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Sequential Fusion Estimation for Multi-Rate
Complex Networks with Uniform Quantization: A

Zonotopic Set-Membership Approach
Zhongyi Zhao, Zidong Wang, and Lei Zou

Abstract—In this paper, the sequential fusion estimation prob-
lem is investigated for multi-rate complex networks (MRCNs)
with uniformly quantized measurements. The process and mea-
surement noises, which are unknown-yet-bounded (UYB), are
restrained into a family of zonotopes, and the multiple sensors
are allowed to have different sampling periods. To facilitate
digital transmissions, the sensor measurements are uniformly
quantized before being sent to the remote estimator. The purpose
of this paper is to design a sequential set-membership estimator
such that, in the simultaneous presence of UYB noises, multi-
rate samplings, and uniform quantization effects, the estimation
error (after each measurement update) is confined to a zonotope
with minimum F -radius at each time instant. By introducing
certain virtual measurements, the MRCNs are first transformed
into single-rate ones exhibiting switching phenomenon. Then,
by utilizing the properties of zonotopes, the desired zonotopes
are derived that contain the estimation error dynamics after
each measurement update. Subsequently, the gain matrices of
the sequential estimator are derived by minimizing theF -radii
of these zonotopes, and the uniform boundedness is analyzed
for the F -radius of the zonotope containing the estimation
error after all measurement updates. Furthermore, sufficient
conditions are derived to ensure the existence of the desired
uniform upper/lower bounds. Finally, an illustrate example is
proposed to show the effectiveness of the proposed sequential
fusion estimation method.

Index Terms—Multi-rate complex networks, sequential fu-
sion estimation, set-membership state estimation, unknown-yet-
bounded noises, uniform quantization, zonotopes.

I. INTRODUCTION

Dynamics analysis of complex networks (CNs) has long
been an active research topic in systems and control com-
munity owing to the fact that CNs are particularly suitable
in modelling large-scale systems made up of various coupled
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dynamic units. Examples of these large-scale systems include,
but are not limited to, sensor networks, power grids and artifi-
cial neural networks. Till now, tremendous research interest
has been drawn onto various dynamics analysis problems
(e.g. stability, synchronization, consensus, pinning control and
state estimation) for CNs, and a large number of excellent
results have recently been published in the literature, see[7],
[11], [12], [18], [19], [36], [37], [39], [40], [42], [43], [47] for
some representative findings.

Most existing results concerning the CNs have implicitly
assumed that the sampling rates of the network and its sensor
measurements are the same, but this assumption is often
unrealistic since the system components with diverse physical
features might have inherentlydifferent sampling rate [13],
[29], [41], [49], [51], [54], and this necessitates the needto
study the so-called multi-rate CNs (MRCNs). On the other
hand, the state estimation scheme for CNs has proven to be
practically significant since the information of certain node
states, which is crucial for accomplishing certain tasks, are
often unavailable because of the huge network scale and
restricted resources. So far, a great deal of research attention
has been paid to the state estimation problem for CNs with
many algorithms available in the literature, see e.g., [36], [43],
[55] and the references therein.

The state estimation approaches for CNs can be roughly
categorized into distributed and centralized ones where, for a
distributed estimation scheme, the estimation is carried out
on each node by using the local and neighboring sensing
information. As for the centralized scheme, the measurement
information of all nodes is collected by a central processing
unit (the estimator) and then processed to generate the state es-
timates by augmenting the original state and the measurement
into a unified vector. Until now, the centralized estimation
schemes for CNs have attracted considerable research attention
due to their capability in providing globally optimal estimates
under certain performance criteria [37], [43], [55].

Multi-sensor information fusion (MSIF) has been well rec-
ognized as an effective state estimation technique for multi-
sensor systems [3], [4], [9], [14]–[16], [38] with successful
applications in guidance, target tracking, robotics, and in-
tegrated navigation [3]–[5], [31], [53]. For the centralized
fusion that provides the state estimates by employing all
original measurement information, one way is to augment the
system measurements (also calledparallel fusion) as discussed
previously, and another more prevalent way is the so-called
sequential fusionthat aims to collect the measurement infor-
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mation by the central processing unit (fusion center) and then
process the information in a sequential order.

Comparing to its parallel fusion counterpart, the sequential
fusion method could achieve similar estimation accuracy yet
with much higher computational efficiency [30], [31], [52],
[53]. When it comes to CNs, the fusion estimation problem is
especially important because of the large amount of sensors
deployed and the demand of fusing sensor data for uncertainty
reduction. It is worth noting that, to the best of the authors’
knowledge, the fusion estimation problem for CNs has not
received adequate research attention yet, let along the con-
sideration of the sequential nature of the fusion scheme for
mitigating computational complexity, and the main motivation
of this paper is therefore to shorten such a gap.

Traditional fusion algorithms, which have been specifically
developed to tackle random and/or energy-bounded noises,
might be inapplicable to handleunknown-yet-bounded(UYB)
noises that are frequently encountered in practical systems [8],
[25], [27], [34], [48]. In this case, a particularly suitable way
is to fuse the measurement information of the CNs based
on the set-membershipstate estimation (SMSE) whose aim
is to give a compact set containing the real system state
at each time instant. Note that the SMSE problems have
drawn much research interest for various complex systems
undergoing UYB noises, see e.g. [8], [25], [26], [34] and the
references therein.

Zonotopes, which are convex polytopes that can be repre-
sented as the Minkowski sum of finite line segments, have
recently been well utilized in the SMSE problems because
such zonotopes can be ideally employed as compact sets that
restrain the system states [1], [2], [6], [20], [22]–[24], [26],
[45], [46]. By using zonotopes in SMSE problems, we would
be able to balance the estimation accuracy and the computa-
tional burden. Specifically, in calculating the Minkowski sum
and linear transformation (two widely utilized operationsin
SMSE), the loss of accuracy could be avoided when using the
zonotopic SMSE method [17], [24], [45]. Moreover, the order
reduction technique of zonotopes could reduce the complexity
of operations in a significant way [17], [26].

The phenomenon of signal quantization is a common oc-
currence in digital communication as a result of the limited
transmission capacity of the digital channels. In the con-
text of networked control systems, the impacts from signal
quantizations onto the overall system performance have been
extensively examined in the literature, and most results have
been concerned with the uniform quantization scheme that
appears very often in engineering practice, see [21], [35],
[50] for some representative results. Nevertheless, pertaining
to the sequential fusion estimation problem for MRCNs, the
signal quantization issue has not received adequate research
attention yet and this constitutes another motivation for our
current investigation.

Summarizing the discussions made so far, in this paper, we
are interested in dealing with the sequential fusion estimation
problem for MRCNs suffering from UYB noises. In doing so,
we are facing three substantial difficulties identified as follows:
1) how to deal with the complexities brought by the multi-rate
sampling and the uniform quantization schemes in analyzing

the estimation performance? 2) how to design the parameters
of the desired sequential estimator in a recursive way? and
3) how to tackle the boundedness analysis problem of theF -
radius of the zonotope confining the estimation error (afterall
measurement updates) for concerned MRCNs?

Corresponding to the challenges discussed above, the contri-
butions of this paper are highlighted from the following four
aspects: 1) the sequential fusion estimation problem is, for
the first time, investigated for MRCNs under the framework
of zonotopic SMSE; 2) the gain parameters of the sequential
estimator are designed such that theF -radii of zonotopes
confining estimation errors are minimized at each time instant;
3) a sequential fusion algorithm is proposed, which is imple-
mented in a recursive manner and hence suitable for online
applications; and 4) sufficient conditions are obtained to ensure
that theF -radius of the zonotope confining the estimation
error (after the last measurement update among the sequential
processes) is uniformly bounded.

The remainder of this paper is organized as follows. In
Section II, the sequential estimator is formulated for MRC-
Ns with uniform quantization effects. In Section III, under
the zonotopes-based fusion criterion, the zonotopes are first
derived that restrain the estimation error dynamics after each
measurement update, and the parameters of the sequential
estimator are then designed. Moreover, the uniform bound-
edness of the estimation error after all measurement updates
is analyzed. Section IV provides a numerical example. Finally,
the conclusion is drawn in Section V.

