
Sustainable Cities and Society 89 (2023) 104311

A
2
n

Contents lists available at ScienceDirect

Sustainable Cities and Society

journal homepage: www.elsevier.com/locate/scs

Deep reinforcement learning-based long-range autonomous valet parking for
smart cities
Muhammad Khalid a, Liang Wang b, Kezhi Wang c, Nauman Aslam d, Cunhua Pan e, Yue Cao f,∗

a School of Computer Science, University of Hull, Hull, HU6 7RX, UK
b School of Aerospace, Transport and Manufacturing, Cranfield University, Milton Keynes, MK43 0AL, UK
c Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
d Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
e National Mobile Communications Research Laboratory, Southeast University, China
f School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China

A R T I C L E I N F O

Keywords:
Long-range autonomous valet parking (LAVP)
Autonomous vehicle
Deep reinforcement learning
Ant colony optimization (ACO)
Sustainable cities and communities

A B S T R A C T

In this paper, to reduce the congestion rate at the city center and increase the traveling quality of experience
(QoE) of each user, the framework of long-range autonomous valet parking is presented. Here, an Autonomous
Vehicle (AV) is deployed to pick up, and drop off users at their required spots, and then drive to the car park
around well-organized places of city autonomously. In this framework, we aim to minimize the overall distance
of AV, while guarantee all users are served with great QoE, i.e., picking up, and dropping off users at their
required spots through optimizing the path planning of the AV and number of serving time slots. To this
end, we first present a learning-based algorithm, which is named as Double-Layer Ant Colony Optimization
(DLACO) algorithm to solve the above problem in an iterative way. Then, to make the fast decision, while
considers the dynamic environment (i.e., the AV may pick up and drop off users from different locations),
we further present a deep reinforcement learning-based algorithm, i.e., Deep Q-learning Network (DQN) to
solve this problem. Experimental results show that the DL-ACO and DQN-based algorithms both achieve the
considerable performance.
1. Introduction

The mobility of urban area is highly dependent on the transporta-
tion system. Effective transportation plays an important role in the
sustainability and development of future smart cities (Zhu, Shen, & Ren,
2022). Normally, city centers are the busiest places and difficult for
the traffic congestion control (Li, Taeihagh, & Tan, 2022; Ni, Lin, &
Shen, 2019). A large number of vehicles enter and leave the city center
every hour (Gyawali & Qian, 2019; Orejon-Sanchez, Crespo-Garcia,
Andres-Diaz, & Gago-Calderon, 2022). It may result in various mobility
issues, e.g., high congestion, pollution and fuel consumption rate as
well as long journey time for the people. One of the key issues leading
to the above problems may be that the vehicles keep searching for
Car Park (CP) in city center (Cogill et al., 2014; Heidari, Navimipour,
& Unal, 2022). According to the survey, 30% of overall traffic in
urban area is caused by drivers searching for a suitable CP (Shoup,
2017). On average, it takes a driver about 6–20 min in UK to find a
CP (Shoup, 2006). This is due to the fact that the drivers looking for
CP may not have the prior and background information about CP or
information about best route (Mackey, Spachos, & Plataniotis, 2020;

∗ Corresponding author.
E-mail address: 871441562@qq.com (Y. Cao).

Vondra, Becvar, & Mach, 2016). To reduce the searching and roaming
time, the Smart Parking (SP) has been proposed, which gives drivers
an opportunity to receive information of CP on their smart phones.
The message provides user with real-time available parking slots in
CP (Yue, Abdel-Aty, Wu, & Farid, 2019). Thanks to the Information
and Communication Technologies (ICT) as well as machine learning
and computer vision based solutions, finding available CP slot becomes
more and more convenient (Kirschner & Lanzendorf, 2020; Zhu et al.,
2022). However, the SP may suffer from challenging scenarios where
each vehicle rushes to the same CP and thus may result in a higher
congestion rate in the city center (Kotb, Shen, & Huang, 2017; Zhong,
Ni, Cui, Zhang, & Liu, 2021).

In the future, we envision that almost all the Autonomous Ve-
hicle (AV) can operate on battery power and move autonomously,
contributing to eco-friendly environment. The AV can reduce the car-
bon emission and minimize journey cost, when compared with fuel-
powered cars (Shaaban, Mohamed, Ismail, Qaraqe, & Serpedin, 2019).
In addition, AV is expected to offer Autonomous Valet Parking (AVP),
vailable online 25 November 2022
210-6707/© 2022 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.scs.2022.104311
Received 4 June 2022; Received in revised form 26 October 2022; Accepted 18 No
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

vember 2022

https://www.elsevier.com/locate/scs
http://www.elsevier.com/locate/scs
mailto:871441562@qq.com
https://doi.org/10.1016/j.scs.2022.104311
https://doi.org/10.1016/j.scs.2022.104311
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scs.2022.104311&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sustainable Cities and Society 89 (2023) 104311M. Khalid et al.
Fig. 1. The proposed long-range autonomous valet parking framework.
which can help the AV find the suitable car park slot in CP. Normally,
AVP provides two kinds of solutions: (1) Short-range Autonomous Valet
Parking (SAVP); and (2) Long-range Autonomous Valet Parking (LAVP).

For the first case, the user can leave vehicle at the CP entrance.
Then SAVP can guide the AV to find a suitable parking spot itself
inside CP. Specially, the AVP applies 3-dimensional (3D) localization
and computer vision techniques to move between different stories of a
CP. It also searches for a vacant parking slot as well as avoid obstacles
on their way (Paidi, Fleyeh, Håkansson, & Nyberg, 2018). In addition,
users can pick up their AVs at the entrance of CP for the return
journey, which may be synchronized with the movement of user to
avoid delays as well as congestion inside CP. However, the key issue
of SAVP is that the users still have to go a long way to the entrance
of CP themselves, probably from their work place or city center via
other means, however, as mentioned earlier, this process may take
around 6–20 min on average. On the other hand, the LAVP proposes
to deploy CP at the border of city center to avoid congestion inside
the city center (Khalid et al., 2019). In this case, instead of going to
the entrance of CP, the users can leave the AV anywhere. Such as the
place close to their company or inside the city center where they can do
shopping. These places can be called as the drop-off spots. Once people
gets out of the AV, the AV can move to the available CP autonomously
controlled by LAVP. For the return journey, users may use their mobile
phones to book the AV, which will pick-up them at any spot as set
by them, via applying the similar techniques. Normally, the drop-off
spots can be set the same as the pick-up spots. To facilitate this process,
the advanced vision and optimization techniques can be applied to
minimize overall cost (e.g., resources, battery, time) of AVs during the
above process (Hodorog, Petri, & Rezgui, 2022).

