,k(n)/k(n) = max
ϕ∈�∗(A)

(
1

fϕρϕ

)
if β = ∞; (2.10)

lim
n→∞ nMd

n,k(n)/ log n = max
ϕ∈�∗(A)

(
Ĥβ(D(ϕ)/d)

fϕρϕ

)
if β < ∞. (2.11)

Remark 2.6 One can spell out consequences of Theorem 2.5 in dimensions d = 2, 3
and the case of [0, 1]d with exactly the same statement as in Corollaries 2.2–2.4.

Remark 2.7 Theorems 2.1 and 2.5 extend earlier work found in Penrose (2003) on the
case where A is the unit cube, to more general polytopal regions. The case where A
has a smooth boundary is also considered in Penrose (2003) (in this case with also
k(n) = const., the result was first given in Penrose (1999a) for Ln,k and in Penrose
(1999b) for Mn,k).

Remark 2.8 In Penrose (2023), similar results are given for the k-coverage threshold
Rn,k , which is given by

Rn,k := inf {r > 0 : Xn(B(x, r)) ≥ k ∀x ∈ A} ; n, k ∈ N. (2.12)

Our results here, together with Penrose (2023, Theorem 4.2), show that both Ln,k(n)

and Mn,k(n) are asymptotic to Rn,k(n) almost surely, as n → ∞.

Remark 2.9 In Fig. 2 we illustrate our results with some plots against n of simulated
values of nLd

n/ log n and nM
d
n / log n, for uniformly distributed points over a square in

R
2, a tetrahedron or dodecahedron in R

3, or a simplex in R
4. Our simulations suggest

that Ln = Mn for large n. A result of this sort is proved for uniformly distributed
points in [0, 1]d , in Penrose (2003, Theorem 13.17), but we do not prove such a result
for general polytopes here. We hope to come back to this issue in future work.

3 Proofs

In this section we prove the results stated in Sect. 2. Throughout this section we are
assuming we are given a constant β ∈ [0,∞] and a sequence (k(n))n∈N satisfying
(2.2). Recall thatμ denotes the distribution of X1, and this has a density f with support
A, and that Ln,k is defined at (2.1). Recall that Ĥβ(x) is defined to be the y ≥ β such
that yH(β/y) = x , where H(·) was defined at (2.4).

We start by justifying the claim in Sect. 2 concerning the coneKϕ associated with
each face ϕ.
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Fig. 2 Four plots of
nLdn
log n and

nMd
n

log n against n. The domains are: the square [0, 1]2 (top left), a regular

tetrahedron (top right), a regular dodecahedron (bottom left), and the 4-dimensional simplex {x ∈ R
d :∑4

i=1 xi ≤ 1 and xi ≥ 0 for all i ∈ {1, 2, 3, 4}} (bottom right). Where Ln = Mn , only the red line is
visible. The limit on the right-hand side of (2.6) is indicated by the blue dashed line. For the 4-dimensional
simplex, we confirmed using numerical experiments that the maximum on the right-hand side of (2.6) is
attained when ϕ is one of the edges of the form {x ∈ R

4 : xi = x j = 0, xl + xm = 1} for distinct
i, j, k, l ∈ {1, 2, 3, 4}, and we estimated its angular volume numerically. For the other three shapes the
limit is known exactly

Lemma 3.1 Suppose ϕ ∈ �∗(A) is a face of A. Then there is a unique coneKϕ such
that every x ∈ ϕo has a neighbourhood Ux such that A ∩Ux = (x + Kϕ) ∩Ux .

Proof If ϕ = A, we clearly take Kϕ = R
d , so it suffices to consider the case with

D(ϕ) < d. Since A is assumed to be a finite compact convex polytope, it is the
intersection of a finite collection of half-spaces H1, . . . , Hm . For each i ∈ [m] :=
{1, . . . ,m}, let πi denote the boundary of Hi , which is an affine hyperplane in R

d .
Given ϕ, let I be the set of i ∈ [m] such that ϕ ⊂ πi . For each i ∈ I let H

′
i be the

translate of Hi that has the origin on its boundary, and let

Kϕ = ∩i∈IH′
i .

Then H
′
i is a cone for each i ∈ I , so that Kϕ is a cone.

Given x ∈ ϕo and j ∈ [m]\I , we claim that x /∈ π j . Indeed, if D(ϕ) = 0 then
if x ∈ π j we would have ϕ = {x} ⊂ π j , contradicting the assumption j /∈ I . If
D(ϕ) > 0 and x ∈ π j , since j /∈ I we could find y ∈ ϕ\π j . Then since x ∈ ϕo we
could find δ > 0 such that z := x + δ(x − y) ∈ ϕ. But then z and y would lie on
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opposite sides of the hyperplane π j , and since y ∈ H j we would have z /∈ H j , and
hence z /∈ A, so z /∈ ϕ, which is a contradiction. Hence the claim.

Let x ∈ ϕo. By the preceding claim we can and do choose r > 0 so that Ux :=
B(x, r) satisfies Ux ∩ π j = ∅ for all j ∈ [m] \ I . Then Ux ⊂ ∩i∈[m]\IHi . Also for
all i ∈ I , we have x ∈ πi so that (−x) + Hi = H

′
i and x + H

′
i = Hi . Therefore

A ∩Ux = (∩i∈IHi ) ∩Ux = (∩i∈I (x + H
′
i )

) ∩Ux = (x + Kϕ) ∩Ux .

For any other coneK ′ �= Kϕ , and any neighbourhoodU of x , we have (x+K ′)∩U �=
(x + Kϕ) ∩U , and the uniqueness follows from this. ��

For n ∈ N and p ∈ [0, 1] let Bin(n, p) denote a binomial random variable with
parameters n, p.

Given t > 0, let Zt be a Poisson(t) variable.
The proofs in this section rely heavily on the following lemma.

Lemma 3.2 (Chernoff bounds) Suppose n ∈ N, p ∈ (0, 1), t > 0 and 0 ≤ k < n.
(a) If k ≥ np then P[Bin(n, p) ≥ k] ≤ exp (−npH(k/(np))).
(b) If k ≤ np then P[Bin(n, p) ≤ k] ≤ exp (−npH(k/(np))).
(c) If k ≥ e2np then P[Bin(n, p) ≥ k] ≤ exp (−(k/2) log(k/(np))) ≤ e−k .
(d) If k < t then P[Zt ≤ k] ≤ exp(−t H(k/t)).
(e) If k ∈ N then P[Zt = k] ≥ (2πk)−1/2e−1/(12k) exp(−t H(k/t)).

Proof See e.g. Penrose (2003, Lemmas 1.1, 1.2 and 1.3). ��

3.1 A general lower bound

In this subsection we present an asymptotic lower bound on Ln,k(n), not requiring any
extra assumptions on A. In fact, A here can be any metric space endowed with a Borel
probability measure μ which satisfies the following for some ε′ > 0 and some d > 0:

μ(B(x, r)) ≥ ε′rd , ∀ r ∈ (0, 1), x ∈ A. (3.1)

The definition of Ln,k at (2.1) carries over in an obvious way to this general setting.
Later, we shall derive the results stated in Sect. 2 by applying the results of this

subsection to the different regions within A (namely interior, boundary, and lower-
dimensional faces).

Given r > 0, a > 0, define the ‘packing number’ ν(r , a) to be the largest number
m such that there exists a collection of m disjoint closed balls of radius r centred on
points of A, each with μ-measure at most a.

Proposition 3.3 (General lower bound) Assume (3.1)with d, ε′ > 0. Let a > 0, b ≥ 0.
Suppose ν(r , ard) = �(r−b) as r ↓ 0. Assume (2.2).

(a) If β = ∞ then lim infn→∞
(
nLd

n,k(n)/k(n)
)

≥ 1/a, almost surely.

