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Abstract—Synthetic data offer a number of advantages over
using ground truth data when working with private and personal
information about individuals. Firstly, the risk of identifying
individuals is reduced considerably, which enables the sharing
of data for analysis amongst more organisations. Secondly, the
fine tuning of synthetic datapoints to suit particular modelling
and analyses could help to build more suitable models that can
avoid biases found in the original ground truth data.

In this paper we explore how a probabilistic synthetic data
generator can be used to model data with high enough fidelity
that it can be used to develop and validate state-of-the-art
machine learning models. In particular, we use a Bayesian
network model trained on gestational diabetes data, generated
from a mobile health app collected from a number of health
trusts in the UK. These data are used to train and test
an established machine learning model developed by Sensyne
Health using real-world data, and the resulting performance is
compared to performance on ground truth data. In addition, a
clinical validation is undertaken to explore if human experts can
differentiate real patients from synthetic ones.

We demonstrate that the Bayesian network synthetic data
generator is able to mimic the ground truth closely enough to
make it difficult for a human expert to distinguish between the
two. We show that the data generator captures the interactions
between features and the multivariate distributions close enough
to enable classifiers to be inferred that imitate the key per-
formance characteristics of models inferred from ground truth
data. What is more, we demonstrate that the discovered mis-
classifications found when testing using the synthetic data, are
as informative as when testing using ground truth data.

Index Terms—Synthetic Data, Bayesian Networks, Machine
Learning, Diabetes

I. INTRODUCTION

The increasing interest in synthetic patient data has been
driven by a number of factors. These include concerns around
patient privacy which may hinder data sharing, simulation of
patient sub-groups or characteristics which may be missing
in the underlying ground truth or ‘real’ data and boosting
of sample sizes where the prevalence of relevant features
or outcomes is rare. The work presented in this paper is
motivated by the question of whether synthetic data could
be used to validate machine learning algorithms for clinical
decision making that are trained using real patient data and
vice versa. This paper adds to the evidence base in achieving

this goal based on experiments with real world data collected
from a medical app developed by Sensyne Health.

There is now a growing interest in the development of
approaches to generate fully synthetic data. For example,
generative models such as Generative Adversarial Networks
[9], or Bayesian Networks [8] can be inferred from data and
synthetic data samples can be generated from the resulting
models. Previously we have explored a synthetic data gen-
eration framework which uses Bayesian network analysis to
learn complex clinical relationships and distributions from
ground truth data and then generated high-fidelity synthetic
data from them [6], [7]. Our previous work has focused on
cross-sectional data and was assessed on machine learning
models in-house. This paper reports on an extension of our
methodology to generate synthetic data from a gestational dia-
betes monitoring app, GDm-Health™, including time-stamped
blood glucose data.

Here we present two approaches to generating synthetic
time-stamped data, one of which presents efficiencies in
processing with a view to facilitate scalability at pace. We
include the following experiments to evaluate the performance
of our synthetic (SYN) data generation methods: univariate
and multivariate comparisons between ground truth (GT) and
SYN data, including features which were not present in the
version of the GT data used to generate SYN data; training a
machine learning algorithm on the GT data and testing on the
SYN data; training a Machine Learning algorithm on the SYN
data and testing in prospectively collected real data from the
GDm-Health app; a clinical validation to explore if human
experts can differentiate real patients from synthetic ones.
These experiments also enable us to explore the trade-offs
between efficiency and fidelity.

II. DATASET

GDm-Health is software that allows clinicians to remotely
monitor glycaemic control in pregnant women affected by
Gestational diabetes mellitus (GDM). It consists of a mobile
app for patient use and a web interface for clinicians. Typically,
the mobile app is connected via Bluetooth to the patient’s
blood glucose (BG) monitor, so that readings are automatically
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uploaded for review by clinicians. In some cases, patients use
non-bluetooth BG monitors and manually input the readings.

