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Abstract—Fake news has been shown to have a growing
negative impact on societies around the world, from influencing
elections to spreading misinformation about vaccines. To ad-
dress this problem, current research has proposed techniques
for fake news detection, demonstrating promising results in
lab conditions, where models tested on an unseen portion of
the same dataset perform well. However, the question of the
generalisability of these techniques, and their efficacy in the real-
world, is less frequently evaluated. Studies that have looked at
generalisability argue that models struggle to distinguish between
fake and legitimate news across different topics of news, as well
as across different time periods, to the ones on which they have
been trained. This prompts the more fundamental question of
how well fake news models generalise across news of the same
topic and time period. As such, through a series of experiments,
this study explores how well popular fake news detection models
and features (word-level representations and linguistic cues)
generalise across similar news. The first experiment reports
high accuracies, when these techniques are tested on an unseen
portion of the same dataset, replicating the findings in literature.
However, the second experiment reveals that these techniques
struggle to generalise well, suffering drops in accuracy of around
50%, when tested against different datasets of the same topic
and time period. Exploring possible reasons behind such poor
generalisability, the analysis points to the issue of dataset size,
motivating the need for larger, more diverse datasets to become
available. It also suggests that word-level representations lead
to more biased, less generalisable models. Finally, the findings
provide preliminary support for the effectiveness of linguistic
and stylistic features, and for the potential of features beyond the
word or language level, such as URL redirections and reverse
image searches.

Index Terms—Fake News Detection, Natural Language Pro-
cessing, Machine Learning, Generalisability

I. INTRODUCTION

Fake news has been shown to have a significant detrimental
effect on societies, such as the misinformation spread during
the COVID-19 pandemic and, more recently, the Ukrainian
conflict. As such, fake news can be defined as news that is
intentionally and verifiably false, typically for the purposes
of political influence or profit through advertising [3]. Given
the threat that fake news poses, a number of approaches
have been developed to address the problem of detecting fake
news. The majority of these approaches use textual features
to determine whether an article is fake or legitimate. This is
achieved through a number of natural language processing

(NLP) and machine learning techniques. Typically, the first
step involves data pre-processing to clean the text of any data
that may introduce noise into the model. This is followed by
a feature extraction phase which aims to convert the text into
numerical representations or derive statistical features from the
text. These numerical representations and features are then fed
to a supervised machine learning model, such as a Support
Vector Machine (SVM) or a neural network, which is then
able to make predictions on other, unseen data [14].

Through a systematic literature review (SLR) conducted
by the authors, initial results appear promising with average
accuracies of around 80% [11]. However, model evaluation
is typically limited to testing with only an unseen portion
of the same datasets on which the models were trained, also
known as a holdout set. Yet, in order for these models to be
considered effective and useful in the real-world, they must
be able to be used in a broader context beyond their training
dataset. This is known as generalisability. Through the SLR,
it was determined that generalisability in fake news can fall
into three distinct categories: the first category is the ability
to generalise on similar news outside of the dataset that the
original model was trained on; for example, a model trained
on political news being able to generalise to unseen political
news; the second category is the ability to generalise across
different news topics, for example, being able to generalise
across politics, sport, technology, and celebrity news topics;
the third category is generalisability over time; as news is
constantly changing and developing, the language used around
news also changes over time and this can have an impact on
a model trained on older data.

It could be argued that the first test of generalisability is
the most fundamental. This is because, if a model cannot
generalise on similar but unseen data of the same time period,
it seems unlikely to be able to generalise across different topics
of news or news from different time periods. As such, the aim
of this paper is to explore whether and to what extent fake
news detection models can generalise across different datasets
of the same topic. The topic on which this study focuses is
political news. This paper is organised as follows: first, related
literature on methods to detect fake news and generalisability
in this area will be discussed. Second, a number of current
datasets in this area will be identified and their contents will
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be described. Third, the pre-processing steps will be presented
before describing the various feature extraction algorithms and
machine learning models that will be used in the experiments.
Stratified K-fold cross validation will be performed on each
combination of feature extraction, machine learning model and
dataset before testing these combinations on the remaining
datasets. The results will demonstrate how well these models
generalise. Finally, the analysis will consider the words that
are key in a model in determining how it makes a prediction.
The paper will conclude with a discussion of the findings and
future work.

II. RELATED WORK

This paper is motivated from a related systematic literature
review (SLR) conducted by the authors. The SLR aimed to
analyse current approaches to fake news detection and their
efficacy, searching a total of 1063 papers between 2016 and
2020 (which is currently being expanded to include 2021 and
2022 papers). The SLR determined that the vast majority of
approaches of fake news detection use textual, content-based
features and produce relatively promising results of 80%
accuracy on average [11]. However, there is little agreement on
how best to categorise these textual features. For the purposes
of this study, textual features have been broadly divided into
two groups:

• Word-level representations: which aim to encode the
words into numerical vectors with varying degrees of
complexity. These include techniques such as Bag-of-
Words, TF-IDF and word embeddings [24].

• Linguistic cues: that are created through analysis of
the corpus text. These may be statistical in nature and
include average-word length, sentence complexity, Part-
of-Speech (POS) tags, frequency of quotes, pronouns,
verbs and named-entities. Some psycholinguistic features
may also be derived, such as sentiment analysis scores.
Several combinations of features may be created through
this analysis [10].