(b) If β < ∞ then lim infn→∞
(
nLd

n,k(n)/ log n
)

≥ a−1 Ĥβ(b/d), almost surely.
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Proof First suppose β = ∞. Let u ∈ (0, 1/a). Set rn := (uk(n)/n)1/d , n ∈ N. By
(2.2), rn → 0 as n → ∞. Then, given n sufficiently large, we have ν(rn, ardn ) > 0
so we can find yn ∈ A such that μ(B(yn, rn)) ≤ ardn , and hence nμ(B(yn, rn)) ≤
auk(n). If k(n) ≤ e2nμ(B(yn, rn)) (and hence nμ(B(yn, rn)) ≥ e−2k(n)), then since
Xn(B(yn, rn)) is binomial with parameters n and μ(B(yn, rn)), by Lemma 3.2(a) we
have that

P[Xn(B(yn, rn)) ≥ k(n)] ≤ exp

(
−nμ(B(yn, rn))H

(
k(n)

nμ(B(yn, rn))

))

≤ exp
(
−e−2k(n)H

(
(au)−1

))
,

while if k(n) > e2nμ(B(yn, rn)) then by Lemma 3.2(c), P[Xn(B(yn, rn)) ≥ k(n)] ≤
e−k(n). Therefore P[Xn(B(yn, rn)) ≥ k(n)] is summable in n because k(n)/ log n →
∞ as n → ∞ by (2.2).

Let δ0 ∈ (0, 1). By (3.1) μ(B(yn, δ0rn)) ≥ ε′δd0uk(n)/n. Therefore by
Lemma 3.2(b), P[Xn(B(yn, δ0rn)) = 0] ≤ exp(−ε′δd0uk(n)), which is summable
in n.

Thus by the Borel-Cantelli lemma, almost surely the event

Fn := {Xn(B(yn, rn)) < k(n)} ∩ {Xn(B(yn, δ0rn)) > 0}

occurs for all but finitely many n. But if Fn occurs then Ln,k(n) ≥ (1 − δ0)rn so that
nLd

n,k(n)/k(n) ≥ (1 − δ0)
du. This gives the result for β = ∞.

Now suppose instead that β < ∞. Suppose first that b = 0, so that Ĥβ(b/d) =
β. Assume that β > 0 (otherwise the result is trivial). Choose β ′ ∈ (0, β). Let

δ > 0 with β ′ < β − 2δ and with β ′H
(

β−2δ
β ′

)
> δ. This is possible because

H(β/β ′) > 0 and H(·) is continuous. For n ∈ N, set rn := ((β ′ log n)/(an))1/d .
Also set k′(n) = �(β − δ) log n�, and k′′(n) = �(β − 2δ) log n�. By assumption
ν(rn, ardn ) = �(1), so for all n large enough, we can (and do) choose xn ∈ A such
that nμ(B(xn, rn)) ≤ nardn = β ′ log n.Then by a simple coupling, andLemma3.2(a),

P[Xn(B(xn, rn)) ≥ k′′(n)] ≤ P
[
Bin

(
n, (β ′ log n)/n)

) ≥ k′′(n)
]

≤ exp

(
− (

β ′ log n
)
H

(
β − 2δ

β ′

))
≤ n−δ.

Let δ′ ∈ (0, 1). By (3.1), for n large enough and all x ∈ A,

nμ(B(x, δ′rn)) ≥ nε′(δ′rn)d = ε′(δ′)d(β ′/a) log n

so that by Lemma 3.2(b), P[Xn(B(x, δ′rn)) = 0] ≤ n−ε′(δ′)dβ ′/a .
Now choose K ∈ N such that δK > 1 and K ε′(δ′)dβ ′/a > 1. For n ∈ N set

z(n) := nK . For all large enough n we have k′(z(n)) ≥ k′′(z(n + 1)), so by the
preceding estimates,
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P[Xz(n+1)(B(xz(n+1), rz(n+1))) ≥ k′(z(n))]
≤ P[Xz(n+1)(B(xz(n+1), rz(n+1))) ≥ k′′(z(n + 1))] ≤ (n + 1)−δK ,

and since xz(n+1) ∈ A, also P[Xz(n)(B(xz(n+1), δ
′rz(n))) = 0] ≤ n−ε′(δ′)dβ ′K/a . Both

of these upper bounds are summable in n, so by the Borel-Cantelli lemma, almost
surely for all large enough n the event

{Xz(n+1)(B(xz(n+1), rz(n+1))) < k′(z(n))} ∩ {Xz(n)(B(xz(n+1), δ
′rz(n))) > 0}

occurs. Suppose the above event occurs and supposem ∈ Nwith z(n) ≤ m ≤ z(n+1).
Note that rz(n+1)/rz(n) → 1 as n → ∞. Then, provided n is large enough,

Lm,k′(z(n)) ≥ rz(n+1) − δ′rz(n) ≥ (1 − δ′)2rm,

and moreover k′(z(n)) ≤ k(m) so that Lm,k(m) ≥ (1 − δ′)2rm . Hence it is almost
surely the case that

lim inf
m→∞ (mLd

m,k(m)/ logm) ≥ (1 − δ′)2d lim inf
m→∞ (mrdm/ logm) = (1 − δ′)2da−1β ′,

and this yields the result for this case.
Now suppose instead that β < ∞ and b > 0. Let u ∈ (a−1β, a−1 Ĥβ(b/d)); note

that this implies uaH(β/(ua)) < b/d. Choose ε > 0 such that (1+ε)uaH(β/(ua)) <

(b/d) − 9ε. Also let δ′ ∈ (0, 1).
Assume for now that the underlying probability space (S,F , P) is rich enough to

support, as well as the sequence (X1, X2, . . .), a unit rate Poisson counting process
(Zt , t ≥ 0), independent of (X1, X2, . . .) (so Zt is Poisson distributed with mean t for
each t > 0). For each t > 0, let Pt := {X1, . . . , XZt }. Observe that Pt is a Poisson
point process in R

d with intensity measure tμ [see e.g. Last and Penrose (2018)].
For each n ∈ N set rn = (u(log n)/n)1/d . Let mn := ν(rn, ardn ), and choose

xn,1, . . . , xn,mn ∈ A such that the balls B(xn,1, rn), . . . , B(xn,mn , rn) are pairwise
disjoint and each have μ-measure at most ardn .

Set λ(n) := n + n3/4 and λ−(n) := n − n3/4. For 1 ≤ i ≤ mn , if k(n) ≥ 1 then by
a simple coupling, and Lemma 3.2(e),

P[Pλ(n)(B(xn,i , rn)) ≤ k(n)] ≥ P[Zλ(n)ardn
≤ k(n)]

≥
(
e−1/(12k(n))

√
2πk(n)

)
exp

(
−λ(n)ardn H

(
k(n)

λ(n)ardn

))
.

Now λ(n)rdn / log n → u so by (2.2), k(n)/(λ(n)ardn ) → β/(ua) as n → ∞. Thus by
the continuity of H(·), provided n is large enough, for 1 ≤ i ≤ mn ,

P[Pλ(n)(B(xn,i , rn)) ≤ k(n)]

≥
(

e−1/12√
2π(β + 1) log n

)
exp

(
−(1 + ε)auH

(
β

au

)
log n

)
.
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Hence, by our choice of ε, there is a constant c > 0 such that for all large enough n
and all i ∈ [mn] we have

P[Pλ(n)(B(xn,i , rn)) ≤ k(n)] ≥ c(log n)−1/2n9ε−b/d ≥ n8ε−b/d . (3.2)

Since xn,i ∈ A, by (3.1), for n large enough and 1 ≤ i ≤ mn we have
μ(B(xn,i , δ

′rn)) ≥ ε′(δ′rn)d (as well as μ(B(xn,i , rn)) ≤ ardn ). Thus, given the value
of Pλ(n)(B(xn,i , rn)), the value of Pλ−(n)(B(xn,i , δ

′rn)) is binomially distributed
with probability parameter bounded away from zero. Also min1≤i≤mn E[Pλ(n)

(B(xn,i , rn))] tends to infinity as n → ∞, so in particular

lim inf
n→∞

(
min

1≤i≤mn
P[Pλ(n)(B(xn,i , rn)) ≥ 1|Pλ(n)(B(xn,i , rn)) ≤ k]

)
> 0.

Therefore there exists η > 0 such that for all large enough n, defining the event

En,i := {Pλ(n)(B(xn,i , rn)) ≤ k(n)} ∩ {Pλ−(n)(B(xn,i , δ
′rn)) ≥ 1},

we have for all large enough n that

inf
1≤i≤mn

P[En,i |Pλ(n)(B(xn,i , rn)) ≤ k(n)] ≥ η.

Hence, setting En := ∪mn
i=1En,i , for all large enough n we have

P[Ec
n] ≤ (1 − ηn8ε−b/d)mn ≤ exp(−ηmnn

8ε−b/d).

By assumption mn = ν(rn, ardn ) = �(r−b
n ) so that for large enough n we have

mn ≥ n(b/d)−ε, and therefore P[Ec
n] is summable in n.

