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Sequential Fusion Estimation for Multi-Rate
Complex Networks with Uniform Quantization: A
Zonotopic Set-Membership Approach

Zhongyi Zhao, Zidong Wang, and Lei Zou

Abstract—In this paper, the sequential fusion estimation prob-
lem is investigated for multi-rate complex networks (MRCNg9
with uniformly quantized measurements. The process and mea
surement noises, which are unknown-yet-bounded (UYB), are
restrained into a family of zonotopes, and the multiple sensrs
are allowed to have different sampling periods. To facilitde
digital transmissions, the sensor measurements are uniforly
qguantized before being sent to the remote estimator. The pynose
of this paper is to design a sequential set-membership estator
such that, in the simultaneous presence of UYB noises, muiti
rate samplings, and uniform quantization effects, the esthation
error (after each measurement update) is confined to a zonope
with minimum F-radius at each time instant. By introducing
certain virtual measurements, the MRCNSs are first transformed
into single-rate ones exhibiting switching phenomenon. Tén,
by utilizing the properties of zonotopes, the desired zonaopes
are derived that contain the estimation error dynamics afte

dynamic units. Examples of these large-scale systemsdaclu
but are not limited to, sensor networks, power grids andi-arti
cial neural networks. Till now, tremendous research irstere
has been drawn onto various dynamics analysis problems
(e.g. stability, synchronization, consensus, pinningii@@nd
state estimation) for CNs, and a large number of excellent
results have recently been published in the literature[Zge
[11], [22], [18], [19], [36], [37], [39], [40], [42], [43], 7] for
some representative findings.

Most existing results concerning the CNs have implicitly
assumed that the sampling rates of the network and its sensor
measurements are the same, but this assumption is often
unrealistic since the system components with diverse phsi
features might have inherentljifferent sampling rate [13],

each measurement update. Subsequently, the gain matrices o [29], [41], [49], [51], [54], and this necessitates the need

the sequential estimator are derived by minimizing the F-radii

study the so-called multi-rate CNs (MRCNSs). On the other

of these zonotopes, and the uniform boundedness is analyzedhand, the state estimation scheme for CNs has proven to be

for the F-radius of the zonotope containing the estimation
error after all measurement updates. Furthermore, sufficiet

conditions are derived to ensure the existence of the desite
uniform upper/lower bounds. Finally, an illustrate example is

proposed to show the effectiveness of the proposed sequeihti
fusion estimation method.

Index Terms—Multi-rate complex networks, sequential fu-
sion estimation, set-membership state estimation, unknawyet-
bounded noises, uniform quantization, zonotopes.
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practically significant since the information of certaindeo
states, which is crucial for accomplishing certain tasks, a
often unavailable because of the huge network scale and
restricted resources. So far, a great deal of researchtiatien
has been paid to the state estimation problem for CNs with
many algorithms available in the literature, see e.g.,,[B&],

[55] and the references therein.

The state estimation approaches for CNs can be roughly
categorized into distributed and centralized ones whereaf
distributed estimation scheme, the estimation is carried o
on each node by using the local and neighboring sensing

. L YBformation. As for the centralized scheme, the measurémen
been an active research topic in systems and control co

munity owing to the fact that CNs are particularly suitablgl
in modelling large-scale systems made up of various couplﬁ