Notations: N and N
+ represent the set{0, 1, 2, · · · } and

{1, 2, 3, · · · }, respectively.Ri1×i2 is the set ofi1 × i2 real
matrices.Ri1 andR are special cases ofRi1×i2 with i2 = 1
and i1 = i2 = 1, respectively.I and 0 represent identity
matrix and zero matrix of proper dimensions, respectively.
diag{∗} represents a block-diagonal matrix. For a column
vector ξ =

[
ξ1 · · · ξn

]T ∈ R
n, diagv{ξ} denotes the

diagonal matrixdiag{ξ1, · · · , ξn}. λmax{·} denote the max-
imum eigenvalue of the square matrix “·”. For a matrixX ,
|X | represents the element-to-element absolute value oper-
ation. Y −1 and tr{Y} represent the inverse and the trace
of square matrixY , respectively.ZT refers to the transpose
of matrix Z. 1 ,

[
1 1 · · · 1

]T
is a column vector of

proper dimension. For a vectorz ∈ R
nz , ‖z‖1, ‖z‖2, and

‖z‖∞ represent the1-norm, 2-norm, and infinite norm ofz,
respectively.mod(δ1, δ2) stands for the remainder on division
of δ1 by δ2 with δi (i = 1, 2) being positive integers. For
sets H1,H2 ⊂ R

m and a matrixH ∈ R
n×m, one has

H1 ⊕ H2 , {h1 + h2 : h1 ∈ H1, h2 ∈ H2} andH ⊙ H1 ,

{Hh1 : h1 ∈ H1}, where “⊙” is granted a higher precedence
than “⊕”. Given a center vectorh ∈ R

n and a generator matrix
H ∈ R

n×m, 〈h,H〉 , {h + Hz : z ∈ R
m, ‖z‖∞ ≤ 1}

represents a zonotope of orderm [44].

II. PRELIMINARIES AND PROBLEM
FORMULATION

As is shown in Fig. 1, we consider the sequential fusion
estimation problem for a class of MRCNs with uniformly
quantized measurements. The considered MRCNs are assumed
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to haveN nodes with the measurements of the firstq nodes
being available. The available measurement information is
first uniformly quantized and then transmitted to a sequential
estimator to generate the state estimates. In the following,
we shall introduce respectively the MRCNs, the uniform
quantization mechanism and the sequential estimator in details.

Node

Node

Node

Node

Node

Quantizer

Quantizer

Quantizer

Estimator

Estimator

Estimator

Predictor

MRCN

Fig. 1: Block diagram of the sequential fusion estimation
problem for MRCN with uniform quantization.

A. System Model

Consider a class of MRCNs withN nodes, in which the
i-th node has the following dynamics:







xi(ηs+1) = Gi(ηs)xi(ηs) +

N∑

j=1

Aij(ηs)xj(ηs)

+Bi(ηs)wi(ηs)

zi(ηs) = Mi(ηs)xi(ηs)

xi(η0) ∈ 〈ci(η0), Ei(η0)〉, i = 1, 2, · · · ,N

(1)

where ηs is the s-th updating instant of the system state;
xi(ηs) ∈ R

nxi and zi(ηs) ∈ R
nzi represent the state

vector and the signal to be estimated, respectively;xi(η0)
is the initial condition which belongs to a known zonotope
〈ci(η0), Ei(η0)〉 with center ci(η0) ∈ R

nxi and generator
matrix Ei(η0) ∈ R

nxi
×nxi ; wi(ηs) ∈ R

nwi stands for the
process noise;Gi(ηs), Bi(ηs) andMi(ηs) are known matrices
with proper dimensions; andAij(ηs) (i, j = 1, 2, · · · ,N ) are
known matrices that characterize the mutual coupling among
the MRCNs’ nodes.

Without loss of generality, we assume that only the mea-
surements from the firstq (q < N ) nodes of the MRC-
Ns (1) are accessible, where different nodes have different
sampling rates. In this situation, the measurement of thei-th
(i ∈ {1, 2, · · · , q}) node is described as follows:

yi(ωi,s) = Ci(ωi,s)xi(ωi,s) +Di(ωi,s)vi(ωi,s) (2)

whereωi,s is the sampling time instant (dependent on thei-th
node);yi(ωi,s) ∈ R

nyi is the measurement output;vi(ωi,s) ∈
R

nvi is the measurement noise; andCi(ωi,s) andDi(ωi,s) are
known matrices of proper dimensions.

Assumption 1:The UYB process noisewi(ηs) satisfies

wi(ηs) ∈ 〈0,Wi(ηs)〉 (3)

with Wi(ηs) ∈ R
nwi

×nwi being a known matrix fori =
1, 2, · · · ,N . Similarly, the UYB measurement noisesvi(ωi,s)
(i = 1, 2, · · · , q) satisfy

vi(ωi,s) ∈ 〈0, Vi(ωi,s)〉 (4)

with Vi(ωi,s) ∈ R
nvi

×nvi being a known matrix fori =
1, 2, · · · , q.

Assumption 2:The updating period for system state ish ,

ηs+1−ηs, and the sampling period for the measurement output
of the i-th node isbih , ωi,s+1 − ωi,s, wherebi is a positive
integer. In addition,η0 = 0 andωi,0 = ω̄i ∈ {0, h, 2h, · · · }
(i = 1, 2, · · · , q).

According to Assumption 2, the sequence of sampling
instants of nodei can be denoted as

Si , {ω̄i + sbih : s = 0, 1, · · · }. (5)

Remark 1: In many existing references concerning the
multi-sensor multi-rate fusion, a common assumption is that
the system and all sensors have the same initial sampling
instants, i.e.,

η0 = ω1,0 = ω2,0 = · · · = ωq,0 = 0.

This assumption, however, is often unrealistic especiallyfor
large-scale multi-sensor systems (CNs) because it is generally
impossible to find a time instant at which the system state is
updated while all sensor nodes are simultaneously sampled.
In view of this, in Assumption 2, the initial sampling instants
ωi,0 (i = 1, 2, · · · , q) are allowed to be different for different
nodes. With the information ofωi,0 and the sampling period
bih of the i-th node, the set of sampling instantsSi can be
obtained, which will then be used to convert the system (1) to
a single-rate one.

B. Quantized Transmission

Let us first introduce the transmission model where the
measurementsyi(ωi,s) (i = 1, 2, · · · , q) are quantized before
being transmitted to the remote estimator. In this paper, we
consider the effects of the uniform quantization mechanism.

For yi(ωi,s), let its quantized signal běyi(ωi,s), i.e.,
y̌i(ωi,s) = Qi(yi(ωi,s)), whereQi(·) represents the operation
of the uniform quantization on signal “·”. When the saturation
level in the quantization is sufficiently large, the quantized
signal y̌i(ωi,s) can be modeled by

y̌i(ωi,s) = Qi(yi(ωi,s)) =











ϑiR(
y
(1)
i

(ωi,s)

ϑi
)

ϑiR(
y
(2)
i

(ωi,s)

ϑi
)

...

ϑiR(
y
(nyi

)

i
(ωi,s)

ϑi
)











(6)

whereϑi is the quantizing level;y(l)i (ωi,s) represents thel-
th component of the vectoryi(ωi,s); andR(·) stands for the
function rounding a number to its nearest integer.

Denote∆i(ωi,s) , y̌i(ωi,s) − yi(ωi,s) as the quantization
error. It follows from (6) that

‖∆i(ωi,s)‖∞ ≤ ϑi

2
, i = 1, 2, · · · , q. (7)
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For nodei, define

Či(ηs) ,

{
Ci(ηs), if ηs ∈ Si

0nyi
×nxi

, otherwise
,

Ďi(ηs) ,

{
Di(ηs), if ηs ∈ Si

0nyi
×nvi

, otherwise ,

v̌i(ηs) ,

{
vi(ηs), if ηs ∈ Si

0nvi
×1, otherwise

,

∆̌i(ηs) ,

{
∆i(ηs), if ηs ∈ Si

0nyi
×1, otherwise

.

Then, the quantized output (6) can be rewritten as

y̌i(ηs) = Či(ηs)xi(ηs) + ∆̌i(ηs) + Ďi(ηs)v̌i(ηs). (8)

Define x(ηs) ,
[
xT
1 (ηs) xT

2 (ηs) · · · xT
N (ηs)

]T
and

z(ηs) ,
[
zT1 (ηs) zT2 (ηs) · · · zTN (ηs)

]T
. By using (8), the

original MRCNs (1) can be rewritten in the following compact
form






x(ηs+1) =
(

G(ηs) +A(ηs)
)

x(ηs) +B(ηs)w(ηs)

z(ηs) = M(ηs)x(ηs)

y̌i(ηs) = Ci(ηs)x(ηs) + ∆̌i(ηs)

+ Ďi(ηs)v̌i(ηs), i = 1, 2, · · · , q
x(η0) ∈ 〈č0|0, E0|0〉

, (9)

where

A(ηs) ,






A11(ηs) · · · A1N (ηs)
...

. . .
...