By Lemma 3.2(d), and Taylor expansion of H(x) about x = 1 (see the print version
of Penrose (2003, Lemma1.4) for details; theremaybe a typo in the electronic version),
for all n large enough P[Zλ(n) < n] ≤ exp(− 1

9n
1/2). Similarly P[Zλ−(n) > n] ≤

exp(− 1
9n

1/2). If En occurs, and Zλ−(n) ≤ n, and Zλ(n) ≥ n, then for some i ≤ mn

there is at least one point of Xn in B(xn,i , δ
′rn) and at most k(n) points of Xn in

B(xn,i , rn), and hence Ln,k(n) > (1 − δ′)rn . Hence by the union bound

P[Ln,k(n) ≤ rn(1 − δ′)] ≤ P[Ec
n] + P[Zλ(n) < n] + P[Zλ−(n) > n], (3.3)

which is summable in n by the preceding estimates (also the event on the left in
(3.3) does not depend on the Poissonization so its probability is the same regardless
of whether or not the underlying probability space supports an independent Poisson
process.) Therefore by the Borel-Cantelli lemma,

P[lim inf(nLd
n,k(n)/ log n) ≥ u(1 − δ′)d ] = 1, u < a−1 Ĥβ(b/d), δ′ ∈ (0, 1),

so the result follows for this case too. ��
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3.2 Proof of Theorem 2.1

In this subsection we assume, as in Theorem 2.1, that A is a compact convex finite
polytope in R

d . We also assume that the probability measure μ has density f with
respect to Lebesgue measure on R

d , and that f |A is continuous at x for all x ∈ ∂A,
and that f0 > 0, recalling from (2.3) that f0 := ess infx∈A f (x). Also we let k(n)

satisfy (2.2) for some β ∈ [0,∞]. Let Vol denote d-dimensional Lebesgue measure.

Lemma 3.4 There exists ε′ > 0 depending only on f0 and A, such that (3.1) holds.

Proof Let B0 be a (fixed) ball contained in A, and let b denote the radius of B0. For
x ∈ A, let Sx denote the convex hull of B0 ∪ {x}. Then Sx ⊂ A since A is convex. If
x /∈ B0, then for r < b the set B(x, r) ∩ Sx is the intersection of B(x, r) with a set
of the form x + ˜Kx , where ˜Kx is a convex cone, and since A is bounded the angular
volume of the cone ˜Kx is bounded away from zero, uniformly over x ∈ A \ B0.
Therefore r−dVol(B(x, r)∩ A) is bounded away from zero uniformly over r ∈ (0, b)
and x ∈ A\B0 (and hence over x ∈ A). Since we assume f0 > 0, (3.1) follows. ��

Recall that ν(r , a)was defined just before Proposition 3.3. Recall that for each face
ϕ ∈ �∗(A) we denote the angular volume of A at ϕ by ρϕ , and set fϕ := infx∈ϕ f (x)
(if ϕ ∈ �(A)) or fϕ := f0 (if ϕ = A).

Lemma 3.5 Let ϕ ∈ �∗(A). Assume f |A is continuous at x for all x ∈ ϕ. Then, almost
surely:

lim inf
n→∞

(
nLd

n,k(n)/k(n)
)

≥ (ρϕ fϕ)−1 if β = ∞; (3.4)

lim inf
n→∞

(
nLd

n,k(n)/ log n
)

≥ (ρϕ fϕ)−1 Ĥβ(D(ϕ)/d) if β < ∞. (3.5)

Proof Let a > fϕ . Take x0 ∈ ϕ such that f (x0) < a. If D(ϕ) > 0, assume also that
x0 ∈ ϕo. By the assumed continuity of f |A at x0, for all small enough r > 0 we have
μ(B(x0, r)) ≤ aρϕrd , so that ν(r , aρϕrd) = �(1) as r ↓ 0. By Lemma 3.4, there
exists ε′ > 0 such that (3.1) holds. Hence, we can apply Proposition 3.3 (taking b = 0).
By that result, if β = ∞ then almost surely lim infn→∞ nLd

n,k(n)/k(n) ≥ 1/(aρϕ),
and (3.4) follows.

If β < ∞ and if D(ϕ) = 0, then by Proposition 3.3 (with b = 0), almost surely
lim infn→∞(nLd

n,k(n)/ log n) ≥ Ĥβ(0)/(aρϕ), and hence (3.5) in this case.
Now suppose β < ∞ and D(ϕ) > 0. Take δ > 0 such that f (x) < a for all

x ∈ B(x0, 2δ) ∩ A, and such that moreover B(x0, 2δ) ∩ A = B(x0, 2δ) ∩ (x0 + Kϕ)

(the coneKϕ was defined in Sect. 2). Then for all x ∈ B(x0, δ) ∩ ϕ and all r ∈ (0, δ),
we have μ(B(x, r)) ≤ aρϕrd .

There is a constant c > 0 such that for small enough r > 0 we can find at least
cr−D(ϕ) points xi ∈ B(x0, δ) ∩ ϕ that are all at a distance more than 2r from each
other, and therefore ν(r , aρϕrd) = �(r−D(ϕ)) as r ↓ 0. Thus by Proposition 3.3 we
have

lim inf
n→∞

(
nLd

n,k(n)/k(n)
)

≥ (aρϕ)−1 Ĥβ(D(ϕ)/d),
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almost surely, and (3.5) follows. ��
If we assumed f |A to be continuous on all of A, we would not need the next lemma

because we could instead use Lemma 3.5 for ϕ = A as well as for lower-dimensional
faces.However, in Theorem2.1wemake theweaker assumption that f |A is continuous
at x only for x ∈ ∂A. In this situation, we also require the following lemma to deal
with ϕ = A.

Lemma 3.6 It is the case that

P[lim inf(nLd
n,k(n)/k(n)) ≥ 1/(θd f0)] = 1 if β = ∞; (3.6)

P[lim inf
n→∞ (nLd

n,k(n)/ log n) ≥ Ĥβ(1)/(θd f0)] = 1 if β < ∞. (3.7)

Proof Let α > f0. Then by taking B = A in Penrose (2023, Lemma 6.4),

lim inf
r↓0 rdν(r , αθdr

d) > 0. (3.8)

If β = ∞, then by (3.8) we can apply Proposition 3.3 (taking a = αθd and b = d) to
deduce that lim infn→∞ nLd

n,k(n)/k(n) ≥ (θdα)−1, almost surely, and (3.6) follows.

Suppose instead that β < ∞. By (3.8), ν(r , αθdrd) = �(r−d) as r ↓ 0. Hence by

Proposition 3.3, almost surely lim infn→∞
(
nLd

n,k(n)/ log n
)

≥ (αθd)
−1 Ĥβ(1). The

result follows by letting α ↓ f0. ��
Proof of Theorem 2.1 First suppose β < ∞.

It is clear from (2.1) and (2.12) that Ln,k ≤ Rn,k+1 for all n, k. Also by (2.2) we
have (k(n)+1)/ log n → β as n → ∞. Therefore using Penrose (2023, Theorem 4.2)
for the second inequality below, we obtain almost surely that

lim sup
n→∞

(
nLd

n,k(n)

log n

)
≤ lim sup

n→∞

(
nRd

n,k(n)+1

log n

)
≤ max

ϕ∈�∗(A)

(
Ĥβ(D(ϕ)/d)

fϕρϕ

)
. (3.9)

Alternatively, this upper bound could be derived using (2.9) and the asymptotic upper
bound on Mn that we shall derive in the next section for the proof of Theorem 2.5.

