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Abstract—This letter describes a robust state estimator based on
the solution of a mixed integer program. A tolerance range is as-
sociated with each measurement and an estimate is chosen to max-
imize the number of estimated measurements that remain within
tolerance (or equivalently minimize the number of measurements
out of tolerance). Some small-scale examples are given which sug-
gest that this approach is robust in the presence of gross errors, is
not susceptible to leverage points, and can solve some pathological
cases that have previously caused problems for robust estimation
algorithms.

Index Terms—Mathematical programming, robustness, state
estimation.

I. INTRODUCTION

R OBUST estimation algorithms are required in power sys-
tems to allow accurate estimation of the operating state

when the measurement set is corrupted by one or more gross
errors. Various robust estimators have been proposed, including
weighted least squares with hypothesis testing, iteratively
re-weighted least squares, weighted least absolute values, least
median of squares, least trimmed squares, and various others
[1], [4], [5]. A different approach has been proposed by the
present author and has been implemented in reference [2]. This
approach associates a tolerance range (or uncertainty range)
with each measurement. So for example, if we have a power
flow measurement of 103 MW, based on our knowledge of the
accuracy of the metering system, we might define a tolerance
range of MW to MW. The implication being that
if the measurement is “good,” then estimated flow should lie
within the stated range (100.5 to 104.5). An estimated flow
outside this range would imply that the measurement is “sus-
pect.” The proposed estimation principle is then very simple:
we search for a state estimate that minimizes the number of
measurements that are regarded as suspect (or equivalently,
maximizes the number of estimated measurements within their
tolerance).

In [2], this formulation was termed “maximum constraint sat-
isfaction” and the problem was solved using a genetic algo-
rithm. Here, the solution is obtained via mathematical program-
ming and some further insight into the behavior of the method
is presented.
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II. PROBLEM FORMULATION

Each measurement can be represented by a pair of inequality
constraints based on the upper and lower limits of tolerance for
that measurement

(1)

(2)

where

measurement i;

measurement equation i;

upper tolerance for measurement i;

lower tolerance for measurement i;

state vector.

If all the measurement errors were within the allowable toler-
ance range, it would be possible to find a solution that satisfies
the above inequalities for all measurements. However, if some
measurements have unexpectedly large errors, it may be nec-
essary to violate the corresponding measurement inequalities in
order to find an estimate . Inequalities (1) and (2) can therefore
be generalized by including binary variables to effectively
“switch off” the inequality when necessary

(3)

(4)

where

binary variable for measurement i;

M arbitrarily large positive scalar value.

The binary variable is expected to be 0 for “good” mea-
surements. When necessary, a measurement can be ignored, or
“switched off,” by choosing . The scalar value M is
chosen to be large enough to eliminate any influence on the so-
lution from switched-off measurements. It is not necessary to
be able to switch off the upper limit and the lower limit inde-
pendently, and therefore, only a single variable is defined for
each measurement.

The criteria for estimation is to select a state estimate which
necessitates as few measurements as possible being ignored, i.e.

(5)

where is the number of measurements.
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TABLE I
ESTIMATES FOR MILI ET AL. EXAMPLE [4] AT VARIOUS TOLERANCES

This formulation is a nonlinear mixed integer program in the
binary variables and the real-valued components of .

Numerical experience to date is based on linear estimation
examples, and in such cases, the formulation is a mixed integer
linear program. The problem can be readily solved using stan-
dard mathematical programming software, such as that available
via the NEOS web-service [3].

III. RESULTS AND ANALYSIS

The robustness of the proposed method has been tested on a
number of small-scale linear problems, such as the example pro-
posed by Mili et al. [4], which is designed to illustrate the prob-
lems caused for many estimators by “leverage points.” These are
measurements that have an undue influence on the solution, due
to their relatively greater distance from other measurements in
the factor space [1]. Bad leverage points are particularly difficult
as they are hard to detect and reject. Table I shows the results
obtained with the proposed estimator on this example with two
state variables and seven measurements (of which five are good
measurements and two are bad leverage points). Mili et al. [4]
show that various estimators fail on this example, giving esti-
mates that fit the bad measurements.

Table I shows that for tolerance ranges up to , the pro-
posed method rejects the last two measurements ,
which are the bad leverage points. Very high tolerance ranges
( and above) allow the bad leverage points to influence
the estimation. Note that the state variables, here and , are
referred to as parameters and in [4].

A further illustrative example has been introduced by Ryan
[5], which includes some good measurements that happen to
be co-linear with the bad measurements. This can cause least-
median-of-squares estimators to “accept” the bad data points,
producing anomalous estimation results. This example has two
state variables and nine measurements. There are two bad mea-
surements and three of the good measurements happen to be
co-linear with these.

Table II shows that for a wide range of tolerances, from
to , the proposed method is able to reject the bad data mea-
surements ( .

TABLE II
ESTIMATES FOR RYAN EXAMPLE [5] AT VARIOUS TOLERANCES

A small linear power network example (dc model) has been
presented by Abur and Exposito [1, p. 133]. This is a four-bus
network with three state variables and nine measurements. Two
of the measurements are leverage points. Experience with var-
ious combinations of measurement errors has shown that the
proposed algorithm can identify bad data simultaneously on
both leverage points, provided the gross errors are sufficiently
large (e.g., simultaneous sign errors on the measurement of flow
1-2 and injection at bus 1). Smaller errors can be more difficult
to identify, however.

A limitation of the proposed method is that an estimate is
found which fits the stated tolerance ranges, but there is little
or no noise filtering effect among the good measurements. This
limitation could be overcome by applying a two-stage process
of applying the proposed estimator to identify and eliminate bad
data, followed by least squares estimation on the good measure-
ments only.

Further work is required to investigate the application to full
scale ac estimation problems, but it may be noted that mixed
integer programs with thousands of variables can now be solved
routinely in less than one minute [3].

IV. CONCLUSION

A new approach to robust estimation has been investigated
and is shown to work well for some small-scale test problems,
which have proven difficult for some previous methods. Further
work is needed to test the feasibility of the approach on large-
scale problems.

REFERENCES

[1] A. Abur and A. G. Exposito, Power System State Estimation Theory
and Implementation. New York: Marcel Dekker, 2004, ISBN 0-8247-
5570-7.

[2] A. K. Al-Othman and M. R. Irving, “Robust state estimator based on
maximum constraints satisfaction of uncertain measurements,” Mea-
surement, vol. 40, pp. 347–359, 2007.

[3] NEOS, NEOS Sever for Optimisation, Jan. 2008. [Online]. Available:
http://neos.mcs.anl.gov/neos.

[4] L. Mili, V. Phaniraj, and P. J. Rousseeuw, “Least median of squares
estimation in power systems,” IEEE Trans. Power Syst., vol. 6, no. 2,
pp. 511–523, May 1991.

[5] T. P. Ryan, Modern Regression Methods. New York: Wiley, 1997.