In above mentioned scenarios, the key challenges are yet to be
addressed, i.e., path planning of the AV in dynamic environment, while
also consider (1) meeting the quality of experience (QoE) of each
user, (2) serving the user with the optimal order, i.e., picking up user
first and dropping off it later, (3) minimizing the overall distance of
the AV. The above optimization normally includes the mixed integer
variables, which is very difficult to tackle. The traditional convex-
based solutions, due to high complexity, may not be applied in the
above situations. Additionally, the random search does not normally
provide optimal solution, as it is difficult to converge due to the non-
learning and environment adaptability behavior. Furthermore, other
hybrid optimization based solutions, e.g., greedy optimization normally
needs several iterations and also suffer from high complexity. If the
environment varies, the above mentioned optimizations may have to
be re-run to adapt to the new environment, which may not suitable
2

for the fast decision making in the dynamic environment (Singh et al.,
2020).

Against the above background, in this paper, we aim to design the
long-range autonomous valet parking framework, as shown in Fig. 1.
In this framework, we optimize the path planning of AV, aiming at
minimizing the overall distance of the AV, while guaranteeing all users
are served, by picking up, and dropping off them to their required spots.
To this end, we propose two learning based solutions, i.e., Double-Layer
Ant Colony Optimization (DL-ACO) and DQN-based algorithms to solve
the above problem. The DL-ACO can be applied to the new scenario or
unfamiliar environment, especially for the case when DQN is difficult
to be trained and converge. The DL-ACO can also be used to verify the
results of DQN based algorithm in uncertain scenarios. On the other
hand, the DQN can be applied to the familiar environment to make
the efficient and fast decisions. This is because we can pre-train DQN
and once the training is done, DQN can make decision very fast. The
proposed techniques will improve the overall ride sharing and parking
experience and it will also contribute towards green environment and
sustainable development.

The remainder of this paper is organized as follows. Section 2
presents the related work and Section 3 describes the system model.
Section 4 introduces the proposed DL-ACO algorithm, while Section 5
presents the DQN-based algorithm. The simulation results are reported
in Section 6, followed by conclusions at last.

2. Literature review

Finding a suitable car parking slot is one of the key challenges in
transportation systems. The optimal path planning plays an important
for vehicles to search for a suitable car park slot while also minimizing
the resources required, e.g., battery consumption (Fan, Zhang, Yu,
Hong, & Dong, 2022; Javed & Zeadally, 2018). Popular path planning
and route optimization algorithms include Dijkstra, Ant Colony Opti-
mization (ACO) and A-Star (A*) (Dorigo, Birattari, & Stutzle, 2006),
which can help to find the shortest path from source to destination. The
Dijkstra algorithm divides road into edges and each edge is assigned
with the weight. The weight of edges varies from scenario to scenario,
which can either be energy, time or distance. In ACO, the artificial ants
use swarm intelligence to find the shortest route. The biological ants
when searches for food can leave some hormones called pheromone
on their way to destination. This pheromone is sensed by other ants
and then they can follow the same path. If more ants travel with the
same path, there will be a higher amount of pheromone. However,
the above-mentioned algorithms do not normally learn from the past

Sustainable Cities and Society 89 (2023) 104311M. Khalid et al.

s
a
p
o
t
u

w
s
w
{
B

𝑎

i

n

𝑞

𝑑

s

𝑈

i
A
r
a
d

s
c
∑

a

𝑞

s

experience. This means if the source or destination changes, they may
have to re-solve the problem to get the new optimal solutions.

Machine learning based solution has been proposed recently to
assist real-time decision making in various situations. It mainly involves
three main subcategories: supervised learning, unsupervised learning
and reinforcement learning (Fadlullah et al., 2017). Supervised learn-
ing requires labeled data for decision making, whereas unsupervised
learning is applied to learn data pattern and relationships from un-
labeled or unknown data. The reinforcement learning, on the other
hand, can be applied to the environments where no prior information
is available. The learning process is achieved through direct interaction
with environment. The reinforcement learning normally has five main
elements: an agent, environment, state, action and reward (Luong
et al., 2019). In reinforcement learning, an agent can interact with
the environment by taking actions and obtain the accumulated reward.
The reinforcement learning may contain multiple episodes to fully train
an agent in the environment. Then the decision making can be done,
with the help of the agent. The reinforcement learning technique has
shown huge potentials in autonomous vehicles, such as Unmanned
Aerial Vehicles (UAVs). In Wang et al. (2019), Wang et al. proposed
a RLAA algorithm based on Q-learning to optimize the user association
and resource allocation in UAV-enabled MEC. In Wang et al. (2020),
a UAV-aided MEC framework is investigated, where a group of UAVs
cooperate to serve ground UEs, and the authors developed a MAT
algorithm based on multi-agent reinforcement learning to optimize the
trajectories of UAVs.

The transportation system of a city is one the most dynamic system
where a robust decision handling system is a crucial element. The
robust decision system for transportation in smart cities will always
contribute towards sustainability and green environment. The deep
reinforcement learning after certain amount of training is capable of
handling real time scenarios. In this paper, to assist LAVP in the
dynamic environment, two learning-based algorithms are proposed.
Specifically, the DL-ACO algorithm can be applied in unfamiliar sce-
narios, whereas DQN-based algorithm can be deployed in dynamic or
familiar environment, after adequate training.

3. System model

In this section, we consider the LAVP scenario, as shown in Fig. 1,
where the city map is divided into a grid map. We assume that there is
an AV serving 𝑁 users within the city. To simplify this, we formulate
the city as a 𝑍𝑋 ×𝑍𝑌 grid map, which contains several obstacles, and
we define the set of users as ≜ {𝑛 = 1, 2,… , 𝑁}. The AV starts to
erve users from the initial taking-off spot, whose coordinate is denoted
s 𝑞𝐼 = [𝑋𝐼 , 𝑌 𝐼]. Additionally, the AV serves the user 𝑛 by visiting the
ick-up spot, whose coordinate is 𝑞𝑃𝑛 = [𝑋𝑃

𝑛 , 𝑌
𝑃
𝑛], and visiting the drop-

ff spot, whose coordinate is 𝑞𝐷𝑛 = [𝑋𝐷
𝑛 , 𝑌 𝐷

𝑛]. Finally, the AV reaches
he CP spot, whose coordinate is denoted as 𝑞𝐶 = [𝑋𝐶 , 𝑌 𝐶], after all
sers are served.

Note that, we assume this process lasts for 𝑇 time slots or steps,
hich vary with the path planning of AV. For simplicity, we denote the

et of time slots as ≜ {𝑡 = 1, 2,… , 𝑇 }, and in the time slot 𝑡, the AV
ill select an action 𝑎(𝑡) from the action set, which is denoted as ≜

UP, DOWN, LEFT, RIGHT, TOP-LEFT, TOP-RIGHT, BOTTOM-LEFT,
OTTOM-RIGHT}. Thus, it has

(𝑡) ∈ ,∀𝑡 ∈ {1, 2,… , 𝑇 }. (1)

Then, given the coordinate of the AV, denoted by 𝑞(𝑡) = [𝑋(𝑡), 𝑌 (𝑡)]
n time slot 𝑡, the coordinate of the AV 𝑞(𝑡 + 1) = [𝑋(𝑡 + 1), 𝑌 (𝑡 + 1)] in
3

𝑞

ext time slot is defined as follows:

