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Abstract  

Disease subtyping, which aids in the development of personalised treatments, remains 

a challenge in data analysis because of the many different ways to group patients 

based upon their data. However, if I can identify subclasses of disease, this will help 

to develop better models that are more specific to individuals and should therefore 

improve prediction and understanding of the underlying characteristics of the disease 

in question. In addition, patients might suffer from multiple disease complications. 

Models that are tailored to individuals could improve both prediction of multiple 

complications and understanding of underlying disease characteristics. However, AI 

models can become outdated over time due to either sudden changes in the 

underlying data, such as those caused by new measurement methods, or incremental 

changes, such as the ageing of the study population. This thesis proposes a new 

algorithm that integrates consensus clustering methods with classification in order to 

overcome issues with sample bias. The method was tested on a freely available 

dataset of real-world breast cancer cases and data from a London hospital on systemic 

sclerosis, a rare and potentially fatal condition. The results show that nearest 

consensus clustering classification improves accuracy and prediction significantly 

when this algorithm is compared with competitive similar methods. In addition, this 

thesis proposes a new algorithm that integrates latent class models with classification. 

The new algorithm uses latent class models to cluster patients within groups; this 

results in improved classification and aids in the understanding of the underlying 

differences of the discovered groups. The method was tested on data from patients 

with systemic sclerosis (SSc), a rare and potentially fatal condition, and coronary heart 

disease. Results show that the latent class multi-label classification (MLC) model 

improves accuracy when compared with competitive similar methods. Finally, this 

thesis implemented the updated concept drift method (DDM) to monitor AI models 

over time and detect drifts when they occur. The method was tested on data from 

patients with SSc and patients with coronavirus disease (COVID). 

Keywords: Classification; Consensus clustering; Disease subgroup discovery, Latent 

Class Analysis, Multi-Label Classification, Concept Drift. 
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Chapter 1 Introduction 

1.1 Overview 

Early diagnosis of chronic diseases and the discovery of disease subclasses improve 

patient survival and reduce healthcare costs. Nowadays, chronic diseases, such as 

heart disease, diabetes, and cancer, have become a primary concern in the healthcare 

sector, which is struggling to find effective solutions. By 2025, the World Health 

Organisation predicts that 70% of all diseases will be chronic, meaning that they will 

require continuous care by healthcare providers. As a result, the prevalence of chronic 

diseases has increased both mortality and healthcare costs, which in certain countries 

may exceed economic capacity (Elton & O’Riordan, 2016).  

Consequently, healthcare systems worldwide must treat patients more efficiently. For 

instance, the United States launched the Health Information Technology for Economic 

and Clinical Health Act in 2009 to help healthcare providers use electronic health 

records more efficiently (Blumenthal, 2010). In other words, the vast amount of 

medical data generated by healthcare providers and technologies are critical to 

improving patient care; these data can be used to tailor an appropriate treatment to 

each patient to achieve improvements in overall health (Vicente et al., 2020). It has 

become clear that incorporating medical data into healthcare systems delivers 

significant benefits in terms of accuracy, early diagnosis, identification of disease 

subclass, and potential to provide individualised patient diagnosis and treatment 

(Tucker et al., 2020).  

Technologies that generate much medical data are critical because they allow 

healthcare professionals to better understand patients’ diseases and their 

progression, which increases overall care quality (Pastorino et al., 2019). Historically, 

physicians have been limited to using filing systems to access medical records to help 

with diagnosis and treatment assessment; however, they can accomplish this more 

efficiently by utilising computational methods to model diseases. Thus, physicians can 

use advanced computational methods to diagnose a patient’s disease and identify an 

appropriate, personalised treatment more accurately. Hence, artificial intelligence (AI) 

technologies, computer systems with the ability to solve tasks that normally require 

human intelligence, can be used to analyse and extract useful information from large 
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medical datasets. Over the last several years, more and more AI methods have been 

developed, and they promise to revolutionise medicine. Researchers have suggested 

that modern AI technologies such as machine learning (ML) algorithms should be used 

in healthcare systems to create powerful predictive models (Handelman et al., 2018). 

Because many healthcare challenges, such as making a diagnosis, classifying 

biological samples, and predicting health outcomes, can be improved by exploiting 

historical data, the healthcare industry is becoming increasingly reliant on advanced 

ML approaches. ML algorithms assist physicians in precisely analysing and 

diagnosing diseases to personalise patient treatment (Wiens & Wallace, 2016). As a 

result, ML techniques have been developed to turn massive amounts of data into 

knowledge to benefit the healthcare industry and improve patient care (Correa da Silva 

et al., 2020). 

The future of ML in healthcare is bright as many companies are launching ML 

algorithms to accurately identify diseases at early stages. PM, based on individual 

health data, is another ML application that has received much research attention due 

to its ability to improve disease assessment and data collection. For instance, the 

SkinVision application allows patients to upload images of skin spots and thereby 

acquire personalised treatment plans for skin cancer (Kovalenko, 2020). Moreover, 

ML could prove valuable for rare disease subtyping by providing predictive models 

capable of identifying illness subclasses, which could help healthcare professionals to 

improve diagnosis and develop personalised treatments. ML could also play an 

essential role in predicting complications of multiple rare diseases by discovering 

unmeasured effects and thereby helping to build a robust learning model. However, 

AI models could become outdated over time due to sudden changes in the underlying 

data, such changes could be due to new measurement methods, or incremental 

changes, such as the aging of the study population.  

1.2 Research motivation 

Due to diagnostic challenges and a lack of knowledge, most rare diseases that affect 

a very small number of people (1 to 2,000 people) have no effective treatment. 

Worldwide, 350–400 million people suffer from rare diseases, most of which are 

caused by a hereditary gene mutation. Accurate diagnosis of rare diseases may take 
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several years, significantly delaying treatment options; thus, patients with a rare 

disease may die before receiving a diagnosis. Furthermore, patients with the same 

rare disease may display different symptoms because a single disease could include 

subtypes, the identification of which has become increasingly important for improving 

personalised treatment. For example, the lungs may be affected in some systemic 

sclerosis (SSc) patients, while others may experience heart complications 

(Panopoulos et al., 2018). In brief, due to diagnostic delays, the lack of clinical 

expertise, insufficient information about rare diseases and these illnesses’ life-

threatening nature, advanced ML methods can play an important role in rare disease 

diagnosis and prognosis (Panopoulos et al., 2018).  

In addition to disease subtypes, comorbidities, meaning the simultaneous presence of 

two or more diseases in a patient are one of the most pressing issues in healthcare. 

Comorbidities are classified as chronic conditions. For example, patients with type 2 

diabetes are at high risk of developing both liver and bladder cancer. Multiple life-

threatening comorbidities (complications) are associated with SSc, including arterial 

hypertension and depression. This means that patients with SSc, a rare disease, are 

likely to develop comorbid conditions that increase mortality. Hypokalaemic periodic 

paralysis, another rare genetic disorder, causes blood potassium levels to fall 

dangerously low, resulting in muscle weakness. Complications of this disease can 

affect the heart and the kidneys and cause breathing problems. It is difficult to 

diagnose hypokalaemic periodic paralysis due to lack of knowledge and its 

complicated symptoms; thus, many patients die before receiving an accurate 

diagnosis (Boban et al., 2019).  

Rare disease diagnoses and the prediction of multiple comorbidities can be 

complicated by the presence of unmeasured risk factors, also known as hidden or 

latent variables. These hidden variables affect clinical trial outcomes. Detecting and 

explaining these hidden variables in medical datasets would improve the accuracy 

with which multiple complications can be predicted and to provide the provision of 

better PM. Understanding groups of patients based on newly discovered hidden 

variables, as well as better understanding disease progression and therefore providing 

more accurate diagnoses, would improve PM (Yousefi et al., 2018). As a result, an 

advanced ML approach should be created to construct a straightforward model by 
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discovering hidden variables in rare disease medical data. Such an approach would 

enable the reliable prediction of multiple complications and the provision of better PM 

through the recognition of consensus groups of patients. 

Predicting healthcare outcomes and complications over time is critical for providing 

better PM and improving healthcare management. These predictions would be based 

on electronic health records (patient data), meaning that the relationship between the 

patient’s characteristics and their healthcare outcomes may change over time, 

affecting the ML model’s performance unless the model is updated. This problem, 

called ‘concept drift’, occurs when the relationship between input data and the target 

variable changes over time (Gama et al., 2014). Methods for addressing this concept 

drift problem are urgently required.  

Based on the aforementioned problems, this thesis focuses on ML methodologies for 

modelling SSc. It uses consensus advanced ML to identify disease subclasses, which 

will lead to better models that are more specific to individual groups of patients, and it 

builds a model that predict multiple complications by discovering hidden factors. 

Additionally, this thesis aims to implement a metric for detecting drift in ML models.  

1.3 Research aims 

The previous section presented motivations for using advanced ML algorithms to help 

healthcare providers classify and predict complications of rare diseases. This thesis 

aims to propose a new model that combines supervised ML with unsupervised ML to 

simultaneously identify subclasses and accurately predict SSc health outcomes. 

Additionally, it aims to build new models to predict multiple complications of SSc using 

a latent class variable to find robust groups of SSc patients. Furthermore, it aims to 

solve the concept drift problem by using a method for detecting a drift in ML models. 

Thus, these models will provide healthcare providers with a useful decision-making 

tool to support their choices. The contributions of this thesis are detailed in the 

following section.  

1.4 Research contributions 

The principal contributions of this research are as follows: 
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• Exploration of state-of-the-art ML algorithms to model disease, with a 

focus on SSc: Researchers have applied a set of ML algorithms, such as 

decision tree (DT), naïve Bayes (NB), k-means, random forest, and latent class 

analysis algorithms, to SSc datasets for clinical outcome predictions and patient 

clustering. These methods are analysed and evaluated using a real-world 

dataset. 

• Consensus clustering classification: One significant contribution of this 

research is that it presents a new model, which uses a consensus clustering 

algorithm in combination with a supervised learning algorithm, to identify 

disease subtypes and improve predictions. The study presents a novel 

approach that simultaneously combines K-means clustering with DT analysis 

to provide a robust model that improves medical prediction accuracy by 

identifying sub-cohorts of patients. This approach is applied to real SSc data 

and evaluated. This novel nearest consensus clustering classification was 

created by running a K-means algorithm iteratively on different training datasets 

of SSc disease data. It finds consensus groups of patients based on different 

k-means results, and a DT algorithm is then applied to each group to classify 

patients’ health outcomes. New patients are assigned to the group to which 

they are most similar and are classified accordingly.  

Details of this new algorithm model have been published as a workshop paper 

in Advanced Predictive Models in Healthcare and further extended and 

published in Journal of Healthcare Informatics Research. 

• Multilabel Classification (MLC) latent class analysis: Another major 

contribution of this research is to build a novel approach combining latent class 

analysis with a MLC NB model to predict multiple complications by discovering 

hidden factors. This approach provides a robust probability model that improves 

medical prediction accuracy. My research presents a new algorithm, called 

‘Latent Class MLC Naïve Bayes’, to identify subclasses and predict disease, 

and it was tested using SSc disease data. This algorithm first runs an iterative 

latent class analysis on training datasets of SSc disease data, and it finds 

groups of patients based on results of this analysis. Next, a multilabel NB 

classification is applied to each group to assign patient labels. New patients are 
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assigned to the group to which they are most similar using a scoring formula 

and classified accordingly. The two new algorithms described above were 

tested on data from patients with SSc, and results indicate that they are more 

accurately in comparison to similar, alternative methods. Both models can be 

used to aid diagnosis and could help physicians significantly in exploring 

patients’ characteristics, which could lead to improved PM. 

           Details of this algorithm have been published in a poster on International 

Symposium on Computer-Based Medical Systems. 

• Concept drift alleviation: One problem ML models may face is concept drift, 

which occurs when a model's accuracy degrades over time. This is due to a 

change in the underlying relationship between the input variables and the target 

variables, which affects the performance of ML models. As a result, an 

approach that detects concept drift and updates the model accordingly is 

urgently needed in a healthcare context. In my study, I use the updated 

established drift detection method (DDM) metric to detecting drift in ML models 

using SSc dataset as well as a synthetic dataset of COVID-19 patients.  

• Evaluation of the proposed method’s effectiveness based on both real-

world clinical data and simulated data: SSc data and simulated data, in 

conjunction with extensive sensitivity analyses, were used to test the new 

method. 

1.5 Thesis organisation 

The thesis aims and contributions outlined above are addressed in the next six 

chapters. This thesis is organised into seven chapters, each of which addresses a 

different aspect of the study. The contents of each chapter are described below. 

• Chapter 1 provides an overview of rare diseases, ML and PM, and it identifies 

the problem this study aims to solve. The motivation aims and contributions of 

this research are also presented in this chapter. 

• Chapter 2 describes previous studies on supervised and unsupervised ML 

methods in medicine, such as Bayesian networks, NB, DTs, artificial neural 

networks, ensemble learning, clustering algorithms and consensus clustering. 

It also describes previous studies on PM and the definition and diagnosis of 

rare diseases. 
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• Chapter 3 introduces currently available information on SSc, a rare disease, 

focusing particularly on symptoms and diagnosis. It details the SSc dataset 

used, which was provided by London Royal Hospital and includes data on 600 

patients. Fundamental characteristics, implementation, and presentation of ML 

algorithms, such as DT, NB, K-means, and latent class analysis algorithms, 

along with an evaluation of these algorithms’ performance, are also presented 

in this chapter. 

• Chapter 4 proposes the first new model, which integrates a K-means algorithm 

with a DT algorithm in order to simultaneously deal with sampling bias, identify 

groups of patients who have different symptoms and outcomes and develop a 

transparent model for predicting those outcomes. Furthermore, it uses real 

clinical data and simulated data to provide a detailed definition, demonstration 

and evaluation of this new model and compare it to other methods. This chapter 

was published in the Journal of Healthcare Informatics Research. 

• Chapter 5 proposes another new model, which integrates latent class analysis 

with MLC NB. This model aims to utilise latent class analysis to identify patient 

subgroups based on the intersection of multiple observed characteristics. 

Furthermore, it uses both real clinical data and simulated data to offer a detailed 

definition, demonstration and evaluation of this new model as compared to 

other methods. This chapter was published for the Computer-Based Medical 

Systems (CBMS) conference. 

• Chapter 6 provides detailed information regarding the problem of concept drift 

and focuses on the implementation of the proposed DDM metric for detecting 

drift in ML models using both an SSc dataset and a synthetic dataset of COVID-

19 patients.  

• Chapter 7 conclude the study and summarises all key achievements. This 

chapter presents the results of this work and provides recommendations for 

future research. 

1.6 Summary 

This chapter provided an overview of the current research, including its aims and 

motivation, and it described the need for this study. It also presented the contributions 

of this research and a thesis road map. The following chapter describes previous 
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studies on supervised and unsupervised ML in medicine as well as on rare diseases 

and PM. Moreover, it addresses previous studies on concept drift.  
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Chapter 2 Literature Review 

2.1 Introduction 

As discussed in the previous chapter, ML can be a powerful tool for diagnosing 

diseases, predicting patient health outcomes and improving PM. This chapter 

summarises the literature on ML and its current applications in the medical field. The 

first half of this chapter explains and examines ML techniques used in medicine, 

including supervised and unsupervised learning methods, and it offers a critical 

assessment of their advantages and disadvantages. Additionally, it presents 

resampling techniques for generating random samples from a dataset. The second 

half of this chapter defines uncommon and rare diseases and analyses the difficulties 

associated with detecting and treating them. Furthermore, it presents the term 

‘personalised medicine’ (PM), which is used to treat patients more effectively. This 

chapter also provides background information on concept drift, which affects ML 

models over time.  

2.2 Machine learning in medicine 

Generally speaking, the ML field is based on a computer’s ability to learn from a given 

dataset and perform complex tasks. The aim of ML is to design and develop algorithms 

using computational techniques based on previous data in order to solve real-world 

problems. Utilizing vast amounts of raw data, these algorithms provide meaningful 

knowledge, which can be used to complete tasks efficiently and reach meaningful 

decisions. ML methods in medicine attempt to limit human decision-making and do 

more than physicians would be able to do alone (Deo, 2015). Therefore, ML methods 

can be used to assist with disease diagnosis, health outcome predictions and decision-

making, thereby leading to improved healthcare systems. For instance, skin cancer 

may be predicted and categorised using ML algorithms, and the application of ML has 

aided in the prediction of disease development from pre-diabetes to type 2 diabetes 

(Sidey-Gibbons, 2019). 

Vayena et al. (2018) argued that incorporating ML into the medical sciences field has 

become increasingly essential due to the existence of vast medical datasets that 

physicians are unable to utilise effectively (Vayena et al., 2018). Additionally, 

physicians tend to assume that a patient’s problem is associated with their field, even 
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when it is not. For example, Saarela et al. (2019) stated that, if a patient with pain in 

their arm is brought to a cardiologist for treatment, the cardiologist is likely to presume 

that the patient has a coronary issue. However, the same patient may be diagnosed 

with a cervical disc disorder if they are referred to a neurosurgeon. The actual disease 

may be detected eventually, but it may take a long time to arrive at the final, correct 

diagnosis. Thus, an efficient ML system could assist physicians in accurate decision-

making (Saarela et al., 2019). ML in medicine plays a significant role in improving 

medical performance and making healthcare systems more efficient; in the future, for 

instance, patients could use ML medical systems for self-management via their smart 

devices (Vayena et al., 2018).  

There two main types of ML methods: supervised and unsupervised learning. These 

are described in the following sections. Supervised learning methods learn from 

labelled data to predict outcomes based on training examples, whereas unsupervised 

learning methods learn from unlabelled data to analyse and cluster patients into 

groups (Deo, 2015). 

2.2.1 Supervised Methods 

There are three types of ML algorithms: supervised learning, unsupervised learning, 

and reinforcement learning (see Figure 2.1). 

 

Figure 2.1: Types of Machine Learning (Praveena & Jaiganesh, 2017). 

Supervised learning algorithms are trained from datasets in which each training record 

has an input value and a predetermined output value. A supervised learning algorithm 

learns to develop a model that identifies links between the input and output values for 
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each training example, thereby enabling it to predict the output value corresponding 

to any new input value (Praveena & Jaiganesh, 2017). 

Classification and regression algorithms are common supervised learning models. 

This study focuses on classification approaches because classification models have 

been proven to be beneficial when applied to biological problems. Classification 

algorithms such as NB, DT, and random forests, for example, have been successfully 

employed as models to predict plant virus encoded RNA silencing. Classification 

algorithms have also been used as significant ML tools for the diagnosis, analysis, and 

clinical management of eye disorders (Jagga & Gupta, 2014). Although supervised 

learning models can be used to address various medical problems, the exact choice 

of algorithm depends entirely on the nature of the problem to be solved. In general, 

neural networks are effective for assessing continuous variables, while DT and NB 

algorithms are more effective for analysing discrete variables. The latter two are also 

transparent models and have been used effectively in the healthcare domain 

(Kotsiantis et al., 2007). For medical diagnosis, a variety of supervised learning 

approaches are available, and new strategies are constantly being developed in order 

to overcome the limitations of traditional models. These innovative strategies are 

usually intended to find a more accurate solution to a problem and to aid professionals 

in their diagnoses. The main supervised learning methods are discussed in the 

following section.  

2.2.1.1 Bayesian Networks (BNs) 

Lucas (2001) noted that the 1990s saw an upsurge in researchers attempting to 

develop medical applications using ML methods. Bayesian Networks (BNs) were at 

the forefront of research in this area. The BN methodology was proposed to help 

develop a realistic model of a medical disorder. BN models operate despite 

uncertainties involved in the medical science field and, particularly, the diagnosis and 

treatment selection processes. BNs are structured by medical specialists, who 

compute probabilistic statements for the variables involved to determine the 

relationships among them. 

When using BNs, specialists determine the probable relationships among medical 

factors used to diagnose a disease, and symptoms, signs, tests, and scans are used 
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to confirm a diagnosis (Gadewadikar et al., 2010). The general structure of a BN is 

displayed in Figure 2.2, using the health risks of smoking as an example. 

 

Figure 2.2: An Example of a Bayesian Network (Lucas et al., 2004). 

Decision-making, casual knowledge, and existing expert knowledge are necessary to 

build BNs. BNs are developed using readily available data, which implies that human 

experts’ knowledge and opinions are not needed. However, to ensure effectiveness 

and accuracy, data collection must be conducted carefully. All values and variables 

present in the data should match those in the modelled network. BNs can be 

developed easily by hand and then utilised extensively in biomedicine and the 

healthcare domain. A BN is created based on the relevant information from physicians 

and patient data and is represented by a graph consisting of variables and their 

conditional interdependencies is created. Each node on the graph denotes medical 

goals, evaluations, and clinical symptoms, and the structure of the graph assists in 

measuring their relationship. Therefore, developing a BN from data requires network 

structures along with learning parameters, both of which demonstrate conditional 

probability (Lucas et al., 2004). 

One advantage of a BN structure is its flexibility and the fact that it can be easily 

understood by healthcare professionals (Lucas, 2001). BNs can be used to effectively 

predict breast cancer because they identify the relationship among diagnoses, test 

results, and imaging studies. Furthermore, BNs have been used to create a user-

friendly webpage that predicts the initial diagnosis of Alzheimer’s disease, which lent 

support to medical decision-makers. In conclusion, BNs, which are probabilistic 

graphical models, are rich frameworks for use in medical diagnosis (Alexiou et al., 

2017). 
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2.2.1.2 Naïve Bayes (NB) 

Like BNs, the Naïve Bayes (NB) supervised learning method can assist medical 

professionals with treatment and diagnosis. Several supervised learning systems that 

use an NB algorithm to forecast disease and improve physician decision-making 

capacities have been used successfully in medicine. Moreover, NB algorithms have 

reportedly performed better than other classification methods in medical settings 

(Bohra et al., 2017). Wei et al. (2011) asserted that NB algorithms show a heightened 

level of accuracy when the variables are highly related or independent. Moreover, 

researchers have also found that the combination of NB and unsupervised learning in 

medicine leads to increased accuracy (Wei et al., 2011). Kharya et al. (2014) provided 

a graphical user interface for entering patients’ screening records and detecting their 

probability of having breast cancer using NB classifiers. Results showed that NB 

classifiers improved accuracy, required little processing effort and operated quickly 

(Kharya et al., 2014). Moreover, when Chaurasia et al. (2018) designed three models 

for predicting breast cancer, their results showed that, of the algorithms, the NB 

algorithm performed the best, with a classification accuracy of 97.36% (Chaurasia et 

al., 2018). NB algorithms have also been applied to create a model that can accurately 

predict the likelihood that a patient has diabetes. Results showed that NBs perform 

with an accuracy of 76.30% (Sisodia & Sisodia, 2018). Gupta et al. (2020) developed 

six classification models to predict coronary artery disease; the NB model performed 

with an accuracy of 88.16% on the test set (Gupta et al., 2020). Moreover, an NB 

algorithm was used to effectively predict the spread of swine flu, one of the most highly 

infectious diseases. NB models are transparent and assist physicians in making 

diagnoses (Srinivas et al., 2020). Thus, it may be concluded that NB models improve 

and enhance the decision-making process and can be used to effectively address 

serious questions regarding diseases, such as their diagnosis and treatment. 