ihformation of all nodes is collected by a central procegsin
it (the estimator) and then processed to generate theestat
ates by augmenting the original state and the measuttemen
into a unified vector. Until now, the centralized estimation
schemes for CNs have attracted considerable researcti@tten
due to their capability in providing globally optimal esties
under certain performance criteria [37], [43], [55].
Multi-sensor information fusion (MSIF) has been well rec-
ognized as an effective state estimation technique forimult
sensor systems [3], [4], [9], [14]-[16], [38] with succadsf
applications in guidance, target tracking, robotics, and i
tegrated navigation [3]—[5], [31], [53]. For the centrali
fusion that provides the state estimates by employing all
original measurement information, one way is to augment the
system measurements (also caliedallel fusior) as discussed
previously, and another more prevalent way is the so-called
sequential fusiorthat aims to collect the measurement infor-
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mation by the central processing unit (fusion center) ame ththe estimation performance? 2) how to design the parameters
process the information in a sequential order. of the desired sequential estimator in a recursive way? and
Comparing to its parallel fusion counterpart, the seqaénti3) how to tackle the boundedness analysis problem offthe
fusion method could achieve similar estimation accurady yedius of the zonotope confining the estimation error (aftler
with much higher computational efficiency [30], [31], [52],measurement updates) for concerned MRCNs?
[53]. When it comes to CNs, the fusion estimation problem is Corresponding to the challenges discussed above, thé-contr
especially important because of the large amount of sensbtgions of this paper are highlighted from the following fou
deployed and the demand of fusing sensor data for uncertaiatpects: 1) the sequential fusion estimation problem is, fo
reduction. It is worth noting that, to the best of the authorshe first time, investigated for MRCNs under the framework
knowledge, the fusion estimation problem for CNs has nof zonotopic SMSE; 2) the gain parameters of the sequential
received adequate research attention yet, let along the cestimator are designed such that theradii of zonotopes
sideration of the sequential nature of the fusion scheme fwnfining estimation errors are minimized at each time imsta
mitigating computational complexity, and the main motivat 3) a sequential fusion algorithm is proposed, which is imple
of this paper is therefore to shorten such a gap. mented in a recursive manner and hence suitable for online
Traditional fusion algorithms, which have been specificallapplications; and 4) sufficient conditions are obtainecdisuee
developed to tackle random and/or energy-bounded noistt the F-radius of the zonotope confining the estimation
might be inapplicable to handlenknown-yet-bounde@YB) error (after the last measurement update among the seglenti
noises that are frequently encountered in practical sysf8n processes) is uniformly bounded.
[25], [27], [34], [48]. In this case, a particularly suitabivay The remainder of this paper is organized as follows. In
is to fuse the measurement information of the CNs bas&ection Il, the sequential estimator is formulated for MRC-
on the set-membershistate estimation (SMSE) whose aimNs with uniform quantization effects. In Section 1ll, under
is to give a compact set containing the real system statee zonotopes-based fusion criterion, the zonotopes @€ fir
at each time instant. Note that the SMSE problems haserived that restrain the estimation error dynamics aféehe
drawn much research interest for various complex systemmgasurement update, and the parameters of the sequential
undergoing UYB noises, see e.g. [8], [25], [26], [34] and thestimator are then designed. Moreover, the uniform bound-
references therein. edness of the estimation error after all measurement update
Zonotopes, which are convex polytopes that can be repig-analyzed. Section IV provides a numerical example. Kinal
sented as the Minkowski sum of finite line segments, hatiee conclusion is drawn in Section V.
recently been well utilized in the SMSE problems becauseNotations: N and N* represent the sef0,1,2,---} and
such zonotopes can be ideally employed as compact sets thae, 3, - - - }, respectively.R1*%2 is the set ofi; x iy real
restrain the system states [1], [2], [6], [20], [22]-[2426], matrices.R* andR are special cases @ *% with i, = 1
[45], [46]. By using zonotopes in SMSE problems, we wouldnd i; = i, = 1, respectively.] and 0 represent identity
be able to balance the estimation accuracy and the computeatrix and zero matrix of proper dimensions, respectively.
tional burden. Specifically, in calculating the Minkowskins  diag{x} represents a block-diagonal matrix. For a column
and linear transformation (two widely utilized operatioins vector £ = [51 gn}T e R”, diag,{¢} denotes the
SMSE), the loss of accuracy could be avoided when using thgonal matrixdiag{&1, - ,&n}. Amax{-} denote the max-
zonotopic SMSE method [17], [24], [45]. Moreover, the ordeéfum eigenvalue of the square matrix.“For a matrix X,
reduction technique of zonotopes could reduce the Con‘theX|iX| represents the element-to-element absolute value oper-
of operations in a significant way [17], [26]. ation. Y ! and tr{Y} represent the inverse and the trace
The phenomenon of signal quantization is a common 0gf square matrixt’, respectively.Z” refers to the transpose
currence in digital communication as a result of the limitegf matrix 7. 1 2 11 - 1]T is a column vector of
transmission capacity of the digital channels. In the coprgper dimension. For a vectar € R, lz|l1, ||z]|2, and
text of networked control systems, the impacts from signﬁg”OO represent the-norm, 2-norm, and infinite norm of;,
quantizations onto the overall system performance hava bggspectivelymod(é;, ) stands for the remainder on division
extensively examined in the literature, and most result@hagpf 5, py 5, with §; (i = 1,2) being positive integers. For
been concerned with the uniform quantization scheme thalis 4/, 71, ¢ R™ and a matrixH € R"*™, one has
appears very often in engineering practice, see [21], [35]&1 B Ho 2 {hy+hy:hy €Hihy € Hol andH @ Hy 2
[50] for some representative results. Nevertheless, iparta {Hhy : hy € M1}, where " is granted a higher precedence

to the sequential fusion estimation problem for MRCNSs, thgan “27. Given a center vecta € R” and a generator matrix
signal quantization issue has not received adequate o#seqy < rrxm (h H) 2 {h+ Hz : z € R™, |z]|s < 1}

attention yet and this constitutes another motivation for oygpresents a zonotope of order[44].
current investigation.