By Lemmas 3.6 and 3.5, we have a.s. that

lim inf
n→∞

(
nLd

n,k(n)/ log n
)

≥ max
ϕ∈�∗(A)

(
Ĥβ(D(ϕ)/d)

fϕρϕ

)
, (3.10)

and combining this with (3.9) yields (2.6).
Now suppose β = ∞. In this case, again using the inequality Ln,k ≤ Rn,k+1 and

Penrose (2023, Theorem 4.2), we obtain instead of (3.9) that a.s.

lim sup
n→∞

(
nLd

n,k(n)/k(n)
)

≤ max
ϕ∈�∗(A)

(
1

fϕρϕ

)
. (3.11)
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Also by Lemmas 3.6 and 3.5, instead of (3.10) we have a.s. that

lim inf
n→∞

(
nLd

n,k(n)/k(n)
)

≥ max
ϕ∈�∗(A)

(
1

fϕρϕ

)
,

and combining this with (3.11) yields (2.5). ��

3.3 A general upper bound

In this subsection we present an asymptotic upper bound for Mn,k(n). As we did for
the lower bound in Sect. 3.1, we shall give our result (Proposition 3.7 below) in a
more general setting; we assume that A is a general metric space endowed with two
Borel measures μ and μ∗ (possibly the same measure, possibly not). Assume that
μ is a probability measure and that μ∗ is a doubling measure, meaning that there
is a finite constant c∗ (called a doubling constant for μ∗) such that μ∗(B(x, 2r)) ≤
c∗μ∗(B(x, r)) for all x ∈ A and r > 0. Assume moreover that μ∗(B(x, r)) < ∞ for
some x ∈ A, r > 0 (and hence for all such x, r ). We shall require further conditions
on A: a condition on balls (B), a topological condition (T) and a geometrical condition
(G) as follows:

Condition (B): For all x ∈ A and r > 0, the ball B(x, r) is connected.
Condition (T): The space A is connected and unicoherent. (A is said to be unico-
herent if for any two closed connected sets A1, A2 ⊂ A with A1 ∪ A2 = A, the set
A1 ∩ A2 is also connected. If A is simply connected, it is unicoherent; see Penrose
(2003, Section 9.1).)
Condition (G): There exists δ1 > 0, and K0 ∈ (1,∞), such that for all r < δ1 and
any x ∈ A, the number of components of A \ B(x, r) is at most two, and if there
are two components, at least one of these components has diameter at most K0r .

For an example where Condition (G) fails, consider a triangle in R
2 with vertices at

(0, 0), (1, 0) and (1, 1) but where the edge from (0, 0) to (1, 1), instead of being a
straight line segment, is given by the curve {(x, x2) : 0 ≤ x ≤ 1} (but the other two
edges are straight line segments). For this space, for r small one can use a disk of
radius r to cut off a region that has diameter that is O(r1/2).

Given D ⊂ A and r > 0, we write Dr for {y ∈ A : dist(y, D) ≤ r}. Also, let
κ(D, r) be the r -covering number of D, that is, the minimal m ∈ N such that D can
be covered by m balls centred in D with radius r .

As before, given μ we assume X1, X2, . . . to be independent μ-distributed random
elements of Awith the k-connectivity threshold Mn,k defined to be the minimal r such
that G(Xn, r) is k-connected, withXn := {X1, . . . , Xn}.
Proposition 3.7 (General upper bound) Suppose that (A, μ, μ∗) are as described
above and A satisfies Conditions (B), (T) and (G). Let � ∈ N and let d > 0. For
each j ∈ [�] let a j > 0, b j ≥ 0. Suppose that there exists r0 > 0 such that for
all r ∈ (0, r0), there is a partition {T ( j, r), j ∈ [�]} of A with the following two
properties. Firstly, for each fixed j ∈ [�], we have

κ(T ( j, r), r) = O(r−b j ) as r ↓ 0, (3.12)
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and secondly, for all K ∈ N, there exists r0(K ) > 0 such that for all j ∈ [�],
r ∈ (0, r0(K )) and any G ⊂ A intersecting T ( j, 2Kr) with diam(G) ≤ Kr, we have

μ(Gr \ G) ≥ a jr
d . (3.13)

Assume (2.2). Then, almost surely,

lim sup
n→∞

(
nMd

n,k(n)/k(n)
) ≤ max

j∈[�](a
−1
j ) if β = ∞;

lim sup
n→∞

(
nMd

n,k(n)/ log n
) ≤ max

j∈[�](a
−1
j Ĥβ(b j/d)) if β < ∞.

There is a kind of duality between the packing condition in Proposition 3.3, and
the covering condition in Proposition 3.7. Indeed, the condition for Proposition 3.3
requires that we can pack �(r−b) balls of radius r and measure at most ard . The
conditions (3.12) and (3.13) (taking G to be a singleton) in Proposition 3.3 imply that
we can cover T ( j, r) by O(r−b j ) balls of radius r and measure at least a jrd .

Later we shall use Proposition 3.7 in the case where A is a convex polytope in R
d

to prove Theorem 2.5, taking μ to be the measure with density f and taking μ∗ to
be the restriction of Lebesgue measure to A (in fact, if f is bounded from above then
we could take μ∗ = μ instead). The sets in the partition each represent a region near
to a particular face ϕ ∈ �∗(A) (if ϕ = A the corresponding set in the partition is an
interior region). In this case, the coefficients a j in the measure lower bound (3.13)
depend heavily on the geometry of the determining cone near a particular face.

As a first step towards proving Proposition 3.7, we spell out some useful conse-
quences of the measure doubling property. In this result (and again later) we use | · |
to denote the cardinality (number of elements) of a set.

Lemma 3.8 Let μ∗ be a doubling measure on the metric space A, with doubling
constant c∗. We have the following.

(i) For any ε ∈ (0, 1), there exists ρ(ε) ∈ N such that κ(B(x, r), εr) ≤ ρ(ε) for all
x ∈ A, r ∈ (0,∞).

(ii) For all r ∈ (0, 1) and all D ⊂ A, we can findL ⊂ D with |L | ≤ κ(D, r/5), such
that D ⊂ ∪x∈L B(x, r), and moreover the balls B(x, r/5), x ∈ L , are disjoint.

Proof To prove (i), let x ∈ A, r > 0. By the Vitali covering lemma, we can find a
set U ⊂ B(x, r) such that balls B(y, εr/5), y ∈ U are disjoint and that B(x, r) ⊂
∪y∈U B(y, εr). Set ρ(ε) := �c�log2(15/ε)�∗ �. Then by using the doubling property ofμ∗
repeatedly, we have μ∗(B(y, 3r)) ≤ ρ(ε)μ∗(B(y, r/5)) for all y ∈ A. Moreover, by
the triangle inequality and the conditionU ⊂ B(x, r), we have B(x, 2r) ⊂ B(y, 3r)
for all y ∈ U . Also ∪y∈U B(y, εr/5) ⊂ B(x, 2r) and the union is disjoint. Thus

|U |μ∗(B(x, 2r)) ≤
∑
y∈U

μ∗(B(y, 3r))

≤ ρ(ε)
∑
y∈U

μ∗(B(y, εr/5)) ≤ ρ(ε)μ∗(B(x, 2r)),
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and therefore |U | ≤ ρ(ε); the claim about κ(B(x, r), εr) follows.
Now we prove (ii). Let L 0 ⊂ D with |L 0| = κ(D, r/5) and with D ⊂

∪x∈L 0B(x, r/5). By the Vitali covering lemma, we can find L ⊂ L 0 such that
D ⊂ ∪x∈L B(x, r) and the balls B(x, r/5), x ∈ L , are disjoint, and (ii) follows. ��

Given countable σ ⊂ A, r > 0 and k ∈ N, we say that σ is (r , k)-connected if the
geometric graph G(σ, r) is k-connected. Assuming Condition (B) holds, we see that
σ is (r , 1) connected if and only if σr/2 is a connected subset of A.

Lemma 3.9 (Peierls argument) Let � ∈ N, a ∈ [1,∞). Let r ∈ (0, 1/a) and n ∈ N.
LetL ⊂ A with the property that |L ∩ B(x, r)| ≤ � for all x ∈ A, and let x0 ∈ Lr .
Then the number of (ar , 1)-connected subsets of L containing x0 with cardinality n
is at most cn, where c depends only on �, a and c∗.

Proof First we claim that |L ∩ B(x, ar)| ≤ �ρ(1/a) for all x ∈ A, where ρ(1/a) is
as given in Lemma 3.8-(i). Indeed, we can cover B(x, ar) by ρ(1/a) balls of radius
r , and each of these balls contains at most � points ofL .

The result then follows by applying (Kesten 1982, Lemma 5.1, eqn (5.22)) to the
graph G(L , ar). For the reader’s convenience we sketch the argument from there.
Fix p ∈ (0, 1) and perform Bernoulli site percolation on G(L , ar). Let Cx0 be the
resulting cluster at x0. All sites in Cx0 must be open and all sites adjacent to Cx0 must
be closed. By our upper bound on degrees in this graph, with an denoting the number
of possibilities for Cx0 ,

1 ≥ P[|Cx0 | = n] ≥ an p
n(1 − p)n�ρ(1/a),

and the result follows with c = p−1(1 − p)−�ρ(1/a). ��
Preparing for a proof of Proposition 3.7, we recall a condition that is equivalent

to k-connectedness of a graph G. We say that non-empty sets U ,W ⊂ V in a graph
G with vertex set V form a k-separating pair if (i) the subgraph of G induced by U
is connected, and likewise for W ; (ii) no element of U is adjacent to any element of
W ; (iii) the number of vertices of V \ (U ∪ W ) lying adjacent to U ∪ W is at most
k. We say that U is a k-separating set for G if (i) the subgraph of G induced by U
is connected, and (ii) at most k vertices of V \ U lie adjacent to U . The relevance of
these definitions is presented in the following lemma.