2.2.1.3 Decision Trees (DTs) 

Decision trees (DTs) are supervised ML methods that have been used extensively in 

medical decision-making due to their effectiveness and reliability. Decision-making by 

humans alone has become increasingly complex due to the vast amounts of data that 

must be analysed. Therefore, the need for a good decision support system has arisen 

(Podgorelec et al., 2002). A DT has been used successfully to diagnose renal calculi. 
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In general, this disease, wherein the kidneys fail to dispose of some of the body’s 

waste, is most likely to affect people in their 30s. The DT shows that the amount of 

erythrocyte in the urine is the key indicator of renal calculi. If this amount is greater 

than 10 RBC/µl, this means that the risk of renal calculi exists. If this amount falls 

below 4, which is rare, then the risk is extremely low. However, if it is between 4 and 

9, which is normal, urine colour must be examined. If it is yellow, the risk is low 

(Topaloglu & Malkoç, 2016). A DT algorithm has also been used to predict coronary 

heart disease. The performance of this algorithm was good, with a success rate of 

69.51% (Kim et al., 2015). Moreover, a DT algorithm has also been applied to predict 

axillary lymph node mitosis in primary breast cancer. This model displayed a high level 

of accuracy when clinical variables were used, implying that the DT model might be 

able to assist oncologists before the start of treatment (Takada et al., 2012). 

Madadipouya (2015) asserted that DTs are beneficial in the medical field as a result 

of the advantages they possess. Because they offer the clarity doctors require, they 

are considered one of the most effective models for use in medicine. In other words, 

medical decisions must be made effectively and reliably, and a simple decision-making 

model such as a DT is useful and provides a high level of accuracy (Madadipouya, 

2015). Podgorelec et al. (2002) also noted that DT methods are reliable, effective 

decision-making methods that physicians can easily understand; furthermore, despite 

their simplicity, they provide high classification accuracy within the medical field. Many 

medical studies have applied DTs as supervised learning methods to classify and 

diagnose diseases using real medical datasets. These studies have shown that DT 

models can play a significant role in facilitating the accurate diagnosis of diseases 

(Podgorelec et al., 2002). 

2.2.1.4 Artificial Neural Networks (ANNs) 

An artificial neural network (ANN) is a classification method that mimics how the 

human brain analyses and processes information. It is applied to problems that would 

be difficult for humans to solve.  
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Figure 2.3: Medical Diagnostic Example Using a Neural Network (Kajan et al., 
2014). 

The neural network method is a non-linear mathematical model that comprises three 

distinct layers: the input layer, the output layer, and the hidden layer (Kajan et al., 

2014). The major benefits of using this method are its high accuracy, easy 

maintenance, and high noise tolerance. Its application to heart failure prediction 

showed that it performs significantly better than traditional statistical methods (Akhil 

Jabbar et al., 2012). It has been reported that this type of network provides 

considerable relief to doctors who work under extreme pressure in emergency 

departments (Falavigna et al., 2019). Although neural networks are able to outperform 

nearly all other classification methods, they are considered ‘black box’ methods; that 

is, it is very difficult to understand how results are actually obtained. By contrast, DT 

algorithms are interpretable models used widely in medical domains. 

2.2.1.5 Ensemble Method 

In addition to the above methods, the ensemble method is the combination of multiple 

classifiers in order to obtain better predictive performance. The combination of various 

sets of ML methods helps to improve results and solve a given problem (Chakraborty, 

2017). The following diagram (Figure 2.4) shows that the ensemble method, as a 

combination of learning algorithms, could provide a better solution to medical models 

than standard methods. Briefly, instead of using one single learning algorithm to solve 

a problem, the ensemble method takes multiple learning algorithms into account. 

Thus, the primary aim of this method is to convert weak learning algorithms into strong 

ones (Lo et al., 2008).  
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Figure 2.4: Common Ensemble Architecture  

Numerous ensemble learning algorithms have yielded comparatively high levels of 

accuracy in medical settings. Jain et al. (2000) asserted that the main benefits of 

combining multiple classifiers are decreased variance, decreased bias, and improved 

predictions. Hence, any ensemble method that creates various training sets and 

includes different classification methods could help to improve classification accuracy 

and produce better results (Jain et al., 2000). 

The most common ensemble algorithms are bagging, AdaBoost, and mixtures of 

experts. These are described below. 

• Bagging: This algorithm generates different training datasets, called 

bootstraps, by using a sampling technique. Predictions are generated either 

through uniform averaging or through voting over class labels (Brown, 2010). 

• AdaBoost: In this algorithm, a variation of bagging, each individual model is 

analysed sequentially depending on the previous model, and parameters are 

adjusted during each iteration to correct errors until the final model is created 

(Brown, 2010). 

• Mixtures of experts: Mixtures of experts is a popular and intriguing ensemble 

strategy that has much potential for improving ML performance. Based on the 

divide-and-conquer approach, it involves dividing the problem space into 

subtasks and using expert models to complete each (Masoudnia & 

Ebrahimpour, 2014). 
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2.2.2 Unsupervised Methods 

In addition to supervised learning, unsupervised learning is the other primary type of 

ML used to analyse and cluster unlabelled data. Unsupervised learning methods are 

proving to be promising in medicine; they have been used to identify different 

phenotypes of certain diseases and patterns within medical datasets (Guan et al., 

2016). Lopez et al. (2018) presented an unsupervised clustering algorithm to identify 

groups of patients based on their genomic makeup, and they discovered that this 

approach aided in the advancement of PM by identifying the most characters for each 

patient group (Lopez et al., 2018). 

2.2.2.1 Clustering Algorithms 

One primary aim of unsupervised learning is to discover hidden patterns in unlabelled 

data in order to identify similarities among patients. Therefore, cluster analysis is one 

of the main methods used in unsupervised learning. In medicine, cluster analysis is a 

set of methods used to divide patients into various groups. Each patient in a group 

shares similar characteristics with the others in the same group. K-means clustering, 

hierarchical clustering, and DBSCAN clustering are crucial clustering techniques 

(Lütz, 2019). 

The K-means algorithm is simple and straightforward. It divides a dataset into K 

different groups. First, K initial centroids are selected at random, and each point is 

assigned to its closest centroid (Pandey et al., 2013). Collection of points assigned to 

a specific centroid are grouped as a crystal. An advantage of this method is its 

simplicity, and a disadvantage is the fact that this approach requires the number of 

clusters to be known in advance (Nithya et al., 2014). 

There are two types of hierarchical clustering: agglomerative algorithms (bottom-up) 

and divisive algorithms (top-down). The former approach works by merging similar 

clusters, while the latter divides data into subclusters. The procedures associated with 

these two approaches are diametrically opposed. Although hierarchical clustering has 

the advantage of flexibility, it also has a disadvantage in that its termination criteria are 

vague (Nithya et al., 2014). 
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DBSCAN is a density-based clustering algorithm. It combines data points located 

within the same area. Hence, all the points in a dense region are clustered together 

(Ratnawati et al., 2018). 

Because clustering algorithms are unsupervised learning methods, it is unclear which 

method is best suited for a particular task; thus, determining the quality of clustering 

algorithm results is an important task. In general, the metrics for evaluating clustering 

algorithms (cluster validation) are either internal validation methods, which measure 

the quality of a clustering algorithm without external information, or external validation 

methods, which measure the quality of a clustering algorithm based on its results, an 

external source and relative metrics (Tan et al., 2006).  

Using clustering evaluation metrics, Kalyani (2012) discovered that the use of 

clustering algorithms, especially the K-means method, is effective in the medical 

sciences field. The K-means method has also been used to effectively predict heart 

disease, which has provided significant assistance to healthcare professionals 

(Kalyani, 2012). Moreover, when the K-means method was compared to a DBSCAN 

clustering algorithm using a healthcare dataset, the former performed better in terms 

of both accuracy and execution time (Ogbuabor & Ugwoke, 2018). Ren and Wang 

(2018) conducted a comparative analysis of three clustering algorithms (K-means, 

DBSCAN, and hierarchical clustering) using medical datasets. Results showed that 

the K-means method performed better than both DBSCAN and hierarchical clustering. 

Furthermore, Lütz (2019) performed various experiments on an online breast cancer 

dataset using Weka software; results demonstrated that the K-means method can be 

used to effectively predict breast cancer (Lütz, 2019). Rajalakshmi et al. (2015) utilised 

the K-means algorithm to effectively predict chronic diseases such as heart disease, 

liver disease and cancer (Rajalakshmi et al., 2015).  

Not only has the K-means algorithm’s significance for medicine been demonstrated, 

but also researchers have suggested that integration of the K-means method with 

another method could improve the quality of the model. Ratnawati et al. (2018) 

proposed a new approach combining K-means clustering with NB classification to 

predict the early stages of cancer and proved that this integration produces effective 

results. According to their results, the K-means method can be used to predict breast 

cancer with 91% accuracy, and the integration approach provides 95% accuracy 
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(Ratnawati et al., 2018). Additionally, a consensus clustering model that uses multiple 

clustering algorithms may be more accurate than other clustering algorithms in 

medicine. 

2.2.2.2 Consensus Clustering 

Consensus clustering, or ensemble clustering, integrates various clustering methods 

in order to produce a robust model. These are utilised as the input source for a given 

dataset in order to achieve consensus-based clustering. This model outperforms all 

individual clustering algorithms, demonstrating that the combination of results is more 

consistent than clustering algorithm results. The main advantages of this approach are 

its robustness, consistency and novelty (Goder & Filkov, 2008). Figure 2.5 depicts the 

main structure of this model. 

 

Figure 2.5: The General Process of a Cluster Ensemble (Vega-Pons & Ruiz-
Shulcloper, 2011). 

As shown in the above figure, a consensus clustering algorithm is constructed in two 

steps: 

1. Generation: a number of clustering methods is combined. 

2. Consensus: the function method is selected. 

Tucker et al. (2016) utilised the consensus clustering method to identify the subclasses 

of a certain disease. They found that the successful determination of disease 

subclasses assists in the diagnosis and outcome prediction of that disease (Tucker et 

al., 2016). Liu et al. (2017) utilised the consensus clustering model within a medical 

department and, using 110 synthetic datasets, proposed a unique algorithm called 

entropy-based consensus clustering for patient stratification. The performance of this 
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algorithm was unsurprising; it showed better results than individual clustering 

algorithms alone (Liu et al.,2017). Lourenço et al. (2014) tested the consensus 

clustering algorithm to analyse electrocardiography (ECG) in patients. Nowadays, 

ECG assists greatly in disease diagnosis (Lourenço et al., 2014).  

Consensus clustering is one of the most important tools in medicine, especially for the 

discovery of subclasses within medical data. The current study was conducted using 

a consensus clustering algorithm, as described in Chapter 4. The performance of all 

preceding methods may be enhanced when resampling approaches are applied.  

2.3 Resampling 

Resampling is a statistical strategy that depends on empirical analysis based on actual 

data, rather than on asymptotic and parametric theory. The aim of resampling is to 

arrive at an inferential decision. ML models might use resampling methods to improve 

model performance (Beasley & Rodgers, 2009). Dodangeh et al. (2020) combined ML 

models with resampling methods when conducting flood susceptibility prediction. He 

found that resampling algorithms like bootstrapping and subsampling increased the 

models’ performance (Dodangeh et al., 2020). Many medical outcome variables, such 

as survival status and the presence of disease indicators, are dichotomised. The 

binary values of an outcome-dichotomised variable are called ‘classes’. A class 

imbalanced problem occurs when a medical dataset with binary outcomes consists 

largely of one class. In this case, ML models prioritise correctly categorising the large 

class while misclassifying the small class. Resampling techniques such as over-

sampling, under-sampling, bootstrapping, and cross validation can be used to solve 

this issue (Lee, 2014). Shi et al. (2022) proposed a resampling method to improve the 

prognostic model of kidney disease. He aimed to offer a resampling strategy to 

address the predictive model’s unbalanced data structure problem and enhance its 

predictive performance (Shi et al., 2022). Hence, all preceding methods include 

resampling techniques to address the difficulties associated with rare disease 

diagnosis, as described in the next section.  

 

 

 

https://pubmed.ncbi.nlm.nih.gov/?term=Dodangeh+E&cauthor_id=31841902
https://pubmed.ncbi.nlm.nih.gov/?term=Dodangeh+E&cauthor_id=31841902
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2.4 Rare diseases 

Rare diseases refer to frequent, persistent, and continuous deadly medical condition 

that affect few people compared with other conditions. They impact about 6% of the 

world’s population. Accessing suitable treatment choices is difficult for many patients 

with rare diseases. These rare diseases are treated with orphan drugs. Varying 

terminology and conflicting definitions of rare diseases are regarded as significant 

barriers to treatment accessibility. “Rare diseases” does not have a universal 

definition. An extensive variety of international definitions for rare diseases have been 

proposed and implemented. This is due to the fact that diverse groups of individuals 

have differing ideas and worries on the same subject. Decision-makers, patient 

groups, regulatory agencies, industry, reimbursement bodies, payers, policymakers, 

and scientific organisations are examples of stakeholders. Payers are primarily 

concerned with the costs and advantages connected with rare diseases, whilst patient 

advocacy organisations prioritise treatment accessibility. Furthermore, policymakers 

view rare diseases as improving the effectiveness of the health system and healthcare 

delivery. Furthermore, the criteria employed in defining rare diseases differ between 

organisations and countries. Some definitions employ qualitative norms with emotional 

linkages, including disease severity or alternative treatment availability. According to 

the UK’s Rare Disease Framework (2021), rare diseases are those that impact fewer 

than 1 in 2,000 people. The EU defines “rare diseases” life-threatening or chronically 

debilitating disorders with a low prevalence (less than 5 per 10000) that require 

coordinated measures to prevent significant morbidity (Abozaid et al., 2022).  

Between 5000 and 8000 different rare diseases have been described. Also, many 

rare diseases are routinely published in the medical literature. Therefore, it is essential 

that different stakeholder groups understand the terminology related to definition of 

rare diseases. The lack of a universal definition of rare disease led to the increased 

colloquial application of terms such as neglected and ultra-orphan in a manner that 

may not conform to their formal descriptions. Richter et al. (2015) provided an 

overview of the terminology utilized in the definitions of rare diseases and the health 

technologies associated with them through Web search from 32 relevant national and 

international organization. According to their investigation, the term "rare diseases" 

has the most frequent usage, with 112 definitions out of 296 distinct definitions. In 
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addition, 172 of 296 definitions provide a prevalence threshold. Also, the research 

indicated that "rare disease" is the preferred term because it was used in more than 

six times as many definitions as "orphan disease". The fact that the phrase "orphan 

drug" appeared in numerous definitions shows that it is most frequently used to 

describe medical advancements made to treat rare disorders. They concluded that 

there is a universal preference for using the phrases "rare disease" and "orphan drug" 

when defining a rare disease and the accompanying technology. Although the majority 

of definitions include a prevalence threshold, there are few criteria relating to illness 

severity and the absence of available treatments (Richter et al.,2015).  

Rare diseases affect a small percentage of the population. In general, such diseases 

affect fewer than one to five of every 10,000 people. Currently, the majority of rare 

disease patients do not receive effective medication. Additionally, such patients 

experience support issues because it may take a long time to receive a diagnosis. 

Worldwide, 350 to 400 million individuals are affected by uncommon diseases, 80% 

of which are genetic. Lack of diagnosis, absence of medical skills, absence of 

accessible treatment and limited data availability are the primary difficulties associated 

with the study of uncommon diseases (Peberdy, 2017). Any delay in the diagnostic 

procedure could affect patient survival. Moreover, gathering information on rare 

diseases is difficult due to a lack of resources and the low number of patients affected 

(Rodwell & Aymé, 2015). Additional obstacles when attempting to diagnose rare 

diseases include the fact that some patients may have mild symptoms and never visit 

their general practitioners, and some may die before receiving a diagnosis (Black et 

al., 2015). Rare Disease UK stated that most rare disease patients receive little 

information from physicians before and after diagnosis and only receive such 

information when they connect with other patients who have become experts on their 

disease. Some patients who receive a diagnosis after being seen by many specialists 

may actually receive an incorrect diagnosis, and those who have not yet received a 

diagnosis may find it difficult to exercise, which may result in depression. In addition, 

half of uncommon disease patients are youngsters, meaning that their families also 

suffer (www.raredisease.org.uk). 

  

http://www.raredisease.org.uk/
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Figure 2.6: Fewer than One in Ten Patients with Rare Diseases Receives Disease-
Specific Treatment (Gammie et al., 2015). 

Svenstrup et al. (2015) asserted that the nature of rare diseases and the continuous 

delay in their diagnosis makes treatment challenging. They also discovered that most 

physicians preferred to use a medical decision-support system when diagnosing rare 

diseases because of the expert knowledge required. Further, the researchers proved 

that the use of these decision-support systems to identify rare diseases reduced 

human error and the chances of providing an incorrect diagnosis (Svenstrup et al., 

2015). MacLeod et al. (2016) utilised an ML algorithm to identify rare diseases based 

on a behavioural dataset using the functional gradient boosting approach. They found 

that rare disease patients face unique challenges compared to patients with chronic 

diseases. For instance, rare disease patients join health support groups, search for 

information, and watch videos to attempt to understand their disease, while patients 

with chronic diseases generally do not (MacLeod et al., 2016). 

ML methods could improve the diagnosis and the treatment of rare diseases. Indeed, 

advanced ML methods have become a crucial part of research as they help to reduce 

diagnostic error and provide consultants with decision support (Soni et al., 2018). ML 

is transforming medicine and healthcare, and it has the potential to improve the 

detection and treatment of rare diseases (Schaefer et al., 2020). Chernbumroong et 

al. (2020) applied an unsupervised ML method to predict disease manifestations and 

outcomes in lymphangioleiomyomatosis, a rare multisystem disease. This method 

revealed clinically significant clusters linked to complications and outcomes, and its 

use improved decision making and patient prognosis (Chernbumroong et al., 2020). 

This thesis focuses on rare disease analysis using advanced ML methods in order to 

improve the accuracy of health outcome predictions and personalised treatment.  

2.5 Personalised medicine (PM) 

The promise of using genomes to create treatment that is more precisely tailored to 

the unique biology of individuals and the diseases they suffer from has generated 
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optimism, ambitious goals, and substantial investment. This has been motivated by 

the concept. Since the beginning of clinical practise, physicians and other medical 

professionals have wished for the capacity to personalise care and treatment to the 

individual needs of each patient. It is no secret that personalised medicine has been 

on the rise in recent years, bringing with it both money and a healthy dose of hope and 

scepticism from the general public. Despite the fact that the word “personalised 

medicine” (PM) has been interpreted in a variety of ways, several efforts have been 

made to clarify its actual meaning. Schleiden et al. (2016) attempted to clarify the 

concept through a systematic review accurately. The attempt seeks to address the 

fundamental need for guidance through the argument. Schleiden and colleagues 

provide the definition based on solid evidence and claim the vital practical implications. 

To allay unfounded public concerns and expectations, and to prevent interested 

parties from placing their own interests ahead of those of the patients they serve, it is 

crucial to persuade legislators to consider the patients’ best interests when formulating 

regulatory strategies and making “policy decisions”; to allay unfounded public 

concerns; and to allay unfounded public expectations (Grandis & Halgunset, 2016). 

The term “individualised medicine,” sometimes known as “personalised medicine” 

(PM), has gained popularity in both academic and popular discussions of health care. 

The problem is that PM is not well-defined and can be understood in different ways. 

This theoretical ambiguity complicates the public discussion of PM’s potential, risks, 

and limitations. Schleiden et al. (2013) provided a systematic literature review to 

determine how PM is utilised in current scientific practices. Using PubMed, they 

searched for “individualised medicine” and “personalised medicine” as key words. 

They located 2457 works with “PM” in the title or abstract. It has been found that the 

growth rate of literature on PM was 49% annually on average. Moreover, the statistics 

demonstrate that there is no consensus regarding the definition of PM. It’s worth noting 

that the word “PM” seems to be used in a variety of contexts within the healthcare 

system, including direct patient care, scientific investigation, and the approval of new 

medications. The objective of personalised medicine is to determine the appropriate 

treatment for each patient in order to optimise treatment benefit and minimise 

unwanted effects. Schleiden et al. (2013) concluded precisely based on their findings 

that PM attempts to enhance the timing and stratification of healthcare by applying 
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biological data and biomarkers in accordance with genetics, metabolomics, 

proteomics, and molecular pathways (Schleiden et al., 2013). 

Former US president Barack Obama launched the Precision Medicine Initiative in 

2015. Since then, precision medicine, also called PM, has been in the national 

spotlight in the US. This medical model attempts to focus on each patient individually 

instead of on the population more generally, and treatment is based entirely on 

personal patient information (Nimmesgern et al., 2017). The PM model, which is an 

essential subject in the medical field, considers all patient details such as lifestyle, 

clinical factors, and genetic factors to make an informed decision on patient health 

(König et al., 2017). Johnson et al. (2020) stated that precision medicine is growing at 

a comparable rate and is likely best defined as a healthcare movement. It enables 

healthcare practitioners to uncover and provide information that either supports or 

adjusts the trajectory of a medical decision based on individuals’ unique 

characteristics. Thus, clinicians provide individualised care to each patient, which was 

not previously possible (Johnson et al., 2020). Researchers have developed ways to 

evaluate, integrate, and interpret the large amounts of data generated by high-

throughput, data-intensive biomedical research assays and technology. Though 

numerous statistical approaches have been developed to accommodate vast 

quantities of data using AI techniques, there is a need for ML models to adjust, or 

'personalise', medications based on the complex and frequently unique characteristics 

of certain individuals (Schork, 2019).  

The use of artificial intelligence (AI) to analyse genomic data and then use that 

information to tailor therapy to each individual patient is a particularly intriguing use of 

precision medicine. Therefore, the field of personalised medicine is one that is 

constantly evolving as medical professionals gain knowledge on the best ways to use 

diagnostic tests to identify which treatments will work best for specific patients and 

how to use medical interventions to change biological systems that have an impact on 

health (Pelter & Druz, 2022). “Artificial intelligence informed care decisions are sort of 

personalisation that is garnering attention and investment”. However, this form of 

personalisation is not traditionally considered to be a component of personalised 

medicine. For machine learning, a broader range of health and care data is required, 

likely including the entire “electronic health record (EHR) and more patient-generated 

https://pubmed.ncbi.nlm.nih.gov/?term=Johnson+KB&cauthor_id=32961010
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monitoring and lifestyle data. Access to precise health data is the next obstacle for 

scaling personalised treatment. To guide the development of new targeted 

medications, to identify unmet needs, and to assess the value of novel therapies”, it is 

necessary to collect new information from vast data populations (Kalra, 2019). 

Precision medicine, in which a patient receives medical care and therapy based on 

their particular disease profile, is one of the most promising application areas for ML. 

Precision oncology, in which the objective is to prescribe cancer treatments based on 

the genetic characteristics of a tumour, is a classic example of the problems with and 

prospects for ML in precision medicine. ML promises a future of rigorous, outcomes-

based medicine, with detection, diagnostic, and treatment procedures that are 

constantly tailored to individual and contextual variances (Goecks et al., 2020). Briefly, 

ML can play an important role in PM by improving disease diagnosis and patient 

treatment. For instance, clustering methods, in which the most similar patients are 

clustered within one group, helps to personalise medicine. Hence, the stronger the 

clustering method, the better the PM model. 

2.6 Concept drift  

As mentioned in the preceding chapter, concept drift is a crucial problem in ML 

because it results in a significant performance decrease in the model over time. 

Concept drift occurs when the statistical features of data vary over time, thereby 

reducing the accuracy and efficacy of trained models. Therefore, it is critical to 

understand existing DDMs in order to identify the hazards associated with them and 

suggest robust solutions to these problems (Hashmani et al., 2020). In healthcare, 

clinical profiles are dynamic; the underlying data distributions that characterise 

patients can vary over time (data drift), as can the relationship between input features 

and clinical outcomes (concept drift). Thus, current algorithms must be monitored 

regularly to verify their safety. The advent of the COVID-19 pandemic, which has 

caused a significant, rapid, and continuing shift in conditions across industries from 

financial services to healthcare, is a prime example of data drift. In April 2020, the 

United Kingdom’s National Health Service (NHS) recorded a 57% decrease in 

emergency department (ED) attendance, corresponding to 120,000 fewer ED 

attendances in April 2019. During the first wave of the pandemic, (March–May 2020), 
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the exponential growth in COVID-19-related attendances necessitated drastic 

adjustments to operational procedures (Duckworth et al., 2021).  

