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Polygonal Patches of High Order Continuity 
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Abstract 

A polygonal patch is defined to fill an n-sided hole within a rectangular Ck 

patch framework. First a reparameterization of the surface around the hole is 

constructed, that is defined outside a regular polygon.  The polygonal patch is  

an interpolant, defined inside the polygon, that matches this parameterization 

up to order k along the boundary.  Some modifications and handles to control 

the shape of the patch are described. 
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1• Introduction 
    The parametric representation of surfaces in CAGD (Computer Aided Geometric 
Design) is ually bas  on assembly of patches ith rectangular dom   us ed an  w ains of
 definition. However, arbitrary surface topologies cannot be described by a regular 
rectangular patch framework. ither a  arbitrary number of ect ng lar patches E n r a u
meeting at a vertex has to be allowed or a polygonal patch has to be filled in. 
         There have been several attempts to construct polygonal patches but these can 
only achieve C1 continuous joins with their rectangular neighbours.  For example, 
[Charrot and Gregory '84] describe a pentagonal patch defined by a convex combin- 
ation of parametric surfaces. As pointed out in [Gregory and Hahn ‘86], this 
method cannot be immediately generalized to higher order continuity. 

In this paper we consider polygonal patches with an arbitrary order of 
continuity. We exhibit an n-sided patch which can be used to fill in a hole within 
a rectangular Ck

 patch framework and which is such that the composition is a Ck

continuous surface. 

The continuity considerations cannot be treated within the given parameter- 

izations, since th patches cannot be considered as being defined in a commone  

parame r plane. The appropriate framework in which to examine continuity is the te

setting o geometric continuity (G Cf 
howeve the C

k ), cf. [Gregory and Hahn ‘86]. In our case, 

r, e e 
explicit C

k  continuity of th basic patch will b guaranteed by giving an 
k reparameterizati of the surface around the hole. Only inon  the 

discussion of modifications to the basic patch will we need the more sophisticated 

techniques of geometric continuity. 

The paper is organised as follows:  Section 2 states the assumptions on the 

rectangular patch framework and introduces the notation for the polygonal domain 

on which th tch will be defined. Sections 3-6 contain the main part of the e pa

construction. In these sections we construct a Ck parameterization of the surface 

around the hole whose domain of definition is a strip around t polygon.  This he 
parameterization is extended into the polygon by interpolation. The final compo- 

sition of the polygonal patch interpolant is given in Section 7 and in Section 8 

we consider some examples and adaptations of this basic patch. 
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2. The polygonal patch problem

   Assume that f
an n-sided hole.  We suppose  but most of the paper also applies to the 

j, j=0,...,n-1, form a rectangular Ck patch framework around 
5n ≥ ,

ca  n = 3. To make the exposition more concrete, suppose t at ach patch fse  h e
is such that [ ] [ ]2,01,0:where,RI:f 0

3
0j ×=δ→δ  and where the segment 

j

(0,s),  is mapped to the j-th boundary segment of the hole, see Figure 1 1d0 ≤≤

(In practice fj will usually be composed of two, or more, basic patches, for 
example Bernstein/Bezier or Hermite patches defined on [ ] [ ]2,01,0 ×  and 
[ ] .)]2,0[1,0 ×  

 
Figure 1 

 
That the patches form a Ck patch framework means that for two adjacent patches 

fj and fj+1 (indices mod n), the composed map 
 

(2.1)  ( )
( ) ( )
( ) ( )⎪⎩

⎪
⎨
⎧

×−∈−−

×∈

+ [1,2]2,0][vu,foru1,vf

[0,2][0,1]vu,forvu,f
vu,

1j

j

     
is Ck continuous, cf. Figure 2.  Since we will apply Boolean sum interpolation 
techniques, we require in addition that this composed map is Ck,k   continuous, i.e. 
that the partial derivatives 
 

(2.2)    
21

21

21 ii

ii

i,i vu
:

∂∂
∂

=∂
+

 

 
of the composed map exist for ,, 21 kii ≤  are continuous and are independent of  the 

order of differentiation. 
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Figure 2 

 

To be precise, our construction only requires that each patch fj is Ck,k  

continuous, defined on the right hand side of the segment (0,s),  and ,10 ≤≤ s

that 
 
(2.3)    .ki,ifor(0,0),f1)((0,1)fi, 211ji,i

i
j2i 12

1

1
≤∂−=∂ +

This latter condition reflects the Ck,k continuity of the composed map at the 

corner (0,1). 