In addition to BG reading history, the GDm-Health dataset
includes demographic information about the patient, prescrip-
tion information (e.g., insulin, metformin), how the patient’s
condition is being managed (medication/diet only/both) and
metrics of clinician-patient interaction. The use of GDm-
Health can be advised at any time during the pregnancy,
although generally occurs around the 24th week. The system
is generally used until the end of the pregnancy period.
Depending on clinician assessment of the patient, clinicians
recommend a set number of BG readings to be taken each
week. When the patient takes a reading, they are asked to
supply information about whether the reading is pre- or post-
prandial, and which meal the reading relates to. Because
normal BG values fluctuate greatly during the day as a function
of mealtimes and carbohydrate intake, this information is
essential for understanding the significance of the reading.

The data used as the basis for synthetic data generation
were extracted from Sensyne’s database in August 2019. This
dataset contains 2660 patients and 439,567 BG readings.
However, after filtering out patients unsuitable for predictive
modelling (e.g., those that have not been diagnosed with
GDM, those that have not actually used the app and therefore
have no BG history) there were 1109 patients who had not
been prescribed medication and 471 that had prescriptions.
The patients’ demographic data and BG reading history
formed the basis of the datasets used to train models that
predict whether a patient will be prescribed medication. For
detailed information about the generation of the features
please see [1]. The models are trained on a set of features
based on aggregate statistics computed over 7 days of data.

The variables used to define a patient entity include

Variable name Details
patient-id UUID format
age Age in months
edd Estimated Delivery Date
parity A number of births of fetuses of 24weeks or

older regardless of the outcome
gravidity A number representing the number of pregnan-

cies regardless of the outcome
induced A boolean variable indicating if the labor was

induced
complications A selection of complications at birth
dayreadings How many readings per day were prescribed
weekreadings how many readings per week were prescribed
diabetes Type of diabetes
expected-
babies

Number of babies expected during the current
pregnancy

height Height in cm
weight Weight in kg

III. SYNTHETIC DATA GENERATION METHODS

A. Probabilistic Graphical Models

Probabilistic Graphical Models are generative models that
capture the underlying joint distribution of multiple interacting
variables [4]. They do this efficiently by making conditional

independence assumptions about the variables which are rep-
resented in a directed graph. By encoding local probability
distributions at each node in the graph, this family of models
can be used to perform inference about new data, or to generate
samples of new data. Bayesian Networks (BNs) are a form of
probabilistic graphical model that can be inferred from data
(both structure and parameters). Furthermore, the inference
allows data to be sampled from the model under different
conditions. For example, data can be sampled but only for
people with high-blood pressure, or only people over a specific
age. In this way, synthetic data can be generated that suits a
specific cohort. Temporal information can be incorporated into
these models in a number of ways: extending into the time
domain using dynamic BNs [2], or by including explicit tem-
poral nodes within the structure that capture different temporal
behaviours such as trends. Figure 1 shows an example BN with
four nodes where each probability distribution is conditioned
upon the parents of the node.

Fig. 1. Bayesian Network with Four Nodes and associated local distributions

B. Incorporating Trend Information

For these experiments we used a standard BN approach
by inferring both structure and parameters from the ground
truth data. A BN is learnt from the data described in the
previous section. Synthetic data is then sampled from this
BN using a standard logic sampling approach [3]. We use the
bnlearn package in the statistical package R for implementing
our experiments [5]. As previously stated, we can bias the
sampling of data to patients with particular characteristics or
symptoms. For example, we can generate samples for patients
living in a certain region, or those greater than a threshold
age. This could be used to compensate for known biases
within some ground truth datasets. For the longitudinal data
(the blood glucose readings), we repeatedly sampled for each
patient and use Euclidean distance to identify samples that are
close to the original ground truth time-series. These form the
synthetic time-series. The synthetic instance must meet two
criteria:

1) the same trend to previous sequential value as to GT
trend, i.e. up/down/level

2) the closest to the ground truth instance by Euclidean
distance
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C. MARK & HERMES

We have explored two approaches to generating the syn-
thetic data based on practical constraints. In the BG reading
data processing, we found that t+1 trend comparison requires
us to build a new BN for each sequence and this repetitive task
of learning and fitting can be an overhead during production.
The first approach which yielded a synthetic dataset we call
the ’MARK’ version, used t + 1 trend comparison so that a
new BN is built to represent each sequence in the series. In
the second approach, which seeks to make efficiency gains in
processing, we used t+2 trend comparison so that a new BN
is built for every two sequences in the series. The resulting
synthetic dataset is termed the ’HERMES’ version.