Summarizing the discussions made so far, in this paper, we
are interested in dealing with the sequential fusion egtoma Il. PRELIMINARIES AND PROBLEM
problem for MRCNs suffering from UYB noises. In doing so, FORMULATION
we are facing three substantial difficulties identified dbfes: As is shown in Fig. 1, we consider the sequential fusion
1) how to deal with the complexities brought by the multieratestimation problem for a class of MRCNs with uniformly
sampling and the uniform quantization schemes in analyziggantized measurements. The considered MRCNs are assumed
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to have ' nodes with the measurements of the firstodes with W;(n;) € R™:*"«: being a known matrix for =
being available. The available measurement information is2,--- , \. Similarly, the UYB measurement noisegw; s)
first uniformly quantized and then transmitted to a seqaéntii = 1,2, - - - , ¢) satisfy

estimator to generate the state estimates. In the following

we shall introduce respectively the MRCNSs, the uniform vi(wi,s) € (0, Vi(wis)) )
quantization mechanism and the sequential estimator ailslet with V;(w; ;) € R™*" being a known matrix fori =

11 27 g
Assumption 2:The updating period for system statehis®
MRCN Node | fn (wi,s) Quanizer i (wi,s) Estimator sfs-1 ns+1—1s, and the sampling period for the measurement output
E of the i-th node ish;h £ w; 511 — w; s, Whereb; is a positive
Node P integer. In additions;y = 0 andw; o = @; € {0,h,2h,---}
: ; l;ii‘l»"\ﬁ (Z = 17 27 : 7Q) . .
Node yilwis) Quantizer Gi(wis) Estimator [Preditor | . According to' Assumption 2, the sequence of sampling
i instants of node can be denoted as
Node . .
N iA Sié{@i+8bih2820,17---}. (5)
Lg—1,s]s
Node | [¥(“a.s)[ Quantizer] %a(“as) | [Estimator Remark 1:In many existing references concerning the
z(ns) ! ! ! ) multi-sensor multi-rate fusion, a common assumption ig tha

the system and all sensors have the same initial sampling
Fig. 1: Block diagram of the sequential fusion estimatiomstants, i.e.,
problem for MRCN with uniform quantization.
Mo = w10 =w2,0=""+=wgo =0.
This assumption, however, is often unrealistic especifaty
A. System Model large-scale multi-sensor systems (CNs) because it is glyner
Consider a class of MRCNs with/ nodes, in which the impossible to find a time instant at which the system state is

i-th node has the following dynamics: updated while all sensor nodes are simultaneously sampled.
N In view of this, in Assumption 2, the initial sampling instan
2i(Nst1) = Gi(ns)ai(ns) + Y Aij(na)z; (1s) wio (i=1,2,--- ¢) are allowed to be different for different

nodes. With the information af; , and the sampling period

=1
+ By(ns)wi( )J (1) b;h of the i-th node, the set of sampling instan®s can be
i\Tls JWilTls obtained, which will then be used to convert the system (1) to
zi(ns) = Mi(ns)xi(ns) a single-rate one.

zi(no) € (ci(mo), Ei(no)), i =1,2,--- , N

where 1, is the s-th updating instant of the system stateB- Quantized Transmission

z;(ns) € R™i and z;(ns) € R™: represent the state Let us first introduce the transmission model where the
vector and the signal to be estimated, respectivelyn,) measurements;(w; ;) (i =1,2,---,q) are quantized before

is the initial condition which belongs to a known zonotopbeing transmitted to the remote estimator. In this paper, we
(ci(no), Ei(no)) with centerc;(ny) € R": and generator consider the effects of the uniform quantization mechanism
matrix F;(ng) € R™:i*"=i; w;(ns) € R™: stands for the  For y;(w;s), let its quantized signal bej;(w;s), i.e.,
process noise; (1), B;i(ns) andM;(n,) are known matrices 7;(w; s) = 2;(yi(w; s)), where2;(-) represents the operation

with proper dimensions; and,;(n,) (¢,j = 1,2,--- ,\)) are of the uniform quantization on signal”’ When the saturation
known matrices that characterize the mutual coupling amotayel in the quantization is sufficiently large, the quaetiz
the MRCNSs’ nodes. signaly; (w; s) can be modeled by