The hole will be filled in with a patch P defined on a regular polygon and 

we adopt the following notation: 

Let Ω b  a closed, regular, n-sided polygon in R2 with centre 0 and sides e

of unit length. Its vertices are vj, j=0,...,n-1, and its edges are Ej, para- 

meterized by 
 

(2.4)   ( ) ( ).vvsvsE j1jjj −+= +  

Let Δ be a closed, symmetric strip around Ω. The strip is composed of closed 

tiles Δj, where Δj is the part of Δ which lies outside the edge Ej and on the 

same side of Ej-1 as Ω , see Figure 3. 
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Figure 3 

In expressions involving Vj,  Ej ,  Δ j , f j , i t will  be useful to have the index j 

 running over all the integers. Thus, in such cases the integers will be inter- 

preted mod n, for example, 
 
(2.5)     .f:f jnj =+  
 
Finally, the Euclidean scalar product in 2RΙ is denoted by  i .e.  ,.,. ><
 
(2.6)   ( ) ( ) 22112121 yxyx:y,y,x,x +=><  
 
3. Reparameterization of the boundary data
 

Our first goal is to reparameterize the surface around the hole to get a Ck 

parameterization F , defined on the strip Δ around the polygon Ω . (In 

practice only the restriction of F and its derivatives on the boundary of Ω  

will be needed). 

The continuity conditions for the rectangular patches surrounding the hole 

mean that the domains of two adjacent patches fj and fj+1   can be put together by 

rigid motions  in the parameter space IR1jj τandτ +
2 , such that the map 

 

(3.1)   ( )
( ) ( )
( ) ( )⎪⎩

⎪
⎨
⎧

=∈

=∈
=

++
−
++

−

+

0

is C

1j1j
1
1j1j

0jj
1

jj
1jj, δτ:δx,xτf

δτ:δx,xτf
:xf

o

o
 

k  continuous on the composed domain ( ).2.1cf.,δδ 1jj +U  The transformations 
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τ j  will  not be required explicitly but,  with τ0  the identity map and 

[ ] [ ],2,01,00 ×=δ  the transformation  is a rotation of  about the point jτ 2/jπ

,
2
1,

2
⎟
⎠
⎞

⎜
⎝
⎛ 1
−  The  domains  can  thus  be  rotated  and  pasted  together  but  4δ  will  then 

 is the "vertex" overlap  (In general .δ0 jj4jj4j vwhere,vvandδδ = =++

)( ) (0,0).vwithvτv 00jj ==  Hence it is not possible to extend the parameteri- 

zation to the union of the domains  see Figure 4. ,RIinδδ 2
1n

0i
iU

−

=

=

Figure 4 
 

However, the parameterization can be extended if the domains jδ  are all considered 

as being different (think of a paper model, see Figure 5) and furthermore this 
procedure can be continued ad infinitum. 

Figure 5 
 
The mathematical object thus constructed is the "universal covering" of the 
exterior strip  around the square. The universal covering will be denoted by δ

,zj,
~
τand

~
δ j ∈  denotes the displacement into ~

δ  that corresponds to the rigid 
motion  in the parameter space IRjτ

2. Points, maps, etc., living in the universal 

covering will be marked by a tilde. 
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The universal covering may be viewed as an infi ite spiral taircase, n  s
j

zzj
δ~δ~

∈
= U  see Figure 6. Its stairs are the (rectangular) domains ( ),δτ~δ~ 0jj =  

,zzj∈ which are all different, where 1jj δ~andδ~ +  are glued together smoothly. 

More precisely, δ~  is a smooth manifold together with a projection 

           δδ~ →  
which maps the point ( ) ( ) ( ) δ,xτtoδxδ~xτ~ j0j ∈∈∈  and whose restriction  

11
~~

++ → jjjj δδδδ UU  

is a diffeomorphism.  This projection maps the vertices .vtov~ jj  Further details 

of covering theory may be found in any book on topology, e.g. [Singer and Thorpe '67]  

but no further knowledge of the theory will be needed here. 