(𝑡 + 1) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[𝑋(𝑡) − 1, 𝑌 (𝑡)], if UP
[𝑋(𝑡) + 1, 𝑌 (𝑡)], if DOWN
[𝑋(𝑡), 𝑌 (𝑡) − 1], if LEFT
[𝑋(𝑡), 𝑌 (𝑡) + 1], if RIGHT
[𝑋(𝑡) − 1, 𝑌 (𝑡) − 1], if TOP-LEFT
[𝑋(𝑡) − 1, 𝑌 (𝑡) + 1], if TOP-RIGHT
[𝑋(𝑡) + 1, 𝑌 (𝑡) − 1], if BOTTOM-LEFT
[𝑋(𝑡) + 1, 𝑌 (𝑡) + 1], if BOTTOM-RIGHT

(2)

Thus, the distance traversed between 𝑡 and 𝑡 − 1 is expressed as

(𝑡, 𝑡 − 1) =
√

‖𝑞(𝑡) − 𝑞(𝑡 − 1)‖2, ∀𝑡 ∈ , (3)

where ‖ ⋅ ‖ denotes Euclidean norm. Also, the AV can only move to its
adjacent grid within the target grid map in each time slot. It has:

0 ≤ 𝑋(𝑡) ≤ 𝑍𝑋 , ∀𝑡 ∈ , (4)

and

0 ≤ 𝑌 (𝑡) ≤ 𝑍𝑌 , ∀𝑡 ∈ . (5)

In each time slot, the AV will also need to avoid obstacles, and it
has

𝑞(𝑡) ∉ ,∀𝑡 ∈ , (6)

where is the set of the coordinates of obstacles.
In our paper, the traveling of AV is associated with pick-up spot,

whose coordinate is 𝑞𝑃𝑛 = [𝑋𝑃
𝑛 , 𝑌

𝑃
𝑛], and a drop-off spot, whose co-

ordinate can be expressed as 𝑞𝐷𝑛 = [𝑋𝐷
𝑛 , 𝑌 𝐷

𝑛]. For simplicity, we
assume if the AV reaches the pick-up spot where user 𝑛 is present,
the user is picked by the AV, which can be expressed as 𝑞(𝑡) = 𝑞𝑃𝑛 ,
i.e., [𝑋(𝑡), 𝑌 (𝑡)] = [𝑋𝑃

𝑛 , 𝑌
𝑃
𝑛]. Similarly, if the AV reaches the drop-off

spot, it drops that user 𝑛 at that spot, which can be defined as 𝑞(𝑡) = 𝑞𝐷𝑛 ,
i.e., [𝑋(𝑡), 𝑌 (𝑡)] = [𝑋𝐷

𝑛 , 𝑌 𝐷
𝑛]. Without loss of generality, we introduce the

et 𝑈 (𝑡) to present the serving status of all users in time slot 𝑡 as follows:

(𝑡) = {𝑢𝑛(𝑡),∀𝑛 ∈ },∀𝑡 ∈ {1, 2,… , 𝑇 }, (7)

where 𝑢𝑛(𝑡) is the serving status of user 𝑛 in time slot 𝑡, which has

𝑢𝑛(𝑡) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0,
if 𝑞𝑃𝑛 ∉ {𝑞(𝑡′), 𝑡′ = 1, 2,… , 𝑡},
and 𝑞𝐷𝑛 ∉ {𝑞(𝑡′), 𝑡′ = 1, 2,… , 𝑡},

1,
if 𝑞𝑃𝑛 ∈ {𝑞(𝑡′), 𝑡′ = 1, 2,… , 𝑡},
and 𝑞𝐷𝑛 ∉ {𝑞(𝑡′), 𝑡′ = 1, 2,… , 𝑡},

2,
if 𝑞𝑃𝑛 ∈ {𝑞(𝑡1), 𝑡1 = 1, 2,… , 𝑡},
and 𝑞𝐷𝑛 ∈ {𝑞(𝑡2), 𝑡2 = 1, 2,… , 𝑡}, 𝑡1 < 𝑡2,

(8)

n which, from the first time slot to the current time slot 𝑡, (1) if the
V does not reach the pick-up and drop-off spot, 𝑢𝑛(𝑡) = 0; (2) if the AV
eaches the pick-up spot, but does not reach the drop-off spot, 𝑢𝑛(𝑡) = 1;
nd (3) if the AV first reaches the pick-up spot, and then arrives the
rop-off spot, 𝑢𝑛(𝑡) = 2.

After all the users are served, the AV then reaches the CP spot, and
erving process terminates. The serving process terminates. Thus, we
an have:
𝑁

𝑛=1
𝑢𝑛(𝑡) = 2𝑁, 𝑡 = 𝑇 , (9)

nd

(𝑡) = 𝑞𝐶 , 𝑡 = 𝑇 . (10)

Besides, the AV will start serving users from the initial taking off
pot. Thus, it has:

𝐼 (11)
(𝑡) = 𝑞 , 𝑡 = 0.

Sustainable Cities and Society 89 (2023) 104311M. Khalid et al.

1
1
1
1
1
1
1
1
1
1
2
2

w
n
d

d
b
t

𝜏

w

▵

w

m
p

t
t
a
m
t
T
i

We aim to minimize the overall distance for the AV, while at the
same time to make sure all users are served, through optimizing the
path planning of the AV. To this end, we formulate our problem as
follows:

 ∶ min
𝒒,𝑻

∑𝑇
𝑡=1 𝑑(𝑡, 𝑡 − 1)

subject to constraints ∶
(1), (4), (5), (6), (9), (10), (11),

(12a)

in which, 𝒒 = {𝑞(𝑡),∀𝑡 ∈ }, and 𝑻 = {1, 2,… , 𝑇 }.
The above optimization is quite challenging to tackle as one has

to decide the optimal path planning, i.e., 𝒒 and the minimal number of
time slots, i.e., 𝑻 that the AV moves. Precisely, the AV has to avoid
obstacles in each time slot, and it must serve users in the adequate
order. That is to say each of user should be picked up first and then
dropped off next to the adequate spot. After that the AV has to reach
the CP spot.

Next, we will propose two solutions to address the above problem.
Firstly, we propose a learning based DL-ACO algorithm, which can
solve the problem in an iterative way. The DL-ACO algorithm can be
applied in some unfamiliar scenarios. Then, to adapt to the dynamic
environment, we further present a DQN-based algorithm, which can
achieve the solutions in a fast way, once the training process is done.

4. Proposed DL-ACO algorithm

The ACO can be applied in different optimization scenarios such as
graph traversing, job scheduling and traveling salesman problems (Koc-
sány & Szádeczky-Kardoss, 2022; Pacini, Mateos, & Garino, 2014). The
basic idea is to apply the biological ants working in form of a group
to find a global optimal path. This path is between their nest and
destination. The biological ants can leave a special kind of chemical
called pheromone when they search for the destination. Then, the
following ants will search according to pheromone left on the ground.
Besides, the density of pheromone is related to the overall distance
between the nest and destination. Thus, if the density of pheromone on
a particular path is the highest among others, Then, most ants choose
this path, which is the shortest path.