Without loss of generality, we assume that only the mea- o
surements from the firsy (; < AN) nodes of the MRC- 0 R (% f;u )
Ns (1) are accessible, where different nodes have different ﬁi%(y?)(ws))
sampling rates. In this situation, the measurement ofite Ui(wi,s) = 2i(yi(wis)) = v (6)
(1€ {1,2,---,q}) node is described as follows: ( : :

Yi(wis) = Ci(w; s)xi(wis) + Di(wi s )vi(wis) (2) 191%(11197(%))

wherew; , is the sampling time instant (dependent ontte  where; is the quantizing levely” (w; ) represents thé-
node);y;(wi <) € R™i is the measurement outputj(w; ;) € th component _of the vectqyl-(wl-_,_s); and%(-)_ stands for the
R is the measurement noise; afifw; ) and D;(w; ) are  function rounding a number to its nearest integer.

known matrices of proper dimensions. DenoteA; (wi,s) £ Ji(wi,s) — yi(wi,s) as the quantization
Assumption 1. The UYB process noise; (n,) satisfies ~ error. It follows from (6) that
v
wl(ns) € <0’Wl(n8)> (3) HAz(Wz,s)”oo < 1= 1127"' ,q- (7)

37
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For node:, define

G 2 { 0" Sunerie
D) 2 { g Geriae
) £ { 5 Gneruie
A 2 { gk Tl

Then, the quantized output (6) can be rewritten as

which together with the definition of zonotopes gives rise to

(%) Ai(s41) € (0,1)

Remark 2:By using the pseudo measurement approach, we
convert the MRCN (1)-(2) into a single-rate system. In such a
conversion, one needs to judge whether the relationghip
S; holds or not, which can be easily checked by looking at

(12)

mod(ns — W;, bzh) =0AnNs > w;

where “A” denotes the logical relationship “and”. Note that the
pseudo measurement approach has been widely utilized in con
verting multi-rate systems into single-rate systems. \Aliils
method, the state estimate can be obtained at each updating
instant of the system state with avoidance of the augmentati

of system state.

C. The Estimator

In this paper, the following sequential estimator is camstr
ed for system (9):

jjs-l—l\s = (G(Ws) + A(ns)):&sb
T1sh1ls+1 = Toq1]s + K1 54101541

U111 = U1 (Ms+1) — C1(Ns41)Tsq1)s
Bi o 1)s41 = Tio1,541)s+1

+ Kist1¥ist1, 1 =2,3,-++,q
Uirs+1 = Pi(Mst1)
jerl\erl :‘%q s+1|s+1

=M(ns+1)% Ts41|s+1

Zojo = Co|lo

(13)

- cfi(ns+1)9@i71,s+1|s+1

25+1|s+1

where & 15, 541541 and T,,41 are the prediction
at time instantn,, the estimate ofz(n.4+1) after thei-th
measurement update and the estimate(qf ) after theg-th
measurement update, respectively; ., is the estimate of
2(Ns+1); Cojo IS @ known vector; ands; o1 (1 =1,2,--- ,q)
are the estimator parameters to be designed.

Let the one-step prediction error, the estimation erragraft

Ji(ns) = Ci(ns)wi(ns) + Ai(ns) + Di(ns)vi(ns).  (8)
Define z(ns) 2 [2z1(ns) 2% (ns) 2% (ns)]" and
2(n) 2 1 (n,) (775) 2%(n,)]". By using (8), the
original MRCNS (1) can be rewritten in the following compact
form
2(15+1) = (Gs) + Any) )a(n,) + Bn)w(n,)
2(ns) = M(ns)z(ns)
Gi(ns) = Gilns)z(ns) + Ai(ms) O
+ Di(ns)vi(ns),i = 1,2,
z(10) € (Cojo, Eojo)
where
Ap (775) Al/\/(ns)
A(ns) £ : : :
An1(ns) Ann (1)
G(ns) 2 diag{G1(ns), G2 (1), -, Gnr(1s)},
B(ns) = diag{B1(ns), B2(ns), -+, Bx(15)},
M(ns) £ diag{M1(ns), Ma2(ns), -, My ()},
Eojo £ diag{E1(n0), E2(no), -+ , Exr(no)},
éoo 2 [T (o) ¢F (o) Krm)] "
win 2 [wl(n) wfmy) - whmn)]",
L |00 C'i(ns) 0---0 0---0
Ci(ns) = \:1—/ \q\_,:/ 7\7:1/ .