 

Figure 6 

We now proceed as follows, cf. Figure 7: 

The parameterization ,Rδ~:f~ 3→

( )

 given by 

 
(3.2)       ( ) ,δ~x~forx~τ~f:x~f~ j

1
jj ∈−o

1jj δ

 

is well defined on the universal covering of the square and Ck continuous, since 
~δ~on +U  

(3.3)            ( ) ( ),xfx~f~ 1jj, +=

1jδ +

 

δ.δ~x~where is the image of jδx ∈ U under the projection →  
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Figure 7

Now consider the universal covering of the exterior strip Δ  around the polygon: 

 .Δ~toonprotectedisΔ~where,Δ~Δ~ jjj
zj∈

= U  

Then the coverings Δ~  and δ~  are diffeomorphic! This is the key that allows us 

 to go from a rectangular framework to the polygon. Roughly speaking, a diffeo- 
morphism δ~Δ~:Ψ →  can be obtained by unwrapping the spirals. 

 Given a diffeomorphism δ~Δ~:Ψ →  , then 

(3.4)      ψf~:F~ o  

is a parameterization defined on the covering .Δ~ . Furthermore, assume that Ψ  

 is such that 
(3.5)     ( ) jj δ~Δ~ψ =  

and that 
(3.6) ( ) ( )).Y~Ψ(τ~)X~Ψ(τ~ 1

j
1
i =  

for any two points ( ) toΔΔ~underprojectedarewhichΔ~Y~andΔ~X~ ji →∈∈  the 

same point X∈A. Then the "periodicity" of ,periodic""isF~thatimpliesf~   

i.e. 
(3.7)     ( ) ( ).Y~F~X~F~ =  
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Hence F : Δ->IR3 given by 

(3.8)     F(X) : = ( )X~F~  

is well defined and  continuous. kc

F is the desired parameterization. To compute it explicitly only Ψ  

needs to be known.  A special diffeomorphism will be constructed explicitly in 

Section 5.  To simplify calculations, Ψ  will be suitably tailored to the 

interpolation scheme involved. 

 

4. Coordinates for interpolation along adjoining edges

The polygonal patch will be constructed as a convex combination of certain 

 Boolean sum Taylor interpolants,  The Taylor interpolants are computed using 

coordinates obtained by central projections (i.e. the "radial" projections of 

[Charrot and Gregory '84]), see Figure 8. 

 

Figure 8 

 

Let Zj be the point of intersection of edge Ej-1 with Ej+1 and, for a point 

( )XsletX j,ΔΩ∈ U be such that 

         ( ) ( )j1jjjjj vvsv:sE −+= +  
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is the point of intersection of the edge Ej with the ray from Zj through X . 
It should be remarked that Ej(sj) is not defined for X = Zj but, since n≥5, 
we can assume that the width of the strip is such that Δ.z j ∉  To treat the 

triangular case the central projections should be replaced by parallel pr jections, o
cf. [Gregory '86]. Let ( ) ( ).Xs1Xt 1jj −−=  Then we define coordinate charts 

ΔΩonΦ j U  by 

(4.1)    ( ) ( ) ( )( ).Xt,Xs:XΦ jjj =  

The chart  onto (s,0) and (0,t) ( ) 1jjjj EEedgestwotheand0,0toVmapsΦ −

respectively. 
         We now transform the parameterization F to the parameterization 

(4.2)      1
jj ΦF:g −= o

defined on  see Figure 9. Boolean sum Taylor interpolation is then used ( ),ΔΦ j

in Section 7 to construct an interpolant, defined on ( ),ΩΦ j which matches  up jg

 
Figure 9 

 
to its k-th derivatives along (s,0) and (0,t).  The polygonal patch is a blend of 
such interpolants. However, we still have to construct the diffeomorphism  ,Ψ
and the coordinate charts  will be used in this construction. jΦ
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5. Construction of the diffeomorphism

   The coordinate chart  transforms the angle at the vertex VjΦ j to A π/2

similar property is needed o  the diff om rphism  w ch trans rms the f e o hi fo

universal covering  

Ψ,

,Δ~ of the polygon, to the universal covering ,δ~  of the 
square. Thus on the region jΔ~  we construct  as a kind of blend of  and Ψ jΦ

,Φ 1j+  suitably matched together to yield a global map. 