Examples of studies using word-level representations in-
clude a study by [13], which explores the use of different
feature extraction approaches, such as Bag-of-Words and TF-
IDF, in conjunction with various machine learning models
such as Naı̈ve Bayes, Logistic Regression, SVMs, Gradient
Boosting and Neural Networks. The study tests these models
against three different datasets, achieving accuracies as high as
98.3% on a Kaggle dataset. The paper later extends to develop
a voting model in an attempt to improve overall accuracy and
efficiency. Similarly, [18] also explores the use of Bag-of-
Words and TF-IDF across similar models achieving accuracies
as high as 92.8% using TF-IDF and an SVM.

Use of linguistic cues can be found in [8], which generated a
total of 76 features across 8 different categories which include:
“Readability Scores, Linguistic Dimensions, Summative Cues,
Affective Cues, Informality Cues, Cognitive Cues, Punctuation
Cues, and Time-Orientation Cues”. The paper thoroughly
examines the use of these groups of features as a combination
as well as individually. It reported good performance of 94.2%

accuracy on a hold-out set of a single dataset using an SVM
and combined features while finding comparative scores of
92.6% accuracy when using only linguistic dimensions with
logistic regression.

A combination of word-level representations and linguistic
cues may also be used. An example of such approach can
be found in [9], which explores the use of statistical features
extracted using Grammarly as well as word-embeddings and
TF-IDF. Similarly to the previously discussed studies, this
approach demonstrated good results when tested on a hold-
out portion of a celebrity news dataset of 78% accuracy, as
well as a political dataset at 95% accuracy. Taken together,
previous research indicates that, regardless of which group
or combination of features is chosen, high performances are
achievable.

However, unlike the other papers outlined above (and the
majority explored in the aforementioned SLR), Gautam and
Jerripothula’s [9] paper also explores how well these two
distinct models generalise across two different news topics:
celebrity and political news. The study finds that, for both
models, there is a drop in accuracy when testing between
the celebrity and political news datasets. The proposed model
trained on the political news dataset and tested on celebrity
news sees a drop in accuracy of 39% and the proposed model
trained on celebrity news dataset and tested on political news
sees a drop in accuracy of 8%. While the celebrity model’s
performance appears to be less affected when testing across
datasets, it is important to note that the model only achieved
78% accuracy on its hold-out set, and, therefore, it did not have
as much scope to drop as significantly as the political model
that achieved 95% accuracy on its hold-out set. Furthermore,
both of these datasets are very small in size at 490 articles
each and therefore cannot represent reliable generalisability
on larger corpora. This finding is also replicated by a study
by [5] which also performed a similar test on similar, if not
identical, datasets of different topics and found similar drops in
accuracy between models trained on political news and tested
on celebrity news and vice versa. Similarly, a study by [4] also
explores how well models generalise across different topics
by testing across two datasets: the ISOT [1], [2] dataset and
the Combined Corpus (CC) [25] dataset. Most of the data
contained in the ISOT dataset is political in nature whereas
the Combined Corpus covers additional topics such as health-
care, sports and entertainment. Additionally, these datasets are
significantly larger than the datasets used in [9] at 44,898
and 79,548 rows respectively. This experiment therefore is
perhaps more representative of generalisability across topics.
It is unclear what feature extraction/selection was performed
on some of the models. It was found that the hold-out test
performance was high at over 90% for each dataset. When
testing across datasets, however, a drop in accuracy was
observed of approximately 25% on the model trained on the
ISOT dataset and tested on the CC dataset. A less significant
drop was found between the model trained on the CC dataset
and tested on the ISOT dataset of around 15%. This further
supports the finding that models do not generalise well across
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topics. The less significant drop in accuracy between the CC
dataset model and the ISOT dataset could be attributed to
the fact that both datasets contain political news whereas the
ISOT dataset does not cover all the topics contained in the CC
dataset. It is also possible that there is a degree of duplicity
between the two datasets as the CC dataset combines data from
other datasets which may, in fact, include the ISOT dataset.

While the majority of research report high performing fake
news detection models, the above studies suggest that these
models do not generalise well across different topics; this gives
rise to the more fundamental question of how well models
can generalise across different datasets of the same topic. In
particular, this study will explore the question of generalis-
ability of fake news detection models across datasets of the
same topic (political news) through a series of experiments.
First, the datasets that are to be used for this problem will be
described as well as the different types of features. This will
be followed by building several models, identified in previous
literature, and evaluating them to determine if their results
are comparable with the ones reported in the literature. These
models will then be tested on the remaining datasets that were
not used for their training to evaluate how well they generalise.

III. DATASETS

There are a number of popular, publicly available datasets
that aim to address the fake news problem. As fake news has
been defined in several ways and can take different forms, it
is important that all the datasets used in this study contain
the same type of fake news. As such, this study uses datasets
that contain the full text of intentionally false political news
articles and do not contain clickbait or satirical political news.
It is worth noting that a number of popular datasets are often
duplicated under different names. An example of this is the
ISOT dataset and the ‘Fake and Real News’ dataset hosted
on Kaggle which request the same citations. Datasets may
also contain parts of other datasets. Given the study’s focus
on generalisability, the datasets selected for this study were
crosschecked to reduce the possibility of data duplication.

A. ISOT 1

The ISOT dataset was created by the Information Security
and Object Technology lab at the University of Victoria.
It predominantly contains political news from the US and
around the world segregated into two CSV files, ‘Fake.csv’
and ‘True.csv’. The fake portion of the dataset contains
23,481 articles collected from unreliable websites as flagged
by Politifact.com and Wikipedia. The true portion of the
dataset contains 21,417 articles posted on Reuters.com. Both
portions of the dataset contain the article title, text, topic and
publication date [1], [2].