In HERMES, we also filled the BG value, i.e. the value at
t + 1. Here we are using a jitter function f(v) = v + z/50,
to introduce minor noise to the ground truth value, where v is
the ground truth value at t+1, and z is the difference between
adjacent values at t and t + 2. Despite the jitter function
in which the associated overhead is trivial, the efficiency
HERMES gained is half of the overhead as MARK during
BN learning and fitting and this results in the BG readings
being generated faster than MARK in practice.

IV. EXPERIMENTS

In this paper we wish to explore how BNs can be used to
model time-series data that displays complex diurnal variations
using as an exemplar, blood glucose levels in gestational
diabetes. We investigate whether the synthetic data generated
using the approaches outlined in the Methods can be used
to train and validate machine learning models with enough
accuracy to be considered as good as (or better than) working
directly with ground truth data. This means exploring not just
accuracy as a metric but also the potential underlying biases
in a model by carrying out a full sensitivity analysis.

A. Receiver Operator Characteristic and Precision / Recall
Analysis

Synthetic data of the same sample size as the ground
truth data were generated using the methods described in
the previous section and the two approaches- MARK and
HERMES. After comparing the univariate distributions of
each feature for MARK and HERMES with those from the
ground truth (from now on GDM-1), we explore the behaviour
of one machine learning classifier selected from the work
of [1] trained and validated on this synthetic data. We assess
its performance using standard sensitivity analysis with re-
sampling. This allows us to calculate the sensitivity, specificity,
precision and recall of the classifier. We then compare these
performance statistics with those on the ground truth data
(GDM-1) as well as a further extended ground truth dataset
collected from the same digital-health application (during the
period August 2019-October 2020). This last dataset (from
now on GDM-2) includes more NHS Trusts and a considerably
larger number of participants (7,733). This enables us to see
how close the model and performance statistics of synthetic

data are to a model trained and tested on a more substantial
and fully independent ground truth dataset.

B. Multidimensional Scaling Visualisations

Whilst the sensitivity analysis will tell us how a machine
learning classifier compares when trained on real or synthetic
data it does not tell us how the individual test data points
compare and in particular how false positives (FPs) and false
negatives (FNs) compare. We want to explore in detail the
general decision boundaries of the classifiers when trained
on synthetic and ground truth data and to do this we per-
formed multidimensional scaling analysis to see how the mis-
classifications compared when observed on their respective
regions of the input feature space. Ideally, we want to see
a similar pattern of FPs and FNs for synthetic and ground
truth models in terms of where they occur in the input feature
space.
To this end, we ran 1,000 train-test iterations of the selected
model using either GDM-1, MARK, or HERMES as the
training set and GDM-2 as the test set. During the training
phase of each iteration, we took a random sample of patients
to generate measurable variation in the model outputs. We
then tested the trained model on the entire GDM-2 dataset.
To assess how similar the classification of these test data
were between models trained on synthetic data and models
trained on real-world data, we used a Spearman correlation
to obtain the correlation coefficient between the vectors of
average classifications.

C. Clinical Validation of Synthetic Datasets

In order to further validate the fidelity of the synthetic data
to ensure it is indistinguishable to ground truth data we carried
out an analysis whereby two clinical experts (one of whom
is based within the UK Medicines and Healthcare Products
Regulatory Agency, and provided a generalist medical per-
spective, while the second is a consultant obstetric physician
based within Sensyne Health) were asked to inspect 30 patient
records and to identify the ground truth from the synthetic. We
randomly selected 10 ground truth and 20 synthetic records
(10 from HERMES and and 10 from MARK) for inspection.
We asked two clinicians to identify which data they thought
were from real patients and which were synthetic.