AN1(ηs) · · · ANN (ηs)




 ,

G(ηs) , diag{G1(ηs), G2(ηs), · · · , GN (ηs)},
B(ηs) , diag{B1(ηs), B2(ηs), · · · , BN (ηs)},
M(ηs) , diag{M1(ηs),M2(ηs), · · · ,MN (ηs)},
E0|0 , diag{E1(η0), E2(η0), · · · , EN (η0)},
č0|0 ,

[
cT1 (η0) cT2 (η0) · · · cTN (η0)

]T
,

w(ηs) ,
[
wT

1 (ηs) wT
2 (ηs) · · · wT

N (ηs)
]T

,

Ci(ηs) ,

[

0 · · · 0
︸ ︷︷ ︸

i−1

Či(ηs) 0 · · · 0
︸ ︷︷ ︸

q−i

0 · · · 0
︸ ︷︷ ︸

N−q

]

.

Combining (3), (4) with the definition of zonotopes, we have

w(ηs) ∈ 〈0,W (ηs)〉 (10)

with

W (ηs) , diag{W1(ηs),W2(ηs), · · · ,WN (ηs)},

and

v̌i(ηs) ∈ 〈0, Vi(ηs)〉, i = 1, 2, · · · , q (11)

with Vi(ηs) , 0nvi
×nvi

whenηs /∈ Si. Moreover, whenηs ∈
Si, it follows from (7) that

∥
∥
∥
∥
∥

(
ϑi

2

)−1

∆̌i(ηs+1)

∥
∥
∥
∥
∥
∞

≤ 1,

which together with the definition of zonotopes gives rise to
(
ϑi

2

)−1

∆̌i(ηs+1) ∈ 〈0, I〉 (12)

Remark 2:By using the pseudo measurement approach, we
convert the MRCN (1)-(2) into a single-rate system. In such a
conversion, one needs to judge whether the relationshipηs ∈
Si holds or not, which can be easily checked by looking at

mod(ηs − ω̄i, bih) = 0 ∧ ηs ≥ ω̄i

where “∧” denotes the logical relationship “and”. Note that the
pseudo measurement approach has been widely utilized in con-
verting multi-rate systems into single-rate systems. Withthis
method, the state estimate can be obtained at each updating
instant of the system state with avoidance of the augmentation
of system state.

C. The Estimator

In this paper, the following sequential estimator is construct-
ed for system (9):







x̂s+1|s =
(

G(ηs) +A(ηs)
)

x̂s|s

x̂1,s+1|s+1 = x̂s+1|s +K1,s+1ỹ1,s+1

ỹ1,s+1 = y̌1(ηs+1)− C1(ηs+1)x̂s+1|s

x̂i,s+1|s+1 = x̂i−1,s+1|s+1

+Ki,s+1ỹi,s+1, i = 2, 3, · · · , q
ỹi,s+1 = y̌i(ηs+1)− Ci(ηs+1)x̂i−1,s+1|s+1

x̂s+1|s+1 = x̂q,s+1|s+1

ẑs+1|s+1 =M(ηs+1)x̂s+1|s+1

x̂0|0 = ĉ0|0

(13)

where x̂s+1|s, x̂i,s+1|s+1 and x̂s+1|s+1 are the prediction
at time instantηs, the estimate ofx(ηs+1) after the i-th
measurement update and the estimate ofx(ηs+1) after theq-th
measurement update, respectively;ẑs+1|s+1 is the estimate of
z(ηs+1); ĉ0|0 is a known vector; andKi,s+1 (i = 1, 2, · · · , q)
are the estimator parameters to be designed.

Let the one-step prediction error, the estimation error after
the i-th measurement update, the estimation error after theq-
th measurement update and the estimation error of the signal
z(ηs+1) bees+1|s , x(ηs+1)−x̂s+1|s, ei,s+1|s+1 , x(ηs+1)−
x̂i,s+1|s+1, es+1|s+1 , x(ηs+1) − x̂s+1|s+1 and z̃s+1|s+1 ,

z(ηs+1) − ẑs+1|s+1, respectively. According to (9) and (13),
we have






es+1|s =Ases|s +B(ηs)w(ηs)

e1,s+1|s+1 =Λ1,s+1es+1|s −K1,s+1∆̌1(ηs+1)

−K1,s+1Ď1(ηs+1)v̌1(ηs+1)

ei,s+1|s+1 =Λi,s+1ei−1,s+1|s+1 −Ki,s+1∆̌i(ηs+1)

−Ki,s+1Ďi(ηs+1)v̌i(ηs+1), i = 2, · · · , q
es+1|s+1 = eq,s+1|s+1

z̃s+1|s+1 =M(ηs+1)es+1|s+1

e0|0 ∈ 〈c0|0, E0|0〉
(14)
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where

As , G(ηs) +A(ηs),

Λi,s+1 , I −Ki,s+1Ci(ηs+1),

c0|0 , č0|0 − ĉ0|0.

D. Problem Statement

Definition 1: Let a set of zonotopes

E , {〈ci,s|s, Ei,s|s〉 : i = 1, 2, · · · , q; s ∈ N
+}

be given. The estimation error system (14) is said to satisfy
the E-dependent constraint if

ei,s|s ∈ 〈ci,s|s, Ei,s|s〉
holds for alls ∈ N

+ and i = 1, 2, · · · , q.
Definition 2: [44] For a zonotope〈c,Λ〉 ⊂ R

n, itsF -radius
is defined as

‖Λ‖F ,

√

tr{ΛTΛ}. (15)

The objectives of this paper are to:

1) find a set of zonotopesE = {〈ci,s|s, Ei,s|s〉 : i =
1, 2, · · · , q; s ∈ N

+} such that the estimation error
system (14) satisfies theE-dependent constraint;

2) minimize theF -radius of 〈ci,s|s, Ei,s|s〉 by choosing
appropriate estimator parameterKi,s for i = 1, 2, · · · , q;

3) establish sufficient conditions ensuing that theF -radius
of 〈cq,s|s, Eq,s|s〉 is uniformly bounded.

III. MAIN RESULTS

The following lemma is useful for analyzing theE-
dependent constraint.

Lemma 1: [17] Let zonotopes〈π1,Π1〉, 〈π2,Π2〉 ⊂ R
n and

a matrixL ∈ R
l×n be given. The following relationships hold:

〈π1,Π1〉 ⊕ 〈π2,Π2〉 =
〈
π1 + π2,

[
Π1 Π2

]〉
, (16)

L⊙ 〈π1,Π1〉 = 〈Lπ1, LΠ1〉, (17)

〈π1,Π1〉 ⊂ 〈π1, diagv{|Π1|1}〉 . (18)

A. Analysis onE-Dependent Constraint

To analyze theE-dependent constraint, we give the follow-
ing theorem.

Theorem 1:Consider the system (9) and the sequential
estimator (13) with given parametersKi,s+1 (i = 1, 2, · · · , q).
Assume that the estimation errores|s satisfies

es|s ∈ 〈cs|s, Es|s〉. (19)

Then, the one-step prediction errores+1|s, the estimation
errors ei,s+1|s+1 (i = 1, 2, · · · , q), es+1|s+1 and z̃s+1|s+1

satisfy

es+1|s

∈
〈
Ascs|s,

[
AsEs|s B(ηs)W (ηs)

]〉

,〈cs+1|s, Es+1|s〉, (20)

e1,s+1|s+1

∈
〈
Λ1,s+1cs+1|s,

[
Λ1,s+1Es+1|s

−ϑ1

2
K1,s+1 −K1,s+1Ď1(ηs+1)V1(ηs+1)

]〉

,〈c1,s+1|s+1, E1,s+1|s+1〉, (21)

ei,s+1|s+1

∈〈Λi,s+1ci−1,s+1|s+1, [Λi,s+1Ei−1,s+1|s+1

−ϑi

2
Ki,s+1 −Ki,s+1Ďi(ηs+1)Vi(ηs+1)]〉

,〈ci,s+1|s+1, Ei,s+1|s+1〉, i = 2, 3, · · · , q, (22)

es+1|s+1

∈〈cq,s+1|s+1, Eq,s+1|s+1〉
,〈cs+1|s+1, Es+1|s+1〉, (23)

z̃s+1|s+1

∈〈M(ηs+1)cs+1|s+1,M(ηs+1)Es+1|s+1〉
,Zs+1. (24)

Proof: In this proof, we aim to show (20)-(24) based upon
(19).