In our paper, the DL-ACO algorithm consists of two parts. Specifi-
cally, we first apply it to achieve the best path planning between each
pair of spots, including taking-off, pick-up, drop-off, and CP spot. Then,
we further apply it to find the optimal order for serving users. The
details are given as follows.

Algorithm 1 Path planning between different spots
1: Initialize the distance matrix 𝑫𝒎 with size 2𝑁 + 2;
2: Establish the spot list 𝐸𝑠 with size 2𝑁 + 2;
3: for spot 𝑖 ∈ 𝐸𝑠 do
4: for spot 𝑗 ∈ 𝐸𝑠 do
5: Initialize pheromone matrix 𝒑𝒎 with size 𝑍;
6: Initialize vector 𝐷𝑒;
7: for iteration 𝑙 = 1, 2, ...𝑒𝑚𝑎𝑥 do
8: for ant 𝑘 = 1, 2, ...𝑘𝑚𝑎𝑥 do
9: for 𝑡 = 1, 2, ..., 𝑇 𝑚𝑎𝑥 do
0: Select an action from with probability 𝑝𝑘𝑣,𝑤;
1: end for
2: if ant 𝑘 reaches spot 𝑗 from spot 𝑖 then
3: Calculate overall distance 𝑑𝑎

𝑘 according to (3);
4: 𝐷𝑒 ← 𝑑𝑎

𝑘 ;
5: Update pheromone matrix 𝒑𝒎;
6: end if
7: end for
8: end for
9: 𝑫𝒎

𝑖,𝑗 = min(𝐷𝑒);
0: end for
1: end for
4

Motivated by the work in Liu, Yang, Liu, Tian, and Gao (2017),
the first part of the proposed DL-ACO is described in the Algorithm
1. Specifically, we first define a distance matrix 𝑫𝒎 with size 2𝑁 + 2,
which is used to store the minimal distance between each pair of spots,
as shown at Line 1. Besides, we establish a spot list 𝐸𝑠 with size 2𝑁 +2
that the AV must reach. Then, from Line 3, we start to find the minimal
distance value between spot 𝑖 and spot 𝑗. From Line 5 to 6, we initialize
the pheromone matrix 𝒑𝒎 with size 𝑍, and we define a vector 𝐷𝑒 to
store the successful distance value achieved by each ant. Then, from
Line 10, the ant 𝑘 starts to explore and selects an action from . Note
that the ant 𝑘 moves from the current grid 𝑣 to the next available grid
𝑤 with the probability 𝑝𝑘𝑣,𝑤, expressed as follows:

𝑝𝑘𝑣,𝑤 =
𝜏𝛼𝑣,𝑤𝜂

𝛽
𝑣,𝑤

∑

𝑧∈allowed𝑣 𝜏
𝛼
𝑣,𝑧𝜂

𝛽
𝑣,𝑧

, (13)

here 𝜏𝑣,𝑤, 𝜂𝑣,𝑤 are the amount of pheromone left and the attractive-
ess from grid 𝑣 to grid 𝑤, 𝜂𝑣,𝑤. 𝛼, 𝛽 are influence parameters which
etermine the importance of pheromone versus heuristic information.

Then, from Line 12, if the ant 𝑘 reaches the spot 𝑗, the overall
istance 𝑑𝑎𝑘 between the pair of spots can be obtained by (3), and will
e stored in 𝐷𝑒. Additionally, according to the grids that the ant 𝑘 visits,
he pheromone matrix 𝒑𝒎 will be updated given the following equation

𝑣,𝑤 ← (1 − 𝜌)𝜏𝑣,𝑤 +
∑

𝑘
▵ 𝜏𝑘𝑣,𝑤, (14)

here 𝜌 denotes the pheromone decay and ▵ 𝜏𝑘𝑣,𝑤 can be obtained by

𝜏𝑘𝑣,𝑤 =

⎧

⎪

⎨

⎪

⎩

𝜇
𝑑𝑎𝑘
, if ant 𝑘 visits path between grid 𝑣, 𝑤,

0, otherwise
(15)

here 𝜇 is the constant value.
Furthermore, from Line 19, after adequate iteration, we select the

inimal distance value from 𝐷𝑒 and store it in 𝑫𝒎. Then the best path
lanning between spot 𝑖 and spot 𝑗 is achieved.

Algorithm 2 DL-ACO algorithm for LAVP
1: Obtain the distance matrix 𝑫𝒎 from Algorithm 1;
2: Initialize the pheromone matrix 𝒑𝒔 with size 2𝑁 + 2;
3: Initialize the minimal distance value 𝑑𝑚𝑖𝑛;
4: for iteration 𝑙 = 1,2,..., 𝑙𝑚𝑎𝑥 do
5: for ant 𝑘 = 1,2,...𝑘𝑚𝑎𝑥 do
6: Select spots from spot list 𝐸𝑠;
7: Obtain overall distance 𝑑𝑘 according to 𝑫𝒎;
8: if (9), (10), (11) are met and 𝑑𝑘 < 𝑑𝑚𝑖𝑛 then
9: Update pheromone matrix 𝒑𝒔;

10: 𝑑𝑚𝑖𝑛 ← 𝑑𝑘;
11: end if
12: end for
13: end for
14: Obtain optimal path planning according to 𝑑𝑚𝑖𝑛.

Next, having obtained the distance matrix 𝑫𝒎 that can represent
he minimal distance between each pair of spots, we further achieve
he optimal order for serving users. Precisely, we show the overall
lgorithm in Algorithm 2. From Line 2 to 3, we initialize the pheromone
atrix 𝒑𝒔 with size 2𝑁 +2. Besides, we temporarily define a value 𝑑𝑚𝑖𝑛

o represent the minimal overall distance value achieved by the ants.
hen, from Line 4, each of ant starts to explore and selects the spot that

t will visit. Specifically, the ant 𝑘 moves from the current spot 𝑖 to the
next available spot 𝑗 with the probability 𝑝𝑘𝑖,𝑗 .

𝑝𝑘𝑖,𝑗 =
𝜏𝛼𝑖,𝑗𝜂

𝛽
𝑖,𝑗

∑ 𝛼 𝛽 . (16)

𝑧∈allowed𝑖 𝜏𝑖,𝑧𝜂𝑖,𝑧

Sustainable Cities and Society 89 (2023) 104311M. Khalid et al.

o
(

A
a

5

e
e
r
c
a
b
n

5

i
k
m
a
o
e
f
s
m
c
r
𝑠
𝑄
B
e
1

d
n
M
i
t
t
o
t
t
t

i
t
t
o
g
e
t
w
r
w
b

𝑄

E

w
n

𝐿

t
▿

E

After all spots are visited, we obtain the overall distance 𝑑𝑘. If the
rder of spots that the ant 𝑘 visits can meet requirement of (9), (10),
11), and in the same time 𝑑𝑘 < 𝑑𝑚𝑖𝑛 is met, we update the pheromone

matrix 𝑝𝑠 as follows:

𝜏𝑖,𝑗 ← (1 − 𝜌)𝜏𝑖,𝑗 +
∑

𝑘
▵ 𝜏𝑘𝑖,𝑗 , (17)

where ▵ 𝜏𝑘𝑖,𝑗 is

▵ 𝜏𝑘𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

𝜇
𝑑𝑎𝑘
, if ant 𝑘 visits path between spot 𝑖, 𝑗,

0, otherwise.
(18)

Then, we set 𝑑𝑘 as the temporarily minimal distance value 𝑑𝑚𝑖𝑛.
fter adequate iteration, we can obtain the optimal path planning
ccording to 𝑑𝑚𝑖𝑛.