B. Kaggle Fake or Real 2

Not to be confused with the ‘Fake and Real’ Kaggle dataset,
this dataset is relatively new according to the publication date

1https://www.uvic.ca/ecs/ece/isot/datasets/fake-news/index.php
2https://www.kaggle.com/datasets/jillanisofttech/fake-or-real-news

on Kaggle, but does not contain any information on the means
of collection therefore its reliability may be questionable.
Unlike the ISOT dataset, the data is contained in a single
CSV file containing the article title, text, and a label of either
‘FAKE’ or ‘TRUE’. The fake and real portions of the dataset
are split equally with 3030 articles in each portion of the
dataset. In researching datasets for this study, it is interesting
to note that this dataset appears identical to the KDNuggets
dataset hosted on GitHub.

C. Kaggle Fake News Competition 3

This dataset was utilised in [12] which performed gener-
alisability study across topics similar to those described in
Section II. Similar to the ’Fake or Real’ dataset, there is
little information regarding its means of collection. In the
discussion section of the Kaggle page, the author states that
it was collected through combining other datasets hosted on
Kaggle. This dataset is also contained in a single CSV file
containing the article title, author, text body and label where
fake is denoted by the label ‘0’ and true news denoted with
the label ‘1’. The true portion of this dataset contains 10,413
articles and the fake portion contains 10,387 articles.

D. FakeNewsNet 4

The FakeNewNet dataset is unique in that, unlike other
datasets, the authors also provide code which allows you
to collect social and spatiotemporal features from Twitter.
As none of the other datasets provide such features, for
consistency, only the textual features were used from this
dataset. There is more than one version of this dataset. For
this study, the version containing news from Politifact and
Buzzfeed was used. Both contain news regarding US political
news from 2016 and were, therefore, combined. This resulted
in an overall dataset of 422 articles with 211 labelled as ‘fake’
and 211 labelled as ‘true’ [21]–[23].

IV. METHODS

The experiments aim to provide a comprehensive evaluation
of how common feature extraction methods and supervised
learning models perform when tested outside of the datasets
on which they have been trained. In effect, the study aims
to demonstrate how well these models are likely to perform
should they be implemented in the real world.

A. Text Preprocessing

Text preprocessing is an important stage in the NLP pipeline
that aims to clean the text of any unwanted noise and
allow the resulting models to perform better. In the case
of this experiment, a number of steps was carried out to
sanitise the data, in particular for Bag of Words and TFIDF
approaches. Text was converted to lower-case in order to
avoid the subsequent model from treating identical words
differently. This was followed by a lemmatization step to
further reduce noise by reducing words to their dictionary

3https://www.kaggle.com/c/fake-news
4https://www.kaggle.com/datasets/mdepak/fakenewsnet
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root form. Additionally, remaining punctuation, URLs, Twitter
handles, extra whitespace and stop words were also removed
as they often provide little additional information and are
therefore considered unwanted noise. The exception to this
pre-processing was for models utilizing Word2Vec, BERT and
linguistic cues. This is because Word2Vec and BERT require
contextual information in order to create accurate embeddings
and, therefore, only light cleaning was carried out on the input
text. This only included converting the input text to lower case,
spell checking as well as removing URLs and Twitter handles.
Similarly, as linguistic cues require statistical features from the
original text, no pre-processing was done when deriving these
features.

B. Feature Extraction

A number of different feature extraction approaches relating
to word-level representations, such as Bag-of-Words, TF-IDF,
word embeddings and linguistic cues were outlined in Section
II. In this section, each of these features is discussed in more
detail and how they will be implemented as part of this
experiment.

1) Bag of Words: is a term frequency-based approach that
converts text into a fixed-length vectors by counting how many
times each word appears. As this is purely a frequency-based
approach, context and word order is not considered. This
means that any information on the meaning of the text is lost.
In the case of these experiments, SKLearn’s Count Vectorizer
was utilized to create the Bag-of-Words representations.

2) TF-IDF: extends on the Bag-of-Words approach by
using the frequency of a word in a document compared against
the frequency of the word across the dataset to determine
the importance of the word to the document. This means
that very common words achieve a lower score in TF-IDF
compared to words that appear less frequently. This allows
TF-IDF to capture slightly more meaning about the text than
Bag-of-Words, however it also does not consider word order or
context. This experiment utilized SKLearn’s TFIDF Vectorizer
to generate the TF-IDF vectors for each document in the
datasets.

3) Word2Vec: attempts to create a large vector space where
each word is assigned a vector in the space. These vectors are
known as embeddings. Words that are similar will be close
in proximity in the vector space and those that are more
dissimilar will be further apart. It achieves this by training
one of two distinct shallow neural networks: a continuous
bag-of-words model (CBOW) or a skip-gram model on a
large corpus of text. The CBOW model attempts to predict
a target word given the surrounding context words. The
skip-gram model attempts to predict the surrounding context
words given a single word. Regardless of the model used,
the principle is that similar words will have similar context
words surrounding them. The weights used to make these
predictions therefore must encode the words in such a way
that the weights produce similar outputs for similar words.
These weights are what are used to generate the vectors for
the embeddings [15]. As Word2Vec produces its embeddings

based on the surrounding words, this means that Word2Vec
encodes more of the meaning of words compared to the
previous two approaches. However, similar to the previous
approaches, Word2Vec does not consider word-orderings. It is
also limited in that it generates the same embedding for words
that are morphologically the same but semantically different.
An example of this would be the word ‘left’ which may be
used as the past tense ‘to leave’ or the direction ‘left’. This
means that Word2Vec is considered context-independent. In
these experiments, a pre-trained Word2Vec model trained on
a Google News corpus was used to generate the embeddings
for the respective datasets.