V. RESULTS

A. Analysis of feature distributions

After clinical inspection, we explored some simple distri-
butional comparisons between features within the datasets,
both Ground Truth (GDM-1) and Synthetic (MARK). Figure
2 shows these distributions the features used in the models
tested here. There is substantial overlap between the synthetic
and ground truth distributions, with no significant differences
at the critical alpha of 0.008 observed in the distributions of
the four continuous features as measured by the Kolmogorov-
Smirnov test (Feature 1, p = 0.25; Feature 2, p = 0.83;
Feature 4, p = 0.051; Feature 5, p = 0.61), and no significant
difference in the two binary features (Feature 3 and the Target)
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Fig. 2. Distribution Comparison of Ground Truth and Synthetic Data

as measured by a z-test for proportions (Feature 3, p = 0.73;
Target, p = 0.5). For HERMES (which involved efficiency
savings) the similarity between the synthetic and ground truth
was less pronounced. Significant differences were observed in
Features 1, 3, 4 and 5 (all p < 0.001).

B. Machine learning model comparison

We now turn to the behaviour of the synthetic datasets
compared to the ground truth when carrying out training
and testing of machine learning classifiers. These models
are designed to predict medical intervention (specifically,
prescription of medication to aid BG control) in the data. We
trained and tested 100 models on each of GDM-1, MARK
and HERMES, selecting a different random 20% of the data
for testing and using the rest for training on each iteration.
We show the resulting average ROC curves and PR curves
in Figures 3 and 4, respectively. In 3 the average ROC curve
for the ground truth (GDM-1) has the highest area underneath
but this is closely followed by the synthetic dataset (MARK).
The overlap is considerable and demonstrates no significant
difference in using synthetic data to validate the models as
compared to ground truth data (2-sample t-test of AUC values

Fig. 3. ROC curves for Ground Truth and Synthetic Data Compared

t(198) = 0.66, p = .51). HERMES shows less convincing
results with significantly lower AUC values than GDM-1
(t(198) = 11.78, p < .001) and MARK (t(198) = 12.5, p <
.001). Interestingly, however, the average AUC when running
100 models trained on a sample (80%) of GDM-1, MARK or
HERMES and testing on GDM-2 was highly similar across
the three datasets (GDM-1: 0.773, MARK: 0.770, HERMES:
0.772), though the figures for GDM-1 and HERMES were
significantly different statistically from MARK (GDM-1 vs.
MARK t(198) = 3.21, p = .001; HERMES vs. MARK
t(198) = 2.27, p = .02). Though the average AUCs were very
similar, more pronounced differences were observed in the
average percent correct for the three models when the logistic
regression output was thresholded at 0.5 (GDM: 82% correct,
MARK: 82% correct, HERMES: 79% correct).

We also explore the use of Precision Recall (PR) curves.
This is especially important due to the the imbalanced nature
of the data. Figure 4 shows a sample of PR curves for models
that are trained on GDM-1, MARK and HERMES and tested
on GDM-2. Notice that the variance in the curves for GDM
is higher due to the differing training and testing samples as
opposed to the curve for MARK which does not change.

C. MDS

Sensitivity Analysis helps us to capture the overall classi-
fication performance as well as the tradeoffs between Sensi-
tivity / Specificity, and Precision / Recall. However, to better
understand the detailed types of mis-classifications we explore
a dimensionality reduction approach to see if the types of
mis-classification are similar between the models trained and
validated on the ground truth and the synthetic data. In partic-
ular, we use multidimensional scaling with Euclidean distance
as the distance metric. Figure 5 shows the class allocations
for the ground truth data (a) along with the associated mis-
classifications (b), as well as the class allocations for the
synthetic data (c) and their associated mis-classification (d).

Notice that the overall shape of the data is similar in the
ground truth (a) and synthetic data (c) and that the overlap of
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Fig. 4. PR curves for Ground Truth and Synthetic Data Compared

classes are also similar though the synthetic data appears to
have slightly more densely clustered positive cases of patients
taking medication. Note that the dataspace has been flipped
along the x-axis as a result of the scaling procedure. Looking
at (b) and (d) we can see how the true negatives, true positives,
false negatives and false positives are distributed over the
dataspace. Again, we see similar shapes of the data with each
class of classification being somewhat similar, the only notable
difference being the true positives being slightly more densely
clustered as seen in (c).