Lemma 3.10 (Penrose 2003, Lemma 13.1) Let G be a graph with more than k + 1
vertices. Then G is either (k + 1)-connected, or it has k separating pair, but not both.

By Lemma 3.10, for Proposition 3.7 it suffices to prove, for arbitrary u >

max j a
−1
j Ĥβ(b j/d), the non-existence of (k(n) − 1)-separating pairs in G(Xn, rn)

with rn = (u log n/n)1/d , as n → ∞. Notice that, for any fixed K ∈ N, if (U ,W ) is a
(k−1)-separating pair, then either bothU andW have diameter at least Krn , or one of
them, sayU , is a (k−1)-separating set of diameter at most Krn . Here by the diameter
of a non-empty set U ⊂ A we mean the number diam(U ) := supu,v∈U dist(u, v).

The goal is to prove that neither outcome is possible when n → ∞. Let us first
eliminate the existence of a small separating set.
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Lemma 3.11 Suppose the assumptions of Proposition 3.7 hold. If β = ∞, let
u > max j a

−1
j and for n ∈ N, set rn = (uk(n)/n)1/d . If β < ∞, let u >

max j∈[�] a−1
j Ĥβ(b j/d), and for n ∈ N set rn = (u(log n)/n)1/d . For K ∈ N, let

En(K , u) be the event that there exists a (k(n) − 1)-separating set for G(Xn, rn) of
diameter at most Krn. Then, given any K ∈ N, almost surely En(K , u) occurs for
only finitely many n.

Proof For j ∈ [�], r ∈ (0, r0) let T ( j, r) be as in the assumptions of Proposition 3.7.

For j ∈ [�], K ∈ N we claim that κ(T ( j, 2Krn), εrn/5) = O(r
−b j
n ) as n → ∞.

Indeed,

κ(T ( j, 2Krn), εrn/5) ≤ κ(T ( j, 2Krn), 2Krn) sup
x∈A

κ(B(x, 2Krn), εrn/5)

≤ ρκ(T ( j, 2Krn), 2Krn),

where ρ = ρ(ε/(10K )) is the constant in Lemma 3.8-(i). The claim follows from the
assumption at (3.12).

Choose n0 ∈ N such that rn < r0 for all n ∈ N with n ≥ n0. By Lemma 3.8-(ii),
for each j ∈ [�] and n ∈ N we can find a set L j

n ⊂ T ( j, 2Krn), with |L j
n | ≤

κ(T ( j, 2Krn), εrn/5) = O(r
−b j
n ), such that T ( j, 2Krn) ⊂ ∪

x∈L j
n
B(x, εrn) and

that the balls B(x, rnε/5), x ∈ L
j
n , are disjoint. Set

Ln := ∪�
i=1L

j
n . (3.14)

Forn ≥ n0, j ∈ [�] letT j
n = {σ ⊂ Ln : diam(σ ) ≤ 2Krn, σ∩T ( j, 2Krn) �= ∅}.

We claim that as n → ∞, the cardinality of T j
n , |T j

n |, satisfies

|T j
n | = O(|L j

n |) = O(r
−b j
n ). (3.15)

Indeed, σ ∩ T ( j, 2Krn) �= ∅ means σ ∩ L
j
n �= ∅. Moreover, as explained below,

lim sup
n→∞

sup
x∈Ln

|B(x, 2Krn) ∩ Ln| < ∞, (3.16)

and diam(σ ) ≤ 2Krn . The claim about cardinality follows from this.
Nowwe show (3.16). By Lemma 3.8-(i), for n large and for all x ∈ A, we can cover

B(x, 2Krn) by ρ(ε/(10K )) balls of radius rnε/5, and each of these balls contains at
most � points ofLn .

Now assume β < ∞. The condition on u implies that ua j > β and
ua j H(β/(ua j )) > b j/d, for each j ∈ [�]. Then we can and do choose β ′ > β

and ε ∈ (0, 1/4) such that for each j ∈ [�], (1 − 3ε)dua j > β ′ and

(1 − 3ε)dua j H
( β ′

(1 − 3ε)dua j

)
>

b j

d
+ ε.
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For n ∈ N define k′(n) = �β ′ log n�.
For n ≥ n0 and σ ⊂ Ln , set

Dσ,n := σ(1−2ε)rn \ σεrn . (3.17)

Let J ∈ N with J > 1/ε. For m ∈ N, define z(m) := mJ . For σ ⊂ Lz(m), define

Fm(σ ) = {Xz(m)(Dσ,z(m)) < k′(z(m))}.

Now let n ∈ N and choose m = m(n) such that z(m) ≤ n < z(m + 1). Assume
z(m) ≥ n0. Suppose that En(K , u) occurs and letU be a (k(n) − 1)-separating set of
G(Xn, rn) with diam(U ) ≤ Krn . We define its ‘pixel version’ σ(U ) := Lz(m(n)) ∩
Uεrz(m(n))

.
Since σ(U ) ⊂ A, there exists j ∈ [�] such that σ(U ) ∩ T ( j, 2Krz(m(n))) �= ∅.

By our choice of ε, provided n is large enough we have diam(σ (U )) ≤ 2Krz(m(n)).

Therefore σ(U ) ∈ ∪[�]
j=1T

j
z(m(n)).

Since U is (k(n) − 1)-separating for G(Xn, rn), we have Xn(Urn \ U ) < k(n).
We claim that Xn(Dσ(U ),z(m(n))) < k(n) provided n is large enough. Indeed, by
the triangle inequality σ(U )(1−2ε)rz(m(n))

⊂ U(1−ε)rz(m(n))
⊂ Urn (for n large), while

U ⊂ σ(U )εrz(n(m))
. Thus Dσ(U ),z(m(n)) ⊂ Urn \ U , and the claim follows. Also,

provided n is large enough, we have k(n) ≤ k′(z(m(n))). Thus we have the event
inclusions

En(K , u) ⊂ ∪�
j=1 ∪

σ∈T j
z(m(n))

{Xn(Dσ,z(m(n))) < k(n)}
⊂ ∪�

j=1 ∪
σ∈T j

z(m(n))

Fm(n)(σ ).

By (3.17), for any n ∈ N and σ ⊂ Ln we have Dσ,n ⊃ (σεrn )(1−3ε)rn\σεrn .

Hence by (3.13), for all large enough n and all σ ∈ ∪ j∈[�]T j
n we have μ(Dσ,n) ≥

a j (1 − 3ε)drdn . A simple coupling shows that, provided m is large, we have

P[∪ j∈[�] ∪
σ∈T j

z(m)

Fm(σ )] =
�∑

j=1

O(r
−b j

z(m))P[Bin(z(m), (1 − 3ε)da j r
d
z(m)) < k′(z(m))].

By Lemma 3.2(b) and our choice of rn and ε, provided m is large, we have

P[∪ j∈[�] ∪
σ∈T j

z(m)

Fm(σ )]

= O(1)
�∑

j=1

exp
(
(b j/d) log z(m) − (1 − 3ε)dua j H

( β ′

(1 − 3ε)dua j

)
log z(m)

)

= O(m−Jε),

which is summable in m.
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It follows from the Borel-Cantelli lemma that almost surely ∪ j∈[�] ∪σ∈T j
z(m)

Fm(σ )

occurs only for finitely many m which implies that En(K , u) occurs for only finitely
many n. This completes the proof of the case β < ∞.

Now assume β = ∞ instead. For the rest of the proof assume also that ε ∈ (0, 1)
is such that ua j (1 − ε)d > 1 for all j ∈ [�]. We do not have to go through the
subsequence argument as before because the growth of k(n) is super-logarithmic.
Now redefine Fn(σ ) := {Xn(Dσ,n) < k(n)}, with Dσ,n still defined by (3.17) but
now using our new choice of ε. If En(K , u) happens then we now redefine the pixel
version of the separating set U as

σ(U ) := Ln ∩Uεrn ,

and enumerate the possible shapes σ of the pixel version. Thus we have

En(K , u) ⊂ ∪�
j=1 ∪

σ∈T j
n
Fn(σ ).