the i-th measurement update, the estimation error aftegthe
th measurement update and the estimation error of the signal

Combining (3), (4) with the definition of zonotopes, we have(ns+1) beey 1) = 2(Ns1)—Egi1)s) €1 st1js41 = L(Nsy1)—

w(ns) € (0, W(ns)) (10)
with
W (1) £ diag{W1 (1), Wa(ns), -+, War(15)},
and
0i(ns) € (0, Vi(ns)), i =1,2,-- ,q (11)

with Vi(ns) £ O, xn,, Whenn, ¢ S;. Moreover, whem), €
S;, it follows from (7) that

(%)_1 Ai(ns11)

<1

)

oo

Ti s+1)s4+11 Cst1|st1 £ 2(Neg1) — Topi)s41 AN Zgyq)541 £
2(Nst1) — Zs41]s4+1, respectively. According to (9) and (13),
we have

Cs41]s :JZ{SSSB + B(T]s)w(ns)

Ky s11A1(nsy1)

el,s-ﬁ-l\s-l—l :Al,s+1€s+l|s -
— K1 s+1D1(Ms11)01(Ns41)
Cisr1)s41 = Nisr1€i 1 sr1)s41 — Kist18i(Ns41)

— K s+1Di(Ms41)0i(Ms41), 1 =2, ,q
es+1\s+1 :eq,s+1|s+1
2s+1\s+1 = M(T]s-l—l)eerl\erl
eojo € {cojos Eojo)

(14)
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where
Ay & G(ns) + Ans),
Nigi1 21— K o1 (Msr1),
cojo = €ojo — Cojo-

D. Problem Statement
Definition 1: Let a set of zonotopes

5 é {<ci,S\SaEi,S|S> D= 1721 458 S N+}

be given. The estimation error system (14) is said to satisfy

the £-dependent constraint if

€is|s € <Ci,s|sa Ei,s|s>

holds for alls € NT andi =1,2,--- ,q.
Definition 2: [44] For a zonotopéc, A) C R", its F-radius

is defined as
Al 7 £ \Jtr{ATA}.

The objectives of this paper are to:
1) find a set of zonotope§ = {(c; s, Eiss) @ 1 =

(15)

1,2,---,q;s € NT} such that the estimation error

system (14) satisfies the&-dependent constraint;
2) minimize the F-radius of (c; 55, E; 5s) by choosing
appropriate estimator paramefgy ; fori = 1,2,--- . ¢;
3) establish sufficient conditions ensuing that fii¢adius
of (cq.s1s» Fq,s|s) IS uniformly bounded.

1. MAIN RESULTS

The following lemma is useful for analyzing thé-
dependent constraint.
Lemma 1: [17] Let zonotopesry, I1;), (w2, I12) € R™ and

a matrix L € R™™ be given. The following relationships hold:

<7T1,H1>EB<7T2,H2>= <7T1 +7T2,[H1 H2]>, (16)
L@ <7T1,H1> = <L7T1,LH1>, (17)
<7T1,H1> C <w1,diagv{|H1|1}>. (18)

A. Analysis or€-Dependent Constraint

To analyze the&-dependent constraint, we give the follow-

ing theorem.

Theorem 1:Consider the system (9) and the sequential

estimator (13) with given parametel§ ;1 (i = 1,2, -+, q).
Assume that the estimation erreyj, satisfies
Csls € <Cs\sts|s>' (19)

Then, the one-step prediction erreg ;,, the estimation

erorse; si1js41 (0 = 1,2, ,q), €sp1js41 @Nd Zgpq541
satisfy

€s+1]s
€ (Hucyls, [FuEys Bns)W(ns)])
é<cs+1\57E5+1|s>a

€1,5+1|s+1
€ (A1,s41Co11)ss [A1s11Es 1)

(20)