It follows from (10), (14) and (19) that

es+1|s =Ases|s +B(ηs)w(ηs)

∈As ⊙ 〈cs|s, Es|s〉 ⊕B(ηs)⊙ 〈0,W (ηs)〉. (25)

Applying (16)-(17) to (25), we have (20) readily. Further-
more, in light of (12) and (17), we obtain

∆̌i(ηs+1)

=

(
ϑi

2
I

)(
ϑi

2

)−1

∆̌i(ηs+1)

∈
〈

0,
ϑi

2
I

〉

. (26)

It follows from (17) and (26) that

−K1,s+1∆̌1(ηs+1)

∈ (−K1,s+1)⊙
〈

0,
ϑ1

2
I

〉

=

〈

0,−ϑ1

2
K1,s+1

〉

. (27)

With (11), (14) and (27) in mind, we obtain that

e1,s+1|s+1 ∈Λ1,s+1 ⊙
〈
cs+1|s, Es+1|s

〉
⊕
〈

0,−ϑ1

2
K1,s+1

〉

⊕ (−K1,s+1Ď1(ηs+1))⊙ 〈0, V1(ηs+1)〉
=
〈
c1,s+1|s+1, E1,s+1|s+1

〉
, (28)

which is consistent with (21). Similarly, (22) can be obtained
easily.

Utilizing (14) and (17) again, we see that (23)-(24) are true,
and the proof is now complete.

In the following, based on Theorem 1, we proceed to give
zonotopes with which the estimation errorei,s|s satisfies the
E-dependent constraint.

Theorem 2:Consider the system (9) and the sequential
estimator (13) with given parametersKi,s+1 (i = 1, 2, · · · , q).
Let the sequence of zonotopesZs (s ∈ N

+) be given by

Zs =
〈

M(ηs)cs|s,M(ηs)Es|s

〉

, (29)

〈cs|s, Es|s〉 =
〈

cq,s|s, Eq,s|s

〉

, (30)
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〈ci,s|s, Ei,s|s〉 =
〈

Λi,sci−1,s|s, [Λi,sEi−1,s|s

−ϑi

2 Ki,s −Ki,sĎi(ηs)Vi(ηs)]
〉

, i = q, · · · , 2, (31)

〈c1,s|s, E1,s|s〉 =
〈

Λ1,scs|s−1, [Λ1,sEs|s−1

−ϑ1

2
K1,s −K1,sĎ1(ηs)V1(ηs)]

〉

, (32)

〈cs|s−1, Es|s−1〉 =
〈

As−1cs−1|s−1,

[
As−1Es−1|s−1 B(ηs−1)W (ηs−1)

] 〉

(33)

with given initial condition〈c0|0, E0|0〉. Then, the estimation
error system (14) satisfies theE-dependent constraint. More-
over, z̃s|s ∈ Zs holds for alls ∈ N.

Proof: In this proof, we first use mathematical induction
to prove that the estimation error system (14) satisfies theE-
dependent constraint. That is,

ei,s|s ∈ 〈ci,s|s, Ei,s|s〉
holds for all i ∈ {1, 2, · · · , q} ands ∈ N

+.
When s = 1, with the initial conditione0|0 ∈ 〈c0|0, E0|0〉

and (30)-(33), we know from Theorem 1 thatei,1|1 ∈
〈ci,1|1, Ei,1|1〉 is true for i = 1, 2, · · · , q. Assume that
ei,s|s ∈ 〈ci,s|s, Ei,s|s〉 is satisfied at time instants. Sim-
ilarly, we can obtain from Theorem 1 and (30)-(33) that
ei,s+1|s+1 ∈ 〈ci,s+1|s+1, Ei,s+1|s+1〉 holds fori = 1, 2, · · · , q,
which implies that the estimation error system (14) satisfies
the E-dependent constraint.

After proving that the estimation error system (14) satisfies
the E-dependent constraint, it follows from (14) and (30) that

es|s ∈ 〈cs|s, Es|s〉, ∀s ∈ N. (34)

According to (34) and taking (14) and (17) into account, we
can easily obtain that̃zs|s ∈ Zs holds for alls ∈ N. This ends
the proof.

Remark 3: In Theorem 1, based on the condition that the
estimation errores|s resides within a known zonotope, we ob-
tain zonotopes containing the one-step prediction errores+1|s,
confining estimation errorsei,s+1|s+1 (i = 1, 2, · · · , q), and
restraining the estimation errorses+1|s+1 and z̃s+1|s+1. Rest-
ing on Theorem 1, we further give zonotopes ensuring that
the estimation error system (14) satisfies theE-dependent
constraint. It should be pointed out that the generator matrix of
the zonotope〈ci,s+1|s+1, Ei,s+1|s+1〉 is closely related to the
quantization levelϑi. Generally speaking, theF -radius of the
zonotope〈ci,s+1|s+1, Ei,s+1|s+1〉 would become greater with
the increase ofϑi.

B. Design of Sequential Estimator Parameters

In this subsection, we shall deal with the estimator design
problem.

Theorem 3:Assume that the parameterKi,s+1 of the se-
quential estimator (13) is designed as

Ki,s+1 = Qi−1,s+1C
T
i (ηs+1)Φ

−1
i,s+1 (35)

where

Qi−1,s+1 ,

{

Ei−1,s+1|s+1E
T
i−1,s+1|s+1, i ≥ 2

Es+1|sE
T
s+1|s, i = 1

,

Φi,s+1 , Ci(ηs+1)Qi−1,s+1C
T
i (ηs+1) +

ϑ2
i

4
I

+ Ďi(ηs+1)Vi(ηs+1)V
T
i (ηs+1)Ď

T
i (ηs+1).

Then, the estimation error system (14) satisfies theE-
dependent constraint. Moreover, theF -radius of the zonotope
〈ci,s+1|s+1, Ei,s+1|s+1〉 is minimized.

Proof: It is easy to see from Theorem 2 that, with the
estimator parameter (35), the estimation error system (14)
satisfies theE-dependent constraint. Hence, it remains to show
that the estimator parameter (35) minimizes theF -radius of
the zonotope〈ci,s+1|s+1, Ei,s+1|s+1〉. From (31), we have

‖Ei,s+1|s+1‖2F
=tr

{

Λi.s+1Qi−1,s+1Λ
T
i.s+1 +Ki,s+1

(ϑ2
i

4
I

+ Ďi(ηs+1)Vi(ηs+1)V
T
i (ηs+1)Ď

T
i (ηs+1)

)

KT
i,s+1

}

=tr
{

Ki,s+1Φi,s+1K
T
i,s+1 −Ki,s+1Ci(ηs+1)Qi−1,s+1

−Qi−1,s+1C
T
i (ηs+1)K

T
i,s+1 +Qi−1,s+1

}

. (36)

Applying the completion-of-the-square method to (36) gives

‖Ei,s+1|s+1‖2F
=tr

{(

KT
i,s+1 − Φ−1

i,s+1Ci(ηs+1)Qi−1,s+1

)T

Φi,s+1

×
(

KT
i,s+1 − Φ−1

i,s+1Ci(ηs+1)Qi−1,s+1

)

−Qi−1,s+1C
T
i (ηs+1)Φ

−1
i,s+1Ci(ηs+1)Qi−1,s+1

+Qi−1,s+1

}

, (37)

which implies that the parameter given by (35) indeed min-
imizes theF -radius of〈ci,s+1|s+1, Ei,s+1|s+1〉. The proof is
now complete.

C. Sequential Fusion Estimation Algorithm

As a summary of obtained results on the analysis of the
E-dependent constraint and the design of sequential estimator
parameters, a sequential fusion estimation algorithm is pro-
posed in Algorithm 1.

Remark 4: It can be seen from Theorem 2 that, with
the execution of Algorithm 1, the number of columns of
Eq,s+1|s+1 increases steadily. If not handled properly, such
an increase would result in heavy computational burden. To
deal with this issue, in Algorithm 1, we adopt the order
reduction technique (see (18) of Lemma 1). The essence of
this technique is to utilize a low-order zonotope to containa
high-order zonotope at the cost of sacrificing certain accuracy.
With the order reduction technique, the required number
of floating-point-operations of Algorithm 1 is bounded by

O
((

∑N
i=1 nxi

)2 (

Mq +
∑N

i=1 nwi
+
∑q

i=1(nyi
+ nvi)

))

.

Though it provides an effective way of saving computational
cost, the order reduction technique of zonotopes would render
the boundedness analysis ofF -radius of〈cq,s|s, Eq,s|s〉 more
difficult, and this motivates our further investigation in the
next subsection.
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Algorithm 1: Sequential fusion estimation algorithm

Input : Initial conditionsx̂0|0, 〈ci(η0), Ei(η0)〉,
(i = 1, 2, · · · ,N ).