Using the estimate of |T j
n | at (3.15), we have

P[En(K , u)] =
�∑

j=1

O(r
−b j
n )P[Bin(n, (1 − 3ε)da jr

d
n ) < k(n)].

Noticing r−1
n = O(n1/d), and applying Lemma 3.2-(b) leads to

P[En(K , u)] = O(nb j /d)

�∑
j=1

exp
(

− (1 − 3ε)da j uk(n)H
( k(n)

(1 − 3ε)da j uk(n)

))

which is summable in n, and the claim follows by the Borel-Cantelli lemma. ��
The following lemma eliminates the existence of a (k(n) − 1)-separating pair with

both diameters larger than Krn .

Lemma 3.12 Let the assumptions of Proposition 3.7 hold. Ifβ = ∞, let u > max j a
−1
j

and for n ∈ N, set rn = (uk(n)/n)1/d . If β < ∞, let u > max j∈[�] a−1
j Ĥβ(b j/d),

and for n ∈ N set rn = (u(log n)/n)1/d . For K ∈ N let Hn(K , u) denote the
event that there exists a (k(n) − 1)-separating pair (U ,W ) in G(Xn, rn) such
that min(diam(U ), diam(W )) ≥ Krn. Then there exists K1 ∈ N such that (i)
P[Hn(K1, u)] = O(n−2) as n → ∞, and (ii) almost surely Hn(K1, u) occurs for
only finitely many n.

Proof Suppose Hn(K , u) holds. Then Urn/2 and Wrn/2 are disjoint and connected in
A. One of the components of A\Urn/2 contains W ; denote this component by W ′. Set
U ′ = A \ W ′. Then U ⊂ U ′, W ⊂ W ′ and A = W ′ ∪ U ′. Let ∂WU := W ′ ∩ U ′.
Then ∂WU is connected by the unicoherence of A. Moreover, any continuous path in
A connecting U and W must pass through ∂WU .
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Recall δ1 and K0 in Condition (G). We claim (and show in the next few paragraphs)
that

diam(∂WU ) ≥ 1

2K0 + 2
min(δ1/3, diam(W )/3, diam(U )/3). (3.18)

Suppose the opposite. Setting b = diam(∂WU ), we can find x ∈ A such that ∂WU ⊂
B(x, b), and we can find X ∈ U \ B(x, b),Y ∈ W \ B(x, b). Since b < δ1/3, the
number of components of A\B(x, b) is at most two. There have to be two components
because otherwise X and Y can be connected by a path in A disjoint from ∂U , which
is a contradiction.

Suppose that X lies in the component of A \ B(x, b) having diameter at most
K0b, denoted by QX , and Y lies in the other component, denoted by QY (if it is the
other way round we reverse the roles of X and Y in the rest of this argument). We
claim that there exists X ′ ∈ U such that dist(X , X ′) > (2K0 + 2)b. If not, then for
any X1, X2 ∈ U , we have by triangle inequality that dist(X1, X2) ≤ 2(2K0 + 2)b,
yielding that diam(U ) ≤ 2(2K0 + 2)b, contradicting diam(U ) > 3(2K0 + 2)b by the
negation of (3.18).

We claim that dist(X , B(x, b)) ≤ K0b. To see this, using the assumed connectivity
of A, take a continuous path in A from X to Y . The first exit point of this path from
QX lies in B(x, b) (else it would not be an exit point from QX ) but also in the closure
of QX , and hence in B(X , K0b). This yields the latest claim.

We show that X ′ and Y have to be in the same component of A\B(x, b). To this
end, notice first that X ′ cannot be in QX , because for any z ∈ QX ,

dist(X , z) ≤ K0b < (2K0 + 2)b.

Secondly, X ′ cannot be in B(x, b) either because for any z ∈ B(x, b), we have

dist(z, X) ≤ dist(X , B(x, b)) + 2b ≤ (K0 + 2)b < (2K0 + 2)b.

Therefore, X ′ has to be in QY , and we reach again to a contradiction that X ′ and Y
can be connected by a path in A disjoint from ∂U . We have thus proved (3.18).

Let ε ∈ (0, 1/9) and letLn be as defined at (3.14), withL
j
n as defined just before

(3.14) (the ε does not have to be the same as it was there). Recall that Ln has the
covering property that for every x ∈ A we haveLn ∩ B(x, rnε) �= ∅ and the spacing
property that |Ln ∩ B(x, rnε/3)| ≤ � for all such x .

Define DWU = {x ∈ Ln : B(x, εrn)∩∂WU �= ∅}. Then by the covering property
of Ln , (DWU )εrn is connected and covers ∂WU . That is, DWU , as a subset of the
metric space A, is (2εrn, 1)-connected.

By (3.18) and the occurrence of Hn(K , u), we have

2εrn|DWU | ≥ diam(∂WU ) ≥ min(δ1/3, Krn/3)/(2K0 + 2).

Therefore, provided n is large, we have |DWU | ≥ K/(6ε(2K0 + 2)).
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We claim that there is a constant c ∈ (0,∞), independent of n, such that for all

q ∈ N, if |DWU | = q then DWU can take at most O(r
−max(b j )
n cq) possible ’shapes’.

Indeed, given x0 ∈ Ln , set

Un,q(x0) := {σ ⊂ Ln : |σ | = q, σ is (2εrn, 1) -connected, x0 ∈ σ }.

Then DWU ∈ ∪ j∈[�] ∪
x0∈L j

n
Un,q(x0). By Lemma 3.9, we have |Un,q(x0)| ≤ cq for

some finite constant c. Recall from the proof of Lemma 3.11 that |L j
n | = O(r

−b j
n ).

The claim follows.
For all n ∈ N, if x ∈ ∂WU then dist(x,U ) = rn/2. Therefore by the tri-

angle inequality, (DWU )εrn/5 ⊂ Ur , while U ∩ (DWU )εrn/5 = ∅; hence Xn ∩
(DWU )εrn/5 = ∅. This, together with the the union bound, yields that

P[Hn(K , u)] ≤
∑

q≥K/(6ε(2K0+2))

∑
σ

P[Xn(σεrn/5) < k(n)], (3.19)

where the second sum is over all possible shapes σ ⊂ Ln of cardinality q that are
(2εrn, 1)-connected. Since every point in A is covered at most � times, by (3.13) (with
G = {z}), there exists ε1 ∈ (0, 1) such that

μ(σεrn/5) ≥ (1/�)
∑
z∈σ

μ(B(z, εrn/5)) ≥ (q/�)ε1(εrn/5)
d .

Suppose β < ∞. Set ε2 := (ε1/�)(ε/5)d . By (3.19) and Lemma 3.2(b), provided
n is large,

P[Hn(K , u)] ≤
∑

q≥K/(6ε(2K0+2))

O(r
−max(b j )
n cq)P[Bin(n, ε2qr

d
n ) < (β + 1) log n]

= O(1)
∑

q≥K/(6ε(2K0+2))

cq exp
(
(max(b j )/d) log n − ε2quH

(β + 1

ε2qu

)
log n

)
.

By the continuity of H(·) and the fact that H(0) = 1, there exists q0 > 16/(ε2u) such
that for any q > q0, we have H

( β+1
qε2u

)
> 1/2 and quε2 > 4max(b j )/d. Choosing

K = 6ε(2K0 + 2)q0 so that q ≥ q0 in the sum, we see that the exponent of the
exponential is bounded from above by

(max(b j )/d) log n − qε2(u/2) log n ≤ −(quε2/4) log n.

Therefore, we have for n large that

P[Hn(K , u)] = O(1)
∑
q≥q0

cq exp(−qu(ε2/4) log n)

= O(1)
∑
q≥q0

exp(−qu(ε2/8) log n) = O(exp(−q0u(ε2/8) log n)) = O(n−2).
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Now suppose β = ∞. By (3.19) and the estimates of | ∪ j ∪x0Un,q(x0)| as previ-
ously, we have

P[Hn(K , u)] ≤
∑

q≥K/(6ε(2K0+2))

O(r
−max(b j )
n cq)P[Bin(n, (q/�)ε1(εrn/5)

d) < k(n)].