4) BERT: Similar to Word2Vec, BERT also generates em-
beddings. However, unlike Word2Vec which produces context-
independent embeddings, BERT generates context-dependent
embeddings. This means that words that are morphologically
the same but semantically different have a unique embedding
unlike Word2Vec which produces the same embedding for
such words.

A number of key differences allow BERT to produce these
unique embeddings. One, is that BERT learns representations
at the sub-word level which, unlike Word2Vec, allows BERT
to learn representations for words outside of its vocabulary.
Additionally, BERT encodes the position of words which
also allows the model consider the orderings of words. For
BERT to generate meaningful representations, BERT is trained
on two tasks: Masked-Language-Modelling (MLM) and Next
Sentence Prediction (NSP). In MLM, a word in a given
sequence is masked and the goal of the model is to accurately
predict the masked word by using the words either side of
the masked word to make the prediction. This allows BERT
to learn the relationship between words. In NSP, pairs of
sentences are given to BERT whereby it attempts to determine
if sentence B comes after sentence A. This allows BERT to
learn the relationship between sentences. Through the use of
Transformers, these tasks can be trained in parallel with a
massive amount of data relatively quickly [16]. Similar to
Word2Vec, we use a pre-trained BERT model, in this case
the BERT base-uncased model, to generate the embeddings.

5) Linguistic Cues: As discussed in Section II, linguistic
cues are typically statistical in nature or derived from the
text, such as with sentiment analysis. This experiment uses
the set of 34 linguistic features (‘Linguistic Dimensions’ and
‘Punctuation Cues’) which was identified as producing the
best performance in fake news classification in a series of
experiments by [8]. In these experiments, after these features
were collected, they were combined to form a 34-dimensional
vector that was then used for training on each model. A
summary of the features collected from each document in the
respective datasets is presented in Table 1.

C. Local Interpretable Model-Agnostic Explanations (LIME)

The LIME package aims to make it easier to understand
the classifications that the black-box models used in ma-
chine learning make. For the purposes of this study, the
submodule ‘LimeTextExplainer’ was used, which, given an
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TABLE I
ENGINEERED LINGUISTIC FEATURES

Feature Description
Word Count Total Number of Words

Syllables Count Total number of syllables
Sentence Count Total number of sentences

Word/Sent Average number of words per sentence
Long Words Count Number of words with more than

6 characters
All Caps Count Number of words in all caps

Unique Words Count Number of unique words
Personal Pronouns % % of words such as ’I, we, she, him’

First Person Singular % % of words such as ’I, me’
First Person Plural % % of words such as ’we, us’

Second Person % % of words such as ’you, your’
Third Person Singular % % of words such as ’she, he, her, him’
Impersonal Pronouns % % of words such as ’it, that, anything’

Articles % & of words such as ’a, an, the’
Prepositions % % of words such as ’below, all, much’

Auxiliary Verbs % % of words such as ’have, did, are’
Common Adverbs % % of words such as ’just, usually, even’

Conjunctions % % of words such as ’until, so, and, but’
Negations % % of words such as ’no, never, not’

Common Verbs % % of words such as ’run, walk, swim’
Common Adjectives % % of words such as ’better, greater, larger’

Concrete Figures % % of words that represent real numbers
Punctuation Count Total number of punctuation marks
Full Stop Count Total number of full-stops
Commas Count Total number of commas
Colons Count Total number of colons

Semi-Colons Count Total number of semi-colons
Question Marks Count Total number of question marks

Exclamation Marks Count Total number of exclamation marks count
Dashes Count Total number of dashes

Apostrophe Count Total number of apostrophes
Brackets Count Total number of brackets

SKLearn pipeline and any given text, returns an array of tuples
containing a word and a number indicating whether the word
had an impact in the model classifying one way or another
(in the case of binary classification). Within the scope of this
study, words that carry a negative score mean they contributed
to a ’fake’ classification. Words that carry a positive score
mean they contributed to a ‘real’ classification.

V. RESULTS

The following experiments aim to demonstrate how well
different supervised learning models trained using different
groups of features generalise across the four political news
datasets outlined in Section III. The first experiment aims to
validate the performance of popular techniques presented in
literature by training and testing them on the same dataset.
Using this performance as the baseline, the second experiment
evaluates the generalisability of these models and feature sets
trained on one dataset by testing them on the remaining three
datasets.

A. Baseline Stratified K-Fold Cross Validation

In the case of models that utilised Bag-of-Words and TF-
IDF, text was pre-processed using the steps outlined in Section
IV to remove any noise. Word2Vec and BERT were excluded
from this step as they require the surrounding words to derive

their embeddings. Likewise, linguistic cues were also omitted
from this step as stop-words and punctuation formed a large
portion of the collected features.

Initially, a stratified k-fold cross-validation (SCV) test was
performed to provide a baseline to compare against for all
combinations of features, ML models and datasets. SCV was
chosen to ensure that both the train and test set had an even
class distribution to avoid overfitting, in particular for the
smaller datasets such as FakeNewsNet. A total of k=5 folds
were chosen thus representing an 80/20 split between the
training data and the test data for each iteration. Furthermore,
by splitting the datasets into 5 folds, we are able to gain a
more representative set of evaluation metrics averaged across
each split compared to a traditional hold-out test. The results
from this test are presented in Tables II-V.

The results demonstrate comparable performances to the
ones reported in the literature, in particular for the ISOT,
Kaggle Fake or Real and Kaggle Competition datasets. In
general, all models across all feature extraction approaches
perform well when tested on the same dataset, achieving
performances between 86% and 94% accuracy along with
comparable precision and recall. The FakeNewsNet dataset
sees poor results, but this is likely due to its small size and the
fact that only textual features were used in this experiment and
did not collect any of the social features that are available and
have typically been used with this dataset in the literature. The
SVMs trained on linguistic cues also see poorer performance
compared to other types of machine learning model. This may
be because the model hyperparameters were kept the same
across all different feature types. Likewise, the neural network
trained on linguistic features sees slightly worse performance
across datasets. This may be due to the fact that the early
stopping hyperparameter was used to prevent the model from
overfitting when training on word-level representations and the
model may not have had enough epochs to train for linguistic
cues.