— U K11 —Kie1D1(ns1)Vi(nss1)])
é<cl,s+1|s+laEl,s+1|s+1>7 (21)
€i,s41]s+1
E(Ai s 41Ci—1,5+1)s4+15 [Niys 1 Eim1 541541
—K; s+1Di(ns41)Vi(ns41)])

4 .
:<C'L.-,S+1|5+1’E’i,s+1|s+1>, 1= 2’37 cee g,

— %Kit
(22)
€s41]s+1
€(cq,st1ls+15 Egst1]st1)
é<Cs+1\s+17E5+1|s+1>a (23)
Zst1|st1
EM (Ns+1)Cs411s11, M (Ms41) Es1)s41)
£Z1. (24)
Proof: In this proof, we aim to show (20)-(24) based upon
19).
( It)follows from (10), (14) and (19) that
est1)s = Fseq)s + B(ns)w(ns)
€ s © (5|5, Ey|s) ® B(ns) © (0, W(ns)).  (25)
Applying (16)-(17) to (25), we have (20) readily. Further-
more, in light of (12) and (17), we obtain

Ai(Nsy1)

= (%I> <%)1Ai(ns+1)

v,
€ <O, —I>. (26)
2
It follows from (17) and (26) that
— K1 ,5+1A1(ns41)
9
€ (~K1s41) © <o, 711>
9
= <o, —71K175+1>. (27)

With (11), (14) and (27) in mind, we obtain that

Y
el,s+1|s+1 S Al,SJrl © <Cs+1\sv Es+l|s> @ <07 _7K1,s+1>

& (—K1,s11D1(1541)) © (0, Vi(ns41))

= (C1,511)511> B1s41)541) » (28)

which is consistent with (21). Similarly, (22) can be ob&n
easily.

Utilizing (14) and (17) again, we see that (23)-(24) are true
and the proof is now complete. [ |

In the following, based on Theorem 1, we proceed to give
zonotopes with which the estimation errer, , satisfies the
£-dependent constraint.

Theorem 2:Consider the system (9) and the sequential
estimator (13) with given parametel§ 41 (i = 1,2,--- , q).
Let the sequence of zonotopgs (s € NT) be given by

Zo= (M(1)esfs M(n)Eys ),

<Cs|sv Es|s> - <Cq,s|sa Eq,s\s>7

(29)
(30)
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_ 9?2
<Ci,s\sv Ei,s\s> - <Ai,sci—l,s\sv [Ai,sEifl,s\s cI)i,s-i—l 2 (gi(nsﬂ—l)Qi—l,s-i—l(giT(ns-ﬁ-l) + Ill
G Kie K Di(n)Vilno)l), 1= 0020 (3D + D) Vi () V" (1s5:1) DY (1s1)-
(1,555 B s)s) = <Al,scs|5711 [A1sEgps—1 Then, the estimation error system (14) satisfies the

9 . dependent constraint. Moreover, theradius of the zonotope
-5 K1, —KisDs (ns)Vl(ns)]>7 (32)  (¢i o i1jar1s Eiar1)ss1) is minimized.

(c B ) — <9{, . Proof: It is easy to see from Theorem 2 that, with the

sls—1» Fsls—1 s=1%s—1ls—1) estimator parameter (35), the estimation error system (14)
(A 1By 1js-1 B(s—1)W (15-1)] > (33) satisfies the’-dependent constraint. Hence, it remains to show
that the estimator parameter (35) minimizes fieadius of
with given initial condition(cojo, Eojo). Then, the estimation the zonotope(c; o1 1(cs1, Fi ot 1je41)- From (31), we have
error system (14) satisfies tlfedependent constraint. More-

over, z,, € Z, holds for alls € N. [y
Proof: In this proof, we first use mathematical induction 2
- o =tr{Ai 1 1Qi1.s1 AT + K, LI
to prove that the estimation error system (14) satisfiesCthe i.s 10— 1,541 541 sty

dependent constraint. That is, . .
P + i) Vios 1)V (1) DT G1o41) ) KTy |

€; s|s € <Ci s|s» Ei s|s>
’ ’ ’ K P KvT K %
- tl{ 1,5+ 1 Fd,s+10 ¢ 41 — i s+1 i("k-ﬁ-l)@i—l,s—ﬁ-l

holds for alli € {1,2,--- ,¢q} ands € N*.