We have r
−max(b j )
n = O(nmax(b j )/d), and by Lemma 3.2-(b),

P[Hn(K , u)] ≤
∑

q≥K/(6ε(2K0+2))

cq exp
(
(max(b j )/d) log n − qε2uk(n)H(

k(n)

qε2uk(n)
)
)
.

As before, we can choose K = K1 (large) so that the H(·) term in every summand is
bounded from below by 1/2. By the super-logarithmic growth of k(n), we conclude
that P[Hn(K , u)] ≤ n−2 provided n is large, completing the proof of Part (i). Part (ii)
then follows from Part (i), by applying the Borel-Cantelli lemma. ��
Proof of Proposition 3.7 If β = ∞ then let u > max j∈[�](a−1

j ) and set r(n) :=
u(k(n)/n)1/d . If β < ∞ then let u > max j∈[�](a−1

j Ĥβ(b j/d)) and set rn :=
(u(log n)/n)1/d . By Lemmas 3.11 and 3.12, there exists K ∈ N such that almost
surely, En(K , u) ∪ Hn(K , u) occurs for at most finitely many n. By Lemma 3.10, if
Mn,k > rn then En(K , u) ∪ Hn(K , u) occurs. Therefore Mn,k(n) ≤ rn for all large
enough n, almost surely, and the result follows. ��

3.4 Proof of Theorem 2.5

In this subsection we go back to the mathematical framework in Sect. 2; that is, we
make the assumptions in the statement of Theorem 2.5. In particular we return to
assuming A is a convex polytope in R

d with d ≥ 2, and the probability measure μ has
a density f . We shall check the conditions required in order to apply Proposition 3.7.

To check these conditions, we shall use the following lemma and notation.

Lemma 3.13 (Penrose 2023, Lemma6.12) Supposeϕ, ϕ′ are faces of Awith D(ϕ) > 0
and D(ϕ′) = d − 1, and with ϕ \ ϕ′ �= ∅. Then ϕo ∩ ϕ′ = ∅ and K (ϕ, ϕ′) < ∞,
where we set

K (ϕ, ϕ′) := sup
x∈ϕo

dist(x, ∂ϕ)

dist(x, ϕ′)
. (3.20)

Now define

K (A) := max{K (ϕ, ϕ′) : ϕ, ϕ′ ∈ �(A), D(ϕ) > 0, D(ϕ′) = d − 1, ϕ \ ϕ′ �= ∅}.
(3.21)

Then K (A) < ∞ since A is a finite polytope.
For j ∈ {0, 1, . . . , d} let � j (A) denote the collection of j-dimensional faces of A.

For any D ⊂ A and r > 0 set Dr = {x ∈ A : B(x, r) ∩ D �= ∅}.
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Lemma 3.14 The restriction of Lebesgue measure to A has the doubling property.
Moreover Conditions (B), (T) and (G) are satisfied.

Proof First we verify the doubling property. By the proof of Lemma 3.4, there exists
b > 0 such that infx∈A,r∈(0,b] r−dVol(B(x, r)∩ A) > 0. Since Vol(B(x, 2r)∩ A) is at
most 2dθdrd for r ≤ b, and is at most Vol(A) for all r , the doubling property follows.

Since A is convex, for all x ∈ A and r > 0 the set B(x, r)∩ A is convex and hence
connected, implying (B). All convex polytopes are simply connected, and therefore
unicoherent (Penrose 2003, Lemma 9.1), hence (T). Condition (G) follows immedi-
ately from Proposition 3.15, which we prove below. ��
Proposition 3.15 Let A be a convex finite polytope in R

d . Let N (·) denote the number
of components of a set. There exists δ1 > 0 such that for any x ∈ A any r ∈ (0, δ1),
we have N (A \ B(x, r)) ≤ 2. Moreover, in the case that N (A \ B(x, r)) = 2, the
diameter of the smaller component is at most cr , where c is a constant depending only
on A.

Proof of Proposition 3.15 Write B for B(x, r). Our first observation is that if y ∈ A\B,
then there is at least one vertex v ∈ �0(A) such that the line segment [y, v] is contained
in A \ B. Indeed, if this failed then for each v ∈ �0(A) there would exist a point
u(v) ∈ [y, v] ∩ B. But then since A is convex, y would lie in the convex hull of
{v : v ∈ �0(A)}, and therefore also in the convex hull of {u(v) : v ∈ �0(A)}.
Indeed, there exist αv ≥ 0 with

∑
v∈�0(A) αv = 1 such that y = ∑

v∈�0(A) αvv,
and there exists βv ∈ [0, 1] such that u(v) = βv y + (1 − βv)v. Substituting v by
u(v) and rearranging terms shows that y = ∑

v α′
vu(v) with some nonnegative α′

v

and
∑

v α′
v = 1, thus the claim. But then since B is convex we would have y ∈ B, a

contradiction.
We refer to the one-dimensional faces ϕ ∈ �1(A) as edges of A. Our second

observation is that if the number of edges of A that intersect B is at most 1, then
A \ B is connected. Indeed, in this case, for any distinct v, v′ ∈ �0(A) there is a
path along edges of A from v to v′ that avoids B. For example, if v, v′ lie in the same
two-dimensional face ϕ of A then since B intersects at most one edge of the polygon ϕ,
there is a path from v to v′ along the edges of ϕ avoiding B. Therefore all v ∈ �0(A)

lie in the same component of A\ B, so using the first observation we deduce that A\ B
is connected.

Recall the definition of K (A) at (3.21). Our third observation is that if dist(v, B) ≥
3r K (A) for all v ∈ �0(A) then A\B is connected. Indeed, suppose dist(v, B) ≥
3r K (A) for all v ∈ �0(A). Suppose ϕ, ϕ′ are distinct edges of A with B ∩ ϕ �= ∅,
and pick y ∈ B ∩ ϕ. Then dist(y, ∂ϕ) ≥ 3r K (A) so that by (3.20), dist(y, ϕ′) ≥
3r K (A)/K (ϕ, ϕ′) ≥ 3r . Hence by the triangle inequality dist(B, ϕ′) ≥ 3r −2r = r ,
so that B ∩ ϕ′ = ∅. Hence B intersects at most one edge of A, and by our second
observation A \ B is connected.

Suppose dist(v, B) ≤ 3r K (A) for some v ∈ �0(A). Provided r is small enough,
this cannot happen for more than one v ∈ �0(A). If u, u′ ∈ �0(A)\{v}, then v /∈
[u, u′] so dist(v, [u, u′]) > 0. Therefore provided r is small enough, [u, u′] ⊂ A \ B.

Thus provided r is small enough, all vertices u ∈ �0(A)\{v} lie in the same
component of A \ B. If also v lies in this component, then (by our first observation)
A\B is connected.
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Thus A \ B is disconnected only if v lies in a different component of A \ B than
all the other vertices. In that case, for y ∈ A\B, if [y, v] ⊂ A\B then y is in the same
component as v; otherwise (by our first observation) y lies in the same component as
all of the other vertices, and thus A \ B has exactly two components.

If A \ B has two components, and y ∈ A \ B with ‖y − v‖ > (3K (A) + 2)r ,
then we claim [y, v] ∩ B �= ∅. Indeed, for each u ∈ �0(A)\{v} the ray from v in the
direction of u passes through B. But then by an argument based on the convexity of
both A and B, the ray from v in the direction of y must also pass through B. Since
dist(v, B) ≤ 3r K (A) and diam(B) = 2r , this raymust pass through B at a distance at
most (3K (A) + 2)r from v, i.e. before it reaches y, and the claim follows. Therefore
y lies in the component of A \ B that does not contain v, and thus the component
containing v has diameter at most (3K (A) + 2)r . ��

To apply Proposition 3.7, we need to define a partition of A for each small r > 0,
then estimate the corresponding covering numbers and μ-measures in (3.13).

Taking into account a variety of boundary effects near ∂A, one should consider
separately regions near different faces of A. It is however not trivial to construct this
partition in such a way that we can obtain tight μ-measure estimates in (3.13). The
matter is complicated by the fact that the set G in (3.13) that intersects a region near
ϕ is potentially close to a lower dimensional face lying inside ∂ϕ. We can avoid the
boundary complications by constructing inductively from regions near to the highest
dimensional face to the lowest, with increasing ’thickness’. The partition made of
T (ϕ, r)’s defined below and the left-over interior region is defined for this purpose.

Let (K j ) j∈N be an increasing sequence with K1 = 1, and with K j+1 > (2K (A)+
1)K j for each j ∈ N. For instance, we could take K j = (2K (A) + 2) j−1.