The diffeomorphism Ψ  is defined in terms of a local representation as 

follows: Let 

(5.1)    ( ) ( ) ,(X)Φ:X~Φ~:j =

where X corresponds to X

 t,s jjj =

~  under the projection jφ~ThenΔ.Δ~ →  defines a coordinate 

chart on ,Δ~Δ~ j1j U−  of the universal covering of the polygon, which maps the vertex 

( ) ( ) ( ) j1jjj φ~letAlso,ly.respectivet0,ands,0toE~andE~edgestheand0,0toV~ −  

be the affine coordinate chart defined on ,~~
1 jj δδ U−  of the universal covering of 

the square, whic  maps the vertex h jV~  tw n 1jj Vto (0,0) and the edges be ee  

~V ,~
+  and  

1jj V~,V~ −  to (s,0) and (0,t) respectively. Then the diffeomorphism Ψ can be expressed 

 
 

Figure 10 
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by its local representation 

(5.2)     ,~ψ~:ψ 1
jjj
−φφ= oo  

with respect to the coordinate charts jΦ~ and j
~
φ , see Figure 10 

       We now define  by the blend jψ

(5.3)  ( ) ( ) ( )( )
( ) ( )( )⎪⎩

⎪
⎨
⎧

<−+−

≥+
=

−

+

0,sfor,t,st1βtt1α

0,sfor,ssβtsα,s
t,sψ

jjjj1jj

j1jjjjj
jjj  

where α, β are positive real-valued  functions such that kC

(5.4)         
( ) ( )
( )
( )⎪

⎩

⎪
⎨

⎧

≥=
≤=

≡+

1.sfor0sα
0,sfor1sα

1,sβsα
 

One easily checks that  is Cjψ k. To show that  is well defined and  we ψ kC

must show that the local representations  and  describe the same map on jψ 1jψ + .Δ~ j  

This follows since on ( )j1j Δ~Φ~ +  we have 

( )
( )
( ) ( )( )

( ) ( )( )
( ).t,sψ

s,1ssβtsα

ssβtsα,sφ~φ~
t,sψφ~φ~

t,s~~~~)5.5(

1j1j1j

j1jjjj

1jjjjj
1

j1j

jjj
1

j1j

1j1j
1
1jjj

1
j1j

+++

+

+
−

+

−
+

++
−
+

−
+

=

−+=

+=

=

ΦΦψφφ

o

oo

oooo

 

The diffeomorphism satisfies the assumptions (3.5) and (3.6), except possibly  ψ

that the range of  might be only part of , but this does not affect our ψ δ

 construction. 

 

6. Computation of the boundary data for interpolation
The function gj can be computed on ( )j1jj ΔΔ U−Φ  as follows: 

(6.1))  1
j

1
j

1
jj Φ~ψf~Φ~F~ΦFg −−− === oooo  

    
( )

( )⎪⎩

⎪
⎨
⎧

φ

φ
=

−−

−
−−

−−

.ΔΦonψ~τf

ΔΦonψ~τf

jjj
1

j
1

jj

1jjj
1

j
1
1j1j

ooo

ooo
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Therefore 

 

(6.2) ( ) ( ) ( )( )
( ) ( )( )⎪⎩

⎪
⎨
⎧

≥−−

≤−−−−−
=

+

−−

0.sfors,ssβtsαf

0,sfort,1st1βtt1αf
t,sg

jj1jjjjj

jjjj1jj1j
jjj  

    
To compute derivatives of e mu t calculate th  coord ate change  jg  w s e in js +

 This requires some computations within the polygon Ω : 

1
j1 Φ−o

.)Φt(and 1
j1j
−

− o

The coordinate chart ( ) ( ) ( )( )Xt,Xs:XΦ jjj =  can be computed as 

(6.3)    ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++
=

−−+

−

j2j

j

1j1j

1j
jj dd

d
,

dd
d

t,s  

Where 

(6.4)    ( ) ||Z||/ZX,V:Xd jjjj >−=<  

is the perpendicular distance of ,EsidethefromΔΩX jU∈  see Figure 11. 

 
 

Figure 11 

By considering the area of the triangle we obtain the relations ,VZV 1jjj +

 

 
(6.5)  1,n0,...,j,sinθθcos2ddd j1j1j −==−+ +−  

  
where 
 
(6.6)    .        2ππ/nθ =  
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Thus 

(6.7) ( ) ( ) ( )( ) ( )
( )

( )
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

++
==

−

−

sinθcosθXd2
Xd

,
sinθcosθXd2

Xd
Xt,XsXΦ

1j

j

j

1j
jjj  

and 

(6.8)  ( ) ( )
( ) ( )XdXd

Xd
Xs

j2j

j
1j +

=
+

+  

 

   
( )