Müller & Salathé investigated the impact of ML concept drift by focusing on Twitter 

attitudes about vaccines, a topic of critical importance during the COVID-19 pandemic. 

They found that, due to concept drift, models trained on pre-pandemic data would 

mostly have failed to identify the decline of vaccine sentiment during COVID-19. They  

suggested that social media analysis systems must continuously address concept drift 

in order to prevent a potential decrease in model performance (Müller & Salathé, 

2020). In the healthcare industry, concept drift of ML models can result in poor 

decision-making; thus, there is a need for concept drift approaches that maintain 

accurate ML performance. Concept drift and methods used to address it are explored 

in detail in Chapter 6. In addition, this study presents an established DDM 

implemented on SSc and synthetic COVID-19 datasets. 

2.7 Summary 

This chapter reviewed existing studies related to ML in medicine. It described in detail 

the concept of ML and its various types – supervised (e.g. DT and NB) and 

unsupervised (e.g. K-means and consensus clustering) learning – in medicine. 

Moreover, this chapter presented the concept of rare diseases and described the use 

of ML methods to analyse and diagnose them as well as to provide PM. Additionally, 

this chapter provided a brief explanation of concept drift and its effect on ML models. 

This chapter revealed that classification methods can be used to diagnose a disease 

and that consensus clustering methods may yield better, more accurate results than 

such methods used individually. Based on the points above, this research focuses on 

the combination of classification methods via clustering methods to accurately 

diagnose rare diseases. This study examines the consensus clustering method, which 

divides patients into robust subgroups and uses classification methods to predict 

patient disease within each group. Additionally, this study utilises an established DDM 

algorithm implemented on SSc and a synthetic dataset of COVID-19 patients to 

maintain ML model performance. 

The following chapter explores SSc, a rare disease. The implementations of standard 

classification and clustering methods are also presented in the next chapter. 
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Chapter 3 Preliminaries 

3.1 Introduction  

SSc is a rare and potentially fatal illness that affects the skin and other organs of the 

body, such as the blood vessels, muscles, heart, lungs, and kidneys. It remains difficult 

for physicians to diagnosis due to the paucity of information and the limited number of 

patients. As a result, advanced ML algorithms are being considered to support the 

decision-making of physicians. This chapter provides an overview of SSc, exploring 

causes, types, clinical features, symptoms, diagnosis, and prognosis. In addition, a 

dataset of SSc patients obtained from the Royal London Hospital is discussed. 

Furthermore, this chapter illustrates the fundamentals of ML methods – such as DTs, 

RFs, NBs, K-means, and LCA – which may help to diagnosis SSc. A DDM method 

that monitors the model over time is also described. Finally, this chapter explains how 

ML models can be evaluated.    

 

3.2 Systemic Sclerosis  

3.2.1 Definition 

Scleroderma diseases can be divided into two main types: localized 

scleroderma and SSc. Localized scleroderma affects mainly the skin without visceral 

organ involvement while SSc can affect the entire body. SSc is a rare, multisystem 

autoimmune illness characterised by skin and internal organ fibrosis and 

vasculopathy. It is a rheumatological disease with a high death rate and significant 

consequences. The major complication of this disease is renal crisis, which may 

culminate in death from malignant hypertension and renal failure. Mortality may also 

occur due to the complications of lung disease, pulmonary fibrosis, and pulmonary 

hypertension. Survival rates in the United Kingdom have improved, in part due to the 

availability of specialized centres. SSc pathogenesis involves small vessel 

vasculopathy, the production of autoantibodies, and fibroblast dysfunction, with skin 

thickening as the most common symptom. SSc is more prevalent in women, who are 

four times more likely to develop SSc disease (particularly in the third and fourth 
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decades of life), although mortality is greater in men (Bosoni et al., 2016). The United 

Kingdom and Japan report that the prevalence of this disease is around 35 cases per 

1 million adults. In the United States, it has an annual incidence of about 20 cases per 

1 million. Age, gender, and ethnicity are the principal factors that contribute to disease 

susceptibility. SSc patients require comprehensive diagnosis and follow-up, especially 

as treatment must be tailored to organ presentations (Becker et al., 2019). Hence, 

better understanding and management of SSc have resulted in better disease care, 

including better classification and more systematic assessment and follow-up (Denton 

& Khanna, 2017). Bonomi et al. (2022) mentioned that machine learning (ML) has 

been applied to the classification of SSc patients in order to identify those at high risk 

of developing major complications. Also, ML may be useful for early detection of organ 

involvement (Bonomi et al,2022).   

 

Figure 3.1: Diffuse Cutaneous Systemic Sclerosis (Denton & Khanna, 2017). 
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Figure 3.2: Limited Cutaneous Systemic Sclerosis is Associated with Mild Skin 
Involvement Distal to the Elbows and Knees, With or Without Face and Neck 
Involvement, and Sparing of the Chest and Abdomen(Denton & Khanna, 2017).   

 

3.2.2 Subsets and Clinical Features 

SSc can be categorised as two subgroups: limited cutaneous SSc (lcSSc; the most 

common type), which affects the skin distal to the elbows and knees, and diffuse 

cutaneous SSC (dcSSc), which affects the extremities  proximally and distally. 

However, both SSc subgroups share common features, such as Raynaud’s 

phenomenon, heartburn, skin sores, abdominal grumblings, and other organ 

involvements (Allanore & Distler, 2015). The presenting symptoms may differ, and the 

subgroups have different prognoses. 

The clinical features of SSc derive from the combination of fibrosis and vascular 

abnormality, thus SSc is not primarily an inflammatory disease. Raynaud’s 

phenomenon (which can be very severe) and skin thickening (scleroderma) are the 

two most common symptoms of SSc. Although both create unpleasant and frequently 

about:blank
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severe symptoms, however, it is the involvement of the internal organs that makes 

SSc life-threatening. 

Briefly, SSc patients are divided into lcSSc or dcSSc based on clinical features, 

including skin involvement, Raynaud’s phenomenon, musculoskeletal symptoms, 

calcinosis cutis, and characteristic autoantibodies (Herrick, 2018). 

• Skin involvement: Skin thickening is a very common feature of SSc. For 

example, in dcSSc, increased skin involvement can lead to more severe 

internal organ failure. Increased skin thickening is due to increases in collagen. 

A modified Rodnan skin score (mRSS) is the most appropriate measure for skin 

disease. This method is calculated by summation of the skin thickness on 17 

surfaces of the body. The score ranges from 0, which means no thickening, to 

51 which means severe thickening (Bosoni, 2016). 

• Raynaud’s phenomenon: Raynaud’s phenomenon is an early clinical feature 

and the most common, affecting 96% of SSc patients. Organ complications may 

not manifest until later in the course of the disease. Distressing physical 

symptoms, impaired function, body image dissatisfaction, and reduced quality 

of life are associated with Raynaud’s phenomenon. Studies have reported cold 

fingers, colour changes in the skin, and numbness as common symptoms of 

Raynaud’s phenomenon. The fingers and toes are the main body parts affected 

(Goundry et al., 2012). 

• Characteristic autoantibodies: Autoantibodies are found in more than 95% of 

SSc patients. These include anticentromere antibodies (ACA), anti-

topoisomerase (TOPO), anti-U1-RNP (U1-RNP), anti-RNA polymerase III (Pol 

3), and anti-U3-RNP (U3-RNP). It has been found that these autoantibodies are 

associated with a specific demographic, affecting specific organs. Organ failure 

may be associated with a particular antibody; therefore, the identification of the 

antibody can lead to better diagnosis and treatment (Steen, 2005).   

• Musculoskeletal: Musculoskeletal involvement is very frequent in SSc patients 

and causes arthralgia, synovitis, and contractures (Bosoni, 2016). 

• Calcinosis cutis: Calcinosis cutis refers to indissoluble calcium in the skin and 

is a common symptom in SSc patients. It mainly affects the fingers, and there 

is no current, optimal treatment (Bosoni, 2016). 
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Table 3.1 summarizes the clinical features of the dcSSc and lcSSc subsets. 

Table 3.1 : Subsets of Systemic Scleroderma: Main Features of Limited Cutaneous 
Systemic Sclerosis Compared to Diffuse Cutaneous Systemic Sclerosis (Bosoni, 2016) 

 

 

3.2.3 Prognosis and Diagnosis of Systemic Sclerosis 

The mortality rate of SSc is high and has not substantially changed in the last 40 years. 

A study in 2010 on 5860 SSc patients shows that SSc patients have a high risk of 

cancer. Additionally, the research indicates that 35% of SSc deaths were caused by 

lung fibrosis and 26% by heart failure. In SSc, some patients deteriorate quickly and 

may die, but others remain stable with few symptoms. The different clinical phenotypes 

and clinicians’ limited knowledge to predict the risk of future organ-system 

complications and the prognosis show that the management of SSc is challenging 

(Tyndall et al., 2010).  

The diagnosis of SSc is based on clinical assessment, and it has been suggested that 

the appearance of Raynaud’s phenomenon followed by skin thickening and other 

extracutaneous features are the main symptoms of SSc. The diagnosis of this disease 

in the first months is quite difficult, as the only symptom is soft tissue swelling. 

However, some features, such as calcinosis and telangiectasia, can help physicians 

to make the appropriate diagnosis. Also, one or more of the following clinical features 

can help clinicians to confirm the disease (Hachulla & Launay, 2011):  

• Heartburn 

• Acute onset of hypertension and renal insufficiency 
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• Dyspnoea on exertion (associated with interstitial lung disease) 

• Diarrhoea with malabsorption 

• Facial, tongue, lip, or hand telangiectasia 

• Digital ulcers or digital pitting scars or both 

• Typical microvascular changes on nailfold capillaroscopy 

Furthermore, the presence of below autoantibodies may be indicators of SSc (Kayser 

& Fritzler, 2015). 

• Anti-topoisomerase I antibodies (ATA): ATA, or anti-Scl-70, has been found 

in 15–42% of SSc patients with a specificity ranging from 90% to 100%. They 

are strongly linked with dcSSc and a poor prognosis. A higher risk of severe 

pulmonary fibrosis and cardiac involvement has been associated with SSc 

patients who have ATA. In addition, the presence of ATA with Raynaud’s 

phenomenon in patients can indicate a high risk of developing SSc (Kayser & 

Fritzler, 2015). 

• Anti-centromere antibodies (ACA): ACA were first described in 1980. A study 

has described ACA as the most diagnostic antibody indicator of SSc, as it is 

commonly detected in SSc patients. These antibodies are associated with 

lcSSc. ACA is said to be associated with a higher risk of pulmonary arterial 

hypertension (PAH) and mortality (Kayser & Fritzler, 2015). 

• Anti-RNA polymerase antibodies (ARA): ARA were described in 1990 and 

are present in 5–31% of SSc patients. In common with ATA, they are associated 

with dcSSc. SSc patients with ARA have a high risk of developing renal crisis, 

joint contractures, and malignancies (Kayser & Fritzler, 2015). 

3.2.4 Organs Involvement 

SSc is not solely a skin disease but can affect multiple organ systems, including the 

lungs, kidneys, heart, and gastrointestinal tract. As mentioned previously, patients with 

dcSSc can progress more rapidly, and organ complications can occur earlier and may 

be worse than in lcSSc patients. Figure 3.3 illustrates the impact of SSc on the body.  
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Figure 3.3: Systemic Sclerosis – A Multisystem Disease (Herrick, 2018) 
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• Skin: SSc may affect only the skin in the early stages of the disease and 

manifests as skin thickening and shiny areas around the mouth, bones, and 

fingers. The skin is the largest organ of the body and can be affected when 

disease spreads over the body. If the skin thickening and shiny areas are 

widespread, assessment of the disease may be challenging; assessment of 

other organs, such as the heart and kidneys, may be less difficult. Skin 

assessment is performed using skin scoring (Herrick, 2018).  

• Lungs: The lungs of SSc patients are typically affected as may be observed 

using X-rays. Lung involvement is also the main cause of disability and 

death. The prominent lung complications in SSc are pulmonary arterial 

hypertension (PAH) and pulmonary fibrosis (PF). PAH is a serious 

complication of SSc that can affect both dcSSc and lcSSc patients. It is a 

progressive disease characterised by an increase in blood pressure in the 

arteries of the lungs. PAH can lead to heart failure and death. PF is another 

serious complication, which can affect 75% of SSc patients. It affects very 

small areas in the lung and disturbs pulmonary function when the forced 

vital capacity, the diffusing capacity for carbon monoxide, is less than 55% 

of normal (Yaghi et al., 2020).  

• Kidneys. Kidney failure is a severe complication that appears in dcSSc 

patients who have had the disease for less than five years. It starts when 

blood flows to the kidneys, and this process is known as renal crisis. It is 

assessed by measuring blood levels of creatinine. Renal crisis affects 5–

10% of SSc patients and is associated with high blood pressure, so patients 

are typically encouraged to monitor their blood pressure. If blood pressure 

is elevated above 160/90 twice in 12 hours, patients need further evaluation. 

Patients with renal crisis may present with headache and hypertensive 

retinopathy, associated with visual disturbances. Historically, mortality 

related to renal crisis has been high; however, deaths decreased from 42% 

to 6% between 1972 and 2002. Most SSc patients who develop renal crisis 

are dcSSc patients, which harmonises with a study from the United Kingdom 

that reports that 12% of dcSSc and 2% of lcSSc patients developed renal 

crisis (Bruni et al., 2018).  
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• Heart. The heart fails at least temporarily when the kidneys fail. In the same 

way, when kidney function is optimal, heart function can return to normal. 

Therefore, renal crisis and pulmonary hypertension can lead to significant 

cardiac issues, depending on the kidney and lung damage. Cardiac 

involvement can be classified as direct effects and indirect effects. Direct 

myocardial effects include cardiac failure and cardiac fibrosis; indirect 

myocardial effects include other organ involvements. The symptoms of 

cardiac involvement in SSc are varied, but shortness of breath with 

tiredness and paroxysms are the main symptoms. It has been shown that 

cardiac involvement is more frequent with dcSSc (Champion, 2008).  

• Gastrointestinal Tract. A substantial proportion of SSc patients (80–90%) 

have lazy muscles in their oesophagi. This can cause heartburn as food 

sticks in the chest. In addition, stomach muscle can be lazy, and this can 

create a feeling of fullness after minimal ingestion of food. A progressive 

gastrointestinal process is involved from grade zero vascular damage to 

grade one neurogenic impairment and then grade two myogenic 

dysfunction. The gastrointestinal region is considered the second site of 

damage by SSc (Forbes, 2009).  

3.3 Data Collection 

The dataset utilised in this research was obtained from the Royal London Hospital. Its 

subject is SSc disease, and it was collected from 677 patients. The features of the 

dataset are considered in the following sections. 

3.3.1 General and Subset Data 

• Subset: This refers to the subgroup of SSc and includes two values. First is the 

limited cutaneous subset (L), which includes individuals who do not have skin 

thickening near their elbows and knees; this group is labelled ‘1’ in the dataset. 

The second is the diffuse cutaneous subgroup (D), which includes patients with 

skin thickening in both the distal and proximal areas of the elbows and knees; 

this group is labelled ‘2’. 

• Gender: This variable indicates the patient’s gender: ‘m’ for males and ‘f’ for 

females. 
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• Age: The age in years of a patient at disease onset (integer values).  

3.3.2 Blood Tests Results 

• abs: The autoantibodies that have been found. The dataset has 16 columns, 

each of which is headed by a specific autoantibody acronym. Each column 

includes a binary value to indicate the autoantibody’s absence or presence: ‘0’ 

indicates absence and ‘1’ indicates presence (binary values). 

• Hb: Haemoglobin concentration in grams per decilitre. The typical range for 

men is 13.5 to 17.5 grams per decilitre, and the usual range for women is 12.0 

to 15.5 grams per decilitre. 

• Cr: Creatinine, an indicator of the stage of kidney disease. It can be calculated 

by serum creatinine level, age, sex, and race. The baseline for Cr is between 

60 and 90 ml/min/1.73m2. 

3.3.3 Lung Function Test Results 

• FVC: Forced vital capacity, measured in litres. 

• DLCO: Carbon monoxide diffusing capacity, expressed in litres. 

• T2RIP: The number of months between the development of the sickness and 

mortality. 

• T2PF: The number of months between the commencement of the disease 

and the development of pulmonary fibrosis. 

• T2PAH: The number of months between the commencement of the disease 

and the onset of pulmonary arterial hypertension. 

3.3.4 Antibody Information 

The following antibodies are marked in the dataset with binary values (‘1’ or ‘0’):  

• ACA is the most common and is linked to the lcSSc subgroup. A small 

number of ACA positive people can develop dcSSc. 

• ATA is linked to an increased risk of arthritis, tendon friction rubs, severe 

pulmonary fibrosis, heart involvement, and scleroderma renal crisis. 

• ARA is strongly associated with the dcSSc subset and correlated with severity 

of skin involvement 
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3.4 Machine Learning Methods 

ML is commonly used in the field of medicine to assist the decision-making of 

physicians. In general, ML uses two main techniques: supervised learning and 

unsupervised learning. Supervised learning methods, such as DT, random forest, and 

NB, train a model using known inputs and outputs of patients to predict the unknown 

outputs of new patient details. Unsupervised learning methods, such as K-means and 

LCA, find the relationship between cases by discovering hidden patterns between 

input data without labelled responses. ML methods are becoming useful tools in 

disease diagnosis, drug development, complication prediction, and personalized 

treatment. However, the accuracy of results can vary depending on the method, hence 

selecting an appropriate method is important. The various ML algorithms that have 

been implemented on the dataset are described in the following sections.  

3.4.1 Decision Tree (DT) 

In medicine, DT algorithm is the most widely used supervised-learning approach. It is 

a decision support model that is structured using a follow-up chart from root to leaf. It 

creates a classification model by reviewing dataset observations to predict class labels 

(Podgorelec et al., 2002). 

A DT structure has the following elements: 

1- Root node: The root node is the first node of the tree and has no incoming 

edges. This root node is divided into sub-nodes and represents the best 

attribute of the dataset.  

2- Internal nodes: This node has one incoming edge and two or more outgoing 

edges. It represents an attribute.  

3- Leaf nodes: This node has no outgoing edges and only one incoming edge. It 

represents a class label.  

4- Branches: The branch indicates action, so each branch represents the 

outcome value of the node.  
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The following Figure 3.4 shows a DT structure using a general example 

7

 

 

Figure 3.4: A Decision Tree for Diagnosing Coronavirus Disease 

 

A DT can be a powerful method for making predictions in medicine. It aims to find the 

optimal DT by minimizing the generalization error for a given dataset. Finding the 

optimal DT can be difficult; therefore, heuristic methods may be used. C4.5 is a method 

that create DTs using a pruning phase. Pruning is an important phase for complex 

problems, as it removes nodes that do not provide additional information and improves 

accuracy.  

The following are the steps for constructing a DT model using a given dataset. 

1- Identify the dataset classes. 

2- Find the optimal attribute, which will become the tree’s root node. 

3- Subdivide the training dataset based on the optimal attribute values (branch 

values). For instance, according to Figure 3.4, the best attribute is high 
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temperature, so the training dataset is divided into patients with high 

temperature and patients without high temperature. 

4- Calculate the ratio of the information gain metric for each attribute of the new 

subset. 

5- For this subgroup, choose the attribute with the highest value of information 

gain ratio as the best attribute. This attribute is called an internal node and is 

used to again divide the training dataset into subsets.  

6- Repeat steps 2 to 5 until the optimal information gain is 0, signifying that the 

node is a leaf (a class label).  

Information gain is computed using the following formula: 

Information gain (S, A) =   Entropy(S) - ∑
| 𝑆𝑣 |

| S |𝑣𝜖𝑉 𝑣𝑎𝑙𝑢𝑒𝑠(A)
 Entropy (𝑆𝑣).    (3.1) 

Entropy = − ∑  𝑖  𝑝𝑖. 𝑙𝑜𝑔2 𝑝𝑖                                                                          (3.2) 

V: all potential values for attribute A. 

𝑆𝑣: the subset of S.  

𝑝
𝑖
: the proportions of each label’s elements in the set. 

 

Algorithm 3.1 C4.5 (D) 

Input: Dataset D  

Output: Decision Tree  

1: Classes = C   

2: Attributes = A  

3: For all attribute a ϵ D do  

4: Compute information gain  

5: End for  

6: 𝑎𝑜𝑝𝑡𝑖𝑚𝑎𝑙= best attribute  

7: 𝑎𝑜𝑝𝑡𝑖𝑚𝑎𝑙 is the root of the Tree  

8: d = sub-dataset from D based on 𝑎𝑜𝑝𝑡𝑖𝑚𝑎𝑙 values  

9: For all attribute d do  

10: Compute information gain for all attributes ϵ d   

11: If information gain is zero then 
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12: Return leaf node (class label) 

13: End if  

14: Tree_d=C4.5(d) 

14: Assign Tree_d to the appropriate branch of the Tree. 

15: End for 

16: Repeat 8 to 15 until all information gain is zero.  

17: Return Tree 

18: End  

 

I applied C4.5 to my SSc dataset. All outcomes and assessments are detailed in the 

next chapter. 

3.4.2 Random Forests (RF) 

The RF algorithm is a collection of multiple DTs that are modelled for a prediction and 

analysis task. It can be applied to a categorical response variable, a known 

classification task, or to continuous response variables in a regression task. Thus, RF 

algorithms can be applied to classification and regression problems, and they are also 

fast algorithms that can be used to train a model and predict labels. In addition, RF 

algorithms can be applied to high-dimensional problems, and they are considered 

straightforward algorithms. Nevertheless, RF can compute the importance of variables 

when a model is created: this helps researchers to understand and interrupt results 

(Cutler et al., 2012).  

The following are the steps for constructing a RF classification model for a given 

dataset. 

1- Identify the dataset classes.  

2- Divide the dataset into a training dataset and a test dataset.  

3- Divide the training dataset into many subsets using the bootstrap approach. 

4- Build a DT for each subset according to the instructions in the prior step. 

5- Predict each case in the test data, based on each DT.  

6- Make the final prediction for each case, which will be the voting class of all DT 

predictions.   
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The following figure shows an example of a RF classification algorithm.    

 

 

Figure 3.5: A Simple Example of a Random Forest Classification (Chapron et al., 2018) 
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Algorithm 3.2 (RF) 

Input: Dataset  

Output: Voting prediction   

1: Classes = C  

2: Split the dataset into training dataset (D) and test dataset (T)  

3: Assign M (the number of trees) 

3: For 1 to M  

3: Create subset (𝑑𝑚) of the training data using bootstrap random with replacement for training 

dataset  

4: Build a decision tree (𝑑𝑡
𝑚

) for (𝑑𝑚) 

5: End for  

6: For 1 to test dataset  (𝑡𝑖) 

7: For 1 to decision tree  (𝑑𝑡𝑚) 

8: Predict (𝑡𝑖) class from (𝑑𝑡𝑚) 

9: Assign the class to (𝑑𝑡𝑡𝑖 𝑚) 

10: End for  

11: Assign the optimal class for 𝑡𝑖 using the voting approach on (𝑑𝑡𝑡𝑖 𝑚) 

12: End for  

13: End  

 

Due to its benefits, the RF classification method was applied to both the SSc data and 

the synthetic COVID-19 data in my study. All outcomes and evaluations are described 

in Chapter 6. 