B. Cross-Dataset Testing

In order to determine how well models generalise across
similar datasets, each model trained in Section V is tested
with each dataset it was not trained on. This involved using
the same instance of the feature extraction method used to
create the original model to transform the text from the other
datasets. The same instance of the models was also used to
make predictions on the other datasets. This was to ensure
that feature-sets and decision boundaries did not change when
testing across datasets.

Due to the volume of models being tested in this manner,
and the relatively low amount of variance between baseline
models as shown in Tables II-V, three sets of analysis were
performed. The first analysis, shown in Table VI, demonstrates
the average performance of models trained on one dataset
followed by average performance when testing these models
on each of the remaining datasets. The second analysis, shown
in Figure I, demonstrates the average performance of all
models trained on one dataset against the average performance

This article has been accepted for publication in a future issue of this conference proceedings, but has not been fully edited. Content may change prior 
to final publication. Citation information: DOI10.1109/BigData55660.2022.10020583, 2022 IEEE International Conference on Big Data (Big Data) 



TABLE II
FAKENEWSNET SCV RESULTS

Feature Model Acc Pre Rec F1

Count

AdaBoost 0.53 0.53 0.53 0.53
Gradient Boosting 0.55 0.55 0.55 0.54
Logistic Regression 0.56 0.56 0.56 0.55
Neural Network 0.50 0.49 0.56 0.48
Random Forest 0.54 0.54 0.54 0.53
SVM 0.50 0.35 0.50 0.39

TF-IDF

AdaBoost 0.53 0.53 0.53 0.52
Gradient Boosting 0.54 0.55 0.54 0.53
Logistic Regression 0.56 0.56 0.56 0.55
Neural Network 0.51 0.52 0.67 0.57
Random Forest 0.57 0.57 0.57 0.56
SVM 0.50 0.35 0.50 0.36

Word2Vec

AdaBoost 0.56 0.56 0.56 0.55
Gradient Boosting 0.57 0.57 0.57 0.56
Logistic Regression 0.60 0.61 0.60 0.60
Neural Network 0.51 0.49 0.59 0.51
Random Forest 0.53 0.53 0.53 0.52
SVM 0.50 0.35 0.50 0.39

BERT

AdaBoost 0.56 0.57 0.56 0.56
Gradient Boosting 0.60 0.61 0.60 0.59
Logistic Regression 0.59 0.59 0.59 0.59
Neural Network 0.54 0.54 0.53 0.53
Random Forest 0.55 0.55 0.55 0.55
SVM 0.50 0.35 0.50 0.39

Linguistic Cues

AdaBoost 0.53 0.53 0.53 0.52
Gradient Boosting 0.56 0.57 0.56 0.56
Logistic Regression 0.59 0.59 0.59 0.58
Neural Network 0.53 0.50 0.60 0.53
Random Forest 0.52 0.52 0.52 0.51
SVM 0.50 0.25 0.50 0.33

TABLE III
KAGGLE COMP SCV RESULTS

Feature Model Acc Pre Rec F1

Count

AdaBoost 0.93 0.93 0.93 0.93
Gradient Boosting 0.94 0.94 0.94 0.94
Logistic Regression 0.95 0.95 0.95 0.95
Neural Network 0.96 0.96 0.96 0.96
Random Forest 0.88 0.89 0.87 0.88
SVM 0.89 0.88 0.89 0.89

TF-IDF

AdaBoost 0.93 0.93 0.93 0.93
Gradient Boosting 0.94 0.93 0.94 0.94
Logistic Regression 0.95 0.95 0.95 0.95
Neural Network 0.96 0.96 0.95 0.95
Random Forest 0.88 0.89 0.87 0.88
SVM 0.94 0.94 0.93 0.94

Word2Vec

AdaBoost 0.84 0.84 0.84 0.84
Gradient Boosting 0.87 0.87 0.87 0.87
Logistic Regression 0.88 0.88 0.87 0.87
Neural Network 0.87 0.85 0.75 0.80
Random Forest 0.83 0.84 0.82 0.82
SVM 0.88 0.88 0.87 0.87

BERT

AdaBoost 0.86 0.86 0.85 0.86
Gradient Boosting 0.90 0.90 0.89 0.89
Logistic Regression 0.94 0.94 0.94 0.94
Neural Network 0.92 0.90 0.88 0.89
Random Forest 0.84 0.85 0.82 0.83
SVM 0.90 0.90 0.89 0.89

Linguistic Cues

AdaBoost 0.97 0.97 0.96 0.97
Gradient Boosting 0.97 0.97 0.97 0.97
Logistic Regression 0.95 0.96 0.95 0.95
Neural Network 0.95 0.85 0.86 0.85
Random Forest 0.97 0.97 0.96 0.97
SVM 0.61 0.79 0.55 0.45

TABLE IV
KAGGLE FAKE OR REAL SCV RESULTS

Feature Model Acc Pre Rec F1

Count

AdaBoost 0.86 0.87 0.86 0.86
Gradient Boosting 0.89 0.89 0.89 0.89
Logistic Regression 0.92 0.92 0.92 0.92
Neural Network 0.93 0.94 0.93 0.94
Random Forest 0.84 0.85 0.84 0.84
SVM 0.85 0.87 0.85 0.85