( ) ( ) sinθ)XdsinθcosθXd2(2
Xd

1jj

j

+−+
=

−

 

Eliminating using (6.7) yields the following explicit formula for j1j dandd −

the coordinate change: 

(6.9)  ( ) ( )
( ) ( )s1c21s21tc4

cs21tts,Φs 2
1

j1j −++−
+

=−
+ o  

where 

(6.10)   ( ).π/n2coscosθc ==  

Its derivatives can be computed quite easily.  For example, the first and second 
partial derivatives with respect to t at t=0 are 

(6.11) ( )( ) ( )s1c21
cs21s,0.Φs

t
1

j1j −+
+

=
∂
∂ −

+ o  

and 

(6.12) ( )( ) ( )( )
( )( )2

2
1

j1j2

2

s1c21
cs21s21c8s,0Φs

t −+
+−−

=
∂
∂ −

+ o  

Due to symmetry, the formula for  is obtained from (6,9) by permuting s and t 

Thus 
1−jt

(6.13) ( ) ( )
( ) ( )t1c21t21sc4

ct21sts,Φt 2
1

j1j −++−
+

=−
− o  

7. The basic polygonal patch 

We now combine our results to exhibit the polygonal patch explicitly. 

Define Boolean sum Taylor interpolants pj on the unit square, that match the 
functions gj up to its k-th derivatives along the edges s = 0 and t = 0, by 
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(7.1)  ( ) ( ) ( )∑∑
==

∂+∂=
K

0i
ji,0

iK

0i
ji0,

i

j
11

t0,g
!i

ss,0g
!i

t:ts,P  

 ( )∑∑
==

∂
K

0i
ji,i

21

iiK

0i 2

21

21

1

0,0g
!i!i

ts  

In fact, gj is a  function and its partial derivatives can be computed from kk,C

(6.2), (6.9) and (6.13). For example, the data needed for a second order continuous 

patch are 

(7.2)  ( ) ( ),s0,fs,0g jj =  

(7.3)  ( ) ( ) ( ) ( ) ( ) ,s0,f
s1c21

cs21sβsαs,0g j1,0

2

j0,1 ∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

+
−−=∂  

(7.4)  ( ) ( ) ( ) ( ) ( )s0,f
s1c21

cs21sβsαs,0g j2,0

2

j0,2 ∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

+
+=∂  

 ( ) ( )( )
( )( )

( ),s0,f
s1c21

cs21s21csβ8 j1,02

2

∂
−+
+−

+  

(7.5)  ( ) ( ,t0,1ft0,g 1jj −= − )   

(7.6)  ( ) ( ) ( ) ( ) ( ,t0,1ft1β
t1c21

ct21t1αt0,g 1j1,0j1,0 −∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−+
+

−−=∂ − )  

(7.7)  ( ) ( ) ( ) ( ) ( t0,1ft1β
t1c21

ct21t1αt0,g 1j2,0

2

j2,0 −∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−+
+

−=∂ − )  

 ( ) ( )( )
( )( )

( ) ,t0,1f
t1c21

ct21t21ct1α8 2j1,02

2

−∂
−+
+−

−+ −  

(7.8)  ( ) ( ) ,0,0f0,0g j1,1j1,1 −∂=∂  

(7.9)  ( ) ( ) ,0,0f0,0g j2,1j1,2 ∂=∂  

(7.10)  ( ) ( ) ,0,0f0,0g j1,2j2,1 −∂=∂  

(7.11)  ( ) ( ).0,0f0,0g j2,2j2,2 ∂=∂  

Here, α  and β  are c2 functions such that 

(7.12)   ( ) ( ) ,0sβ,sα ≥

(7.13)  ( ) ( ) ,1sβsα ≡+  

(7.14)  ( ) ( ) ( ) ,00α0α1,0α === &&&  

(7.15)  ( ) ( ) ( ) ,01β1β1,1β === &&&
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and c = cos(2π/n) (see (6,10)). 