3.4.3  Naïve Bayes (NB)  

As with DT algorithms, NB algorithms are supervised ML methods that provide 

transparent explanations. An NB classifier is a probabilistic model based on applying 

the Bayes theorem. It considers the independence assumption between the attributes 

and calculates the probability of a hypothesis, given prior knowledge (Borkar & 

Deshmukh, 2015). For example, if I want to predict whether a patient will develop PAH 

within five years or after five years using my SSc dataset, the NB classifier will provide 

the probability.  
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Bayesian classifiers employ the Bayes theorem, which states the following: 

𝑝(𝑐𝑗 \𝑑)  =
𝑝(𝑑\𝑐𝑗)𝑃(𝑐𝑗) 

𝑝(𝑑)
      (3.3) 

𝑃(𝑐𝑗 \𝑑): the probability of instance d being in class 𝑐𝑗  

𝑝(𝑑\𝑐𝑗): the probability of generating instance d given class cj 

𝑝(𝑑): the probability of instance d occurring 

𝑃(𝑐𝑗): the probability of class cj occurring 

Assume there are two classes: C1 = 1 and C2 = 2  

1: An SSc patient may develop PAH within five years.  

2: An SSc patient may develop PAH after five years.  

Suppose I have a patient, X, who has SSc; according to the preceding equation, the 

likelihood of X developing C1 = 1 is the probability of X patient given that he develops C1 = 1 

multiplied by the probability of being C1 = 1 and divided by the probability of being patient. 

As mentioned in the preceding chapter, an NB classifier may be used effectively in 

medicine, as it is fast and not sensitive. In addition, it can handle real and discrete 

data. However, NB assumes the independence of features, and this is a disadvantage. 

In my research, I applied a standard NB classifier to my SSc dataset. All outcomes 

and assessments are detailed in Chapter 5. 

3.4.4 K-Means 

Clustering methods are an unsupervised ML technique for grouping data without prior 

knowledge of group definitions; clustering algorithms are also used to detect natural 

groupings in unlabelled data. K-means is a clustering technique that splits the dataset 

(patients) into distinct groups (clusters) in which all members share comparable 

features. In medicine, K-means can be used to identify subgroups and subclasses of 

disease. 

The K-means algorithm is a simple technique. It begins with selecting the desired 

number of clusters (K). K starting centroids are determined randomly, and each point 

in the dataset is allocated to the centroid that is the closest. Thus, all points allocated 

to a centroid constitute a cluster. The second stage modifies the cluster centroids 
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based on the points assigned to each cluster, and again each point in the dataset is 

allocated to the centroid that is the closest. This stage is repeated until the centroids 

remain the same. The output is K clusters (groups) with distinct characteristics (Nithya 

et al., 2014).  

The following demonstrates the K-means pseudocode required to execute the K-

means algorithm on a dataset. 

Algorithm 3.3 (K-means)  

1: Input: dataset D  

2: Output: k clusters (groups) 

3: Select randomly K points as initial centroids  

2: Repeat  

3: Assign each point to the closest centroid  

4: Recompute the centroid of each cluster  

5: Until centroids do not change  

6: Return K clusters  

 

To assign each point to the centroid closest to it, I require measurements to compute 

the closest centroid to a point in Euclidean space. For Euclidean data, both 

Euclidean distance and Manhattan distance can be used. 

• Euclidean Distance  

This formula computes the distance between two points, x and y. It is a metric to 

measure the line between two points. The equation for this metric is as follows:  

𝐃𝐢𝐬𝐭𝐱𝐲 =  √∑ (𝐱𝐢 − 𝐲𝐢)
𝟐𝐧

𝐢=𝟏     (3.4) 

• Manhattan Distance  

Manhattan distance is also called ‘city block’. It measures the distance between two 

points by the absolute difference between the points. The equation for this metric is 

as follows:  

𝑫𝒊𝒔𝒕𝒙𝒚 = ∑ ∣ 𝐱𝐢  −   𝐲𝐢⃓      𝐧
𝐢=𝟏 (3.5) 



63 

 

The K-means algorithm was applied to my SSc dataset, and the results are provided 

in the following chapter. 

3.4.5 Latent Class Analysis (LCA) 

LCA is a statistical method that discovers subgroups of patients who share common 

characteristics. It is a probabilistic approach that finds the most likely model. The 

model resembles the clustering method in that patients are grouped together. In 

addition, it applies a probabilistic methodology similar to the NB method to identify the 

most probable model. LCA finds the hidden relationships between the observed 

variables to cluster the data within groups (clusters). The number of subgroups is 

selected by running a number of analyses starting from a model with one group and 

adding more subgroups until the optimal solution is found: the optimal solution is the 

one that clusters the dataset well in groups. 

This model helps clinics to find groups of patients with similar demographics, clinical 

characteristics, treatments, comorbidities, and outcomes. LCA has therefore become 

a very popular method in the healthcare industry (Mori et al., 2020). In my research, 

SSc patients can be divided into groups using this method by finding the relationships 

(hidden factors) between the observed variables. Thus, the latent (hidden) variables 

can be expressed as follows:  

 

Figure 3.6: Latent Class Analysis Structure. X Is the Latent Categorical Variable. A, B, C, and D Are 

Observed Variables 

 

X 

A B C D 
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I implemented this algorithm on my SSc dataset: all results and implementation details 

are described in Chapter 5.  

3.4.6 Drift Detection Method (DDM) 

This method monitors a model’s performance over time. It detects a drift when the model 

becomes outdated and updates the model accordingly. Gama et al. (2014) created this 

method, which analyses the total classification model’s error rate. This method assumes that 

the overall error rate of a classifier will either decrease or remain constant when the number 

of samples increases. In the equations below, assume 𝑝𝑖 is the error rate of the classifier, 𝑠𝑖 

is the standard deviation of the classifier of sample i, 𝑝𝑚𝑖𝑛 is the minimum error rate recorded 

of the classifier, and 𝑠𝑚𝑖𝑛  is its standard deviation (Jaramillo-Valbuena et al., 2017). This 

algorithm functions as follows:  

• 𝑝𝑖 +  𝑠𝑖  >  𝑝𝑚𝑖𝑛 +   𝑠𝑚𝑖𝑛  

The model is operating normally with no alarms. 

•  𝑝𝑖 +  𝑠𝑖  ≥  𝑝𝑚𝑖𝑛 +  2 ∗ 𝑠𝑚𝑖𝑛 

Future drift is possible, and the model is now in the warning zone. 

• 𝑝𝑖 +  𝑠𝑖  ≥  𝑝𝑚𝑖𝑛 +   3 ∗ 𝑠𝑚𝑖𝑛 

There is drift, and the model needs to be updated.  

I implemented this algorithm on the SSc and syntactic COVID-19 datasets. All results and 

implementation details are described in Chapter 6. 

3.5 Resampling Methods 

ML models use resampling techniques to increase the model’s performance and 

validate the model. Cross validation and bootstrapping are the two most important 

strategies. 

3.5.1 Cross Validation 

Cross validation is a statistical technique for comparing and evaluating learning 

algorithms. Cross validation is a re-sampling method that draws samples from a 

dataset and fits each sample to a model to obtain addition information about this 

model. It works by separating the dataset into two parts: the first contains the training 

data used to train a model, and the second contains the validation data used to validate 

the model. Both components must cross over in successive rounds for each data point 

to be validated. 
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The most common type of cross validation is K-fold, in which the data is divided into k 

subsets evenly, and each subset is called a fold. Subsequently, for each K, a dataset 

is withheld for validation in each iteration of a separate fold, and the K-1 folds are used 

as the learning dataset (Refaeilzadeh et al., 2009).  

Figure 3.7 illustrates a 10-fold process of cross validation. Thus, the dataset is 

separated into 10 groups, with each group containing a unique test dataset. Therefore, 

the validation data is 1/10 of the total training dataset. K = 10 is considered a good 

choice, as it allows overlapping in the training set and keeps the test set independent.  

Leave-One-Out cross validation (LOOCV) is a special case of K-fold cross validation 

where each observation can be used for the validation set while the other points 

become the training set. Although LOOCV has less bias, it is very expensive to 

implement because the model has to fit the number of observations (Berrar, 2018). 
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Figure 3.7: Diagram of a 10-Fold Cross Validation (Bosoni, 2016) 
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Algorithm 3.3 (K-Fold Cross Validation)  

Input: Dataset D  

1: Divide the original dataset into k groups  

2: For each resampling iteration do   

3: Hold out specified sample as validation set  

4: The mean squared error is computed on the data points in holdout sample 

4: Fit the model in k-1  

5: Predict the hold out sample  

6: End for  

7: Calculate the average performance across all predictions  

8: End   

 

Mean squared error is computed as follows:  

MSE = 
1

𝑛
 ∑ (𝑦𝑖  −  𝑦�̂�

𝑛
𝑖=1  )2  (3.6) 

n: the number of observations  

yi: observed values  

yî: predicted values  

A K-fold cross validation estimate is computed as follows: 

CV(n) = 
1

𝑛
 ∑ 𝑀𝑆𝐸𝑖

𝑛
𝑖=1        (3.7) 

3.5.2 Bootstrapping 

It has been proven that resampling methods, such as cross validation and 

bootstrapping, are more accurate than classical methods. In addition, these 

techniques permit the quantification of uncertainty by calculating standard errors and 

confidence intervals. The bootstrapping method creates hundreds or thousands of 

additional samples that are drawn from the original data. This is achieved by taking 

replacement samples (resamples) from the original sample. The size of each resample 

is the same as the original sample. This distribution of resampled statistics is known 

as the bootstrap distribution (Pottel & Hans, 2015). 
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The following steps, pseudocode, and Figure 3.8 describe the bootstrapping 

process: 

1- Determine the number of samples to be drawn from the original dataset. 

2- Select observations at random from the original dataset. Each data point may 

appear many times per sample. 

3- Sample with replacement. The sampled data is returned to the original 

dataset so that it can be used for the subsequent sampling.  

4- Compute the bootstrap distribution by calculating the statistics for each 

sample and the distribution of resamples. 

5- Obtain information about the population from the bootstrap distribution. 

 

Algorithm 3.4 Bootstrapping   

Input: Dataset D  

1: Select the number of samples i  

2: For each sample do   

3: Randomly select observations from D with replacements  

4: Compute the sample mean 

5: End for   

6: Compute the bootstrap standard error    

7: End  
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Figure 3.8: Diagram of a Bootstrapping Resampling Method 

To summarise, both cross validation and bootstrapping can be used to evaluate 

models. Both are simple to implement and are widely used approaches. To test the 

new models, I incorporated these resampling approaches in my new algorithms. 

3.6 Evaluation  

When a ML model is constructed, its performance must be evaluated. A superior 

performance model results in a superior model. Unsupervised and supervised learning 

models are often evaluated with a variety of metrics. 

3.6.1 Unsupervised Learning Measures 

In clustering, individuals assigned to a particular group should be in close proximity 

(compactness), and the groups should be spaced out (separation). Therefore, an 

effective clustering algorithm means members in each group are highly similar. The 

features of the dataset and their values can play an important role in the performance 

of a clustering algorithm. Hence, it is important to evaluate the validity of the model 

through cluster validation. There are four approaches to investigate cluster validity: 

external criteria, internal criteria, relative criteria, and stability criteria (Halkidi et al., 

2001).  
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• External indexes  

This method compares the clustering algorithm results with externally provided, known 

results. This method can be divided into three categories: pair counting, information 

theoretic, and set matching. Pair counting measures include rand index and adjusted 

rand index that count pairs of objects in the dataset in two different clusters and 

determine if they agree or disagree. Information theatrics, such as entropy, measure 

the information that two clusters share. Set matching, such as F measures, is based 

on pairing similar clusters. External indexes have been used in genetic algorithms to 

measure genetic diversity in a population (Halkidi et al., 2001)  

• Internal indexes 

Internal indexes measure the goodness of the clustering algorithm without using 

external information. Internal index measures can find the optimal clustering algorithm 

and the optimal cluster number. They focus on compactness, which measures an 

object’s relationship to others in the same cluster based on variance: lower variance 

indicates better compactness. In addition, it focusses on measures that provide 

information on the degree of separation between groups. Measuring the silhouette 

coefficient is a method that combines compactness and separation (Halkidi et al., 

2001). 

• Relative indexes  

This method is used to compare two different clusters. It attempts to measure the 

consistency of an algorithm by using the same algorithm under different conditions. 

Relative indexes measure the stability of an algorithm against a different dataset. A 

weighted-kappa coefficient, which measures the degree of disagreement between two 

categories, can be used to measure the stability of a clustering algorithm. This statistic 

measures the agreement among the decisions made by two or more observers and 

returns a score between zero and one. Zero means the agreement is poor; one means 

perfect agreement (Bosoni, 2016).  
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The formula for weighted kappa (WK) can be expressed in the following equation:  

K= 1 - 
∑ ∑ 𝑤𝑖𝑗𝑥𝑖𝑗

𝑘
𝑗=1

𝑘
𝑖=1

∑ ∑ 𝑤𝑖𝑗𝑚𝑖𝑗
𝑘
𝑗=1

𝑘
𝑖=1

            (3.8) 

K: the number of observers  

 𝑤𝑖𝑗 , 𝑥𝑖𝑗 , 𝑚𝑖𝑗: the elements in the weights  

 

Table 3.2 Weighted-Kappa Guidelines 

Weighted kappa Agreement strength 

K < 0.0 Less than random 

0.0 < K < 0.2 Poor 

0.2 < K < 0.4 Fair 

0.4 < K < 0.6 Moderate 

0.6 < K < 0.8 Good 

0.8 < K < 1.0 Very good 

  

 

3.6.2 Supervised Learning Measures 

A variety of performance metrics can be used to evaluate a supervised learning 

algorithm. These include accuracy, sensitivity, specificity, and precision, which are 

typically measured performance characteristics that can be determined from a 

confusion matrix. Classification performance is best described by applying a confusion 

matrix, which is a binary contingency table that is used to describe the performance of 

a classification model. Table 3.3 shows the confusion matrix used in this research. 

Each row of the matrix represents the cases or patients in a predicted class and each 

column represents the cases in an actual class (Bahl, 2017). 
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Table 3.3 Confusion Matrix 

 Prediction 

Positive Negative 

Actual Positive  TP FN 

Negative  FP TN 

 

TP: True positive – a correct positive prediction.  

TN: True negative – a correct negative prediction.  

FN: False negative – an incorrect negative prediction.  

FP: False positive – an incorrect positive prediction.  

 

The ‘error rate’ (ERR) is the total erroneous data (incorrect predictions) compared to 

the total data (all patients), and the ‘accuracy’ (ACC) is the total number of correct data 

predictions compared to the total data. These can be derived from the confusion matrix 

as follows:  

ERR = 
𝐹𝑃 + 𝐹𝑁 

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁 
      (3.9) 

ACC = 
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁 
        (3.10) 

Sensitivity (SN) and specificity (SP) can also be derived from a confusion matrix. 

‘Sensitivity’ is the ratio of instances that have been predicted correctly and positively 

(TP) to the total number of actual positives in the data (TP and FN). In other words, it 

means the proportion of TPs that are correctly identified.  

SN =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
                (3.11) 

‘Specificity’ is the ratio of instances that have been predicted correctly and negatively 

to the total number of actual negatives in the data. In other words, it means the 

proportion of actual negatives that were correctly predicted.  
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     SP =   
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 
                       (3.12) 

‘Precision’, or positive predictive value (PPV), is the ratio of instances that have been 

predicted positively and correctly to the number of instances that are TPs and FPs.  

PPV= 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
                       (3.13) 

When a model needs to be examined, the above metrics may be employed. They are 

used to evaluate my new models in the next chapters. 

Finally, a receiver operating characteristics (ROC) curve can be used to select an 

optimal model. In addition, the ROC curve explains the performance of a binary 

classifier by plotting the TP rate (sensitivity) against the FP rate.  

 

3.7 Summary 

SSc is a rare disease that affects the skin and other organs, and it remains difficult to 

diagnose due to a lack of information and a limited number of patients. ML algorithms 

such DT, RF, NB, K-means, or LCA can be useful tools to assist the decision-making 

of physicians. This chapter presented SSc disease as a rare disease and the 

complications of this disease. Numerous ML algorithms were described that aid in the 

analysis of SSc. The chapter also provided a DDM method for monitoring ML models 

over time. In addition, it offered resampling techniques, such as cross validation and 

bootstrapping, that have the potential to improve the performance of ML models. This 

chapter concluded by presenting the evaluation metrics used to evaluate ML models.  

In the next chapter, I present the new model, the ‘Nearest Consensus Clustering 

Classification’ and use it to identify subclasses and predict SSc.  

 

 

 

 



74 

 

Chapter 4 

Nearest Consensus Clustering Classification to Identify Subclasses and 

Predict Disease 

 

4.1 Introduction 

Disease subtyping, which helps to develop personalised treatments, remains a 

challenge in the data analysis field because there are many different ways to group 

patients based on their data. However, identifying disease subclasses would enable 

the development of better, more personalised models; this would thereby improve 

prediction and understanding of the disease’s underlying characteristics. This chapter 

provides a new method that combines consensus clustering techniques with 

classification methods to improve disease prediction and awareness of underlying 

disease characteristics. As such, this chapter first investigates the significance of 

disease subtyping and its influence on the performance of ML models. It describes 

consensus clustering and the procedure for implementing consensus clustering 

methods. Second, this chapter describes the proposed consensus clustering method 

employed in my research to predict disease as well as the datasets I used and the 

experiments I conducted. Finally, my experiment, in which the findings of the proposed 

method were applied to a real-world freely available breast cancer dataset from a 

London hospital on SSc, is described and interpreted. This chapter was published as 

an article in Journal of Healthcare Informatics Research in 2018. 

4.2 Background 

Disease subtyping aids in the development of personalised medicines, which are 

better suited to specific patients. However, barriers to data analysis remain due to the 

numerous techniques that can be used to cluster patients based on their data. 

However, if I can identify disease subclasses, this would aid the construction of better, 

more specialised models for certain patient groups, thereby enhancing my ability to 

anticipate and comprehend the underlying characteristics of a given disease. Cluster 

techniques have been proven effective in this field. In medicine, clustering 

approaches, which are often used to separate thousands of patients into manageable 

groupings, can provide numerous benefits (Kellam et al., 2001). However, traditional 
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algorithms such as K-means, DB-scan, and fuzzy c-means might be biased and of 

inconsistent quality due to limited sample sizes, intrinsic model bias and noise. 

Consequently, consensus clustering strategies have been developed (Kalyani, 

2012).These approaches have traditionally addressed model bias and variability but 

not sample variance, which is addressed in this chapter using resampling techniques. 

The importance of discovering subtypes has increased as more data has become 

available. Clear cell renal cell carcinoma (ccRCC) is one of the most significant 

subtypes of renal cell carcinoma, according to Wu et al. Their study emphasised the 

significance of molecular typing for both individualised cancer treatment and the 

enhancement of overall accuracy. Unsupervised consensus clustering was utilised to 

identify a new subgroup of ccRCC. An unsupervised consensus clustering approach 

enabled the identification of three distinct subtypes based on hierarchical clustering. 

This is essential due to the capacity to define stable groupings based on patterns of 

gene expression. In addition, the clusters have clinical significance that may shed light 

on the behaviour and prognosis of the tumour (Wu et al., 2018). Zhu et al. proposed a 

novel subspace clustering guided unsupervised feature selection (SCUFS) algorithm 

that learns through representation-based subspace clustering. This method exposes 

the underlying multi-subspace structure of the data as it learns the data distribution. 

Results revealed that the SCUFS model outperformed alternative approaches (Zhu et 

al., 2017).  

Choosing the appropriate clustering method is a complicated undertaking, as different 

methods might produce varying outcomes. Combining the results of many approaches 

can lead to better grouping. In addition, the bootstrap method (see chapter 3) can be 

used to resample datasets to increase confidence in clusters (Tucker & Garway, 

2010). Consensus clustering, which investigates the consensus across many 

clustering algorithms, can boost overall confidence compared to each specific input 

cluster method. Even higher confidence can be given to robust clusters, which enforce 

maximum agreement across input clustering methods. Swift et al. used robust and 

consensus clustering in order to improve confidence in discovered clusters (Swift et 

al., 2004). Nguyen and Caruana presented a good review of consensus clustering 

methods (Nguyen & Caruana, 2007). The weighted-kappa metric (see chapter 3), 

which is used to assess the degree of concordance among the decisions of two or 

https://www.semanticscholar.org/author/P.-Kalyani/145755892
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more observers, can be used to assess the consistency of clustering results. It can 

thus be used to compare different data allocations to clusters, generating a value that 

ranges from -1 to +1, indicating poor to extremely excellent agreement strength (Swift 

et al., 2004). 

Once patient subclasses have been established, supervised learning can be applied 

to disease prediction. Decision trees and Bayesian classifiers perform well and have 

the added benefit of modelling data transparently, unlike many black-box approaches 

(Soni & Ansari, 2011). Tucker et al. developed a model integrating unsupervised and 

supervised learning to predict patient health outcomes. Their findings revealed that 

the model both enhanced physician understanding and improved prediction. I expand 

on their research by exploring how consensus methods can be used to identify 

individual models for each discovered subgroup, which aids understanding as well as 

improving prediction. 

To this end, I analysed patients with SSc, and I describe this process in this chapter. 

Additionally, I integrated unsupervised learning, which discovers potential subclasses, 

with supervised learning, which helps predict health outcomes based on these 

subclasses. I designed a novel algorithm that performs better than supervised learning 

alone by incorporating unsupervised learning (K-means clustering). I named this 

algorithm ‘nearest consensus clustering classification identify subclasses and predict 

disease’. In the following subsection, I define consensus clustering before describing 

my novel method. 

4.3 Consensus clustering 

Multiple cluster results are combined in consensus clustering, which uses a variety of 

clustering methods as inputs to find a single consensus clustering method that is a 

better fit than any individual clustering method. Consensus clustering is required 

because it allows for the reconciliation of clustering data obtained from various 

experimental sources or repeated runs of the same non-deterministic algorithm (Goder 

& Filkov, 2008). It is also a method for finding clusters that are more stable and less 

sensitive to starting values based on a membership principle. It takes several input 

clustering methods into account, with items that have been grouped together 

repeatedly in the inputs having a higher chance of appearing in the consensus 
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clustering. For example, to remove bias, consensus clustering might use many 

clustering methods, which have been formed using various clustering methods or 

starting parameters, as inputs (Xiao & Pan, 2007). Input clustering methods can also 

be developed by resampling the original dataset to remove sampling bias and 

generate a more stable consensus grouping. 

The first step to implementing a consensus clustering approach is to create an n × n 

agreement matrix based on the input clustering results. This matrix comprises cells 

that show the number of agreements between the input clustering algorithms used to 

cluster each pair of objects, as indicated by the indexing row and column. This matrix 

is then used to sort items based on their cluster agreement by rewarding clusters with 

high member agreement and penalising clusters with low member agreement (Swift 

et al., 2004). 

The input methods used to construct the agreement matrix can be the outcomes of 

several clustering techniques. In this case, however, I aimed to reduce sampling bias; 

therefore, I employed distinct clustering findings from the application of K-means 

clustering to numerous resamplings of the data. Consensus clusters that rewarded 

variables with high cluster agreement and penalised those with poor agreement were 

thereby created. Fig 4.1 provides an overview of how consensus clustering operates. 

 

Figure 4.1: Consensus Clustering Algorithm (Schematic) 

4.4 Nearest consensus clustering algorithm 

My proposed method attempts to account for the natural variation in many clustering 

methods as well as sample variance by using the consensus approach in combination 
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with C4.5 DT classifiers. C4.5 is a transparent DT method for classification that 

provides a tree structure that can be comprehended. The information gain ratio 

measure is used to infer the tree (Balagatabi, 2013). As a result, my proposed method 

divides the data into two sets: the training set and the test set. To create a set of 

consensus clusters, the training data was resampled. Each of these consensus 

clusters was then used to generate a different DT. Then, using a single linkage 

approach with Euclidean distance (see chapter 3), each test data point was scored 

based on its distance from each detected consensus cluster. This was done to 

determine which DT should be used to classify the data point. Using this method, I 

examined a variety of distance measurements, such as single linkage (the closest 

element to point a), further linkage (the furthest element to point a) and average 

linkage (the average distance between point a and set of points). The suggested 

nearest consensus clustering algorithm is displayed in Fig 4.2 as a schematic diagram. 