. DQN-based algorithm

The above DL-ACO algorithm may not be suitable for dynamic
nvironment (where pick-up, drop-off and route will change in ev-
ry episode) as it needs to iterate to find the optimal solutions, and
e-run if the locations of pick-up, drop-off spots changes at each cy-
le. Motivated by this, we introduce a DQN-based algorithm that can
chieve the best solutions in a short time. Next, we first introduce some
ackground knowledge of deep reinforcement learning, including deep
eural network (DNN), Q-value, and other fundamental elements.

.1. Background knowledge

The reinforcement learning being an emerging technology play-
ng a beneficial role in scenarios where environment is dynamic and
eep changing frequently (Silver et al., 2018). A general reinforce-
ent learning model consists of an agent, action list, reward, states

nd environment (Silver et al., 2016). Specifically, in the structure
f reinforcement learning, an agent is considered to interact with the
nvironment. The process of the interaction can be expressed as the
inite Markov decision process (MDP). Specifically, given a series of
tates 𝑠(𝑡), the goal of the agent is to select actions 𝑎(𝑡) that can
aximize the accumulated rewards ∑𝑇

𝑡′=𝑡 𝛾
𝑡′−𝑡𝑟(𝑡′), where 𝛾 is the dis-

ount factor that balances the immediate and future reward, 𝑟(𝑡) is the
eward. Additionally, in order to map the relationship between state
(𝑡) and action 𝑎(𝑡), an action-value function, it is also known as Q-value
(𝑠(𝑡), 𝑎(𝑡)) is defined, which can be expressed as an Bellman equation.
esides, in order to obtain the accumulated rewards, another important
lement of reinforcement learning named Q-table (Watkins & Dayan,
992) is applied to store the Q-value of each pair of action and state.

However, the classical reinforcement learning may suffer from high-
imensional space of states and actions as the size of Q-table is fi-
ite. Motivated by the development of deep neural networks (DNNs),
nih et al. (2013, 2015) combined reinforcement learning and DNNs,

.e., DQN, which can replace the Q-table. Additionally, in order to fur-
her stabilize the training process, two mechanisms are proposed. First,
he memory named experience replay is used to store the experiences
f the past, which eases the correlation between each of states. When
he action is generated by the DQN, the agent sends the action to
he environment, and the state will transfer to the next state. Then,
he experience, which consists of [𝑠(𝑡), 𝑎(𝑡), 𝑟(𝑡), 𝑠(𝑡 + 1)] will be stored

in the experience replay memory. When the learning process starts,
several experiences will be sampled for training the DQN. The second
mechanism is called target network, which has the same structure as
5

the DQN, but it only updates with certain intervals.
5.2. DQN-based algorithm for LAVP

In order to apply DQN-based algorithm in the LAVP framework, we
define the action, state, and reward function as follows:

• Action: In our proposed scheme, we define 𝑎(𝑡) in each time slot
as the action of the AV, and it has

𝑎(𝑡) ∈ . (19)

• State: In our paper, the state 𝑠(𝑡) consists of the following com-
ponents:

– the current coordinate of the AV: [𝑋(𝑡), 𝑌 (𝑡)].
– the coordinates of all pick-up spots: [𝑋𝑃

𝑛 , 𝑌
𝑃
𝑛],∀𝑛 ∈ .

– the coordinates of all drop-off spots: [𝑋𝐷
𝑛 , 𝑌 𝐷

𝑛],∀𝑛 ∈ .
– the coordinate of CP spot: [𝑋𝐶 , 𝑌 𝐶].
– the serving status of each user: 𝑢𝑛(𝑡),∀𝑛 ∈ .

• Reward:
In order to achieve a better performance in terms of convergence,
we define the reward function 𝑟(𝑡) as follows:

𝑟(𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−𝑝, if (4)–(6) are not met
2𝑝, if 𝑞(𝑡) = 𝑞𝑃𝑛 and 𝑢𝑛(𝑡) = 1 in the first time
4𝑝, if 𝑞(𝑡) = 𝑞𝐷𝑛 and 𝑢𝑛(𝑡) = 2 in the first time
10𝑝, if 𝑞(𝑡) = 𝑞𝐶 and ∑𝑁

𝑛=1 𝑢𝑛(𝑡) = 2𝑁
−𝑑(𝑡 − 1, 𝑡), otherwise,

(20)

From above, it is observed that (1) if the AV crosses the border or
hits the obstacle, the agent will obtain a reward, which is −𝑝; (2)
if the AV reaches the pick-up spot, i.e., 𝑢𝑛(𝑡) = 1, and 𝑞(𝑡) = 𝑞𝑃𝑛 in
the first time, the reward is 2𝑝; (3) if the AV reaches the drop-off
spot of user 𝑛 and reached the pick-up spot of user 𝑛 before, that
is to say 𝑢𝑛(𝑡) = 2, and 𝑞(𝑡) = 𝑞𝐷𝑛 the agent will also receive a
reward of 4𝑝; (4) if the AV reaches the CP spot and all users are
served, which means (9), (10), (11) are met, the reward is 10𝑝;
and (5) otherwise the reward is defined as the minus of distance
𝑑(𝑡 − 1, 𝑡).

We provide the overall structure of DQN-based algorithm for LAVP
n Fig. 2. More precisely, the agent is deployed to control the AV
hrough interacting with the environment, the agent sends the state 𝑠(𝑡)
o the DQN named evaluation network, which generates the Q-values
f all actions. Note that in order to avoid the local optimum, an 𝜖-
reedy policy is applied. Then, the agent sends the action 𝑎(𝑡) to the
nvironment and obtains the reward 𝑟(𝑡). After that, the environment
ransfers to the state 𝑠(𝑡 + 1) of the next time slot. The experience,
hich consists of [𝑠(𝑡), 𝑎(𝑡), 𝑟(𝑡), 𝑠(𝑡 + 1)], is stored in the experience

eplay memory 𝑴 . When the learning process starts, 𝐾 experiences
ill be randomly sampled for obtaining the target value, which can
e expressed as
∗(𝑠(𝑡), 𝑎(𝑡)) =
[

𝑟(𝑡) + 𝛾max
𝑎(𝑡+1)

𝑄∗(𝑠(𝑡 + 1), 𝑎(𝑡 + 1); 𝜃−)
]

,
(21)

here 𝛾 ∈ [0, 1] is the discount factor 𝑄∗ is generated by the target
etwork, 𝜃− denotes the network parameter.