To quantify the similarity of model response patterns at the
individual item level, we trained 100 models on each of GDM-
1, MARK and HERMES and tested them on GDM-2. We then
calculated the phi coefficients between the individual vectors
of binary responses from the models trained on GDM-1 and
MARK, and GDM-1 and HERMES. We then converted these
values to be normally distributed via the Fisher z-transform
and carried out a 2-sample t-test, which showed that the
response similarities between models trained on GDM-1 and
MARK were significantly higher than those between GDM-1
and HERMES (t(198) = 8.10, p < .001).

D. Clinical Validation

Table II shows the results of the clinicians identification
of synthetic patients compared to the real. It can be seen
that of the 30 synthetic patient records presented to the two

a)

b)

c)

d)

Fig. 5. Multidimensional Scale Plots - Class allocation and Classification
errors for (a,b) Ground Truth Data (GDM-1) and (c,d) Synthetic Data (Mark)
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experts, only 6 (clinician A) and 7 (clinician B) were correctly
identified as synthetic, whilst 3 and 8 were correctly identified
as real. 14 and 13 were incorrectly identified as ground
truth and 7 and 2 were incorrectly identified as synthetic.
These results indicate that it was not easy for the experts
to distinguish synthetic from ground truth. The Table also
includes a breakdown of the two synthetic datasets indicating
that Hermes was slightly more difficult to distinguish.

TABLE I
CONFUSION MATRIX OF CLINICAL VALIDATION FOR IDENTIFYING

SYNTHETIC FROM REAL RECORDS - CLINICIAN A

Total = 30 Predicted Synth Predicted GT Total
Actual Synthetic 6 14 20

Actual GT 7 3 10

Breakdown
HERMES (actual synthetic) 2 8 10

MARK (actual synthetic) 4 6 10
Ground Truth (actual GT) 7 3 10

TABLE II
CONFUSION MATRIX OF CLINICAL VALIDATION FOR IDENTIFYING

SYNTHETIC FROM REAL RECORDS - CLINICIAN B

Total = 30 Predicted Synth Predicted GT Total
Actual Synthetic 7 13 20

Actual GT 2 8 10

Breakdown
HERMES (actual synthetic) 3 7 10

MARK (actual synthetic) 3 7 10
Ground Truth (actual GT) 3 7 10

VI. CONCLUSIONS AND FUTURE WORK

We have demonstrated experimentally that our synthetic
data generation approach is able to handle complex time-
series data like blood glucose measurements which exhibit
diurnal variation in response to meals, dietary intervention,
and medications. Both clinical and statistical validation tests
demonstrated that these synthetic datasets can capture un-
derlying ground truth data characteristics with a high degree
of fidelity. Furthermore, this high fidelity is maintained even
when comparing derived features which were not included in,
but only derived from the original ground truth dataset for the
purpose of model training. The high fidelity is maintained also
when comparing to real world data collected prospectively.
These results give us confidence that our synthetic data could
be used to train and validate future models. What is more,
in cases where ground truth data are limited, one could
use synthetic data to boost limited datasets where there are
undersampled cases.

We also examined trade-offs between efficiency and fidelity
by comparing two approaches to synthetic data generation for
time-series data, MARK (which considers each sequence in
the time series) and HERMES (which considers every second
sequence in the time series and thus, is computationally more
efficient). We observed slightly lower fidelity with HERMES

but none of our tests suggested a clinically or statistically
meaningful loss of fidelity.

In this paper we have focused on replicating the character-
istics of the ground truth data in the synthetic data. However,
as stated earlier, BN approaches offer the opportunity to bias
the sampling of data to patients with specific characteristics.
This conditional generation of synthetic data could be used
to compensate for known biases in ground truth data or to
examine the effects of biases which are of concern to policy
makers, on the performance of machine learning algorithms.
Future work will focus on such conditional generation as well
as exploring other approaches to time-series modelling such
as dynamic Bayesian networks [2], the inclusion of latent
variables to improve fits of the distributions and to handle
unmeasured effects [7], the use of Spatial Bayesian Networks
[10] to model geospatial health effects regionally, and the
exploration of data drift with respect to model fit over time.
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