Output : ẑs+1|s+1, z̄s+1, zs+1.
1 Initialization : Give the maximum simulation timessmax,

the positive integerMq, the quantizing levelsϑi

(i = 1, 2, · · · , q), the zonotope〈c0|0, E0|0〉. Sets = 0,
x̄0 = x̂0|0 + c0|0 + |E0|0|1 andx0 = x̂0|0 + c0|0 − |E0|0|1

2 for s ≤ smax do
3 Calculatex̂s+1|s and 〈cs+1|s, Es+1|s〉 by (13) and

(33), respectively. Seti = 1 ;
4 for i ≤ q do
5 ObtainKi,s+1 by (35) ;
6 Updatex̂i,s+1|s+1 by (13) ;
7 if i = 1 then
8 calculateci,s+1|s+1 andEi,s+1|s+1 by (32) ;
9 else

10 calculateci,s+1|s+1 andEi,s+1|s+1 by (31) ;

11 if the number of columns ofEq,s+1|s+1 is greater
thanMq then

12 setEq,s+1|s+1 = diagv{|Eq,s+1|s+1|1} ;

13 Output x̂s+1|s+1 = x̂q,s+1|s+1 and
〈cs+1|s+1, Es+1|s+1〉 = 〈cq,s+1|s+1, Eq,s+1|s+1〉 ;

14 Output ẑs+1|s+1 = M(ηs+1)x̂s+1|s+1 and
〈M(ηs+1)cs+1|s+1,M(ηs+1)Es+1|s+1〉 ;

15 Output the “bounds”̄zs+1 andzs+1 by
z̄s+1 = M(ηs+1)cs+1|s+1 + |M(ηs+1)Es+1|s+1|1 and
zs+1 = M(ηs+1)cs+1|s+1 − |M(ηs+1)Es+1|s+1|1,
respectively ;

D. Boundedness Analysis ofF -radius ofZs

In the following, we shall consider the boundedness of the
F -radius of Zs = 〈M(ηs)cs|s,M(ηs)Es|s〉 (calculated by
Algorithm 1).

For convenience, we introduce the following notations:

rs{Eq,s|s} , diagv{|Eq,s|s|1},
Qq,s , rs{Eq,s|s}

(
rs{Eq,s|s}

)T
,

Vi,s , Vi(ηs)V
T
i (ηs),

Vs , diag{V1,s,V2,s, · · · ,Vq,s},

Ψi,s ,
ϑ2
i

4
I + Ďi(ηs)Vi,sĎ

T
i (ηs),

Υ ,
1

4
diag{ϑ2

1Iny1
, ϑ2

2Iny2
, · · · , ϑ2

qInyq
},

Ds , diag{Ď1(ηs), Ď2(ηs), · · · , Ďq(ηs)},
Cs ,

[
C T
1 (ηs) C T

2 (ηs) · · · C T
q (ηs)

]T
,

nx ,

N∑

i=1

nxi
, nz ,

N∑

i=1

nzi ,

n̄ ,

N∑

i=1

nwi
+

q
∑

i=1

(nyi
+ nvi).

Let rk be thek-th time instant in the execution of the order

reduction (Step 6of Algorithm 1). The set of time instants
(when the order reduction is performed), denoted asKre, can
be given by

Kre = {rk : k = 1, 2, · · · }.
To analyze the uniform boundedness of theF -radius ofZs,

we make the following assumption.
Assumption 3:There exist positive scalarsa, ā, c̄, w, w̄,

andγ such that the following inequalities hold for each time
instants ∈ N:

aI ≤ A
T
s As,AsA

T
s ≤ āI,C T

s Cs ≤ c̄I,

wI ≤ B(ηs)W (ηs)W
T (ηs)B

T (ηs) ≤ w̄I,

γI ≤ Υ+ Ds+1Vs+1D
T
s+1.

DefiningQq,s , Eq,s|sE
T
q,s|s, theF -radius ofZs is equal to

√

tr{M(ηs)Qq,sMT (ηs)}. Hence, in the following, we shall
focus on analyzing the uniform boundedness ofQq,s. Now,
let us first give the uniform lower bound ofQq,s.

Theorem 4:Under Assumption 3, there exists a lower
bound

ι , (w−1 + c̄γ−1)−1

such that the generator matrixEq,s|s of the zonotope
〈cq,s|s, Eq,s|s〉 satisfies

Qq,s = Eq,s|sE
T
q,s|s ≥ ιI (38)

for everys > 0.
Proof: With the estimator parameter (35), the relationship

Q−1
i,s+1 =

(

Qi−1,s+1 −Qi−1,s+1C
T
i (ηs+1)Φ

−1
i,s+1

× Ci(ηs+1)Qi−1,s+1

)−1

=Q−1
i−1,s+1 + C

T
i (ηs+1)Ψ

−1
i,s+1Ci(ηs+1) (39)

holds fori = 1, 2, · · · , q. Letting i = q in (39), we iterate (39)
for q times to yield

Q−1
q,s+1 =Q−1

0,s+1 +

q
∑

i=1

C
T
i (ηs+1)Ψ

−1
i,s+1Ci(ηs+1)

=Q−1
0,s+1 + C

T
s+1(Υ + Ds+1Vs+1D

T
s+1)

−1
Cs+1.

(40)

Recalling Q0,s+1 = Es+1|sE
T
s+1|s and Es+1|s =

[
AsEs|s B(ηs)W (ηs)

]
, we obtain from Assumption 3 that

Q0,s+1 = AsQq,sA
T
s +B(ηs)W (ηs)W

T (ηs)B
T (ηs)

≥ B(ηs)W (ηs)W
T (ηs)B

T (ηs)

≥ wI (41)

if s /∈ Kre, and

Q0,s+1 = AsQq,sA
T
s +B(ηs)W (ηs)W

T (ηs)B
T (ηs)

≥ B(ηs)W (ηs)W
T (ηs)B

T (ηs)

≥ wI (42)

if s ∈ Kre. Therefore, we have

Q0,s+1 ≥ wI (43)
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for all s ∈ N.
Combining (40), (43) with Assumption 3, we arrive at

Q−1
q,s+1 = Q−1

0,s+1 + C
T
s+1(Υ + Ds+1Vs+1D

T
s+1)

−1
Cs+1

≤ w−1I + C
T
s+1(Υ + Ds+1Vs+1D

T
s+1)

−1
Cs+1

≤ w−1I + c̄γ−1I

= ι−1I, (44)

which implies (38), and the proof is now complete.
After acquiring a uniform lower bound ofQq,s in Theorem

4, we move onto the study of the upper bound ofQq,s.
Theorem 5:Under Assumption 3, there exists an upper

bound

ιs ,







ās−rkλmax{Qq,rk}+ w̄
∑s−1−rk

ℓ=0 āℓ,
if s ∈ ∪+∞

k=1{rk + 1, rk + 2, · · · , rk+1}
āsλmax{Qq,0}+ w̄

∑s−1
ℓ=0 ā

ℓ,
if s ∈ {0, 1, · · · , r1}

at each time instants ∈ N such thatQq,s satisfies

Qq,s ≤ ιsI. (45)

Proof: For s ∈ ∪+∞
k=1{rk +1, rk +2, · · · , rk+1}, we have

from (40) that

Qq,s ≤ Q0,s

=







As−1Qq,s−1A
T
s−1 +B(ηs−1)W (ηs−1)

×WT (ηs−1)B
T (ηs−1), s /∈ ∪+∞

k=1{rk + 1}
As−1Qq,s−1A

T
s−1 +B(ηs−1)W (ηs−1)

×WT (ηs−1)B
T (ηs−1), s ∈ ∪+∞

k=1{rk + 1}
. (46)

In light of (46) andB(ηs−1)W (ηs−1)W
T (ηs−1)B

T (ηs−1) ≤
w̄I (see Assumption 3), we further derive

Qq,s

≤
{

As−1Qq,s−1A
T
s−1 + w̄I, s /∈ ∪+∞

k=1{rk + 1}
As−1Qq,s−1A

T
s−1 + w̄I, s ∈ ∪+∞

k=1{rk + 1} . (47)

Then, iterating (47) fors−rk times and utilizingAsA
T
s ≤ āI,

we obtain

Qq,s

≤ As−1Qq,s−1A
T
s−1 + w̄I

≤ As−1As−2Qq,s−2A
T
s−2A

T
s−1

+ w̄As−1A
T
s−1 + w̄I

≤ · · ·
≤ As−1As−2 · · ·ArkQq,rkA

T
rk

· · ·A T
s−2A

T
s−1

+ w̄I + w̄As−1A
T
s−1

+ · · ·+ w̄As−1 · · ·Ark+1A
T
rk+1 · · ·A T

s−1

≤ ās−rkλmax{Qq,rk}I
+ w̄I + w̄āI + · · ·+ w̄ās−1−rkI

= ās−rkλmax{Qq,rk}I + w̄

s−1−rk∑

ℓ=0

āℓI

= ιsI. (48)

The rest of the proof follows immediately whens ∈
{0, 1, · · · , r1}.