In this example, the training data was divided into three clusters using consensus 

clustering of multiple K-means with resampled data. A DT was then constructed from 

each consensus cluster. When classifying test data, my algorithm aligned the test data 

(denoted by an ‘x’) to the nearest consensus cluster (here, cluster 3) using the single 

linkage measure (nearest neighbour). The associated DT was then used to classify 

the test data point (here, DT3). 

 

Figure 4.2: Nearest Consensus Clustering Classification: Training and Testing Data (Schematic Figure) 
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The following pseudocode explains the steps used to build the new algorithm. 

Algorithm 1 Pseudocode of Nearest Consensus Clustering Classification  

Input: Dataset of patients.  

Output: Different clusters of patients and different DTs for each group.  

Begin  

1: For i = 1 to 10 

2: Randomly generate 80% training dataset and 20% test dataset. 

3: For k = 1 to 10  

3: Resampling with replacement the training dataset. 

4: Run K-Means on training dataset and store in InputClusters. 

5: End For  

6: Compute agreement matrix (n × n) A from InputClusters 

7: Run hierarchical clustering on A to generate consensus clusters (CC). 

8: Print CC (patient groups).  

9: Build decision tree (DT) for each group in CCs generated in step 6.  

10: For j = 1 to the size of test dataset  

11: Compute Euclidean metric for test dataset patient (j) to each group in CC. 

12: Return the group that has the minimum value (mingroup).  

13: Assign patient j to mingroup.  

14: Classify using DT associated with mingroup. 

15: End For.  

16: End For  

End 

 

More specifically, I applied my nearest consensus clustering method by running the 

K-means algorithm on the training data to produce 10 repeated resampled datasets to 

produce an agreement matrix using the input clusters. I did so in order to capture 

sampling bias. Each input cluster displayed the cluster output for each repeated 

resample. The agreement matrix, shown in fig 4.3, indicates the number of different 

https://en.wikipedia.org/wiki/Hierarchical_clustering
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clustering algorithms that grouped pairs of patients together. Hierarchical clustering 

was then applied to the agreement matrix to create the consensus clusters. 

Hierarchical clustering is another unsupervised approach for undertaking exploratory 

data analysis. It works by constructing a binary merge tree, starting with the data 

stored at the leaves and merging the closest subsets until the whole dataset is 

reached. This type of hierarchical clustering is called agglomerative hierarchical 

clustering (Frank Nielsen, 2016). I applied this algorithm to the agreement matrix in 

order to produce the consensus groups. As a result, the values of the cells in the 

agreement matrix were used to implement this technique utilising a further linkage 

measure. I allocated each patient to a distinct cluster. After identifying the largest 

values in the agreement matrix, I merged the points with the largest values, and the 

agreement matrix updated accordingly. I repeated these steps until I discovered the 

consensus groups. Cross validation (see Chapter 3) is an evaluation technique used 

to examine a model’s predictive capabilities by using unseen cases to assess its 

accuracy. This method is implemented by separating the original data into a training 

set for learning the model and a test set for evaluating it, then repeatedly crossing-

over the training and validation sets so that each data point is used for validation. As 

stated previously, I assigned test data (new case) to the closest cluster 

(group/consensus clusters group) using a single linkage metric and a Euclidean 

distance metric. Using this test data and all other data in the consensus groups, the 

Euclidean distance metric was computed. The new test data was assigned to the 

group whose point was closest to the test point. Each consensus group built its own 

DT model, which was then evaluated using the test data supplied to each group. 

https://www.researchgate.net/profile/Frank-Nielsen-3
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Figure 4.3: Agreement Matrix for Robust and Consensus Clustering (Swift et al., 2004) 

 

The following workflow, shown in Fig 4.4, depicts the proposed method used in this 

study. 
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Figure 4.4:Nearest Consensus Clustering Classification Method 

 

4.5 Datasets 

I explored two datasets in this chapter: one on SSc patients and one on breast cancer 

patients. 

SSc Dataset 

I used this dataset, provided by the Royal London Hospital (see chapter 3), to 

implement my new consensus clustering classification method. This dataset contained 

information on 677 patients.  
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Breast Cancer Dataset 

The UCI ML repository has made this breast cancer dataset openly available. I aim to 

predict whether a tumour is benign or malignant using a set of 10 features and 699 

patients in addition to the class. This is a multivariate dataset that was created for 

classification purposes. The names of the features and their data types are listed in 

the table below. The experiments performed on the aforementioned datasets using 

the proposed method are described in the following section. 

Table 4.1: Breast Cancer Features and Data Types 

 

4.6 Experiments 

This section describes the experiments conducted in order to implement my proposed 

model using the SSc and breast cancer datasets.  

SSc Dataset 

As previously stated, every organ can be clinically affected by SSc; therefore, in this 

study, I are particularly interested in predicting whether different organ complications 

will occur before or after a specific threshold in order to intervene more effectively. For 

example, pulmonary arterial hypertension (PAH) is a significant complication of SSc; 

it can afflict both categories in similar proportions, and it typically arises late in the 

course of the disease. PAH is a progressive ailment characterised by increased blood 

pressure in the arteries of the lungs. It is defined by right heart catheterisation as a 

mean pulmonary arterial pressure not less than 25 mmHg with a pulmonary capillary 

wedge pressure not greater than 15 mmHg. Though the natural course of SSc-

associated PAH varies across patients, in many cases it progresses to right heart 

failure and death. It usually presents with non-specific symptoms of exertional 

dyspnoea, fatigue, angina, and exertional near-syncope. SSc shows heterogeneous 

clinical manifestations with a wide variability in presentation, severity, and outcome: 

some patients deteriorate rapidly and fatally, while others experience benign 
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symptoms. There are three key factors affecting illness susceptibility: age, gender, and 

ethnicity (Bosoni et al., 2016). As such, I aim to predict time to death (T2RIP) and time 

to PAH, a common comorbidity in patients with SSc. The aim of my proposed algorithm 

is to cluster the patients into consensus groups and to predict time to PAH and T2RIP 

for each group. The patients were selected using the following methods:  

• I selected all patients from the original dataset who died within the first 5 years and 

all patients who were still alive or died over 5 years. The predicted class had two 

values: ‘1’, representing patients who could die before 5 years, and ‘2’, 

representing patients who could die after 5 years. The novel algorithm was applied 

to the resulting dataset in order to predict T2RIP.  

• I selected all patients from the original dataset who developed PAH within the first 

5 years and all patients who developed PAH after 5 years or still have not 

developed PAH. The predicted class had two values: ‘1’, meaning that the patient 

could develop PAH within 5 years, and ‘2’, meaning that the patient could develop 

PAH after 5 years. Additionally, the novel algorithm was applied on this resulting 

dataset in order to predict time to develop PAH. 

Breast Cancer Dataset 

I applied my proposed model to this dataset to classify breast cancer patients as 

having benign or malignant tumours. I implemented my model using the following 

experiments. 

In addition to describing the proposed method, the goal of this chapter is to compare 

my novel approach, nearest consensus clustering classification, to results found 

through standard K-means clustering of patients, the C4.5 DT (with no clustering of 

patients), and the nearest K-means method (without consensus clustering). Thus, 

through the experiments described in this chapter, I investigated three methods: 

1. Using simple K-means alone to identify clusters (with no resampling or consensus 

clustering) to build each DT; I call this ‘nearest K-means’ 

2. Using a standard DT with no clustering 

3. Using the novel nearest consensus clustering classification algorithm 
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I explored these methods based on the resulting DTs, cluster membership, predictive 

accuracy, and Kaplan Meier curves for:  

a. the SSc data for predicting time to PAH. 

b. the SSc data for predicting T2RIP. 

c. the breast cancer data for predicting tumour type. 

I then performed the following analyses: 

d. I performed full sensitivity analyses of these methods. 

e. I performed a small follow-up data analysis on the discovered groups 

within the clinical context. 

f. I explored the effect of changing the number of clusters (K) on accuracy. 

g. I compared my proposed approach with other, similar combinations of 

clustering and classifiers.  

Finally, I briefly compared my approach with well-known methods including 

hierarchical clustering, partition around medoids (PAM), and support vector machines 

(SVM) methods. MATLAB software was implemented each of these techniques. I 

compared the methods described below to my method. 

1. Hierarchical clustering using decision tree method: 

Hierarchical clustering partitions a dataset into groups using a dendrogram tree 

structure, as described above. This was combined with a DT algorithm to predict 

T2RIP, to predict time to develop PAH, and to classify breast cancer patients. 

2. PAM using decision tree method: 

PAM clustering (k-medoid algorithm) is similar to the K-means method in that it splits 

the dataset into K groups; however, in PAM clustering, medoids (rather than centroids) 

are represented by data points. These data points correspond to the most centrally 

located point in each cluster (Al Abid & Mottalib,2012). This algorithm was combined 

with a DT algorithm to predict T2RIP, to predict time to develop PAH, and to classify 

breast cancer patients. 
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3. Standard SVM method: 

The supervised ML model (SVM) works by transforming data and conducting simple 

scaling so that classes are linearly separable. SVM is often considered the most 

consistently accurate classifier. The disadvantage of this algorithm is the complexity 

involved in determining the number of support vectors (Cristianini & Taylor, 2000). This 

algorithm was implemented to predict T2RIP, to predict time to develop PAH, and to 

classify breast cancer patients. 

4.7 Results 

In section, I examine the outcomes of my experiments after having described the 

proposed method and the experiments I conducted for this study. Boxplots, a simple 

graphical technique used to describe results, are employed to interpret and compare 

my results. The minimum value, maximum value, and median of a set of data, such as 

error rate across my experiments, are represented by boxplots. Additionally, t-tests 

were used to compare the significance difference between two means. 

A) Systemic sclerosis: Time to develop pulmonary arterial hypertension 

I ran the C4.5 DT (without clustering), nearest K-means (without consensus), and 

nearest consensus cluster classification algorithms on the SSc data in order to predict 

time to develop PAH. The following plot (Figure 4.5) shows the results of these 

experiments as well as the results of each individual cluster model on all of the test 

data (K1, K2, and K3). It is notable that each individual clustering model classified the 

test data worse than ones that attempted to model all clusters. Additionally, the 

standard DT and nearest K-means methods produced a better and less variable set 

of errors. Nearest consensus cluster classification performed better than all other 

algorithms, with lower error rates and reduced variance. This method performed 

significantly better than the nearest K-means method (p = 0.040 < 0.05), indicating 

that sampling bias should be addressed when identifying patient subgroups. 
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Figure 4.5: Comparison of K-means, Decision Tree, Nearest K-means, and Nearest CC for Time to Develop 

Pulmonary Arterial Hypertension Class in Systemic Sclerosis Dataset 

The DTs inferred from each consensus cluster found in the SSc dataset when time to 

develop PAH class needs to be predicted (Figures 4.6–4.8) were very different, 

indicating that there was a different set of required criteria for each subset of patients 

that was discovered. For example, the group 1 DT was considerably smaller than the 

group 2 or group 3 DTs, and all the DTs involved different combinations of important 

variables. This highlights the necessity of separating out these cohorts of patients 

when diagnosing. For instance, for group 3, knowing the DLCO, age, and FVC test 

result had more of an effect on predicting time to develop PAH, whereas in group 1, 

knowing only the haemoglobin (Hb), ACA, and others had more of an effect on 

predicting time to develop PAH. Fig 4.6 displays a very simple DT that only relies on 

the Hb variable; therefore, for group 1, time to develop PAH can be predicted based 

on Hb attribute values. 
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Figure 4.6: Consensus Clustering Decision Tree for Group 1 in SS Dataset and Time to Develop Pulmonary Arterial 
Hypertension Class. 

 

Figure 4.7: Consensus Clustering Decision Tree for Group 2 in SS Dataset and Time to Develop Pulmonary Arterial 
Hypertension Class. 
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Figure 4.8: Consensus Clustering Decision Tree for Group 3 in SS Dataset and Time to Develop Pulmonary Arterial 
Hypertension Class. 

There were notable differences between the attributes in each discovered consensus 

cluster (Table 4.2). Serum creatinine (Cr) level, the value indicating the measure of 

creatinine in that test, was smaller for group 2 than for groups 1 or 3. Cr values greater 

than 90 – such values were found in groups 2 and 3 – are normal, but values less than 

90 are not normal. The reference range for the time period for Cr was 60–97 μmol/L. 

Interestingly, these features did not appear in the DTs, perhaps because they were 

already separated by the identification of the different subgroups. By identifying these 

different subgroups and exploring their characteristics, I can better understand how 

they differ and what focused tests may be appropriate for different patients when 

determining prognoses. By identifying the characteristics of each consensus cluster, I 
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can identify the likelihood that patients belong to any of these cohorts and apply more 

appropriate clinical tests, as identified using the cohort-specific DTs. This is essentially 

what the algorithm does when in the testing phase.  

Table 4.2: Proportion/Means Values for SS Attributes in CC (Time to Develop PAH) 
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I then conducted disease-free survival analysis. The Kaplan-Meier estimator, also 

known as the product limit estimator, is a non-parametric statistical method used to 

estimate the survival function in reference to an event of interest, such as death or a 

disease complication (Goel M.K. and Khanna P. and Kishore, 2010). The estimator is 

plotted over time to obtain the Kaplan-Meyer curve, which comprises a series of 

horizontal steps of declining magnitude that, when a large sample is taken, 

approaches the true survival function for the population under investigation. This curve 

can be estimated easily if a patient group is followed until death by computing the 

fraction of patients surviving at each time point. In most cases, however, a number of 

patients tend to drop out for various reasons. Nevertheless, Kaplan-Meyer analysis 

allows this information from both censored and uncensored observations to be 

considered. The dependent variable is composed of two parts: the time to the event 

and the event status, which records whether or not the event of interest has occurred. 

Censored data is data for which the event is only partially known because it has not 

yet occurred. For example, in the SSc dataset, I may only know that a patient has not 

developed PAH for at least X years at a given point in time. The Kaplan-Meier curve 

is defined as the probability of surviving for a given length of time while considering 

time in many small intervals, taking only three weak hypotheses into account (Altman, 

D.G., 1990). It must be assumed that the censored patients are characterised by the 

same survival prospects as those who continued to be followed, that the survival 

probabilities are the same for patients recruited early in the study and those recruited 

later, and that the event of interest happens at the specified time (Goel M.K. and 

Khanna P. AND Kishore, 2010).  

I conducted a survival analysis to determine how long after diagnosis patients in the 

discovered subgroups died or developed a disease-associated internal organ 

complication. By grouping subjects based on nearest consensus clustering 

classification, I could then analyse whether the discovered clusters were able to 

separate SSc patients into subpopulations showing different symptoms and disease 

progressions in order to help physicians to make more informed diagnoses and carry 

out more focused interventions.   

The following graph shows the percentage of patients who survived from that organ 

complication on the y-axis, while on the x-axis, the time to develop PAH is measured 
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in months. The graph shows the Kaplan-Meyer curves for the three main clusters: 

cluster 1 is blue, cluster 2 is green, and cluster 3 is yellow. The graph clearly shows 

that 18% of patients in group 3 and about 10% of patients in group 1 were affected by 

PAH after 120 months. 

 

 

Figure 4.9: Kaplan-Meyer Curves by Nearest Consensus Clustering on Time to Develop Pulmonary Arterial 
Hypertension Dataset. With time to develop pulmonary arterial hypertension in months on the x-axis and 
percentage of patients survived from that organ complication on the y-axis, the graph illustrates the survival curves 
obtained by grouping patients based on nearest consensus clustering. 

B) Systemic sclerosis: Time to death 

I repeated the experiments described above to predict T2RIP. The following plot 

(Figure 4.10) displays the results of these experiments as well as the results of the 

application of each individual cluster model to all of the test data (K1, K2 and K3). Note 

that these groups are not the same as those for the time to PAH experiments, as 

different data was selected. The following boxplot (Figure 4.10) shows that nearest 

consensus clustering classification performed better than the nearest K-means 

method, although the latter has less variation (p = 0.041 < 0.05). 

 



93 

 

 

Figure 4.10: Comparison of K-means, Decision Tree, Nearest K-means, and Nearest CC for Time to Death Class 
in Systemic Sclerosis Dataset 

The DTs inferred from each consensus cluster found in the SSc dataset to predict 

T2RIP (Figures 4.11–4.13) were very different, indicating that different sets of required 

criteria have been discovered for each patient subset. These various consensus DTs 

could improve clinics' understanding of the disease and enhance personalised 

medicine. 

 

Figure 4.11: Consensus Clustering Decision Tree for Group 1 in SS Dataset and Time to Death class 
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Figure 4.12: Consensus Clustering Decision Tree for Group 2 in SS Dataset and Time to Death Class 
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Figure 4.13: Consensus Clustering Decision Tree for Group 3 in SS Dataset and Time to Death Class 

Regarding survival analysis, the following graph shows that almost 35% of patients 

from group 1 died after 110 months, while 15% of patients from groups 2 and 3 died 

after 110 months.   
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Figure 4.14: Kaplan-Meyer Curves by Nearest Consensus Clustering on Time to Death Dataset. With time to death 
in months on the x-axis and percentage of surviving patients on the y-axis, the graph illustrates the survival curves 
obtained by grouping patients based on nearest consensus clustering. 

Again, there were notable differences between the attributes of each discovered 

consensus (Table 4.3). Cr, the value indicating the measure of creatinine in that test, 

was greater in group 1 than in groups 1 or 3. Cr values greater than 90 – such values 

were found in groups 2 and 3 – are normal, but values less than 90 are not normal. 

The baseline used to distinguish among the groups is whether Cr was normal or not. 

Additionally, DLCO was smallest in group 3.  
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Table 4.3: Proportion/Means Values for SS Attributes in CC (Time to Death) 

 

C) Breast cancer 

I also applied my method to the freely available breast cancer dataset from the UCI 

repository. K-means, DT, nearest K-means and nearest CC classifications were 

applied in order to predict whether tumours were malignant or benign. Again, the 

results, as shown in Fig. A4, indicated that nearest CC classification performed better 

than the K-means or standard DT methods. 
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Figure 4.15: Comparison of K-means, Decision Tree, Nearest K-means, and Nearest CC Classification for Breast 
Cancer Dataset 

Fig 4.16 shows the DTs that predicted breast cancer in group 1. Breast cancer, 

whether benign or malignant, could easily predicted for all patients within group 1 

through analysis of cell shape and cell size. Additionally, fig 4.17 shows that, for group 

2 patients, thickness must be known in order to predict breast cancer. 

 

 

Figure 4.16: Consensus Clustering DT for Breast Cancer Prediction Group 1 
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Figure 4.17: Consensus Clustering DT for Breast Cancer Prediction Group 2 

 

 

Figure 4.18: Consensus Clustering DT for Breast Cancer Prediction Group 3 

Table 4.4 shows the variation of attributes across each group. Thickness values in 

group 1 were greater than those in groups 2 or 3. Additionally, cell size values for 

group 3 were smaller than those in groups 1 or 2.  
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Table 4.4: Means for Breast Cancer Attributes in Consensus Clustering 

 

• Sensitivity Analysis 

Specificity, precision, and recall metrics were used to evaluate the results. I computed 

all of these measures for K-means, DT, nearest K-means, and nearest CC 

classifications for time to develop PAH and breast cancer dataset results. The 

following tables display the results. It is notable that NCCC performed well compared 

to other methods.  

Table 4.5: Metrics for three K-means Groups – Decision Tree, Nearest K-means, and Nearest CC –for Time to 
Develop Pulmonary Arterial Hypertension Class 

 

Table 4.6: Metrics for Three K-means Groups – Decision Tree, Nearest K-means, and Nearest CC – for Breast 

Cancer Dataset 

 

Attributes  Group 1 Group 2 Group 3  

Thickness 5.10 4.58 4.14 

CellSize 3.87 3.14 2.97 

CellShape 4.09 3.22 2.76 

Marginal 3.27 2.72 2.65 

Epithelial 3.74 3.60 2.86 

BChromation 4.04 3.77 2.99 

NormalNucleoli 3.77 3.14 2.42 

Mitoses 1.97 1.85 1.33 
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• Impact of Different Number of Clusters (K) 

I briefly explored the effect of different values of K (when using K-means clustering) 

on accuracy. I ran nearest consensus cluster classification on the SSc data in order to 

predict time to develop PAH and T2RIP five times for each class. The following two 

plots show the results of these experiments and those of each individual consensus 

cluster classification model on all of the test data (K = 3, K = 4, K = 5, K = 7, K = 10). 

Regarding time to develop PAH, it is notable that nearest consensus cluster 

classification when K was equal to 3 (NCC3) and when K was equal to 4 (NCC4) 

classified the test data quite similarly to the others, and NCC3 and NCC4 performed 

better than NCC5 or NCC7. NCC10 improved error and grown variation, but it had 

noise. Regarding T2RIP, nearest consensus cluster classification when K was equal 

to 4 (NCC4) performed better and had less variation than when K was equal to 3 

(NCC3). Additionally, NCC4 classified the test data better than NCC5, NCC7, or 

NCC10. 

 

Figure 4.19: Comparison of Nearest CC Classification for Time to Develop Pulmonary Arterial Hypertension Class 
With Different Values of K 
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Figure 4.20: Comparison of Nearest CC Classification for Time to Death Class with Different Values of K 

• Comparison to Other Clustering/Classifiers 

Finally, I briefly compared my new method with some other cluster–classifier 

combinations, including SVM run individually, SVM merged with K-means, hierarchical 

clustering DT, and PAM DT, in order to confirm whether or not the proposed method 

performed better. The following table displays the results. I repeated the experiment 

to test all of these classifiers using the model.  

Table 4.7: Accuracy Comparison Between the Proposed Algorithm and Others 
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4.8 Conclusions  

In this chapter, I have tested a set of algorithms on the SSc and breast cancer datasets 

both to identify subgroups of patients and to diagnose them based on these 

subgroups. The results illustrate the issues associated with ignoring the existence of 

patient subgroups (doing so leads to higher error rates) and with using standard 

clustering methods such as k-means (doing so results in higher variance in errors due 

to sample variance and method bias). This chapter introduces a novel approach that 

exploits consensus clustering methods and single-linkage distance metrics to address 

these issues. My method, nearest consensus clustering classification, integrates DTs, 

consensus clustering, and single-linkage metrics. It improved classification and 

reduced variance when tested on breast cancer data from the UCI repository and an 

SSc dataset from the Royal Free Hospital in London. Clinics could use this new model 

to cluster patients and discover key features of each group to classify patients more 

confidently. However, my novel approach only addresses the prediction of a single 

disease at a given time, whereas in the real world patients may be suffering from 

multiple comorbidities simultaneously. Thus, it is essential to address concerns around 

the use of several labels (comorbidities). It is also essential to discuss another method 

for clustering patients into groups, such as latent class analysis (LCA), which groups 

patients by identifying latent factors. I therefore needed to devise a novel approach 

that combines latent class analysis with a multi-label classification (MLC) model to 

predict multiple complications by discovering hidden factors. In the next chapter, I 

describe MLC and latent class models that cluster patients within groups. A new 

algorithm that uses MLC and a latent class model is described in the next chapter. 
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Chapter 5 

Latent Class Multi-Label Classification to Identify Subclasses of Disease 

for improved Prediction 

5.1  Introduction 

In medicine, patients might suffer from multiple disease complications. Disease 

subtyping can help to develop personalised treatments by grouping patients into 

subgroups based on their data. Thus, models that are tailored to individuals could 

improve both prediction of multiple complications and understanding of underlying 

disease characteristics. Therefore, this chapter first investigates the significance of 

latent class models as well as MLC problems, in which a patient may belong to 

numerous classes simultaneously. Additionally, it describes the phenomenon of the 

latent class model, and it explains the MLC problem and current methods for resolving 

it. Second, this chapter discusses my proposed method for addressing the MLC 

problem as well as the datasets used and experiments conducted. This chapter 

concludes by presenting and interpreting the results of applying this method to my 

datasets. This chapter was published in Proceedings of the 2019 IEEE 32nd 

International Symposium on Computer-Based Medical Systems (CBMS).  