Now for each r > 0 and ϕ ∈ �(A), define the set

T (ϕ, r) := ϕr Kd−D(ϕ)
\ ∪ϕ′∈�(A):ϕ′�ϕ(ϕ′)r Kd−D(ϕ′) ,

where the T stands for ‘territory’. Also define T (A, r) := A\ ∪ϕ∈�(A) ϕr Kd−D(ϕ)
. For

each ϕ ∈ �∗(A), we have T (ϕ, r) �= ∅ for all r sufficiently small. Hence, there exists
r0 > 0 such that for all ϕ and all r < r0, T (ϕ, r) �= ∅. Moreover, territories of distinct
faces are disjoint, as we show in the following lemma.

Lemma 3.16 There exists r0 > 0 such that for all r ∈ (0, r0), and any distinct ϕ, ϕ′ ∈
�∗(A), it holds that T (ϕ, r) ∩ T (ϕ′, r) = ∅. Moreover, if ϕ, ϕ′ ∈ �(A) with ϕ\ϕ′ �=
∅, and y ∈ T (ϕ, r), then B(y, r) does not intersect ϕ′.

Proof We can (and do) assume without loss of generality that ϕ\ϕ′ �= ∅ and ϕ′\ϕ �=
∅. Indeed, if ϕ ⊂ ϕ′, then by construction T (ϕ′, r) ∩ T (ϕ, r) = ∅.

If ϕ is a vertex, then dist(ϕ, ϕ′) > 0 so that T (ϕ, r)∩ T (ϕ′, r) = ∅ for all r small.
So it suffices to consider the case where D(ϕ) > 0 and D(ϕ′) > 0.

Let j := d − D(ϕ) and j ′ := d − D(ϕ′). We can and do assume j ′ ≤ j ≤ d − 1.
If there exists x ∈ T (ϕ, r) ∩ T (ϕ′, r), then we can find z ∈ ϕ, z′ ∈ ϕ′ such that

‖x − z‖ ≤ r K j and ‖x − z′‖ ≤ r K j ′ . Therefore dist(z, ϕ′) ≤ r(K j + K j ′) ≤ 2r K j .
On the other hand, since x ∈ T (ϕ, r), dist(x, ∂ϕ) ≥ r K j+1, and so by the triangle

inequality, r K j+1 − r K j ≤ dist(z, ∂ϕ) ≤ K (A) dist(z, ϕ′), where the last inequality

123



M. D. Penrose et al.

comes from (3.20). Combining the estimates leads to K j+1 ≤ (2K (A)+1)K j , which
is a contradiction. The first claim follows.

Moving to the second claim, let ϕ, ϕ′ ∈ �(A) with ϕ\ϕ′ �= ∅. Suppose y ∈ ϕ′
r .

Set

�̃ := {ψ ∈ �(A) : ψ � ϕ′, y ∈ ψKD−d(ψ)
}.

If �̃ = ∅ then y ∈ T (ϕ′, r). Otherwise, choose ψ ∈ �̃ of minimal dimension. Then
y ∈ T (ψ, r). Either way, y /∈ T (ϕ, r) by the first claim. Therefore T (ϕ, r) ∩ ϕ′

r = ∅.
��

As a last ingredient for applying Proposition 3.7, for each J > 1 and r ∈ (0, 1),
we construct a partition of A and show (3.13) for all G with diameter at most Jr . The
coefficients a j depend on the location of G in relation to faces of A.

Lemma 3.17 Let J ∈ N and ε > 0. Then the following hold:

(i) For each ϕ ∈ �(A) we have κ(T (ϕ, r), r) = O(r−D(ϕ)) as r ↓ 0. Moreover we
have κ(A\ ∪ϕ∈�(A) T (ϕ, r), r) = O(r−d) as r ↓ 0.

(ii) For all small r > 0 and any G ⊂ A with diam(G) ≤ Jr , if G intersects T (ϕ, 2Jr)
for some ϕ ∈ �∗(A), then

μ(Gr \ G) ≥ (1 − ε) fϕρϕr
d . (3.22)

Proof Item (i) follows by the definition of T (ϕ, r). Indeed, ϕ is contained in a bounded
region within a D(ϕ)-dimensional affine space, and therefore can be covered by
O(r−D(ϕ)) balls of radius r . If we then take balls of radius r(1 + Kd−D(ϕ)) with
the same centres, they will cover T (ϕ, r), and one can then cover each of the larger
balls with a fixed number of balls of radius r .

For (ii), let G ⊂ A with diam(G) ≤ Jr . Suppose first that G ∩ T (ϕ, 2Jr) �= ∅ for
some ϕ ∈ �(A). Let x0 ∈ G ∩ T (ϕ, 2Jr). Then Gr ⊂ B(x0, 2Jr). By Lemma 3.16,
we see that B(x0, 2Jr) does not intersect any ϕ′ ∈ �(A) with ϕ \ ϕ′ �= ∅. It follows
that

B(x0, 2Jr) ∩ A = B(x0, 2Jr) ∩ (z0 + Kϕ), (3.23)

where Kϕ is the cone determined by ϕ as in Lemma 3.1, and z0 is the point of ϕ

closest to x0.
Set D(x, r) := B(x, r) ∩ (x + Kϕ). We claim that for any x ∈ G, we have

D(x, r) ⊂ A. Indeed, given y ∈ D(x, r), we can write y = z0+ (x− z0)+ (y− x) =:
z0 + θ1 + θ2. Here θ1, θ2 ∈ Kϕ . By convexity and scale invariance of Kϕ , we have
θ1 + θ2 ∈ Kϕ so y ∈ z0 + Kϕ . Also ‖y − x0‖ ≤ ‖y − x‖ + ‖x − x0‖ ≤ 2Jr , and
hence y ∈ A by (3.23), as claimed.

It follows that (with ⊕ denoting Minkowski addition)

μ(Gr \ G) ≥ μ((G ⊕ D(o, r)) \ G) ≥ Vol((G ⊕ D(o, r)) \ G) inf
x∈G⊕D(o,r)

f (x).
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By the Brunn–Minkowski inequality (Penrose 2003, Section 5.3), we have Vol(G ⊕
D(o, r)) ≥ Vol(G) + Vol(D(o, r)) = Vol(G) + ρϕrd . The claim (3.22) follows by
the continuity of f on ∂A.

As for the case ϕ = A, suppose now that G ∩ T (A, 2Jr) �= ∅. Taking x ∈ G ∩
T (A, 2Jr) we have dist(x, ∂A) ≥ 2Jr , and hence dist(G, ∂A) ≥ 2Jr − Jr = Jr .
Therefore

Gr ⊂ A, so by the Brunn–Minkowski inequality

μ(Gr \ G) ≥ f0Vol((G ⊕ B(o, r)) \ G) ≥ f0θdr
d .

In this case fϕ = f0 and ρϕ = θd , and the claim (3.22) follows in this case too,
completing the proof of (ii). ��

Proof of Theorem 2.5 By (2.9), and Theorem 2.1, it suffices to prove the upper bound.
We shall do this by applying Proposition 3.7 in the situation of Theorem 2.5.

ByLemma3.14, the restriction to A of Lebesguemeasure has the doubling property,
and Conditions (B), (T) and (G) are satisfied.

To apply Proposition 3.7, we need to define (for each r ∈ (0, r0)) a finite partition
{T ( j, r)}. For this we take the sets T (ϕ, r), ϕ ∈ �∗(A). By Lemma 3.16, and the
definitions of T (ϕ, r), ϕ ∈ �∗(A), there exists r0 > 0 such that for r ∈ (0, r0) the
sets T (ϕ, r), ϕ ∈ �∗(A), do indeed partition A.

For each ϕ ∈ �∗(A), using Lemma 3.17-(i) we have the condition (3.12) in Propo-
sition 3.7, where the constant denoted b j there is equal to D(ϕ).

Also, using Lemma 3.17-(ii) we have the condition (3.13) in proposition 3.7, where
the constant denoted a j there is equal to (1 − ε) fϕρϕ .

Suppose β < ∞. By applying Proposition 3.7 in the manner described above we
see that for ε > 0, we have

lim sup
n→∞

n(Mn,k(n))
d/ log n ≤ max

ϕ∈�∗(A)

( Ĥβ(D(ϕ)/d)

(1 − ε) fϕρϕ

)
,

and the result follows. If β = ∞, using corresponding part of Proposition 3.7 gives
the result in this case too. ��
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