Theorem 5 provides a time-varying upper bound ofQq,s for
eachs ∈ N. Next, based on partial results of Theorem 5, we
shall give a sufficient condition that ensures the existenceof
uniform upper bounds ofQq,s.

Theorem 6:Under Assumption 3, assume that there exist
positive scalars̄ι and κ such that the following inequalities
hold for all s ∈ N:

nx + n̄

(

max
i=1,2,··· ,q

{ω̄i}+ κ+ 1

)

< Mq, (49)

ιs ≤ ῑ, (s− max
i=1,2,··· ,q

{ω̄i} < κ− 1) (50)

s+1∑

p=s+1−κ

σp−s−1ΩT (p, s+ 1)C T
p (Υ + DpVpD

T
p )−1

Cp

×Ω(p, s+ 1) ≥ (ῑ)−1I, (s− max
i=1,2,··· ,q

{ω̄i} ≥ κ− 1) (51)

where

σ , 1 + a−1ι−1w̄,

Ω(p, s+ 1) ,

{
A −1

p A
−1
p+1 · · ·A −1

s , p < s+ 1

I, p = s+ 1
.

Then,Qq,s satisfies

Qq,s ≤ ¯̄ιI (52)

for all s ∈ N, where

¯̄ι , max

{

ῑ max
ℓ=0,1,2

{
σℓāℓ

}
, σM ῑ max

ℓ=0,1,··· ,κ−1

{
σℓāℓ+1

}
}

,

σM , θ̃ + w̄a−1ι−1, θ̃ , ι−1ῑnx(Mq + n̄)2.

Proof: We first prove the following two inequalities which
will be utilized in the subsequent proof:

Q−1
q,s+1 ≥ Q−1

0,s+1, ∀s ∈ N, (53)

Q−1
0,s+1 ≥ σ−1

A
−T
s Q−1

q,sA
−1
s , ∀s /∈ Kre. (54)

It follows immediately from (40) that (53) holds. Let us
now prove (54).

In accordance with the condition0 < aI ≤ A T
s As given in

Assumption 3, it can be seen thatAs is invertible. Thus, we
have fromB(ηs)W (ηs)W

T (ηs)B
T (ηs) ≤ w̄I and0 < aI ≤

A T
s As that

A
−1
s B(ηs)W (ηs)W

T (ηs)B
T (ηs)A

−T
s ≤ a−1w̄I. (55)

If s /∈ Kre, we obtain from the definition ofQ0,k+1, (55)
and Theorem 4 that

Q0,s+1 =AsQq,sA
T
s +B(ηs)W (ηs)W

T (ηs)B
T (ηs)

=As(A
−1
s B(ηs)W (ηs)W

T (ηs)B
T (ηs)A

−T
s

+Qq,s)A
T
s

≤As(Qq,s + a−1ι−1w̄Qq,s)A
T
s

=σAsQq,sA
T
s (56)

which, together with (53), indicates that whens /∈ Kre, the
following

Q−1
q,s+1 ≥ Q−1

0,s+1 ≥ (σAsQq,sA
T
s )−1 (57)

is true. It is obvious that the correctness of (54) can be ensured
by (57).
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In the following, let us prove this theorem based on (53)
and (54). With the setKre, we can divideN (the set of all
natural numbers) into the following several subsets:

N = {0, 1, · · · , r0 + κ}
∪ ∪rk+1−rk−κ−1

ℓ=0 {rk+1 − ℓ : k = 0, 1, · · · }
∪ ∪κ

ℓ=1{rk + ℓ : k = 1, 2, · · · } (58)

wherer0 , maxi=1,2,··· ,q{ω̄i}. Next, we divide the rest of the
proof into the following three cases.

Case 1: s ∈ {0, 1, · · · , r0 + κ}. In this case, we can see
from (49) that at time instants, the order reduction is not
performed, which means that (54) is satisfied.

From (45) and (50), it can be seen that

Qq,s ≤ ιsI ≤ ῑI, s = 0, 1, · · · , r0 + κ− 2. (59)

As for s ∈ {r0 + κ− 1, r0 + κ}, we have from (53)-(54) that

Qq,r0+κ−1 ≤ σAr0+κ−2Qq,r0+κ−2A
T
r0+κ−2

≤ ῑσāI, (60)

and

Qq,r0+κ ≤ σAr0+κ−1Qq,r0+κ−1A
T
r0+κ−1

≤ ῑσ2ā2I. (61)

With (59), (60), (61), and the definition of̄̄ι, we know that
(52) is true fors ∈ {0, 1, · · · , r0 + κ}.

Case 2: s ∈ ∪rk+1−rk−κ−1
ℓ=0 {rk+1 − ℓ : k = 0, 1, · · · }. In

this case, whens ∈ {rk + κ+ 1 : k = 1, 2, · · · }, it is obvious
that s− κ− 1 = rk ∈ Kre.

For s ∈ {r0 + κ + 1} ∪ ∪rk+1−rk−κ−2
ℓ=0 {rk+1 − ℓ : k =

0, 1, · · · }, utilizing (40) and (54), we have

Q−1
q,s

=Q−1
0,s + C

T
s (Υ + DsVsD

T
s )−1

Cs

≥ σ−1
A

−T
s−1Q

−1
q,s−1A

−1
s−1

+ C
T
s (Υ + DsVsD

T
s )−1

Cs

≥ σ−2
A

−T
s−1A

−T
s−2Q

−1
q,s−2A

−1
s−2A

−1
s−1

+ C
T
s (Υ + DsVsD

T
s )−1

Cs

+ σ−1
A

−T
s−1C

T
s−1(Υ + Ds−1Vs−1D

T
s−1)

−1
Cs−1A

−1
s−1

≥ · · ·
≥ σ−κ−1ΩT (s− 1− κ, s)Q−1

q,s−1−κΩ(s− 1− κ, s)

+

s∑

p=s−κ

σp−sΩT (p, s)C T
p (Υ + DpVpD

T
p )−1

CpΩ(p, s)

≥
s∑

p=s−κ

σp−sΩT (p, s)C T
p (Υ + DpVpD

T
p )−1

CpΩ(p, s)

(62)

which, together with (51), ensures (52).
As for s ∈ {rk + κ+ 1 : k = 1, 2, · · · }, similarly, we also

obtain from (40) and (54) that

Q−1
q,rk+κ+1

=Q−1
0,rk+κ+1 + C

T
rk+κ+1

× (Υ + Drk+κ+1Vrk+κ+1D
T
rk+κ+1)

−1
Crk+κ+1

≥σ−1
A

−T
rk+κQ

−1
q,rk+κA

−1
rk+κ

+ C
T
rk+κ+1(Υ + Drk+κ+1Vrk+κ+1D

T
rk+κ+1)

−1
Crk+κ+1

≥ · · ·
≥σ−κΩT (rk + 1, rk + κ+ 1)Q−1

q,rk+1Ω(rk + 1, rk + κ+ 1)

+

rk+κ+1∑

p=rk+2

σp−rk−κ−1ΩT (p, rk + κ+ 1)C T
p

× (Υ + DpVpD
T
p )−1

CpΩ(p, rk + κ+ 1). (63)

Substituting

Q−1
q,rk+1 = Q−1

0,rk+1

+ C
T
rk+1(Υ + Drk+1Vrk+1D

T
rk+1)

−1
Crk+1 (64)

into (63), we have

Q−1
q,rk+κ+1

≥σ−κΩT (rk + 1, rk + κ+ 1)Q−1
q,rk+1Ω(rk + 1, rk + κ+ 1)

+

rk+κ+1∑

p=rk+2

σp−rk−κ−1ΩT (p, rk + κ+ 1)C T
p

× (Υ + DpVpD
T
p )−1

CpΩ(p, rk + κ+ 1)

=σ−κΩT (rk + 1, rk + κ+ 1)Q−1
0,rk+1Ω(rk + 1, rk + κ+ 1)

+

rk+κ+1∑

p=rk+1

σp−rk−κ−1ΩT (p, rk + κ+ 1)C T
p

× (Υ + DpVpD
T
p )−1

CpΩ(p, rk + κ+ 1)

≥
rk+κ+1∑

p=rk+1

σp−rk−κ−1ΩT (p, rk + κ+ 1)C T
p

× (Υ + DpVpD
T
p )−1

CpΩ(p, rk + κ+ 1). (65)

It follows now from (51) and (65) that (52) holds when
s ∈ {rk + κ+ 1 : k = 1, 2, · · · }.