5.2 Overview 

Healthcare organisations must find better methods to assist diagnosis that are both 

accurate and explainable. Machine learning classifiers that can exploit huge amounts 

of historical patient data are a promising technology with which to achieve this. Their 

aim is to accurately predict a class label for new patients (e.g. a diagnosis or risk factor) 

based on historical data. However, in some situations, patients might belong to more 

than one class. For example, a patient might have both diabetes and cancer  

(Nareshpalsingh & Modi, 2017). In this case, MLC, wherein multiple class labels can 

be assigned to a single patient’s data, can be employed. MLC is a challenging task in 

ML as it requires the prediction of more than one class. Previous research has 

demonstrated MLC’s effectiveness and robustness. Dharmadhikari et al. (2012) 

observed that better accuracy is obtained when MLC algorithm adaption is used (see 

Section 4). Additionally, Prajapati et al. introduced MLC and associated evolution 

metrics, suggesting that algorithm adaptation is the best option for MLC (Prajapati et 
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al., 2012). Dhongade et al. reviewed MLC and observed that the approach is mostly 

used for text categorisation and medical diagnosis. This paper introduced ML-KNN 

and showed that it is better than other established algorithms (Dhongade et al., 2014). 

MLC aims to predict all classes to which a patient belongs, and it may also help to 

identify the relationships between classes. A novel model for MLC based on Bayesian 

networks was introduced in order to predict all classes whilst simultaneously finding 

correlations among them. This model performed better than binary classification 

methods (Alessandro et al., 2013). Damien Zufferey et al. (2015) employed multilabel 

algorithms on chronic disease data to simultaneously predict different chronic 

illnesses. This model assists clinicians in diagnosing, understanding, and treating 

disorders (Zufferey et al., 2015). Giorgio Corani and Mauro Scanagatta (2016) tried to 

predict air pollution using MLC methods. They designed a MLC model dependent on 

a Bayesian network. The proposed model performed well, and it allowed experts to 

make better decisions regarding air pollution (Giorgio & Mauro, 2016). In traditional 

Chinese medicine, diagnosis aided by ML algorithms enables practitioners to utilise 

sophisticated medical knowledge and make decisions more efficiently. Zhou et al. 

(2018) proposed a model for diagnosing diseases in traditional Chinese medicine 

based on a MLC method. The results demonstrated the model's potential to enhance 

decision-making within the clinical diagnostic system (Zhou et al., 2018). Although 

many researchers have worked to enhance NB performance in classification 

problems, less research has been done on multilabel NB classification. Shouman et 

al. explored the effectiveness of K-means as a clustering method for improving 

supervised learning techniques like NB. Results showed that integrating a clustering 

method with NB could enhance accuracy (Shouman et al., 2012). The NB method is 

considered important for medical diagnosis as it can provide accurate results and 

reveal hidden information between the variables (Vembandasamy et al., 2015). Kabir 

et al. claimed that higher accuracy can be produced when datasets are split into 

subgroups, wherein each group has similar intra-group characteristics. They focused 

on improving the classification accuracy of NB by clustering the dataset using the K-

means method (Kabir et al., 2011). Eshghi compared traditional clustering methods 

and latent class models and found that using different clustering methods might 

produce different groups, suggesting that each methodology could lead to different 

interpretations (Eshghi et al., 2011). Ming Sun et al. (2019) utilised a latent class 
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cluster model to segment pedestrians involved in collisions. Their findings implied that 

the latent cluster technique, when used in traffic safety studies, might uncover highly 

significant hidden factors. It also demonstrated the various benefits of latent class 

clustering over K-means clustering (Sun et al., 2019). Additionally, Yongwen Jiang et 

al. (2015) employed a latent class model to predict chronic disease patterns in cities 

and towns. The results showed that the latent class model distinguished three classes 

that reflected three levels of health indicators. It also suggested that using the latent 

class model was a very effective method for identifying patients to target chronic 

disease (Yongwen et al., 2015). Luzia Gonçalves et al. (2012) employed Bayesian 

latent class models to diagnose malaria, and their findings demonstrated that 

Bayesian latent class models were effective for this purpose (Gonçalves et al., 2012). 

As such, this chapter deals with MLC of a disease for which patients have multiple 

comorbidities. I explore the effectiveness of MLC for NB classifiers when a latent class 

model is used to cluster patients. The latent classes within the model can help to 

explain the relationships between the clusters and the comorbidities. 

5.3 Latent class model  

Latent class models are powerful improvements to traditional methods of clustering, 

factoring, regression, and neural network applications. Traditional methods express 

relationships among observed variables, whereas latent class models can include 

discrete unobserved variables. Latent class models have fewer biases because they 

do not rely on the model assumption. Latent class analysis (LCA) is a specific kind of 

latent class model. LCA (see chapter 3) is a hidden, discrete variable that divides 

cases into groups based on similar characteristics. This model clusters cases based 

on membership probabilities estimated directly from the model, where variables may 

be continuous, nominal, or ordinal (Magidson & Vermunt, 2005). In other words, LCA 

is a method that identifies hidden relationships among observed variables in order to 

cluster individuals into groups. LCA is a useful tool for improving health outcomes, as 

it can be used to find better characters that are unobservable within a population. It is 

a method that organises observed variables that represent unobservable clinical into 

meaningful subgroups. The resulting groups help clinical departments to diagnose 

diseases and personalise medicine (Law & Harrington, 2016). Utilising LCA in 

medicine allows for the production of crucial information. Likewise, group 



107 

 

characteristics can be used to discover relevant latent subgroups that may result in 

distinct treatment outcomes. Advanced subgroup analyses provided by LCA in 

medicine aid in disease prevention and treatment (Lanza & Rhoades, 2013).  

5.4 Multilabel classification 

The difference between multi-class classification and MLC is that, in multi-class 

classification, each example belongs to only one class and is associated with only one 

label. By contrast, in MLC, each example can be associated with multiple labels. As 

an example of multi-class classification, a fruit can be an apple or a pear, but it cannot 

be both at the same time. As an example of MLC, a patient can have several 

symptoms at the same time (Bi & James, 2013). Single-label classification is a 

particular status of MLC in cases in which a patient has one disease. Multi-label 

classification methods have become an increasingly important subject in medicine due 

to the correlation of the labels (Ying et al., 2014). The aim of MLC is to predict these 

labels and determine whether there is a relationship among them. Correlations among 

these labels might lead to better decisions and predictions. However, there are two 

types of application methods that require MLC: problem transformation methods and 

algorithm adaptation methods. In addition, the evaluation metrics for MLC are slightly 

different than those for single label classification.  

• Transformation Methods 

Transformation methods convert multilabel issues into a single label or multiple labels. 

Binary relevance (BR), label powerset (LP), and classifier chains (CC) methods are 

the main transformations methods used in MLC. BR is the most popular problem 

transformation method. This method predicts each binary label independently. The 

dataset is built for each binary label, and the output of an unseen instance is the union 

of the labels that have been predicted previously (Santos et al., 211). LP is a simple 

problem transformation method. It works by transforming a multilabel problem into a 

multi-class problem. It considers all labels that exist in the multilabel dataset as single-

label classifications of multiple classes (Tsoumakas et al., 2009). Finally, the CC 

method, also called modelling label dependence, is based on BR. However, it 

overcomes BR’s disadvantages and provides a better predictive performance. The 

chain is constructed by predicting each binary label independently. However, it 
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considers the previous predictions of the binary label to be feature attributes. This 

algorithm considers the correlations among the labels (Read et al., 2011). Table 5.1 

examines a dataset consisting of 4 cases and 4 labels (y1, y2, y3 and y4). Figures 5.1, 

5.2, and 5.3 detail the implementation steps for each transformation method. 

Table 5.1: Example of Multilabel Dataset 

 

Table 5.2: The Procedure of the BR Method for a Multilabel Dataset (Splitting the Dataset into Single Labels) 

 

Table 5.3: The Procedure of the LP method for a Multilabel Dataset (Converting the Dataset into a Single Class) 

 

Table 5.4: The Procedure of the CC Method for a Multilabel Dataset (Converting the Dataset into Multiple Datasets, 
and Building an ML model in Each One) 

 

• Algorithm Adaptation  

These methods are based on standard ML algorithms with structures modified to 

address multilabel problems. For instance, the multilabel DT algorithm was based on 
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the DT algorithm. The C4.5 algorithm was adapted to be suitable for a multilabel 

dataset. They modified the entropy formula to address the multilabel problem; instead 

of calculating the entropy for one label, the new entropy formula collects all entropies 

for each label. Additionally, the multilabel k nearest neighbours (ML-KNN) algorithm is 

an extension of the KNN (K nearest neighbours) learning method using a Bayesian 

approach. It relies on prior and posterior probabilities for the frequency of each label 

(Aldrees et al., 2016). Thus, algorithm adaptation methods refer to the process of 

adapting ML methods to MLC problems. 

• Evaluation Metrics  

Multi label classification evaluation metrics assess the model by simultaneously 

considering the prediction of the labels. Thus, this model differs from a single learning 

model, in which model performance depends on each label independently. I 

investigated how the evaluation metrics for a MLC model are calculated (Tsoumakas 

& Katakis, 2009). 

1- Accuracy 

Accuracy is the ratio of correctly predicted labels to all labels for a given record. The 

average of all record accuracy is the overall accuracy. 

    (5.1) 

iY : the true labels, iZ : the predicted labels, m: the number of instances. 

2- Precision  

Precision is the ratio of correctly predicted labels to all actual labels, averaged across 

all cases. 

 (5.2) 

iY : the true labels, iZ : the predicted labels, m: the number of instances. 
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3- Recall 

Recall is the ratio of correctly predicted labels to all other predicted labels, averaged 

across all cases. 

(5.3) 

iY : the true labels, iZ : the predicted labels, m: the number of instances. 

4- Hamming loss 

Hamming loss is the ratio of incorrect labels to all labels. An approach is considered 

effective when the hamming loss value is low. 

  (5.4) 

iY : the true labels, iZ : the predicted labels, m: the number of instances, L: the number 

of labels.  

 

5.5 Latent class MLC naïve Bayes 

In accordance with what was previously discussed, this chapter suggests a novel 

approach that addresses the problem of multiple comorbidities. This method combines 

the latent class and MLC models when applied to a dataset that measures multiple 

complications. This model first identifies hidden factors between observed data 

utilising a latent class variable that clusters patients into groups. This model then 

classifies each group using a naïve multilabel classifier to jointly predict their labels 

(Wei et al., 2011). Consequently, this algorithm comprises two phases that operate 

concurrently: LCA.  

• Latent Class Analysis 

According to my methodology, which was implemented using MATLAB software, the 

latent variable is considered a categorical variable with a number of classes. My 
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method uses the EM algorithm to estimate the probabilities of these classes. This 

iterative algorithm follows two steps: the first is to estimate parameters, and the second 

is to update the model (Mooijaart & Heijden, 1992). My method starts by building a 

table containing all combinations of and frequencies between observed variables. 

Initially, I assigned a probability to each class of the latent variable based on a random 

number generator. The probability of joint observed variable was computed as follows:  

    (5.5) 

     (5.6) 

y: represents the observed variable for each and every possible combination of the 

observed variables, L: latent class variable, c: the class.  

This procedure was repeated until the maximum value of the log-likelihood (LL) was 

reached, at which point I obtained the best possible latent class model.  

                                (5.7) 

y: represents the observed variable for each and every possible combination of the 

observed variables, L: latent class variable, c: the class.  

Additionally, in order to decide how many classes to assign to the latent variable, I 

used Bayesian information criteria (BIC). The number of classes was decided to the 

lowest value of BIC: 

       (5.8) 

where n is the sample size, and P is the number of parameters, LL is the log-likelihood  

Finally, I assigned each patient to the class to which they most likely belonged in order 

to cluster patients within subgroups. 

• MLC Naïve Bayes 

After applying a latent class model to cluster patients into subgroups, I constructed an 

adaptive NB MLC classifier for each subgroup in order to predict all labels for unseen 
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patients. The NB method was adapted to deal with conditional relationships among 

the different labels. The aim of this method was to predict the values of all labels and 

discover whether the use of this, compared to multiple single class models, improves 

classification performance (by assuming conditional relationships among the different 

labels). The conditional probability of patient 𝑝𝑖 with relate to each class label 𝑝𝑖 is 

defined as follows: 

  (5.9) 

            (5.10) 

where 𝑁𝑗 is the number of values having the label 𝑙𝑗. 

(5.11) 

where 𝑁𝑘𝑗 is the total frequency with which values 𝑎𝑘 appear in individual cases in 

category 𝑙𝑗.  

When predicting patients who haven't yet been seen, NB was constructed based on 

the aforementioned parameters; label relationships were also taken into consideration. 

Using the conditional probability between the label and the features, I forecast the 

initial label. Additionally, I used the conditional probability between another label and 

the features, as well as the conditional probability between this label and the first label, 

to predict it. Thus, I calculated the average posterior probability of patient 𝑝𝑖 in each 

class as follows: 

(5.12) 

Thus, after calculating the label values for cases in which the class was positive, I 

calculated the average posterior probability. If the conditional probability for label j was 

greater than or equal to the mean posterior probability, the value of label j was 

considered positive; otherwise, it was not. I repeated the same procedure for cases in 

which the class was negative. I returned the values of labels with the highest posterior 
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probability. As a result, my suggested method combines LCA, which clusters patients 

into groups, with the NB MLC classifier in order to predict multiple labels, as NB has 

been shown to be an effective classifier in multilabel learning.  

The following pseudocode explains the steps used in order to build the new algorithm. 

Algorithm 2 Pseudocode of Latent Naïve Bayes Multi Label Classification  

Input: Dataset of Patient Features and Labels.  

Output: Clusters of patients and a multilabel NB model for each group. 

Begin 

1: For i = 1 to 10  

2: Using 10-fold cross validation, divide the data into 90% training data and 10% test 
data.  

3: Build latent class model for the training data using EM algorithm.  

4: Output LC (patient groups).  

5: Build the multi-label naïve Bayes model for each group.  

6: End for  

7: For j = 1 to test data  

8: Assign each test data example to one of the above groups using the scoring formula 
(membership formula). 

9: Compute the conditional probability and features for each label.  

10: Compute the average posterior probability. 

11: End for  

12: Compute accuracy and other metrics. 

End 
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The following flowchart outlines the basic steps of my proposed method. 

 

Figure 5.1: Flowchart of Latent Class MLC Naïve Bayes Method 
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5.6 Datasets  

I explore two datasets in this chapter: SSc, and coronary heart disease in traditional 

Chinese medicine. 

SSc Dataset 

This dataset was provided by the Royal London Hospital (see chapter 3), and I used 

it to implement my new method (latent class MLC NB). This dataset contained 677 

patients.  

Coronary Heart Disease 

This dataset was collected by Shanghai University, and it was designed for multilabel 

learning tasks. The data contained 555 patients, 265 men and 290 women. The names 

of the features and their data types are listed in the table below. The experiments 

performed on the aforementioned datasets using the aforementioned proposed 

method are described in the following section. 
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Table 5.5: Coronary Heart Disease Variables 

 

5.7 Experiments  

This section explores experiments performed to execute my proposed method using 

the SSc dataset and the coronary heart disease dataset. The proposed method 

attempts to jointly predict T2RIP, time to develop pulmonary fibrosis (PF), and time to 

develop pulmonary hypertension (PAH; see chapter 3). I selected all patients from this 

dataset who developed at least one of the above classes within the first 5 years and 

all patients who did not develop at least one within 5 years. The predicted classes 

have two values: ‘1’, representing patients who could have an event before 5 years, 

and ‘2’, representing patients who could have an event after 5 years. The suggested 

method was used to predict all labels of the previously described coronary heart 

disease dataset.  
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The purpose of this chapter is to describe the implementation of the prosed model, 

analyse it, and compare it to other common models. I also attempt to contrast my 

model with further MLC techniques. Based on my experiences and the proposed 

method described in the preceding section, I thus investigated the following: 

1- Using a standard single-label NB model to predict classes as well as with LCA 

model.  

2- Using a multilabel NB classifier to predict classes.  

3- Using the standard multilabel transformation methods BR and CC, which were 

applied using standard logistic regression (LR) and SVM, to predict classes.  

4- Using my proposed method, latent class NB MLC, to predict classes.  

All of the above have been used to investigate the SSc dataset to predict T2RIP, time 

to develop PAH, and time to develop PF. Additionally, I performed the following 

analyses:  

1- Single-label sensitivity analyses. 

2- Multi-label sensitivity analyses.  

3- Analysis of the optimal number of clusters.  

4- Comparison of the proposed method to other MLC methods.  

5- Data analysis of the discovered groups within the clinical context. 

The results of these experiments, which I carried out using MATALAB software, are 

examined in the next section. 

5.8 Results 

After describing the suggested method and the experiments I performed for this study, 

I describe the results of my experiments in this section. Boxplots, a straightforward 

graphical tool, are used to interpret, compare, and communicate my results. This 

shape, which I use to display the error rate in my research, also displays the minimum 

value, maximum value, and median of a set of data. Additionally, the significance 

difference between two means was compared using t-tests. In addition to using single-

label evaluation metrics, I employed multilabel evaluation measures to evaluate my 

model and compare it to other MLC methods. 
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A) Systemic sclerosis 

I ran the standard NB model, the multilabel NB (MLNB) classification model, the 

standard NB with latent class (LCNB) model, and multilabel NB classification with 

latent class (LCMLNB) model in order to predict T2RIP, time to develop PF, and time 

to develop PH. The following plots display the results of these methods on all of the 

test data. They show that the MLC with latent class model performed better than the 

standard NB and MLC models. My method, LCMLNB, performed better than all other 

algorithms. It performed significantly better than standard NB, with p equal to 0.035 (< 

0.05) for T2RIP, p equal to 0.022 (< 0.05) for time to develop PF, and p equal to 0.037 

(< 0.05) for time to develop PAH. These results demonstrate that the error rate of the 

classifier decreases when patients are sorted into groups with comparable 

characteristics, as opposed to supervised learning methods. In addition, results 

indicate that the error rate of the classifier decreases when the relationships among 

the labels are considered. 

 

Figure 5.2: Comparison Between Latent Class Multi Label Classification Model With Other Methods to Predict 

Time to Death 
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Figure 5.3: Comparison Between Latent Class Multi Label Classification Model With Other Methods to Predict 
Time to Develop PF 

 

Fig 5.4: Comparison Between Latent Class Multi Label Classification Model With Other Methods to Predict Time 
to Develop PAH 

Additionally, in order to demonstrate whether my method predicted the classes of SSc 

more successfully than other methods, I computed performance metrics, as shown in 

Table 5.3. The results showed that my proposed method, LCMLNB, improved 

performance. In other words, LCMLNB improved prediction of which patients could 

die, develop PF, or develop PAH during the first 5 years compared to other methods, 
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as measured by the recall metric. This could be due to the fact that my method 

successfully clustered patients into distinct groups, as well as the fact that the 

relationships among the labels affect performance metrics. These results demonstrate 

that the use of a latent class model that clusters patients into groups while also 

accounting for the relationships among the predicted classes enhances the model's 

performance. 

Table 5.6: Metrics Measures Results for NB, MLNB, LCNB, and LCMLNB for Time to Death Class, Time to Develop 
PAH Class, and Time to Develop PF Class 

 

The aforementioned outcomes demonstrate how well my model performed for each 

single label separately, but in order to assess a multilabel classifier, I had to employ 

other metrics (described previously for multilabel classifier) that were assessed using 

each example (i.e. per patient for all labels predicted together). In order to employ 

these metrics, I also implemented other multilabel classifiers that were based on 

transformation methods. I applied BR and CC approaches using standard LR and 

SVM to predict classes. As stated previously, implementing these approaches is 

straightforward. The BR approach seeks to divide the dataset into numerous datasets, 

each of which has a unique label. Standard LR and SVM were applied to each sub-

dataset to predict every label, and the results were the union of all labels. By contrast, 

CC follows an identical procedure, except each sub-dataset uses the previous labels 

as features to predict the current label. Table 5.4 outlines the multilabel performance 

metrics results for my proposed model as compared to other multilabel classifiers. It is 

evident that CC classifiers outperformed BR classifiers; this is because CC classifiers 

take label dependencies into account. However, my model outperformed CC 

classifiers because it considers label dependencies and the fact that patients were 

clustered into distinct groups. 
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Table 5.7: Metrics Measures Results for BR-Logistic Regression, BR-SVM, CC-Logistic Regression, CC-SVM, and 
LCMLNB for MLC Time to Death Class, Time to Develop PAH Class, and Time to Develop PF Class 

 

Additionally, it is necessary to discover the meaning of the latent class model in my 

dataset. In my model, the latent class model split the dataset into three groups. All 

patients within the same group have comparable personalities. This dataset was 

separated into three groups due to the fact that the BIC (see section 5) was lowest 

when the dataset was divided into three groups. The following table displays the BIC 

values for several scenarios in which the dataset was partitioned into 3, 4, 5, 6, 7, or 

8 clusters. 

Table 5.8: Bayesian Information Criteria (BIC) Values for Different Clusters in SS Dataset 

 

The patients were separated into three groups with cluster sizes of 47%, 31%, and 

22%. The following tables show the percentage difference for blood test results and 

antibody information among group members. They show that most of the patients in 

group 2 experienced skin thickening and were female. It can be seen from the results 

that Hb levels were lower in group 3 than in the other groups, while Cr levels were 

higher. Finally, regarding lung function, results showed that FVC and DLCO were 

higher in group 2 than in the other groups. All these results can help clinicians to better 

identify individual patients’ characteristics in order to personalise their care plans whilst 

improving prediction of long-term outcomes. 

Table 5.9: Subset and Gender Variables Distribution as a Percentage Within Groups 
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Table 5.10: Distribution of Hb and Cr Variables as Values Within Groups 

 

The following graph shows that the percentage of group 1 patients who developed 

both PAH and PF and died within 5 years was higher than for the other groups. 

Additionally, the percentage of patients in groups 2 and 3 who developed PF was low 

compared to those who died or developed PAH. 

 

Figure 5.5: Patients Classes Distributions Within the Groups 

B) Coronary heart disease 

I re-applied the standard NB model, the MLNB classification model, the LCNB model, 

and the LCMLNB model in order to predict coronary heart disease labels (see Table 

5.2). This dataset was designed by Guo-Ping et al. for use in multilabel learning tasks 

(Liu et al., 2010). I used this dataset to validate my proposed method. The resulting 

performance metrics of my proposed method are shown in Table 5.5, along with 

comparisons to other approaches to predicting deficiencies of heart qi syndrome (QI), 

heart yang syndrome (YA), and heart yin syndrome (YI). These results were computed 

separately for each label. When a multilabel classifier and latent class model were 
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taken into account, the performance metrics per label generally increased, as shown 

in Table 5.8.  

Table 5.11. Metrics Measures Results for NB, MLNB, LCNB, and LCMLNB for QI, YA, and YI Classes 

 

Again, the aforementioned results illustrate how well my model worked for each single 

label separately. However, in order to evaluate a multilabel classifier, I utilised 

additional metrics that were evaluated using each case (i.e. per patient for all labels 

predicted together). As in the SSc dataset, I implemented BR and CC approaches, 

which were applied using standard LR and SVM, to predict these labels together. 