When s = 1, with the initial conditioneq|y € (coj0, Eojo) = Qi-1,511%; (N 1) K oy + Qi_l,sﬂ}. (36)
and (30)-(33), we know from Theorem 1 that,; € . _ _
(¢iajis Eiap) is true fori = 1,2,---,¢. Assume that Applying the completion-of-the-square method to (36) give
isls € (Cisls» Bisls) IS satisfied at time instant. Sim- B 5
ilarly, we can obtain from Theorem 1 and (30)-(33) that 1Es 51151l .
€i 541541 € (Ci,st1]s+1, Fist1]s41) holds fori = 1,2, --- ¢, :tr{ (KT — & Cins i1 ) D,
which implies that the estimation error system (14) sasisfie ot~ P Gl @imten o
the £-dependent constraint. o X (K;FS+1 - @;;+1(57;(n3+1)c2i_173+1)

After proving that the estimation error system (14) satisfie T -1 @
the £-dependent constraint, it follows from (14) and (30) that —Qic1,601C; (Ms11) i5+1 i(Ns41)Qi1,511

Cafs € (Casr Eaps), Vs € N. (34) + Qi_l,sﬂ}, (37)

According to (34) and taking (14) and (17) into account, we&hich implies that the parameter given by (35) indeed min-

can easily obtain that,|; € Z; holds for alls € N. This ends imizes the F-radius of (¢; s 1(s4+1, Fi s+1]s+1). The proof is

the proof. E now complete. ]
Remark 3:In Theorem 1, based on the condition that the

estimation erroe,, resides within a known zonotope, we ob-C S ial Eusion Estimation Alqorith

tain zonotopes containing the one-step prediction erroy;,, = >®duential Fusion Estimation Algorithm

confining estimation errors; , 1,41 (1 = 1,2,---,¢), and As a summary of obtained results on the analysis of the

restraining the estimation erroes, 1,1 andz,,;,11. Rest- £-dependent constraint and the design of sequential estimat

ing on Theorem 1, we further give zonotopes ensuring thearameters, a sequential fusion estimation algorithm d@s pr

the estimation error system (14) satisfies tfielependent posed in Algorithm 1.

constraint. It should be pointed out that the generatorirmatr Remark 4:1t can be seen from Theorem 2 that, with

the zonotope(c; s 1)s+1; Fi,s+1]s+1) IS closely related to the the execution of Algorithm 1, the number of columns of

quantization level);. Generally speaking, the-radius of the E, .., increases steadily. If not handled properly, such

q
ZoNOotoPe(c; s y1|s+1, Fi s+1)s+1) Would become greater with an increase would result in heavy computational burden. To

the increase of},. deal with this issue, in Algorithm 1, we adopt the order
reduction technique (see (18) of Lemma 1). The essence of
B. Design of Sequential Estimator Parameters this technique is to utilize a low-order zonotope to contain
In this subsection, we shall deal with the estimator desidtigh-order zonotope at the cost of sacrificing certain aaxyur
problem. With the order reduction technique, the required number
Theorem 3:Assume that the parametéf; ., of the se- of floating-point-operations of Algorithm 1 is bounded by
quential estimator (13) is designed as o (Z?; nmi)g (Mq N e + 2 (0, + nﬁ)))_
Kiot1 = Qi1,611%; (0s11)®; 114 (35) Though it provides an effective way of saving computational
where cost, the order reduction technique of zonotopes wouldeend

T , the boundedness analysis Bfradius of (c, |5, Eq,5|s) More
O a Ei*175+1‘5+1Ei—1,s+1\s+1’ =2 difficult, and this motivates our further investigation ihet
i—1,s4+1 — E ET i=1" .
s+1sLgyq)ss next subsection.
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Algorithm 1: Sequential fusion estimation algorithm

Input: Initial conditions|o, {(ci(70), Ei(m0)),
(i=1,2,---,N).
Output: 211541, Zs+1, Zeq1-

1 Initialization : Give the maximum simulation times, .,
the positive integeiV/,, the quantizing level®;
(i=1,2,---,q), the zonotopécy|g, Ey|o). Sets =0,

1_70 = j0|0 + Co‘o + |E0‘0|1 andgo = CEO|0 + Co|0 — |E0|0|1

2 for s < spax dO

3 Calculatei, s and (c,11)s, Fsy1)5) by (13) and

(33), respectively. Set=1 ;

for i < ¢ do

Obtain K 541 by (35) ;

Updated; ;11541 by (13) ;

if i =1 then

| calculatec; ;1541 and E; o4 1)541 by (32) ;
else

10 | calculatec; s 11js+1 and E; ;41511 by (31) ;