Summarizing above discussions, we know that (52) is true
for s ∈ ∪rk+1−rk−κ−1

ℓ=0 {rk+1 − ℓ : k = 0, 1, · · · }.
Case 3: s ∈ ∪κ

ℓ=1{rk + ℓ : k = 1, 2, · · · }. In this case,
there must exist a time instants∗ ∈ {s− 1, s− 2, · · · , s− κ}
satisfyings∗ ∈ Kre.

By resorting to the definition ofQq,rk , we have

Qq,rk = diag{‖~eT1,rk‖21, · · · , ‖~eTnx,rk
‖21} (66)

where~eı,rk ,

[

0 · · · 0
︸ ︷︷ ︸

ı−1

1 0 · · · 0
︸ ︷︷ ︸

nx−ı

]

Eq,rk|rk for ı =

1, 2, · · · , nx. Noticing that the dimension of~eTı,rk is not greater
than Mq + n̄, it follows from (66) and‖~eTı,rk‖1 ≤ (Mq +
n̄)‖~eTı,rk‖∞ ≤ (Mq + n̄)‖~eTı,rk‖2 that

Qq,rk ≤ (Mq + n̄)2diag{‖~eT1,rk‖22, · · · , ‖~eTnx,rk
‖22}. (67)

From the definition ofQq,rk , it is easy to see that

diag{‖~eT1,rk‖22, · · · , ‖~eTnx,rk
‖22} ≤ tr{Qq,rk}I, (68)

which together with (67) gives

Qq,rk ≤ (Mq + n̄)2tr{Qq,rk}I. (69)
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According to (69) andQq,rk ≤ ῑI (proved inCase 2), we
have

Qq,rk ≤ ῑnx(Mq + n̄)2I = θ̃ιI. (70)

Based on (70) andQq,s ≥ ιI for eachs > 0 (proved in
Theorem 4), we can obtain

Qq,rk ≤ θ̃Qq,rk . (71)

Adopting a similar line with the method of obtaining (56),
we have from (71) andQq,rk ≤ ῑI (proved inCase 2) that

Q0,rk+1

=ArkQq,rkA
T
rk

+B(ηrk)W (ηrk)W
T (ηrk)B

T (ηrk)

≤ θ̃ArkQq,rkA
T
rk

+B(ηrk)W (ηrk)W
T (ηrk)B

T (ηrk)

=Ark(A
−1
rk

B(ηrk)W (ηrk)W
T (ηrk)B

T (ηrk)A
−T
rk

+ θ̃Qq,rk)A
T
rk

≤Ark(θ̃Qq,rk + a−1ι−1w̄Qq,rk)A
T
rk

= σMArkQq,rkA
T
rk

≤ ῑσM āI. (72)

Utilizing (40) and (72), we further have

Q−1
q,rk+1

=Q−1
0,rk+1 + C

T
rk+1(Υ + Drk+1Vrk+1D

T
rk+1)

−1
Crk+1

≥Q−1
0,rk+1

≥(ῑσM ā)−1I, (73)

which gives

Qq,rk+1 ≤ ῑσM āI. (74)

For s ∈ ∪κ
ℓ=2{rk + ℓ : k = 1, 2, · · · }, it is obvious that

s /∈ Kre. Thus, from (53), (54), (74) and Assumption 3, we
derive







Qq,rk+2 ≤ σAsQq,rk+1A
T
s ≤ σM ῑσā2I,

Qq,rk+3 ≤ σAsQq,rk+2A
T
s ≤ σM ῑσ2ā3I,

...

Qq,rk+κ ≤ σAsQq,rk+κ−1A
T
s ≤ σM ῑσκ−1āκI.

(75)

It follows from (74) and (75) that (52) is satisfied when
s ∈ ∪κ

ℓ=1{rk + ℓ : k = 1, 2, · · · }.
According to the above analysis, we can conclude that under

conditions (49)-(51), (52) is satisfied for alls ∈ N. The proof
is now complete.

By using Theorem 6, we have the following corollary about
the uniform boundedness of theF -radius ofZs.

Corollary 1: Under Assumption 3, assume that
1) there exist positive scalars̄m andm such that

mI ≤ M(ηs)M
T (ηs) ≤ m̄I; (76)

2) there exist positive scalars̄ι and κ such that (49)-(51)
hold.

Then, theF -radius ofZs satisfies
√
m · ιnz ≤ ‖M(ηs)Es|s‖F ≤

√

m̄¯̄ιnz (77)

for all s ∈ N
+.

Proof: Recall that

Zs = 〈M(ηs)cs|s,M(ηs)Es|s〉,

with which we have

‖M(ηs)Es|s‖F =
√

tr{M(ηs)Qq,sMT (ηs)}. (78)

According to conditions 1) and 2) of this corollary, we obtain
from Theorems 4 and 6 that

m · ιInz
≤ M(ηs)QsM

T (ηs) ≤ m̄¯̄ιInz
. (79)

In view of (78) and (79), the proof of this corollary follows
directly.

Remark 5: In Theorem 6, a sufficient condition is given
to guarantee thatQq,s is uniformly bounded. Resting on this
condition, a criterion is then proposed in Corollary 1 to ensure
that theF -radius ofZs|s is uniformly bounded. There are two
main factors that complicate the boundedness analysis, i.e.,
the order reduction and the multi-rate sampling. In general,
the utilization of order reduction, while beneficial in reducing
computational burden, would degrade the estimation accuracy.
In other words, a smallerMq (which means that the order
reduction is performed more frequently), would lead to a worse
estimation accuracy. The effects of the order reduction to the
uniform boundedness of theF -radius ofZs|s are reflected in
(49) where the value ofMq required to ensure the uniform
boundedness is provided. Also, the order reduction would
affect the uniform upper bound significantly which can be seen
in Case 3of the proof of Theorem 6. The effects brought by
the multi-rate sampling are mainly reflected in (50)-(51).

Remark 6:The usage of the order reduction technique
would make it difficult to obtain a criterion guaranteeing
the existence of a uniform upper bound ofQq,s by directly
using existing analysis methods (e.g., the uniform observ-
ability condition [10]). In this paper, based on the method
proposed in [28], we further solve the technical problem
caused by the order reduction (seeCase 2 and Case 3 of
the proof of Theorem 6 for details) by using some matrix
inequality techniques. It is worth noting that the obtained
uniform upper bound̄̄ιI of Qq,s might be conservative due to
the usage of inequality techniques, leading to a large uniform
upper bound of theF -radius of Zs. The main role of the
existence of such a uniform upper bound is to ensure that
the proposed sequential fusion estimation algorithm is non-
divergent. Moreover, the proposed analysis method on such a
bound represents one of the first few attempts to handle the
uniform boundedness analysis problem in zonotopic SMSE for
time-varying systems. On the other hand, when looking for a
tighter uniform upper bound ofQq,s becomes a concern, some
other inequalities with less conservatism could be used, which
constitutes one of future research topics.

Remark 7:So far, we have solved the sequential fusion
estimation for MRCNs with uniform quantization effects.
Compared with existing results on fusion estimation of CNs,
the main novelties of this paper are indicated as follows: 1)
the considered sequential fusion estimation problem is new
for MRCNs with UYB noises; 2) under the zonotopes-based
fusion criterion, the sequential estimator is designed such that
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theF -radius of the zonotope (containing the estimation error
after each measurement update) is minimized; and 3) sufficient
criteria are established to guarantee the uniform boundedness
of theF -radius restraining the estimation error calculated after
all measurement updates.

IV. ILLUSTRATIVE EXAMPLE

In this section, we present a numerical example to demon-
strate the validity of the proposed fusion estimation scheme.