Then, the loss function can be calculated as follows:

(𝜃) = E
[

(

𝑄∗(𝑠(𝑡), 𝑎(𝑡)) −𝑄(𝑠(𝑡), 𝑎(𝑡); 𝜃)
)2
]

. (22)

The evaluation network is updated according to the following equa-
ion:

𝜃𝐿(𝜃) =
[

(

𝑄∗(𝑠(𝑡), 𝑎(𝑡)) −𝑄(𝑠(𝑡), 𝑎(𝑡); 𝜃)
)

▿𝑄(𝑠(𝑡), 𝑎(𝑡); 𝜃)
]

.
(23)

Sustainable Cities and Society 89 (2023) 104311M. Khalid et al.

3
n A

w
r
p

r
w
t
b
c
t
i
a
e
o

D
s
t
𝐶
t
𝑞
O
a

Fig. 2. Overall structure of DQN for LAVP.

Fig. 3. The convergence performance of DQN.

Furthermore, we show the overall algorithm design in Algorithm
, from which, we first initialize the evaluation network, and target
etwork with parameters 𝜃, 𝜃− respectively at Line 1. The experience

replay memory 𝑴 is also initialized at Line 2. Then, in each training
episode, we initialize the state in the first time slot. The agent interacts
with the environment given the state 𝑠(𝑡) and receive the action from
the evaluation network. Note that for avoiding the local optimum,
an 𝜖-greedy policy is applied, which means the agent can obtain the
action that has the largest Q-value with probability 𝜖, or randomly
obtains the action from with probability 1 − 𝜖. From Line 9, it
obtains the reward according to (20), and transfers to the state of
next time slot 𝑠(𝑡 + 1). Then, the experience [𝑠(𝑡), 𝑎(𝑡), 𝑟(𝑡), 𝑠(𝑡 + 1)] is
stored into the experience replay memory. From Line 12, if the learning
process starts, 𝐾 experiences will be randomly sampled for training the
networks. Specifically, we obtain the loss value from (22), and train the
evaluation network from (23). Additionally, the target network will be
updated with the rate 𝜏.

6. Performance analysis

The simulation has been carried out in Python 3.7, tensorflow
1.15.0, INTEL 3450T, and NVIDIA GTX 1050Ti. We divide the simu-
lation area as a 20 × 20 grid map, which consists of various roads,
obstacles and buildings. The AV always starts to serve users from the
initial taking off spot, whose coordinate is 𝑞𝑖 = [0, 0]. After serving all
users, the AV will move to the CP spot, whose coordinate is 𝑞𝑐 = [19, 19].
Once the DQN training is completed, the AV can move to CP anytime.
6

Algorithm 3 DQN-based algorithm for LAVP
1: Initialize evaluation and target network with parameter 𝜃, 𝜃−;
2: Initialize experience replay memory 𝑴 ;
3: for 𝐸 = 1, 2, ..., 𝐸𝑚𝑎𝑥 do
4: Initialize state 𝑠(𝑡);
5: for 𝑡 = 1, 2, ...𝑇 𝑚𝑎𝑥 do
6: Obtain state 𝑠(𝑡) from the environment;
7: Select action 𝑎(𝑡) that has the largest Q-value with probability 𝜖;
8: Randomly select action from with probability 1 − 𝜖;
9: Obtain reward according to (20);

10: Obtain the state of next time slot 𝑠(𝑡 + 1);
11: Store experience [𝑠(𝑡), 𝑎(𝑡), 𝑟(𝑡), 𝑠(𝑡 + 1)] in memory;
12: if learning process starts then
13: Randomly sample 𝐾 experiences from memory;
14: Calculate loss function according to (22);
15: Train the evaluation network according to (23) with learning rate

𝜙;
16: Update parameters of the target network:

𝜃− = 𝜏𝜃− + (1 − 𝜏);
17: end if
18: end for
19: end for

Table 1
Simulation parameters.

Parameter Description Parameter Description

𝑍𝑋 20 𝑍𝑌 20
𝑞𝑖 [0, 0] 𝑞𝑐 [19, 19]
𝑁 3 𝛼 1.1
𝛽 12 𝜌 0.5
𝜇 10 𝑒𝑚𝑎𝑥 10
𝑘𝑚𝑎𝑥 20 𝑙𝑚𝑎𝑥 50
𝜙 0.0003 𝛾 0.99
𝑝 10 𝜖 0.9
𝜏 0.001 𝐸𝑚𝑎𝑥 106

𝑇 𝑚𝑎𝑥 100 𝐾 256

For simulation and analysis purposes, we instruct the AV to park at
CP once all passengers are served. In our DQN-based algorithm, we
deploy three fully-connected layers with [400, 300, 300] neurons. The

damOptimizer (Kingma & Ba, 2014) is used. The network is trained
ith the learning rate 𝜙 = 0.003, the target network is updated with the

ate 𝜏 = 0.001, and the size of experience replay memory is 106. More
arameters can be found in Table 1.

We first analyze the convergence performance of DQN-based algo-
ithm during the training process in Fig. 3, where there are 3 users
aiting to be served by the AV. As shown in Fig. 3, we observe that

he accumulated reward achieved by DQN remains at −600 at the
eginning. The plausible explanation is that the neural network is not
onvergent and the AV always moves out of the grid map, which means
he penalty is always incurred. After that, the accumulated reward
ncreases rapidly, which means the network starts to converge. Then,
fter 1000 training episodes, the curve remains between 0 and 200
ventually, which means the DQN-based algorithm has achieved the
ptimal path planning.

Then, we depict the path planning of AV achieved by the proposed
L-ACO algorithm in Fig. 4. Note that the black rectangle represents ob-

tacle, the gray rectangle represents the spot. In addition, 𝐼𝑆 represents
he initial taking off spot, 𝑃𝑆 denotes pick-up spot, 𝐷𝑆 is drop-off spot,
𝑃 means CP spot, and red line is the path planning of AV. In Fig. 4(a),

here are 3 users, the coordinates of their pick-up and drop-off spots are
𝑝
𝑛 = {[3, 4], [7, 9], [10, 5]}, 𝑞𝑑𝑛 = {[14, 7], [17, 16], [15, 12]} respectively.
ne can observe that the AV controlled by DL-ACO algorithm serves
ll users with the order 𝐼𝑆 → 𝑃𝑆1 → 𝑃𝑆2 → 𝑃𝑆3 → 𝐷𝑆1 → 𝐷𝑆3 →

𝐷𝑆2 → 𝐶𝑃 . Additionally, we can also observe that in each pair of spots,

the DL-ACO always achieved the shortest distance.

Sustainable Cities and Society 89 (2023) 104311M. Khalid et al.
Table 2
Executed time of DL-ACO and DQN.

Case DL-ACO DQN

Execution Distance Training Testing Distance

1 112.99 (s) 38.971

1687.95 (s)

1.44 (s) 38.971
2 134.55 (s) 39.556 2.40 (s) 39.556
3 203.66 (s) 53.213 1.04 (s) 46.627
4 128.77 (s) 43.799 0.93 (s) 40.385
5 138.35 (s) 38.971 1.52 (s) 38.385

Then, in Fig. 4(b), we deploy another 3 users, whose coordinates
of pick-up and drop-off spots are 𝑞𝑝𝑛 = {[0, 6], [5, 6], [10, 8]}, 𝑞𝑑𝑛 =
{[15, 6], [15, 13], [19, 17]} respectively. We can observe that the AV con-
trolled by DL-ACO algorithm serves the users with the order 𝐼𝑆 →
𝑃𝑆1 → 𝑃𝑆2 → 𝑃𝑆3 → 𝐷𝑆1 → 𝐷𝑆2 → 𝐷𝑆3 → 𝐶𝑃 . Besides, we
can conclude that DL-ACO still achieved the shortest distance in each
pair of spots.