TF-IDF

AdaBoost 0.86 0.86 0.86 0.86
Gradient Boosting 0.90 0.90 0.90 0.90
Logistic Regression 0.91 0.92 0.91 0.91
Neural Network 0.93 0.93 0.93 0.93
Random Forest 0.83 0.84 0.83 0.83
SVM 0.90 0.91 0.90 0.90

Word2Vec

AdaBoost 0.85 0.85 0.85 0.85
Gradient Boosting 0.89 0.89 0.89 0.89
Logistic Regression 0.87 0.87 0.87 0.87
Neural Network 0.86 0.80 0.85 0.82
Random Forest 0.84 0.85 0.84 0.84
SVM 0.89 0.89 0.89 0.89

BERT

AdaBoost 0.86 0.86 0.86 0.86
Gradient Boosting 0.89 0.89 0.89 0.89
Logistic Regression 0.91 0.91 0.91 0.91
Neural Network 0.90 0.88 0.89 0.88
Random Forest 0.83 0.84 0.83 0.83
SVM 0.88 0.88 0.88 0.88

Linguistic Cues

AdaBoost 0.82 0.82 0.82 0.82
Gradient Boosting 0.84 0.84 0.84 0.84
Logistic Regression 0.81 0.81 0.81 0.81
Neural Network 0.79 0.72 0.71 0.71
Random Forest 0.83 0.83 0.83 0.83
SVM 0.54 0.72 0.54 0.42

TABLE V
ISOT SCV RESULTS

Feature Model Acc Pre Rec F1

Count

AdaBoost 0.99 0.99 0.99 0.99
Gradient Boosting 0.99 0.99 0.99 0.99
Logistic Regression 0.99 0.99 0.99 0.99
Neural Network 0.99 0.99 0.99 0.99
Random Forest 0.98 0.98 0.97 0.98
SVM 0.90 0.91 0.91 0.90

TF-IDF

AdaBoost 0.99 0.99 0.99 0.99
Gradient Boosting 0.99 0.99 0.99 0.99
Logistic Regression 0.98 0.98 0.98 0.98
Neural Network 0.99 0.99 0.99 0.99
Random Forest 0.97 0.97 0.97 0.97
SVM 0.96 0.96 0.96 0.96

Word2Vec

AdaBoost 0.94 0.94 0.93 0.93
Gradient Boosting 0.95 0.95 0.95 0.95
Logistic Regression 0.96 0.96 0.96 0.96
Neural Network 0.97 0.95 0.96 0.95
Random Forest 0.94 0.94 0.94 0.94
SVM 0.92 0.92 0.92 0.92

BERT

AdaBoost 0.96 0.96 0.96 0.96
Gradient Boosting 0.97 0.97 0.97 0.97
Logistic Regression 0.99 0.99 0.99 0.99
Neural Network 0.98 0.98 0.98 0.98
Random Forest 0.96 0.96 0.96 0.96
SVM 0.95 0.95 0.95 0.95

Linguistic Cues

AdaBoost 0.95 0.95 0.94 0.94
Gradient Boosting 0.94 0.94 0.94 0.94
Logistic Regression 0.90 0.90 0.90 0.90
Neural Network 0.89 0.84 0.88 0.86
Random Forest 0.94 0.94 0.94 0.94
SVM 0.51 0.70 0.53 0.39
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across all remaining datasets broken down by each kind of
model discussed in Section IV. The third, shown in Figure II,
shows a similar break down but by feature group.

TABLE VI
BASELINE AVERAGE ACCURACY & CROSS-DATASET AVERAGE

ACCURACY COMPARISON

Dataset Baseline SCV Avg.
Acc.

Cross-Dataset
Avg. Acc.

ISOT 0.95 0.52
Kaggle FoR 0.86 0.52
Kaggle Comp 0.9 0.36
FakeNewsNet 0.54 0.54

Table VI aims to demonstrate how well models generalise
depending on the dataset on which they are trained. It shows
the average performance of all models and features for each
dataset (Baseline SCV Avg. Acc.) compared to the average
performance of each of these models tested on the remaining
datasets. It is clear from this comparison that, regardless of
the dataset used for training, models suffer a dramatic drop
in accuracy across the remaining datasets, with the worst
drop being observed for the models trained on the Kaggle
Competition models (53% accuracy drop), while the accuracy
of models trained on the Kaggle Fake or Real and the
ISOT dataset dropped by 37% and 42% respectively. As the
FakeNewsNet models only achieved performance that mirrors
random classification when tested on an unseen portion of its
own dataset, it is not surprising that the performance is equally
poor when testing it on the remaining datasets.

C. Generalisability by Model

Further analysis aimed to determine whether any of the
machine learning models used in testing generalise better
than other machine learning models for each dataset. Similar
to Table VI, Figure I shows the poor generalisability of
these models, where the original baseline model accuracy is
relatively high, dropping when the model is applied to the
other datasets. This analysis failed to indicate that the choice
of model relates to better generalisability.

D. Generalisability by Feature Type

Next, the analysis focuses on whether any of the features
discussed in Section IV generalise better than other groups
of features across all datasets. Similar to Figure I, Figure II
shows the poor generalisability of these approaches. Of the
word-level representations (Bag-of-Word, TF-IDF, Word2Vec
and BERT), there appears to be no representation of words
that outperforms any of the others in terms of generalisability.
Similarly, linguistic cues are not found to generalise well
across datasets. However, the performance of linguistic cues
appears to suffer significantly less compared to the perfor-
mance of all other types of features, when tested on the
Kaggle Competition dataset. Linguistic cues also appear to
perform more conistently in terms of their generalisability
across datasets which may suggest they are less sensitive to
changes in dataset.