 Interpolants Pj on the polygon, which match the function F along the  

two edges meeting at the vertex Vj, are defined by 

(7.16)    ( ) ( ) ,t,sP:XP jjjj =  

where sj,tj are computed by (6,3) using the parameters di from (6.4). The  

final polygonal patch is a convex combination of these, namely 

(7.17)  ( ) ( ) ( )∑
=

=

=
1n

0j
jj ,XPXw:XP

where wj are weight functions that sum to unity and vanish up to order k along  

the edges Ei, i≠j, j-1. An appropriate definition of the weight functions        
for a Ck patch is 

(7.18) ( )
1k

i
1,i

1n

0

1k
i1jj,i

j

d

d
:Xw

+

−≠

−

=

+

−≠

∏

∏
=

∑
lll

 

8. Examples and modifications of the basic patch

 The basic polygonal patch defined in Section 7 allows for a wide variety of 

modifications: 

The union of P and F is an explicit Ck parameterization defined on .ΔΩU  This 

means that P and the rectangular patches fj, j=0,...,n-1, join with geometric continuity 

of order k (GCk), see [Gregory and Hahn '86].  However, parametric continuity 

between P and F  is not necessary for a Ck  surface.  It sufficies that they 

join with GCk continuity and this permits some interesting simplifications 

described in subsections 8.1 and 8.2.  In subsection 8.3 we consider an alternative 

to the Boolean sum Taylor interpolant (7.1).  Finally, in subsections 8.4 and 8.5 

we describe some handles for shape control. 

8.1 The Charrot-Gregory GC1 patch

 GC1 continuity of P and F is preserved if the cross boundary derivatives 

of gj are replaced with a positive multiple.  Thus replacing (7.3) and (7.6) with 

(8.1)   ( ) ( ),s0,fs,0g j1,0j0,1 −∂=∂  

(8.2)   ( ) ( ),t0,1ft0,g 1j1,0j1,0 −−∂=∂ −  

and with k = 1 in (7.1) and (7.18), gives the original Charrot-Gregory GC1 patch. 
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8.2 A simplified GCk patch

 GCk continuity (k≥2) is not affected if the k-th derivative of P across 

the boundary is modified by adding a tangent term.  This was proved in [Gregory  

and Hahn '86] for the case k = 2 but, in fact, the proof also applies to the  

general case. This observation can be used to cancel the first derivative terms  

of fj (and fj-1) in the expression for  t)).(0,g(and(s,0)g jk,0jk0, ∂∂ For second  

order continuity, this means that (7.4) and (7.7) can be replaced by 

(8.3)  ( ) ( ) ( ) ( ) ( )s0,f
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and the resulting patch is still GC2. 

8.3 An alternative interpolation scheme

 The Boolean sum interpolation technique in (7.1) cannot be applied if the 

surrounding patch framework is just Ck (not Ck,k). However, in this case any Ck 

interpolant which matches the function gj up to its k-th derivatives along the 

edges s = 0 and t = 0 would be appropriate. For example, if the individual patches 

fj are ck,k but the composed map is only Ck at the corners (i.e. (2.3) holds only 

for i1 + i2 ≤ k), then an interpolant can be defined by 
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t
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Although the weights are singular at (0,0), it can be shown that pj is Ck continuous  

on the unit square and can therefore replace (7.1). 

8.4 Prescribing the shape across a boundary 

 The effect of the adjoining rectangular patches can be varied individually by 

changing the diffeomorphism  The conditions (5.4) can be weakened. The  .ψ

blending functions α and β need not sum to unity everywhere, and moreover, they can 

depend on the index j in (5.3). For a second order continuous patch this means  

that (7.13), (7.14), (7.15) can be replaced by 



(8.6) ( ) ( ) 1,1β0α jj ==  

(8.7)  ( ) ( ) 0,0β1α jj ==

(8.8) ( ) ( ) ( ) ( ) 0,1α1α0α0α jjjj ==== &&&&&&  

(8.9) ( ) ( ) ( ) ( ) 0.1β1β0β0β jjjj ==== &&&&&&  

Then have to be substituted by  in (7.3), (7.4) and by   in  βα, jj β,α 1j1j β,α −−

(7.6), (7.7). 

 A further generalization is possible in that the blending functions  ( ),sα

( )sβ  in (5.3) might be replaced by bivariate functions ( ) ( ).ts,β,ts,α jj   

8.5 Prescribing the shape in the interior

 A function may be added to the right hand side of the patch definition (7.17)  

which vanishes up to its k-th derivatives along the boundary of Ω . Such a 

function is given by 

(8.10)     ( ) ( ) .XdXQ 1k
j

1n

0j

+
−

=
∏

The function Q might be chosen to prescribe the position of the centre point P(0), 

to adjust the tangent plane at P(0), etc.  It can thus be used to control the 

interior shape of the patch. 
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