Furthermore, we show the path planning of AV achieved by DL-
ACO in another scenario, where the coordinates of users’ pick-up and
drop-off spots are 𝑞𝑝𝑛 = {[4, 3], [13, 7], [18, 6]}, and 𝑞𝑑𝑛 = {[14, 11], [12, 16],
[16, 16]}. It is observed that the AV serves the users with the order
𝐼𝑆 → 𝑃𝑆1 → 𝑃𝑆2 → 𝐷𝑆1 → 𝑃𝑆3 → 𝐷𝑆3 → 𝐷𝑆2 → 𝐶𝑃 .

Then, after adequate training, we save the network parameters of
DQN for testing. We depict the path planning of AV controlled by DQN
in Fig. 5. Note that the spots in Fig. 5 are the same as Fig. 4. As shown in
Fig. 4(a), the AV serves the users with the order 𝐼𝑆 → 𝑃𝑆1 → 𝑃𝑆2 →
𝑃𝑆3 → 𝐷𝑆1 → 𝐷𝑆3 → 𝐷𝑆2 → 𝐶𝑃 . The overall distance is the same as
Fig. 4(a), although their path planning is slightly different.

In Fig. 4(b), the AV serves the users with the order 𝐼𝑆 → 𝑃𝑆1 →
𝑃𝑆2 → 𝑃𝑆3 → 𝐷𝑆1 → 𝐷𝑆2 → 𝐷𝑆3 → 𝐶𝑃 , which is the same as
Fig. 4(b).

Then, as shown in Fig. 5(c), the AV serves the users with the order
𝐼𝑆 → 𝑃𝑆1 → 𝑃𝑆2 → 𝑃𝑆3 → 𝐷𝑆1 → 𝐷𝑆2 → 𝐷𝑆3 → 𝐶𝑃 . Additionally,
compared with the path planning in Fig. 4(c), DQN is much better as its’
order for serving users is more practical, which will reduce unnecessary
path.

Furthermore, we compare the execution time and distance achieved
by DL-ACO, DQN in different cases, i.e., different locations of pick-up,
drop-off spots, where there are 3 users. For DQN, the training episodes
is 3500. In Table 2, we observe that no matter which case is, DQN
always outperforms DL-ACO in terms of over distance. However, it is
easy to see that DL-ACO consumes at least 100 s for achieving the
considerable performance, while DQN only needs about 1 s in testing,
although it takes longer time in training process.

Finally, we analyze the performance of DL-ACO and DQN-based
algorithms given different number of users. For fairness, we also ap-
ply another random algorithm as comparison. In this setting, the AV
randomly selects a available action to take until all users are served
and the AV reaches the CP spot. We obtain 500 pairs of path planning
of AV achieved by Random and select the optimal result to compare
with the proposed DL-ACO and DQN-based algorithms in Fig. 6, from
which, we can observe that when the number of users are 1, 2, 4, and
5, our proposed DL-ACO and DQN achieve the similar performance in
terms of overall distance. However, when the number of users is 3, DQN
outperforms DL-ACO. One plausible explanation is that DL-ACO does
not find the best order for serving users. The Random algorithm always
performs the worst, no matter how many number of users is.

Conclusions

In this paper, we have presented a LAVP framework and shown
two learning based solutions, i.e., DL-ACO and DQN-based algorithms
for minimizing the overall distance of the AV. The DL-ACO can be
applied to the scenarios where pre-training is not required. The limi-
tation here is that decision may take longer time and consume higher
7

Fig. 4. The path planning of AV achieved by DL-ACO (IS for Initial Spot, PS for Pick-up
Spot, DS for Drop-off Spot, CP for CP Spot).

Sustainable Cities and Society 89 (2023) 104311M. Khalid et al.
Fig. 5. The path planning of AV achieved by DQN (IS for Initial Spot, PS for Pick-up
Spot, DS for Drop-off Spot, CP for Car Parking Spot).
8

Fig. 6. The overall distance of AV achieved by DL-ACO, DQN and Random given
different number of users.

power as compared to the DQN-based algorithm but the time spent
on training will not be needed. Similarly, DL-ACO cannot be applied
to critical scenarios where a quicker decision is required. The DQN-
based algorithm needs training but after the training, it can make
faster decision than DL-ACO algorithm. The DQN-based algorithm can
be directly applied to critical scenarios. The experimental results have
shown that both DL-ACO and DQN-based algorithms can achieve the
considerable performance. The proposed techniques may contribute
to the decrease of the overall waiting time for parking and improve
the experience of people in busy areas, e.g., city center. The DL-ACO
and DQN-based algorithms may be readily extended to other urban
transportation problems like electric vehicle charging, charging slot
deployment and ride sharing schemes.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgment

Funding: Wuhan Key Research and Development Program
(2022012202015016)

References

Cogill, R., Gallay, O., Griggs, W., Lee, C., Nabi, Z., Ordonez, R., et al. (2014). Parked
cars as a service delivery platform. In 2014 international conference on connected
vehicles and expo ICCVE, (pp. 138–143). IEEE.

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE
Computational Intelligence Magazine, 1(4), 28–39.

Fadlullah, Z. M., Tang, F., Mao, B., Kato, N., Akashi, O., Inoue, T., et al. (2017). State-of-
the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent
network traffic control systems. IEEE Communications Surveys & Tutorials, 19(4),
2432–2455.

Fan, G.-F., Zhang, L.-Z., Yu, M., Hong, W.-C., & Dong, S.-Q. (2022). Applications of
random forest in multivariable response surface for short-term load forecasting.
International Journal of Electrical Power & Energy Systems, 139, Article 108073.

Gyawali, S., & Qian, Y. (2019). Misbehavior detection using machine learning in
vehicular communication networks. In ICC 2019-2019 IEEE international conference
on communications ICC, (pp. 1–6). IEEE.

Heidari, A., Navimipour, N. J., & Unal, M. (2022). Applications of ML/DL in the
management of smart cities and societies based on new trends in information
technologies: A systematic literature review. Sustainable Cities and Society, Article
104089.

http://refhub.elsevier.com/S2210-6707(22)00615-1/sb1
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb1
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb1
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb1
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb1
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb2
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb2
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb2
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb3
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb3
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb3
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb3
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb3
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb3
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb3
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb4
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb4
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb4
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb4
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb4
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb5
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb5
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb5
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb5
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb5
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb6
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb6
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb6
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb6
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb6
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb6
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb6

Sustainable Cities and Society 89 (2023) 104311M. Khalid et al.

Z

Z

Hodorog, A., Petri, I., & Rezgui, Y. (2022). Machine learning and Natural Language
Processing of social media data for event detection in smart cities. Sustainable Cities
and Society, 85, Article 104026.