Table 5.9 outlines the multilabel performance metrics results for my proposed model 

in comparison to other multilabel classifiers. The outcomes demonstrate improvement 

from one classifier to the next. Additionally, the outcomes demonstrate that my 

suggested strategy outperforms other methods; additionally, it is a transparent model 

that could offer clinicians useful information when patients are clustered. 

Table 5.12. Metrics Measures Results for BR-Logistic Regression, BR-SVM, CC-Logistic Regression, CC-SVM, 

and LCMLNB for MLC QI, YA, and YI Classes Together 

As for the SSc dataset, it was necessary to determine the meaning of the latent class 

model in my dataset. The latent class model in my model split the dataset into four 

groups. All patients from the same group had comparable personalities. This dataset 

was separated into four groups due to the fact that the BIC was lowest when the 

dataset was divided into four groups. Table 5.10 presents the BIC value for several 

clusters.  
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Table 5.13: Bayesian Information Criteria (BIC) Values for Different Clusters in Coronary Heart Disease Dataset 

The patients were separated into three groups with cluster sizes of 45%, 25%, 21%, 

and 9%. The following tables show the percentage of occurrence of the symptoms 

within the groups. They demonstrate that group 1 had nearly no individuals with the 

symptoms chest front, migraine pain, fixed discomfort, or stabbing pain. Additionally, 

over half of the individuals with chest pain belonged to group 3. All of these discoveries 

can help doctors better comprehend a patient's condition and improve the care they 

provide.  

Table 5.14: Percentage of Occurrence of the Symptoms Within the Groups 

Additionally, the following table displays the percentage of occurrence/non-occurrence 

of the labels for each group. It demonstrates that patients in group 4 were less likely 

to experience QI than patients who did not experience QI. Thus, clinics could find this 

information helpful for individualised diagnosis and treatment. 

Table 5.15: Percentage of Occurrence/Non-occurrence of the Labels (QI, YA, and YI) for Each Group 
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5.9 Conclusion  

In this chapter, I proposed an ML model that can handle multiple labels that may arise 

in real-world cases, where patients may have multiple diseases at once. This model 

utilises the power of LCA to find hidden factors by dividing patients into groups. For 

each group, the adaptive MLC NB model was used to predict all labels simultaneously. 

Therefore, this chapter first discussed the significance of MLC and LCA models in 

healthcare. It also examined the definition of MLC and the approaches utilised to 

address this issue as well as the definition of LCA. Second, this chapter described the 

proposed method, the experiments I conducted, and the datasets I used. Finally, this 

chapter concluded with a presentation and interpretation of the outcomes of my 

experiments. The results showed that my model outperformed the other methods; 

additionally, it is a transparent model that could aid in providing individualised clinical 

care. My approach uses a naïve Bayes algorithm adaptation method to assist in the 

prediction of multiple diseases at the same time. Thus, it is essential to address new 

machine learning algorithm adaptation methods that deal with MLC issues. My 

techniques in Chapters 4 and 5 addressed sub-disease identification by grouping 

patients into clusters and constructing supervised machine learning in each group. 

These methods have been used with various healthcare datasets, and it has been 

demonstrated that clustering patients into robust groups improves model performance 

and aids in developing personalised medicine. However, AI models may become 

obsolete over time, resulting in a considerable performance decline known as concept 

drift. Consequently, it is vital to address the issue of concept drift and the approaches 

that may be used to monitor and identify concept drift in AI models. In the next chapter, 

I introduce the problem of concept drift as well as the methods that can be used to 

monitor machine learning algorithms over time. These strategies will avoid concept 

drift by continuously checking the ML model and updating it when drift is observed. 
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Chapter 6 

 Concept Drift in Healthcare 

 

6.1  Introduction  

As artificial intelligence (AI) and particularly ML have matured as disciplines, the 

availability of large medical datasets means that algorithms are being designed that 

can model complex medical domains and offer great potential to clinical healthcare. 

However, utilising models trained solely on historical data carries significant hazards, 

as they may become obsolete over time owing to concept drift. Therefore, this chapter 

first examines the significance of concept drift and its effects on healthcare AI models. 

It describes the concept drift phenomenon, its different types, and the detectors that 

can be used to address this issue. Second, this chapter describes the proposed 

updated concept drift method (DDM) employed in my research to detect concept drift 

as well as the datasets and experiments I implemented. Finally, the findings of the 

application of the DDM approach to the simulated, SSc datasets, and synthetic 

COVID-19 are covered and interpreted in this chapter.  

6.2  Overview 

The healthcare sector has already incorporated ML technologies to reap the enormous 

benefits of modern science and technology. Medical and surgical computers are being 

taught, with the aid of advanced supervised learning and ML models, to flawlessly 

conduct a wide range of medical procedures, including diagnostic, therapeutic, and 

surgical procedures. However, the growing application and adoption of ML models in 

the health sciences might create the risk of concept drift over time due to changes in 

the characteristics of presenting patients. Additionally, this drift may be gradual and 

caused by factors such as modifications to national health policy, or it may be abrupt 

and caused by factors including those associated with the COVID-19 pandemic 

(Duckworth et al., 2021). In their study, Beyene et al. (2015) emphasised the issue of 

prediction models declining in performance due to changing circumstances, such as 

when a patient requiring surgery is transferred from primary to secondary care. They 

hypothesised that effectively managing concept drift could improve surgical prediction 

accuracy and that this could be done using concept drift handling methods (Beyene et 

https://link.springer.com/article/10.1007/s10115-014-0756-9#auth-Ayne_A_-Beyene
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al., 2015). According to Hamish Huggard et al. (2020), changes in policy, financing, 

staff, or other factors could impact the performance of the ML model, which was trained 

to predict triage of care patients’ decisions. To address this problem, they developed 

a new drift detection algorithm that monitors ML performance, which could be useful 

in any area (Hamish et al.,2020). However, provided a method for dynamically 

presenting sequential data features that aims to enhance the understanding of concept 

drift, which leads to a significant decline in classification performance. Thus, in medical 

applications, the concept drift problem, which degrades ML model performance over 

time, must be addressed regularly in order to ensure that predictions and diagnoses 

are safe and accurate. 

6.3 Concept drift definition and types 

Typically, ML builds static models using historical data. However, these models may 

become unreliable over time because real-world applications undergo continual 

changes (Webb et al., 2017). In other words, concept drift refers to hidden changes in 

the relationship between the input and output data that affects the performance of 

supervised learning models. Concept drift occurs when the data distribution changes 

due to a non-stationary environment. Drift can be either real drift (concept drift) or 

virtual drift. Real concept drift means that the conditional distribution of the target 

variable (i.e. prediction variable) changes without changing the distribution of the input 

data. A real-world example of concept drift is a change in human behaviour. ML 

models that predict hospitalisation, for example, could be ruined by a real-world 

change, such as the COVID-19 pandemic. Virtual drift, by contrast, occurs when the 

distribution of input data changes without affecting the target variable (Gama et al., 

2014). The following image depicts real concept drift and virtual drift. The first image 

shows how the original data is distributed. The target variable decision boundary 

changes during actual concept drift but not virtual concept drift. 



128 

 

 

Figure 6.1: Types of Drift (Gama et al., 2014) 

Lu and colleagues (2018) clarified that concept drift can be sudden, gradual, 

incremental, or reoccurring. When the performance of a ML model drops dramatically 

in a short period of time, this is known as sudden drift. The COVID-19 pandemic, for 

example, resulted in a significant drift in consumer behaviour within a very short time. 

It takes a considerable amount of time for incremental and gradual drift to fully result 

in the emergence of a new concept. The requirements for offering a loan, for instance, 

change gradually over time. Reoccurring drift happens when ML models are accurate 

at some times but not others. Some ML models, for example, are accurate throughout 

the summer but not during the winter. The following figure explains concept drift 

changes over time (Lu et al., 2018).  
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Figure 6.2: Concept Drift Changes Over Time (Lu et al., 2018) 

As I examined the problem of concept drift, which affects ML models, I found that the 

biggest challenge is preventing its occurrence. One way to address concept drift is to 

build an initial ML model using historical data and update the model only when concept 

drift occurs. This approach uses concept drift detectors such as DDM, early drift 

detection method (EDDM), and ADWIN to monitor model performance and act in the 

event of concept drift. However, there are approaches for updating the model by 

adding new data to it on a regular basis (e.g. monthly or annually). There are also 

techniques for weighing the importance of input data, with recent data taking 

precedence. 

6.4 Concept drift detectors 

A variety of strategies can be used to detect concept drift. However, there are a few 

popular algorithms that I highlight in my research. 

• Drift Detection Method (DDM) 

The drift detection method (DDM) is one of the concept drift detection approaches that 

has already been established to detect concept drift. Gama et al. (2014) introduced 
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this approach for dealing with streaming data. As long as data distribution is stationary, 

this approach assumes that the overall error rate will drop or remain constant for 

incoming instances. It employs a base learner to categorise incoming instances, and 

the classification result is used to calculate the base learner's online error rate. A 

supervised ML model predicts the class of each incoming instance and compares the 

predicted class value to the actual class value as it becomes available. Basically, the 

classification model shows whether or not the incoming instance was predicted 

correctly. If the incoming instance was predicted accurately, the overall error rate 

decreases, whereas if it was predicted inaccurately, the overall error rate increases. 

Consequently, a significant increase in the error rate signals concept drift. For this 

approach to be implemented, the error rate and standard deviation for each incoming 

instance must be computed. When the error rate and standard deviation reach a 

certain level (i.e. alert level), this signals the possibility of future concept drift. When 

the error rate and standard deviation reach a certain higher level (i.e. drift level), this 

indicates that concept drift has occurred. This method is effective for detecting both 

abrupt and gradual changes (Gonçalves et al., 2014). I utilised this technique in my 

research to handle batches of data, as opposed to streaming data, because it is a well-

established algorithm for detecting concept drift. 

• Early Drift Detection Method (EDDM) 

Baena-Garca et al. (2006) created the EDDM approach to improve the identification 

of gradual concept drift. This algorithm works in the same way as DDM. However, 

instead of calculating the overall error rate of each incoming instance, it computes the 

average distance between two errors. Put differently, this technique calculates the 

distance between two instances that were incorrectly predicted. Thus, error rate and 

standard deviation must be computed. When the average error rate and standard 

deviation reach a certain level (i.e. alert level), this signals the possibility of future 

concept drift. When the error rate and standard deviation reach a higher certain level 

(i.e. drift level), this indicates that concept drift has occurred. This method takes 

concept drift into account when at least 30 errors have occurred. This strategy allows 

for the early detection of incremental changes, even if they occur slowly (Baena-Garca 

et al., 2006). 
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• Adaptive Windowing (ADWIN) 

Albert Bifet and Ricard Gavald`a (2007) described a novel method for addressing 

distribution change and concept drift when acquiring knowledge from data sequences 

that may change over time. This algorithm, which compares the distributions of two 

detection windows, is called adaptive windowing (ADWIN). ADWIN effectively 

maintains a size window of recent items, ensuring that data distribution remains 

unchanged. By comparing the average of two sub-windows, this approach reveals 

drift. The window expands so long as there is no concept drift (Bifet A & Gavalda R, 

2007). 

• Paired Learners 

Whereas DDM and EDDM concentrate on the error rate of an ML model, ADWIN 

compares two windows' distribution data to detect drift. The paired learners technique 

detects drift differently. This method is based on two learners: a stable learner and a 

reactive learner. The stable learner produces predictions based on all of its prior 

experience, whereas the reactive learner makes predictions based on its prior 

experience that occurred within a recent time window. Concept drift occurs when the 

model performance of the stable learner is inferior to that of the reactive learner for 

the same time window. When this happens, the stable learner must be updated (Bach 

& Maloof, 2008). The methods described above are often used to identify drift. The 

next stage is to identify a method for updating the model; this is also known as concept 

drift adaptation. 

6.5 Concept drift adaptation  

Concept drift adaptation refers to the procedures utilised to update a model once 

concept drift has occurred. The simplest, most straightforward response to concept 

drift is to retrain the model with the most recent data. This strategy requires a detection 

method to determine when the model should be updated. Additionally, a window that 

sorts the most recent data is required. The second drift adaptation strategy is to use 

an adaptive model, which can adjust itself based on the changing data, rendering 

retraining the model with the most recent data unnecessary. Such models are able to 

update themselves when data distributions change. Finally, using adaptive ensembles 

by using a set of learners is another concept drift adaptation strategy. Using specified 
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voting rules, the outputs of each base classifier are combined to predict the newly 

arriving data. This method functions either by extending traditional ensemble methods 

or by establishing specific adaptive voting rules to address concept drift occurrence 

(Feng Gu, 2019). 

6.6 Methodology 

In the same way that medical devices require approval before being released to the 

public, AI models must also meet certain criteria in order to be considered safe for use. 

Performance metrics like sensitivity, specificity, and recall, for example, must be 

sufficiently high with low variability. Additionally, underlying biases for certain sub- 

populations must be identified and/or removed. However, once a piece of AI-based 

software has been approved, it must also be monitored to ensure that its predictions, 

diagnoses, and recommendations continue to operate safely for the population it was 

designed for. Hence, concept drift affecting the performance of ML models must be 

addressed by building a system to monitor ML performance and by updating such 

models when concept drift occurs. In this chapter, I investigate numerous batches of 

COVID-19-related primary care data released by the UK's Clinical Practice Research 

Datalink (CPRD). The CPRD is funded by the UK Department of Health’s 

observational and interventional research service. It utilises connected datasets and 

the UK’s health system to provide academics with access to anonymised, high-quality 

primary and secondary healthcare data (Clinical Practice Research, 2022). In addition, 

I investigate a dataset of SSc patients obtained from the Royal London Hospital (see 

chapter 3).  

Here, it should be noted that drift can emerge in a variety of ways: 

Performance drift: This refers to a change in the statistical performance of a model 

such as its accuracy, sensitivity, or recall.  

Structural shift: This refers to a fundamental change in a model that is updated with 

new data on a regular basis, regardless of whether performance changes.  

Class shift: This refers to a change in classes' underlying distribution. 

Though all types of drift are of interest, the focus of this chapter is on performance 

drift, as this is regulators’ primary concern. Hence, I investigate a well-established drift 
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detection approach that was first developed for streaming data but was modified for 

use with batch data here. I discuss the effects of drift detection on both performance 

metrics and model complexity. Additionally, I explore the effects of detection on abrupt 

drift and gradual drift.  

6.6.1 Proposed Methods Protocol 

Gama et al. (2004) created the DDM to assess model error rates and detect concept 

drift (see chapter 3). The DDM works based on the principle that a classifier’s overall 

error rate remains constant unless concept drift occurs; in this instance, the error rate 

increases. To demonstrate this effect, I computed the classification error rate (𝑝𝑡) and 

the standard deviation (𝑠𝑡). Additionally, I held that 𝑝𝑚𝑖𝑛 was the minimum error rate 

recorded for the classifier, and 𝑠𝑚𝑖𝑛 was its standard deviation. Theoretically, 

𝑝𝑚𝑖𝑛 and 𝑠𝑚𝑖𝑛 are two updated variables that work under the following conditions:  

𝑝𝑡 +  𝑠𝑡  <  𝑝𝑚𝑖𝑛 +  𝑠𝑚𝑖𝑛  

In the above condition, the model is operating normally with no alarms. 

 𝑝𝑡 +  𝑠𝑡  ≥  𝑝𝑚𝑖𝑛 +  2 ∗ 𝑠𝑚𝑖𝑛 

In the above condition, future drift is possible, and the model is now in the warning 

zone. 

𝑝𝑡 +  𝑠𝑡  ≥  𝑝𝑚𝑖𝑛 +   3 ∗ 𝑠𝑚𝑖𝑛 

In the above condition, drift has occurred, and the model must be updated.  

The error rate 𝑝𝑡 was calculated as follows: 

𝑝𝑡 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 
     (6.1) 

 

𝑠𝑡 =  √
𝑝𝑡(1−𝑝𝑡)

𝑛
    (6.2) 

where n is the total number of patients.  

In this chapter, I adapted and implemented the DDM approach for use with batch data 

to monitor the performance of a random forest model. The error rate and standard 

deviation were computed for every incoming patient per batch. According to my 



134 

 

proposed method, as long as the overall error rate decreases or remains constant, the 

model is not updated. When the overall error rate hits the drift level, the model is 

retrained by adding data from the warning batch to the drift batch to the new model 

(i.e., data from the warning level is added to the drift level). As explained in the 

following section, this approach was applied to the SSc dataset, simulated datasets, 

and the COVID-19 dataset. Because DDM focuses only on the error rate, I also 

investigated the effect of recall metric on drift detection.  

This method, which explores the effect of recall metric on drift detection, is called DDM-

OCI, which is a variant of DDM. This method focuses on minority class recall. As a 

result, instead of monitoring the error rate, as DDM does, DDM-OCI monitors recall. 

Essentially, this method detects drift when recall drops significantly. To implement this 

method, I computed the probability that correctly predicted patients had the true label 

(𝑝𝑡) and the standard deviation (𝑠𝑡) for every incoming patient per batch. DDM-OCI is 

nearly identical to standard DDM. The only difference is that DDM-OCI aims to 

maximise a model's recall instead of minimising error. Additionally, I held that 𝑝𝑚𝑎𝑥 

was the maximum 𝑝𝑡  recorded of the classifier, and 𝑠𝑚𝑎𝑥 was its standard deviation. 

Theoretically, 𝑝𝑚𝑎𝑥  and 𝑠𝑚𝑎𝑥 are two updated variables that work under the following 

conditions (Wang et al., 2013):  

𝑝𝑡 −  𝑠𝑡  ≥  𝑝𝑚𝑎𝑥 −   𝑠𝑚𝑎𝑥  

In the above condition, the model is operating normally with no alarms. 

𝑝𝑡 −  𝑠𝑡 <  𝑝𝑚𝑎𝑥 −  2 ∗ 𝑠𝑚𝑎𝑥 

In the above condition, future drift is possible, and the model is in the warning zone. 

𝑝𝑡 −  𝑠𝑡 <  𝑝𝑚𝑎𝑥 −   3 ∗  𝑠𝑚𝑎𝑥 

In the above condition, there is a drift, and the model must be updated.  

The error rate 𝑝𝑡 is the probability that correctly predicted patients have the correct 

label: 

𝑝𝑡 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝑡𝑟𝑢𝑒 𝑙𝑎𝑏𝑒𝑙  

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦−𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠
     (6.3) 
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𝑠𝑡 =  √
𝑝𝑡(1−𝑝𝑡)

𝑛
    (6.4) 

𝑛: 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 − 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 

As with DDM, I implemented DDM-OCI for usage with batch data to monitor the 

performance of a random forest model. The probability that correctly predicted patients 

had the true label and standard deviation was computed for every incoming patient 

per batch. According to my proposed method, as long as recall increases or stays 

constant, the model is not updated. When the recall drops the drift level, the model is 

retrained by adding data from the warning batch to the drift batch to the new model 

(i.e., data from the warning level is added to the drift level).  

In this study, due to the imbalanced data wherein the classes were not represented 

equally, I implemented under-sampling to ensure the balance of both classes in order 

to train the random forest model. This method works by randomly selecting a number 

of patients from the majority class that is equal to the number of patients from the 

minority class in order to balance the training dataset. The under-sampling method is 

illustrated in figure 6.3, which displays how the training dataset was balanced after the 

under-sampling procedure to avoid bias towards the majority class. 

 

Figure 6.3: Under-Sampling Method to Balance Imbalanced Training Dataset 
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In summary, the above approaches, DDM and DDM-OCI, were implemented in this 

study to monitor the performance of the random forest model (see chapter 3) in 

classifying COVID-19 and SSc patients after under-sampling was used to balance the 

training dataset. In addition, these methods were applied to two simulated datasets, 

one with abrupt drift and the other with incremental drift, as explained in the following 

section. DDM and DDM-OCI are crucial tools for maintaining ML model performance 

over time. 

Figures 6.4 and 6.5 provide a summary of the approaches proposed in this study.  

 

Figure 6.4: DDM Algorithm 
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Figure 6.5: DDM-OCI Algorithm 

 

6.6.2 Datasets  

I explored three datasets in this chapter: a simulated dataset, a COVID-19 dataset, 

and an SSc dataset. 

• Simulated Dataset  

Using Agrawal's data generator, I created two datasets (Agrawal et al., 1993), which 

contained six numerical features, three categorical features and one binary class. In 

addition, each dataset contained 60,000 instances. In order to validate my suggested 

approach, I created sudden drift for the first dataset and incremental drift for the 
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second dataset. In addition, each dataset was divided into 12 batches. In the following 

sections, the experiments I conducted with these datasets and my findings are 

described. 

• Synthetic COVID-19 Dataset 

This synthetic COVID-19 dataset was derived completely from authentic, anonymised 

primary care patient data retrieved from the CPRD Aurum database, which was 

provided by the UK's CPRD. This synthetic dataset contained information on patients 

who sought primary care with symptoms that could potentially be related to COVID-

19. This data contained information on both social and clinical risk factors. The 

following table uses symptoms, drugs, and demographic information as features in this 

dataset, which includes 779,546 patients. Additionally, this dataset, which contained 

information collected from December 2019 to April 2021, was divided into monthly 

batches. 

Table 6.1: Synthetic COVID-19 Dataset Features and Data Type 

 

• SSc Dataset 

This dataset, which was provided by the Royal London Hospital (see chapter 3), was 

used to detect concept drift. This dataset contained information on 677 patients and 
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was divided into 6 batches. The experiments performed on the aforementioned 

datasets using the aforementioned proposed methods are explained in the following 

section. 

6.6.3 Experiments 

This section describes the experiments conducted in order to detect drift in the random 

forest model, which may become outdated when new data becomes available over 

time. Initially, as mentioned previously, I investigated the implications of drift detection 

using two distinct performance measures: error rate, using the standard DDM rate, 

and recall, using the DDM-OCI. In addition, I investigated whether drift is abrupt and 

occurs within a short time (e.g. changes associated with using a new clinical metric) 

or whether it is gradual and occurs slowly over time (e.g. changes associated with an 

ageing population). Furthermore, I first implemented a simple logistic classifier, then a 

NB model, and ultimately a random forest model, the complexity of which increased 

as the number of parameters increased. I implemented a number of models because 

complex models are likely more susceptible to overfitting, resulting in the discovery of 

more erroneous drift points. 

• Simulated Datasets 

To classify the class for both simulated datasets, I applied the random forest model 

(see chapter 3) to the first 5,000 instances (first batch). As previously mentioned, these 

datasets were divided into batches. In accordance with my experiment, I tested the 

outcome model on the second batch and employed the proposed drift detection 

approaches to detect drift. The model was not updated if there was no drift, and it was 

tested on the following batch. Nonetheless, a new model was taught using fresh data 

if drift was detected. The process of drift detection method assessment is depicted in 

Figure 6.4. 

• SSc Dataset  

Using this dataset, I implemented the random forest model to classify death (to classify 

patients who died or not) and PAH (to classify patients who developed PAH or not). In 

accordance with my experiment, I implemented the first random forest model using 

the first batch (patients’ data from 1995 to 1998). I tested the outcome model on the 
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second batch and employed the proposed drift detection approaches to detect drift. 

The model was not updated if there was no drift, and it was tested on the following 

batch. The process of drift detection method assessment is depicted in Figure 6.4. 

• Synthetic COVID-19 Dataset  

Using this dataset, I implemented the random forest model to classify the death feature 

and determine whether patients were dead or alive. Furthermore, because the majority 

class ‘death feature’ was linked to living patients, an under-sampling method, as 

described above, was implemented to prevent bias towards living patients. When the 

random forest model was implemented, the training dataset was balanced so that the 

number of living patients was equal to the number of dead patients. As previously 

mentioned, this dataset was divided into monthly batches. In accordance with my 

experiment, I built the first random forest model to the patients from December 2019 

until March 2020. I tested the outcome model on the April 2020 batch and employed 

the proposed drift detection approaches. The model was not updated if there was no 

drift, and it was tested on the following batch. However, a new model was taught using 

the fresh data if drift was detected. The process of drift detection method assessment 

is depicted in Figure 6.6. 
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The main protocol I followed to carry out my experiments is illustrated in Figure 6.6.  