Fig. 1. Cross-Dataset Performance by ML Model

Fig. 2. Cross-Dataset Performance by Feature Type

E. Interpreting Models Trained on Word-Level Representa-
tions

The previous sections demonstrated the poor generalisability
of machine learning models trained on a variety of word-
level representations and linguistic cues. To further understand
the reasons behind the poor generalisability on word-level
representations, the LIME package was used, as detailed in
Section IV. The LimeTextExplainer submodule was used to
generate two lists of words: a list of words that were most
fundamental to classifying a document as ‘fake’, and a list of
words that were most fundamental to classifying a document
as ‘real’ [19]. As LIME relies on an SKLearn pipeline that
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TABLE VII
FREQUENCY DISTRIBUTION OF KEYWORDS CONTRIBUTING TO CLASSIFICATION

ISOT Kaggle FoR Kaggle Comp
Real Fake Real Fake Real Fake

Word Freq Word Freq Word Freq Word Freq Word Freq Word Freq
Reuters 52 trump 32 president 20 2016 17 Clinton 14 Mr 26

Washington 19 just 20 state 19 Hillary 13 Hillary 11 president 20
Wednesday 13 image 11 Obama 13 October 13 2016 11 Ms 16

Trumps 11 Obama 11 house 12 election 11 October 8 twitter 15
Tuesday 11 Hillary 9 told 10 Russia 7 war 8 follow 11
minister 11 don 8 says 10 FBI 6 share 8 com 7
house 6 like 8 sanders 9 article 6 election 5 united 7
Friday 6 Could 7 campaign 8 just 6 Obama 4 new 6

Government 5 GOP 6 white 8 email 5 LA 4 news 5
Thursday 5 Doesn’t 6 debate 8 war 5 source 4 Breitbart 5
election 5 Black 5 republican 7 world 4 Aleppo 4 Sunday 5

court 4 Americans 4 senate 7 Comey 3 November 4 percent 5
EU 4 Right 4 voters 6 share 3 FBI 4 York 4

month 4 Video 4 Islamic 6 daily 3 UK 3 Trumps 4

includes an SKLearn vectorizer and machine learning model, a
Logistic Regression model was trained using TF-IDF features
as part of the pipeline, similar to the methods employed by
[7]. Training was performed for each dataset and lists were
generated using unseen documents from each dataset. Due
to the computational complexity of LIME, this analysis used
100 unseen documents from each dataset. Next, a frequency
distribution of the top 15 keywords that increase the likelihood
of a model classifying ‘real’ or ‘fake’ for each dataset was
produced. The FakeNewsNet dataset was excluded from this
analysis, because of its extremely poor baseline performance,
as identified by the experiment detailed in Section V. Table
VII shows the ranked list of 15 keywords that contributed to
the classification for each dataset.

The first pair of columns in Table VII shows the frequency
of key words used by the models trained on the ISOT dataset.
Keywords contributing to a ‘real’ classification include the
word ‘Reuters’. This is unsurprising as Reuters is often
considered a reliable news website and was used as part of
the collection for the ‘real’ portion of the ISOT dataset, as
discussed in Section III. Conversely, the ‘fake’ column shows
keywords such as ‘Trump’ and ‘Obama’ as well as ‘Hillary’.
This suggests that the articles from the dataset focused on
the topic of the 2016 presidential election . This is further
supported by the fact the term ‘election’ appears in the ‘real’
column.

Similar to the ISOT columns, the terms in the Kaggle
Fake or Real columns, suggest that articles in this dataset
also surround the 2016 Presidential Election. This is due to
keywords used in classifying a document as ‘fake’ such as
‘Hillary’, ‘election’, ‘2016’ and ‘October’. The ‘real’ column
shows fewer keywords indicating this, but some can be seen
such as ‘Sanders’, ‘campaign’ and ‘candidates’.

Also similar to the previous two datasets, the two columns
corresponding to the Kaggle Competition dataset indicate
that it also focuses on the 2016 presidential election, using
keywords for classification that include ‘2016’, ‘Hillary’, ‘Oc-
tober’ ‘Clinton’ and ‘election’. Interestingly, compared to the

ISOT and Fake or Real datasets, these keywords appear in the
in the ‘real’ column as opposed to the ‘fake’ column. This may
explain why models trained on this dataset suffered the highest
drop in accuracy when tested on the other datasets. Keywords
for ‘fake’ classification appear not to focus on any distinctive
topic however the word ‘Breitbart’ gives some indication that
part of the ’fake’ portion of this dataset was collected from
Breitbart.com – a website sometimes argued to be spreading
misinformation.

Looking at each pair of columns across the three datasets
explored, it is evident that at all the datasets have a strong
focus on the 2016 presidential election. This demonstrates
that the data was collected around the same time period.
Furthermore, the majority of terms that exist across all datasets
confirm that the datasets focus on political news. As the goal
of this study is to test generalisability across similar datasets
of the same topic and time period, these observations provide
confidence in the study’s selection of datasets, which would
have been a legitimate concern given the limited metadata
available for each one as discussed in Section III.

VI. DISCUSSION

This study was motivated following an SLR carried out by
the authors, which indicated that generalisability is seldom
addressed in the literature when developing and evaluating
methods for fake news detection [11]. The empirical study
described in this paper sets out to explore how well existing
fake news detection techniques generalise across different
datasets in the same news domain (political news) and time
period. In the first experiment of this study, a set of models was
developed and tested using Stratified K-Fold Cross-Validation.
It was found that the models trained and tested on the same
dataset produced high performances, which were comparable
to, and replicated, results reported in the literature.