Javed, M., & Zeadally, S. (2018). RepGuide: Reputation-based route guidance using
Internet of Vehicles. IEEE Communications Standards Magazine, 2(4), 81–87.

Khalid, M., Cao, Y., Aslam, N., Raza, M., Moon, A., & Zhou, H. (2019). AVPark:
Reservation and cost optimization-based cyber-physical system for long-range
autonomous valet parking (L-AVP). IEEE Access, 7, 114141–114153.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kirschner, F., & Lanzendorf, M. (2020). Parking management for promoting sustainable
transport in urban neighbourhoods. A review of existing policies and challenges
from a German perspective. Transport Reviews, 40(1), 54–75.

Kocsány, L., & Szádeczky-Kardoss, E. G. (2022). Application of mixed graph traversal
optimization for the vehicle routing problem. In 2022 European control conference
ECC, (pp. 2149–2154). IEEE.

Kotb, A. O., Shen, Y.-c., & Huang, Y. (2017). Smart parking guidance, monitoring and
reservations: a review. IEEE Intelligent Transportation Systems Magazine, 9(2), 6–16.

Li, L., Taeihagh, A., & Tan, S. Y. (2022). What factors drive policy transfer in smart
city development? Insights from a Delphi study. Sustainable Cities and Society, 84,
Article 104008.

Liu, J., Yang, J., Liu, H., Tian, X., & Gao, M. (2017). An improved ant colony algorithm
for robot path planning. Soft Computing, 21(19), 5829–5839.

Luong, N. C., Hoang, D. T., Gong, S., Niyato, D., Wang, P., Liang, Y.-C., et al. (2019).
Applications of deep reinforcement learning in communications and networking: A
survey. IEEE Communications Surveys & Tutorials, 21(4), 3133–3174.

Mackey, A., Spachos, P., & Plataniotis, K. N. (2020). Smart parking system based on
bluetooth low energy beacons with particle filtering. IEEE Systems Journal, 14(3),
3371–3382.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., et
al. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:
1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
et al. (2015). Human-level control through deep reinforcement learning. Nature,
518(7540), 529–533.

Ni, J., Lin, X., & Shen, X. (2019). Toward privacy-preserving valet parking
in autonomous driving era. IEEE Transactions on Vehicular Technology, 68(3),
2893–2905.

Orejon-Sanchez, R. D., Crespo-Garcia, D., Andres-Diaz, J. R., & Gago-Calderon, A.
(2022). Smart cities’development in Spain: A comparison of technical and social
indicators with reference to European cities. Sustainable Cities and Society, Article
103828.
9

Pacini, E., Mateos, C., & Garino, C. G. (2014). Distributed job scheduling based on
Swarm Intelligence: A survey. Computers & Electrical Engineering, 40(1), 252–269.

Paidi, V., Fleyeh, H., Håkansson, J., & Nyberg, R. G. (2018). Smart parking sensors,
technologies and applications for open parking lots: a review. IET Intelligent
Transport Systems.

Shaaban, M. F., Mohamed, S., Ismail, M., Qaraqe, K. A., & Serpedin, E. (2019). Joint
planning of smart EV charging stations and DGs in Eco-friendly remote hybrid
microgrids. IEEE Transactions on Smart Grid, 10(5), 5819–5830.

Shoup, D. C. (2006). Cruising for parking. Transport Policy, 13(6), 479–486.
Shoup, D. (2017). The high cost of free parking. Routledge.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., et

al. (2016). Mastering the game of Go with deep neural networks and tree search.
Nature, 529(7587), 484.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., et al. (2018). A
general reinforcement learning algorithm that masters chess, shogi, and Go through
self-play. Science, 362(6419), 1140–1144.

Singh, S., Sharma, P. K., Yoon, B., Shojafar, M., Cho, G. H., & Ra, I.-H. (2020).
Convergence of blockchain and artificial intelligence in IoT network for the
sustainable smart city. Sustainable Cities and Society, 63, Article 102364.

Vondra, M., Becvar, Z., & Mach, P. (2016). Vehicular network-aware route selection
considering communication requirements of users for ITS. IEEE Systems Journal,
12(2), 1239–1250.

Wang, L., Huang, P., Wang, K., Zhang, G., Zhang, L., Aslam, N., et al. (2019). RL-
based user association and resource allocation for multi-UAV enabled MEC. In 2019
15th international wireless communications & mobile computing conference IWCMC, (pp.
741–746). IEEE.

Wang, L., Wang, K., Pan, C., Xu, W., Aslam, N., & Hanzo, L. (2020). Multi-agent deep
reinforcement learning based trajectory planning for multi-UAV assisted mobile
edge computing. IEEE Transactions on Cognitive Communications and Networking.

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3–4), 279–292.
Yue, L., Abdel-Aty, M. A., Wu, Y., & Farid, A. (2019). The practical effectiveness of ad-

vanced driver assistance systems at different roadway facilities: System limitation,
adoption, and usage. IEEE Transactions on Intelligent Transportation Systems.

hong, H., Ni, J., Cui, J., Zhang, J., & Liu, L. (2021). Personalized location privacy
protection based on vehicle movement regularity in vehicular networks. IEEE
Systems Journal.

hu, H., Shen, L., & Ren, Y. (2022). How can smart city shape a happier life? The
mechanism for developing a Happiness Driven Smart City. Sustainable Cities and
Society, 80, Article 103791.

http://refhub.elsevier.com/S2210-6707(22)00615-1/sb7
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb7
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb7
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb7
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb7
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb8
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb8
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb8
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb9
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb9
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb9
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb9
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb9
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb11
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb11
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb11
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb11
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb11
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb12
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb12
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb12
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb12
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb12
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb13
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb13
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb13
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb14
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb14
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb14
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb14
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb14
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb15
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb15
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb15
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb16
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb16
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb16
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb16
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb16
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb17
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb17
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb17
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb17
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb17
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb19
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb19
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb19
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb19
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb19
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb20
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb20
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb20
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb20
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb20
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb21
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb21
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb21
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb21
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb21
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb21
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb21
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb22
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb22
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb22
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb23
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb23
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb23
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb23
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb23
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb24
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb24
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb24
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb24
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb24
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb25
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb26
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb27
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb27
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb27
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb27
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb27
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb28
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb28
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb28
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb28
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb28
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb29
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb29
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb29
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb29
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb29
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb30
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb30
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb30
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb30
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb30
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb31
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb31
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb31
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb31
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb31
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb31
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb31
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb32
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb32
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb32
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb32
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb32
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb33
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb34
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb34
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb34
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb34
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb34
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb35
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb35
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb35
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb35
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb35
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb36
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb36
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb36
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb36
http://refhub.elsevier.com/S2210-6707(22)00615-1/sb36

	Deep reinforcement learning-based long-range autonomous valet parking for smart cities
	Introduction
	Literature Review
	System Model
	Proposed DL-ACO algorithm
	DQN-based algorithm
	Background Knowledge
	DQN-based algorithm for LAVP

	Performance Analysis
	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References