 

Figure 6.6: Main Protocol Used in My Experiments 

Figure 6.7 displays the implementation of the DDM-OCI approach. 
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Figure 6.7: DDM-OCI Protocol 

Finally, figure 6.8 illustrates the key methodology I utilised to assess whether an abrupt 

or gradual drift strategy should be used. 
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Figure 6.8: Types of Drift Implemented 

Following the discussion of the experiments I conducted in this study, the section 

below presents the results of these methods when applied to my datasets. 

6.7   Results 

• Simulated Data Results  

As previously stated, one simulated dataset simulated abrupt drift, and the other 

dataset simulated incremental drift. For these simulated datasets, the performance of 

a random forest model based on the error rate is depicted in the following figures. New 

batches of data were introduced over time to test performance, and this shows the 

effect an outdated model has on the error rate. The figure on the left (Figure 6.9a) 

clearly illustrates that there was a significant change after batch 5, when the error rate 

increased dramatically. In addition, the figure on the right (Figure 6.9b) clearly 

indicates that the error rate gradually increased after batch 3. 
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Figure 6.9: a) Performance Drift (Error Rate) for a Simulated Abrupt Change b) Performance Drift (Error Rate) for 

a Simulated Incremental Change for Incoming Batches of Data Created Over Time 

The proposed approaches to drift detection were applied to these two datasets in 

accordance with the previously described experimental protocol.  

The following figures (Figure 6.10 and Figure 6.11) illustrate the performance of an 

updated random forest model based on the DDM method, which utilises error rate to 

detect drift, and the DDM-OCI, which utilises recall to detect drift. According to my 

findings, the batch observed drift is depicted as vertical lines. 

Figure 6.10a shows the drift detected by the DDM method on the gradual simulated 

dataset. The random forest model was created using the initial 5,000 cases and tested 

on subsequent batches. The DDM detected the first drift in batch 5, as shown in figure 

6.10a. As a result, the random forest model was updated using the fresh batch of data 

and tested on subsequent batches. Additionally, the DDM detected the second 

instance of drift in batch 6, as shown in figure 6.10a. As a result, the random forest 

model was updated using the fresh batch of data and tested on subsequent batches. 

Figure 6.10a clearly shows a sudden improvement in error rates following this update. 

The last instance of drift was detected in batch 11, as shown in figure 6.10a.  

Figure 6.10b shows the drift that was detected by the DDM-OCI method on the gradual 

simulated dataset. The random forest model was created using the initial 5,000 cases 

and tested on the subsequent batches. Like DDM, DDM-OCI found drift in batches 5, 

6, and 11. However, as illustrated in figure 6.10b, the DDM-OCI discovered further 

drift in batch 8. 
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Figure 6.10: a) DDM Method on Incremental Drift b) DDM-OCI Method on Incremental Drift 

Figure 6.11a demonstrates the drift detected by the DDM method on the abrupt 

simulated dataset. Like the incremental simulated dataset, the random forest model 

was created using the initial 5,000 cases and tested on subsequent batches. Figure 

6.11a shows that DDM found only one instance of drift, in batch 5. As a result, the 

random forest model was updated with a new batch of data and tested on subsequent 

batches. As depicted in figure 6.9a, the DDM was unable to detect any more drift, and 

the error rate suddenly improved. Figure 6.11b shows the drift that was detected by 

the DDM-OCI method on the abrupt simulated dataset. The DDM-OCI detected the 

same and only drift found by the DDM in batch 5. As before, recall suddenly improved.  

 

Figure 6.11: a) DDM Method on Abrupt Drift b) DDM-OCI Method on Abrupt Drift 

For these simulated datasets, it appears that the choice of metric was irrelevant, as 

drift was appropriately identified using both recall and error. This may be due to the 

fact that the simulated data was balanced. The following section discusses the 

outcomes of my experiments with significantly imbalanced COVID-19 data.  



146 

 

• SSc Data Results 

The proposed approaches to drift detection were also applied to the SSc data in 

accordance with the previously described experimental protocol. Figures 6.12 and 

6.13 show the results of the DDM method applied to the SSc dataset. The random 

forest model was developed utilising patient data from 1995 to 1998 to classify death 

(i.e., patients who died or not) and PAH (i.e., patients who developed PAH or not). The 

model was tested on subsequent annual batches.  

Figures 6.12 and 6.13 illustrate the outcomes of the concept drift approach applied to 

this dataset in accordance with my experimental procedure. Figure 6.12 demonstrates 

a drift in 2002 due to a significant increase in the model error rate; therefore, the model 

was updated accordingly. The vertical line represents the drift in 2002. Figure 6.13 

demonstrates that this dataset was consistent across all batches when PAH 

classification was performed.  

 

 

Figure 6.12: DDM Random Forest Model on SSc Data to Classify Death 
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Figure 6.13: DDM Random Forest Model on SSc Data to Classify PAH 

 

Also, I have used DDM-OCI to classify death. Figure 6.14 demonstrates that there is 

a drift in 2002 due to a significant decrease in the model recall.  

 

Figure 6.14: DDM-OCI Random Forest Model on SSc Data to Classify Death 

I was unable to reimplement my models in chapters 4 and 5 to identify a drift due to 

the limited size of my dataset, and the models will need to be updated to handle 

concept drift so I can adjust my models in the future to account for it. Nonetheless, I 
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ran consensus clustering and latent class analysis on the data before and after the 

drift to determine whether any features had changed that might cause the drift. The 

following tables (Table 6.3 and Table 6.4) show the results of the consensus clustering 

method and latent class analysis for patients’ data before and after the drift. It was 

observed that the percentage of skin thickness increased in all groups after the drift 

compared to groups before the drift for both approaches. In the consensus cluster 

method, the mean value of Cr in group 3 for patients after the drift was lowest when 

compared to the other groups and the groups for patients before drift, as shown in 

Table 6.3. In addition, the mean value of DLCO in group 3 for patients after the drift 

was highest when compared to the other groups and the groups for patients before 

the drift. When the mean value of Cr in group 3 for patients after the drift was the 

lowest, the mean value of FVC in group 3 for patients after the drift was highest 

compared to other groups and the groups for patients before the drift. For the latent 

class analysis approach, the mean value of Hb was highest in group 3 for patients 

after the drift, while the mean value of Hb was lowest in group 3 for patients before the 

drift. As demonstrated in Table 6.4, when the mean of Cr was lowest in group 3 for 

patients after the drift, the mean value of FVC was highest in comparison to other 

groups and groups for patients before the drift. According to the results, these 

modifications might be the cause of identifying a drift in 2002, as the characteristics of 

patients before and after 2002 differ. In a nutshell, there are certain differences in the 

personality characteristics of the patients features in the groups before and after 2002 

that might cause AI models to drift. These variations might be the result of a change 

in how the hospital collects information or anything else.  
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Table 6.3 Consensus Clustering Method for patients’ data before the drift and patients’ 
data after the drift.  

Consensus Clustering 

 Before Drift 

(1995-2002) 

After Drift 

(2002-2003) 

Proportions Proportions 

Group1 Group2 Group3 Group1 Group2 Group3 

No Skin 

Thickening  

0.61 0.60 0.72 0.41 0.36 0.51 

Skin 

Thickening 

0.39 0.40 0.28 0.59 0.64 0.49 

Male 0.14 0.11 0.14 0.24 0.22 0.07 

Female 0.86 0.89 0.86 0.76 0.78 0.93 

 Means Means 

Group1 Group2 Group3 Group1 Group2 Group3 

Hb 12.67 12.74 12.61 12.90 12.57 13.16 

Cr 90.24 91.36 87.53 90.49 89.8 73.25 

FVC 87.24 90.33 88.58 88.52 89.02 97.25 

DLCO 64.87 65.80 63.43 65.13 69.62 71.50 

Age  47.90 48.68 48.17 49.23 44.20 49.33 
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Table 6.4 Latent Class Analysis Method for patients’ data before the drift and patients’ 

data after the drift.  

Latent Class Analysis  

 Before Drift 

(1995-2002) 

After Drift 

(2002-2003) 

Proportions Proportions 

Group1 Group2 Group3 Group1 Group2 Group3 

No Skin 

Thickening  

0.75 0.84 0.10 0.39 0.06 0.65 

Skin 

Thickening 

0.25 0.16 0.90 0.61 0.94 0.35 

Male 0.17 0.07 0.12 0.27 0.17 0.13 

Female 0.83 0.93 0.88 0.73 0.83 0.87 

 Means Means 

Group1 Group2 Group3 Group1 Group2 Group3 

Hb 12.71 12.93 10.86 12.86 12.49 13.23 

Cr 85.67 78.00 196.25 81.79 96.95 76.46 

FVC 82.71 99.32 93.63 72.65 99.96 107.11 

DLCO 61.35 69.95 72.74 51.79 82.00 75.70 

Age  46.93 51.27 47.48 46.67 45.45 52.95 

 

• COVID-19 Data Results 

The proposed approaches to drift detection were applied to this data in accordance 

with the previously described experimental protocol. Figures 6.15 and 6.16   illustrate 

how the choice of performance metric affects drift detection in COVID-19 data. The 
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random forest model was developed utilising patient data collected between 

December 19 and March 21 in order to predict risk of death based on symptoms, 

medications, and medical history. The model was then tested on subsequent batches.  

Figure 6.15 illustrates the drift detected by the DDM method on the COVID-19 dataset. 

The DDM detected drift in April 2020, as shown in figure 6.15. As a result, the random 

forest model was updated using the fresh batch of data and tested on subsequent 

batches. Additionally, the DDM detected a second instance of drift in May 2020, as 

shown in figure 6.15. As a result, the random forest model was again updated using a 

fresh batch of data and tested on subsequent batches. The outcome model remained 

steady until March 2021, when the DDM detected drift, and the model was updated 

with new data. The DDM immediately identified another instance of drift in April 2021. 

Figure 6.16 demonstrates the drift that was detected by the DDM-OCI method on the 

COVID-19 dataset. The DDM-OCI detected drift in August 2020, as shown in figure 

6.16. As a result, the random forest model was updated using a fresh batch of data 

and tested on subsequent batches. Additionally, the DDM-OCI detected a second 

instance of drift in October 2020, as shown in figure 6.16. Likewise, the DDM-OCI 

detected drifts in January and February of 2021. 

 

Figure 6.15: DDM on COVID-19 Data 
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Figure 6.16: DDM-OCI on COVID-19 Data 

In contrast to the simulated data, the metric here significantly affected where drift was 

discovered. The COVID-19 data was extremely unbalanced, which may have affected 

this. Before selecting metrics to detect performance drift, determining the appropriate 

categories of change is crucial. In some situations, a change in false positives (leading 

to unnecessary interventions) may be more relevant than a change in false negatives, 

whilst in other situations (e.g. screening populations for follow-up tests), the reverse 

may be true.  

Although the focus of my investigation was on incremental drift, I did implement the 

aforementioned protocol for abrupt change on the COVID-19 data. Figure 6.17 

illustrates the outcome of my experiment, in which this methodology identified three 

further drifts in September 2020, Dec 2020, and January 2021. It is crucial to note that 

my methods were able to detect some of the anticipated drifts, such as those that took 

place between April and May 2020, when the first nationwide lockdown occurred; in 

January 2021, when the second nationwide lockdown occurred; and in April 2021, the 

date by which 50% of people over 65 years old had received both vaccine doses. 
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Figure 6.17: Abrupt DDM on COVID-19 Data 

I also opted to investigate the effect of model selection on drift detection, focusing on 

whether models with a greater number of parameters are more susceptible to 

overfitting and, consequently, to detecting drift. Figure 6.18, figure 6.19, and figure 

6.20 represent the outcomes of the three distinct models (LR, NB, and random forest) 

applied to the COVID-19 data. It has been noted that many of the drift points, 

particularly in the LR and random forest models, have considerable agreement. 

Additionally, I discovered that alternative models have less of an effect on drift 

detection than metric selection. Poorly fitted models, however, can lead to erroneous 

drift detection, which leads to less model stability due to unnecessary updating. 
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Figure 6.18:  DDM Logistic Regression on COVID-19 Data 

 

Figure 6.19:  DDM Naive Bayes on COVID-19 Data 
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Figure 6.20:  DDM Random Forest on COVID-19 Data 

In addition, I evaluated the overall usefulness of concept drift detection by comparing 

numerous performance measures across the final set of approaches where drift was 

or was not detected, as shown in Table 6.2. It has been noted that the usage of drift 

detection and updating has increased performance metrics for numerous models and 

metrics. However, this is not always the case. For example, the DDM and DDM-OCI 

both work to decrease sensitivity when applied to the random forest model. 

Additionally, it is abundantly evident that the DDM surpasses the DDM-OCI in terms 

of accuracy as the DDM uses error rate to detect drift. By contrast, the DDM-OCI 

performs better in terms of sensitivity across all models as it uses the recall metric. 

Finally, these findings show that, while detecting drift and updating models is a good 

concept, there is also a danger that the metric and model chosen will lead to 

decreasing performance in future batches of data. 
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Table 6.2: Comparing the Outcomes of a Number of Drift Detection Methods With Different Models Using COVID-
19 Data 

 

6.8 Conclusion 

The importance of concept drift and its effects on healthcare AI models were 

investigated in this chapter, as well as the different types of concept drift. Additionally, 

this chapter presented the proposed methods (DDM and DDM-OCI) employed in my 

research to detect concept drift, as well as the datasets and experiments that were 

implemented. The findings of the DDM approach applied to the simulated, synthetic, 

COVID-19, and SSc datasets were also described and interpreted in this chapter. 

Detecting drift in data is crucial; drift detection methods ensure that a model will not 

become outdated over time when new data is generated. Therefore, this chapter 

explored how to correctly identify concept drift using standard drift detection methods. 

However, it is essential to understand the nature of drift in order to implement the 

appropriate performance metric. According to my findings, using an inaccurate metric 

can result in performance decline and an improper update. In addition, I discovered 

that DDM is sensitive to noise; therefore, it may detect apparent data drift caused by 

noise, which is not real drift. In a nutshell, the fundamental properties of healthcare 

might change over time, which could result in inaccurate predictions by AI models. 

Thus, the purpose of this chapter was to demonstrate the importance of monitoring AI 

models over time in order to prevent their obsolescence. Implementing drift detectors 

with a track record of success on my datasets allowed us to achieve this. In the future, 

however, concept drift could be addressed by monitoring my novel approaches in 

Chapters 4 and 5 using methods such as DDM and EDDM and adjusting these 

approaches to cluster and classify patient health outcomes over time. Alternative 

statistical methods that identify substantial differences in AI performance across two 
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batches may also be utilised to detect drift and update the model accordingly. On the 

other hand, while these methods detect drift when the performance of a supervised 

learning model changes significantly over time, the target label (health outcomes) may 

be unknown or unavailable. In real-world applications, the true health outcomes may 

not be available until verified by experts, so there is a need for drift detection methods 

in unsupervised trials. Thus, concept drift detection techniques need to be addressed 

in order to handle unsupervised learning problems when true labels are not available. 

These techniques can determine whether the model's structure has changed over time 

and update it even in the absence of the true health outcome. 
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Chapter 7 Conclusion 

▪ Introduction 

The discovery of disease subtypes and the early detection of chronic diseases 

enhance patient survival and minimise healthcare expenses. Chronic disorders are 

now a top priority in the healthcare industry. As a result, healthcare systems across 

the world must provide patient care more effectively. In order to assist healthcare 

practitioners, enhance diagnosis, and provide individualised therapies, it would be 

useful to subtype uncommon diseases by producing prediction models that can 

recognise disease subclasses. In addition, ML could potentially play a vital role in 

forecasting complications of many uncommon diseases by identifying unmeasured 

effects and assisting in the development of a strong learning model. However, the 

underlying data may change over time, causing ML models to become outdated. In 

this chapter, I provide a summary of the approaches I employed to address and 

resolve the aforementioned issues. In addition, this chapter lays the groundwork for 

the work that I may conduct in the future. 

▪ Achievements 

The primary accomplishments of my thesis are depicted in Figure 7.1 below. 

 

 

 

 

 

 

 

 

 

Figure 7.1 Thesis Achievements 
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• Exploration of state-of-the-art ML algorithms to model disease, with a 
focus on SSc. 

In order to make clinical outcome predictions and patient grouping, in this thesis I have 

applied several standard machine learning techniques to SSc datasets. These 

methods include decision tree (DT), naïve Bayes (NB), k-means, random forest, and 

latent class analysis algorithms. These methods have been analysed and evaluated 

using real-world datasets. I developed these algorithms to determine the impact of my 

suggested approaches relative to these algorithms.  

• Consensus clustering classification 

In this thesis, I introduced a new method that improves disease prediction and raises 

awareness of the disease's underlying features by combining consensus clustering 

techniques with classification methods. By utilising the consensus technique in 

conjunction with the C4.5 decision tree classifier (a transparent approach to 

classification that offers an understandable tree structure), my suggested method 

attempts to address both the inherent variation present in a number of different 

clustering approaches as well as the variance introduced by sample size. My proposed 

method therefore separates the data into training and test data. The training data is 

resampled to produce a set of consensus clusters. Then, each of these consensus 

clusters is utilised to construct a unique decision tree. Finally, using a single-linkage 

strategy, each test data point is classified in accordance with its distance from each 

identified consensus cluster. This is used to determine which decision tree is 

appropriate for classifying the data point. In other words, the agreement matrix is made 

by running k-means several times on different resampled training datasets. In order to 

create consensus cluster groups, I then apply the hierarchical clustering approach to 

this agreement matrix. A decision tree is constructed for each consensus group, and 

each test data point is categorised according to its closest distance from each 

consensus cluster. This method was applied to the SSc and breast cancer datasets. 

The results showed that my method outperforms all other techniques in terms of error 

rate and variance reduction. In addition, my method proved that clinical departments 

are able to apply this innovative approach to cluster patients and uncover essential 

traits in each group, which will allow for more reliable classification. 
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• Multi-label classification (MLC) latent class analysis 

In this thesis, I have developed an ML model that provides a solution to the issue of 

comorbidities. Firstly, this model employs a latent class variable to cluster patients into 

groups by identifying hidden factors between observed variables. Secondly, in order 

to classify group labels jointly, this model uses a naïve Bayes MLC algorithm to predict 

various comorbidities. This algorithm is therefore comprised of two stages that occur 

simultaneously: LCA and MLC naïve Bayes. This model employs a 10-fold cross-

validation procedure that separates the data into 90% training data and 10% test data. 

Latent class analysis is then used to group the training data. An MLC naïve Bayes 

model is built for each group. Each set of test data is assigned to one of the groups, 

and its labels are predicted based on the MLC naïve Bayes model within that group. 

There are two separate aspects of this model’s performance. In the first, the model is 

compared to other common ML algorithms and evaluated with each label separately. 

For the second, it is compared to other common multi-label classification methods and 

evaluated with all labels jointly. The outcomes demonstrated that my model 

outperformed the competition, and it is a transparent method that could help deliver 

individualised patient care. 

• Concept drift alleviation 

The final accomplishment of this thesis is the implementation of DDM and DDM-OCI 

for batch data use. In my thesis, DDM monitors the overall error rate of the ML model 

over time. For every patient who arrives in a batch, error rate and standard deviation 

are calculated. According to my suggested approach, the model is not modified as 

long as the total error rate declines or remains constant. The model is retrained by 

adding data from the warning batch to the drift batch to the new model when the overall 

error rate reaches the drift level. On the other hand, the DDM-OCI method emphasises 

minority-class recall. Therefore, DDM-OCI checks the recall instead of the error rate. 

This method detects drift when the recall metric drops significantly. In my suggested 

approach, the model is not modified as long as the recall increases or remains 

constant. As before, the model is retrained by adding data from the warning batch to 

the drift batch to the new model when the recall reaches the drift level. Both methods 

have been used to monitor ML models over time using COVID-19, simulated, and SSc 

datasets. My results showed that methods for detecting drift are essential to assure 
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that the model will not become outdated as new data are created. The results also 

showed that it is vital to understand the nature of the drift in order to implement the 

right performance metric. 

▪  Future works 

There are several limitations on this thesis, which will be explained in this section and 

may influence future research. 

In Chapter 4, I presented the first novel model combining a consensus clustering 

method with classification to predict disease. The model is built on repeatedly 

executing k-means by resampling the training data to generate consensus groups. 

The resampling approach is one of the constraints of this thesis because different 

sampling techniques may produce varying outcomes. As a consequence, I may 

compare the outcomes of my model with other sampling techniques in the future. In 

addition, my model is built on repeatedly executing multiple k-means algorithms, which 

may be implemented using various clustering approaches but may generate a different 

number of clusters each time. In the future, I may consider running the model with 

alternative clustering methods than k-means each time and proposing a new strategy 

for locating the consensus groups among these methods. In addition, a weighted 

kappa approach may be used to assess the quality of the clustering method and 

compare the results of the resampled clustering approach. In this thesis, I grouped 

new patients using a single linkage in which each patient is clustered with the group 

to which they are geographically closest. I may investigate other approaches, such as 

average linkage and full linkage. 

In Chapter 5, I presented another model combining the latent class method with MLC 

naïve Bayes to predict disease. As in Chapter 4, the resampling methodology is a 

limitation of this model, and thus I may examine alternative resampling approaches in 

future work. I have used the established EM algorithm to estimate the parameters for 

latent class analysis. Thus, it is necessary to look at new methods of estimating these 

parameters and compare them to the established EM algorithm. In addition, the 

number of clusters in my model is based on the Bayesian information criterion (BIC), 

and I might investigate different approaches. Using the relationship between the 

labels, my model predicts simultaneous complications using a modified naïve Bayes 
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algorithm. However, I might consider adjusting various known transparent models, 

such as decision tree, to accommodate multi-label predictions. Both algorithms in 

Chapters 4 and 5 have been designed to predict disease by categorising patients into 

robust groups, which improves performance in disease prediction. However, I might 

consider expanding the method in Chapter 4 to address MLC and comparing it to the 

algorithm in Chapter 5. 

In Chapter 6, I explored the significance of concept drift as well as the implementation 

of DDM and DDM-OCI for batch data use. Once again, the resampling strategy is a 

limitation because different sampling strategies may yield diverse results. I employed 

a strategy of under-sampling to balance the training dataset. Nonetheless, when over-

sampling is utilised in place of any other sampling method, different results might be 

obtained. Another limitation of this thesis is that choosing the proper metric to monitor 

an AI model is crucial since different metrics might lead to different drifts in the model. 

Updating the model when drift is discovered is a crucial phase in which old and new 

data are added to the model, or the old data is discarded and only the new data is 

retained. Lastly, it is necessary to determine how I can monitor the model's 

performance when the real label values are not yet accessible. Therefore, I might 

investigate alternative sampling methods in the future in order to evaluate and contrast 

the effects of alternative sampling methods on concept drift outcomes. Furthermore, I 

might provide predictions for various labels and different concept drift detectors. In 

addition to forgetting or remembering previous data when updating the model, I may 

also examine other mechanisms for updating it, such as those that weight the 

significance of the data. Different concept drift strategies may be handled by 

monitoring my models in Chapters 4 and 5 over time and altering these approaches 

to clustering and categorising patient health outcomes in order to account for concept 

drift. Finally, in real-world applications, the true label is not always available. Thus, I 

might look at unsupervised concept drift detectors that detect drift of AI models before 

the true labels are available. I may present an unsupervised detector that identifies 

drift when the data distribution changes significantly over time. The benefit of this 

approach is that it does not require the true label to be available. This method might 

also uncover informative relationships between the variables; when these 

relationships change over time, it is an indication of drift. 
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