In the second experiment (detailed in Section V), these
models were tested on the remaining datasets to determine
how well they generalise to different datasets of the same
topic and time period. The core finding of this analysis is that
current techniques of fake news detection do not generalise
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well to similar news. This raises questions around the efficacy
of current techniques in the real-world, given that models
must be able to perform outside of the datasets on which
they are trained. This finding motivates the need for more
robust models. It also adds to the body of evidence that
suggests that current publicly available datasets are simply
too small to train generalisable models [4]. This may explain
why models trained on the ISOT dataset performed marginally
better in terms of generalisability compared to models trained
on the smaller datasets, and it further demonstrates the need
for larger, well-labelled datasets, such as those hosted by
Facebook, to be made more readily available.

Furthermore, this experiment demonstrated that word-level
representations (BoW, TFIDF, Word2Vec and the state-of-
the-art BERT) are the worst performing in terms of gener-
alisability, regardless of the type of model that is used in
training, as detailed in Section V. However, linguistic cues
led to better and more consistent performance in comparison
to word-level representations. This finding is in line with
[5] who reported positive results for generalisability over-
time and across domains, using linguistic features. Further
evidence supporting the argument that linguistic cues can
perform better in terms of generalisability can be found in
[9], [12]. A possible explanation is that linguistic cues do
not rely on the content of the article, but rather on stylistic
features, to determine whether an article is fake or not. Another
factor contributing to poor generalisability may be also be
the words that are used to derive word-level representations,
where words such as named-entities are deemed important
by the model but only serve to bias the model to classify
based on such words. Removing such words that increase
bias in datasets has been found to improve generalisability as
reported by a recent study by [26]. Moreover, the use of novel
statistical techniques, such as causality analysis, that give more
weighting to words that tend to generalise better could also
improve model generalisability [17].

The final stage of the analysis provided support to the bias
argument, aiming to identify the words which had the largest
impact on classifying a document as ‘fake’ or ‘real’. Inspection
of the frequency distributions revealed that, in several cases,
the ‘fake’ and ‘real’ word lists contain words that are very
specific to the datasets on which they are trained. That is,
the same words that are influential to classify an article as
‘fake’ in one dataset are associated with real news in another
dataset. For example, words relating to Hillary Clinton occur
frequently in the ‘fake’ word list for the Kaggle Fake or
Real dataset but also in the ‘real’ word list of the Kaggle
Competition dataset. Similarly, the word ’Reuters’ occurred
52 times out of the 100 documents explored in the ISOT
frequency distribution, suggesting that the model considered
any article containing this term to be ’true’. This may explain
why models trained on these datasets perform poorly in terms
of generalisability, as particular words are expected to be
related to each class of fake or real news, producing biased
models. It could be argued that such words relating to the
source should be removed however, in the current iteration

of the SLR preliminary findings suggest that this is seldom
done (hence, why they were included for the purposes of this
study to evaluate the performance of current approaches in
terms of generalisability). This provides additional evidence
to motivate the need to remove such words, or select words
more intelligently, when training models using word-level
representations, in the pursuit of more generalisable models
in future research. This finding expands on [5] who argued
that the frequency of certain words on each side of the dataset
may have a negative impact on generalisability, and also aligns
well with a study by [7] which drew similar conclusions
using LIME on South African news. Taken together, these
findings suggest that techniques relying only on word-level
representations may not support generalisable models despite
being the most popular approach in the broader literature.

The analysis suggested that the linguistic cues selected for
this study performed marginally better compared to word-level
representations. However, their overall generalisability is still
lacking. The study used a set of 34 linguistic cues, which
previous literature has found to produce better outcomes. More
selective, finer-grained experiments could pinpoint which of
these 34 linguistic cues, or combinations of cues, are the most
essential and effective for fake news detection. Moreover, it
could be argued that, given the right combination of linguistic
cues, additional novel features, as well as intelligently se-
lected word-level representations, good generalisability may be
achieved for datasets of the same domain. Examples of novel
features include frequency of URL redirections [6], volume
of advertising (as profit for advertising is often a motivation
for producing fake news [3]) and reverse image search to
determine if images have been manipulated or used out of
context [20]. As such, exploring such combinations of features
with the view of improving generalisability should be the
primary focus of future research.

VII. FUTURE WORK & CONCLUSIONS

This study tested the generalisability of a number of super-
vised machine learning models trained on a variety of word-
level representations and linguistic cues across four datasets.
The study demonstrates that word-level representations do
not generalise well on current, popular, publicly available
datasets of the same topic, in this instance, the 2016 US
Presidential election. This is regardless of the ML model used.
Through the LIME package, the paper suggests that word-level
representations may have a negative impact on generalisability
due to dataset bias, possibly as a result of the limited size of
such datasets. As such, linguistic cues appear to be more robust
than word-level representations in terms of generalisability, but
due to the number of possible combinations of these features
and little exploration into generalisability in literature, it is not
clear what features would generalise best.

As such, this study makes a number of recommendations for
future research. Primarily, that future work in this area utilise
generalisability tests as part of the evaluation process. This
is to ensure that resulting models are robust and usable in a
real-world context. Additionally, that the datasets used are of
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a more significant size to aid in increasing the generalisability
of resulting models and ideally contain the URLs of articles,
such that a broader range of novel features may be gathered. A
larger dataset may also contribute to avoiding the bias observed
in current datasets demonstrated by this study. Furthermore,
future studies should look to explore different combinations
of linguistic features as well as derive new, novel features that
can be used for fake news detection, such as those suggested
in Section VI. This should be to determine whether these new
features generalise better than those explored in this article
and the wider literature.
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