Consider an MRCN with three sensors, in which the state
updating period ish = 1, and the positive integersb1, b2 and
b3 (representing the multiples of the state updating period)
are set asb1 = 2, b2 = 3, b3 = 4. The initial transmission
time instants of three sensors are set asω̄1 = 1, ω̄2 = 2, and
ω̄3 = 1. The parameters of the MRCN are given as follows:

G1(ηs) =

[
1.05 0.12
−0.14 −0.2

]

, G2(ηs) =

[
0.1 0.4
−0.1 −0.15

]

,

G3(ηs) =

[
0.11 0.1
−0.1 0.1

]

, G4(ηs) = −0.2I,

A(ηs) =







−0.3 0.1 0.1 0.1
0.1 −0.21 0.01 0.1
0.1 0.01 −0.11 0
0.1 0.1 0 −0.2






⊗ diag{0.1, 0.11},

B1(ηs) = diag{0.1, 0.2}, B2(ηs) = diag{0.15, 0.1},
B3(ηs) = diag{0.3, 0.2}, B4(ηs) = diag{0.15, 0.2},
M1(ηs) =

[
0.1 0.2

]
, M2(ηs) =

[
0.2 0.5

]
,

M3(ηs) =
[
0.15 0.2

]
, M4(ηs) =

[
0.3 0.2

]
,

C1(ω1,s) =
[
0.1 0.2 + 0.01 sin(π6ω1,s)

]
, D1(ω1,s) = 1,

C2(ω2,s) =

[
0.12 0.1
0.2 0.15

]

, D2(ω2,s) = I,

C3(ω3,s) =

[
0.13 0.2
0.31 0.17

]

, D3(ω3,s) = I

where “⊗” denotes the Kronecker product.
In this example, the quantizing levels are set to beϑ1 =

ϑ2 = ϑ3 = 0.1. Moreover, the external noises are chosen as

w1(ηs) =

[
0.1 cos(0.1ηs)
0.1 sin(0.1ηs)

]

, w2(ηs) =

[
0.1 sin(0.1ηs)
0.1 cos(0.1ηs)

]

,

w3(ηs) =

[
0.1 cos(0.1ηs)
0.1 sin(0.1ηs)

]

, w4(ηs) =

[
0.1 sin(0.1ηs)
0.1 cos(0.1ηs)

]

,

v1(ω1,s) = 0.1 cos(0.1ω1,s), v2(ω2,s) =

[
0.1 sin(0.1ω2,s)
0.08 cos(0.1ω2,s)

]

,

v3(ω3,s) =

[
0.1 sin(0.1ω3,s)
0.09 cos(0.1ω3,s)

]

,

from which we haveW1(ηs) = W2(ηs) = W3(ηs) =
W4(ηs) = 0.1I, V1(ω1,s) = 0.1, V2(ω2,s) = 0.1I, and
V3(ω3,s) = 0.1I. Furthermore, the initial values are set as

x1(η0) =
[
0.1 −0.1

]T
, x2(η0) =

[
−0.1 0.1

]T
,

x3(η0) =
[
0.1 0.1

]T
, x4(η0) =

[
−0.05 0.05

]T
,

by which we obtain that〈ci(η0), Ei(η0)〉 = 〈0, 0.1I〉 (i =
1, 2, 3, 4).

Let the simulation steps be800 and the allowed maximum
number of columns ofEs|s be 200 (i.e., Mq = 200). The
initial value of x̂s|s is set asĉ0|0 = 0. By means of the
MATLAB software, the estimator parameters can be obtained
recursively. Based on the calculated estimator parameters,
the simulation results are obtained according to Algorithm
1. To be specific, Figs. 2-5 display the elementsz(j)(ηs)
(j = 1, 2, 3, 4) of the signal to be estimated, their esti-
mates computed by (13), and the information of their upper
bounds and lower bounds (the estimated signal is denoted as
z(ηs) =

[
z(1)(ηs) z(2)(ηs) z(3)(ηs) z(4)(ηs)

]T
). It can

be observed that the proposed sequential estimation algorithm
(i.e., Algorithm 1) performs indeed well.

According to above given system parameters, we have
a = 0.0034, ā = 1.0843, c̄ = 0.1727, w = 0.0001,
w̄ = 0.0009, γ = 0.1, m = 0.05 and m̄ = 0.29, by which
we can see that Assumption 3 is satisfied. Accordingly, we
know from Theorem 4 thatQq,s has a uniform lower bound
ιI with the calculatedι being 9.9983 × 10−5. Furthermore,
it can be checked that, whenMq = 200, ῑ = 3.1706 × 109,
and κ = 6, (49)-(51) are satisfied. Therefore, we have from
Theorem 6 thatQq,s also has a uniform upper bound¯̄ιI with
the calculated̄̄ι being7.4805× 1045. Moreover, it is obvious
that Assumption 3 and the conditions 1) and 2) of Corollary 1
are satisfied simultaneously, and therefore theF -radius ofZs

is uniformly bounded according to Corollary 1. The uniform
upper and lower bounds of theF -radius ofZs are plotted in
Fig. 6, from which it can be confirmed that‖M(ηs)Eq,s|s‖F
stays within the calculated bounds. All simulation resultsshow
the effectiveness of the proposed fusion estimation methodand
validate the correctness of the obtained results on boundedness
analysis.

V. CONCLUSION

In this paper, we have studied the sequential fusion estima-
tion problem for MRCNs with uniformly quantized measure-
ments under the zonotopic SMSE framework. With the aid
of virtual measurements, the MRCNs have been transformed
into single-rate switched ones. By virtue of the propertiesof
zonotopes, desired zonotopes have been derived such that the
estimation error after each measurement update satisfies the
pre-definedE-dependent constraint. The sequential estimator
parameters have been then computed by minimizing theF -
radii of these zonotopes. In addition, sufficient criteria have
been proposed to guarantee the uniform boundedness of the
F -radius of the zonotope restraining the estimation error after
all measurement updates. Finally, a numerical example has
been proposed to illustrate the effectiveness of the proposed
sequential fusion estimation method.

In addition, related topics for further research work include
the extension of our results to other complex systems such
as neural networks [18], switched systems [32] and nonlinear
systems [33].
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ẑ
(2)
s|s
upper bound
lower bound

Fig. 3: z(2)(ηs), its estimate and its bounds.

0 100 200 300 400 500 600 700 800
Time (ηs)

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

A
m
p
li
tu
d
e

z(3)(ηs)

ẑ
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tralized, distributed and sequential fusion estimation from uncertain
outputs with correlation between sensor noises and signal,International
Journal of General Systems, vol. 48, no. 7, pp. 713–737, Oct. 2019.

[5] D. Ciuonzo, A. Aubry, and V. Carotenuto, Rician MIMO channel-
and jamming-aware decision fusion,IEEE Transactions on Signal
Processing, vol. 65, no. 15, pp. 3866–3880, 2017.

[6] C. Combastel, Zonotopes and Kalman observers: Gain optimality under
distinct uncertainty paradigms and robust convergence,Automatica,
vol. 55, pp. 265–273, May 2015.

[7] H. Chen and J. Liang, Local synchronization of interconnected Boolean
networks with stochastic disturbances,IEEE Transactions on Neural
Networks and Learning Systems, vol. 31, no. 2, pp. 452–463, Feb. 2020.

[8] S. Chen, L. Ma and Y. Ma, Distributed set-membership filtering for
nonlinear systems subject to Round-Robin protocol and stochastic com-
munication protocol over sensor networks,Neurocomputing, vol. 385,
pp. 1–21, Apr. 2020.

[9] B. Chen, W.-A. Zhang and L. Yu, Distributed fusion estimation
with missing measurements, random transmission delays andpacket
dropouts, IEEE Transactions on Automatic Control, vol. 59, no. 7,
pp. 1961–1967, Jan. 2014.

[10] J. Deyst and C. Price, Conditions for asymptotic stability of the discrete



FINAL VERSION 13

minimum-variance linear estimator,IEEE Transactions on Automatic
Control, vol. 13, no. 6, pp. 702–705, Dec. 1968.

[11] S. Feng, H. Yu, C. Jia and P. Gao, Joint state and fault estimation
for nonlinear complex networks with mixed time-delays and uncertain
inner coupling: Non-fragile recursive method,Systems Science &
Control Engineering, vol. 10, no. 1, pp. 603–615, Dec. 2022.

[12] C. Gao, X. He, H. Dong, H. Liu and G. Lyu, A survey on fault-tolerant
consensus control of multi-agent systems: Trends, methodologies and
prospects,International Journal of Systems Science, in press, DOI:
10.1080/00207721.2022.2056772.

[13] H. Geng, Y. Liang, Y. Liu and F. E. Alsaadi, Bias estimation for
asynchronous multi-rate multi-sensor fusion with unknowninputs,
Information Fusion, vol. 39, pp. 139–153, Jan. 2018.

[14] H. Geng, Y. Liang and Y. Cheng, Target state and Markovian jump
ionospheric height bias estimation for OTHR tracking systems, IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 50,
no. 7, pp. 2599–2611, Jul. 2020.

[15] H. Geng, Y. Liang, F. Yang, L. Xu and Q. Pan, The joint optimal
filtering and fault detection for multi-rate sensor fusion under unknown
inputs, Information Fusion, vol. 29, pp. 57–67, May 2016.

[16] Z. Hu, J. Hu, H. Tan, J. Huang and Z. Cao, Distributed resilient fusion
filtering for nonlinear systems with random sensor delay under round-
robin protocol,International Journal of Systems Science, in press, DOI:
10.1080/00207721.2022.2062802.
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