© 0 N o o b

11 if the number of columns df, ;.41 is greater
than M, then

12 L SetE’q,s-i—Hs-i—l = diagv{|Eq,s+1\s+l|1} ;

13 OUtpUtj?s-i-l\s-l-l = j?q,s-l-l\s-i-l and
<Cs+1|s+laE3+1\s+l> = < Cq, s+1\s+17Eq,s+l|s+1> ;
14 | OutputZ,yqjsr1 = M(Ms41)Tsq1)541 and

(M (Msy1)Cst1]s+1> M(Ns41) Esta)s41)
15 Output the “bounds’,; andz,,, by

Zs+1 = M(T]s-l—l)chrl\erl + |M(775+1)Es+1|s+1|1 and
Zsy1 — M(n5+1)08+1\8+1 - |M(775+1)Es+1|s+1 |11
| respectively ;

D. Boundedness Analysis éfradius of Z;

In the following, we shall consider the boundedness of the

F-radius of Z, = (M(ns)cy)s, M(ns)Eys)
Algorithm 1).

I.S{E‘I-,5|S} £ diagv{|Eq.,s|s|1}7
T
Qq s = rS{Eq s|s } (rs{Eq,s|s}) s
Yis 2 Vi(ns) Vi (),
7/5 £ dlag{%,sa 7/2.,55 e ,7/%5},

192 . .
W s £ sz—l- Di(WS)%,sD?(HS)v
1.

TA Zdlag{ﬁffnyl,ﬁgf%,--. 02T, }s
P = diag{D1(ns), D2(ns),- -+, Dg(ns)},
@ 2 [¢F(n) €5 (n,) I (n.)]"

N N
Ne 23 ne, a2 n,

i=1

=1
N
723

q
z : nyw + nvw

Let r;, be thek-th time instant in the execution of the order

(calculated by for ¢ times to y|eld

For convenience, we introduce the following notations:

reduction Step 60of Algorithm 1). The set of time instants
(when the order reduction is performed), denotedzas, can
be given by

e =k k=1,2,---}.

To analyze the uniform boundedness of #iigadius of Z,
we make the following assumption.

Assumption 3:There exist positive scalars, a, ¢, w, w,
and~ such that the following inequalities hold for each time
instants € N:

al <l d, d,a] <al,cl¢, <el,
wl < B(ns)W (ns) W7 (ns)B” (ns) < wl,
A <T+ .@s+17/s+1.@T

DefiningQq, = Ew‘s )5 the F-radius ofZ; is equal to
Vr{M(ns)QqsMT(n,)}. Hence, in the following, we shall
focus on analyzing the uniform boundednessihf,. Now,
let us first give the uniform lower bound @j,, ;.

Theorem 4:Under Assumption 3, there exists a lower
bound

L= W™

such that the generator matri¥;, ,, of the zonotope
E, qs) satisfies

q,
_ T
Qq,s = q,s|sEq,S|5 >l

4 5171)71

<Cq,s\s )
(38)

for everys > 0.
Proof: With the estimator parameter (35), the relationship

—1 T —1
el = <Qi1,s+1 = Qi—1,5416; (Ms41) P} 544

1
X (fi(nsH)Qi—l,sﬂ)

= Qi:ll sl T %T(ns+1)‘1’i_,sl+1cgi(ns+l)
olds fori = 1,2, -

(39)
-, q. Lettingi = ¢ in (39), we iterate (39)

q,s+l QO s+1 + Z (f n5+1)\Ijz s+1(gl (778+1)
i=1

_ -1 T 1
- QO,s+l =+ Cgs-ﬁ-l Cgerl-

(40)

(T + Zs1 V1 251)~

Recalling Qos11 = Es+1|SEST+1|S and B, =
[:Eys  B(ns)W(ns)], we obtain from Assumption 3 that
QO,erl = %Qq,s%T + B(ns)W(ns)WT(ns)BT(ns)
> B(ns)W (ns)W" (ns) BT (1)
>wl
if s¢ ., and

QO,S-{-I = %Qq,s%T +B(775)W(775)WT(775)BT(775)
> B(na)W (ns)W (ns) B" ()
> wl

(41)

(42)
if s € #.. Therefore, we have

Qo,s+1 > wl (43)
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for all s € N.
Combining (40), (43) with Assumption 3, we arrive at

Qo (Y + D1 Ve 20 ,)

q,s+1 Cst1
Sw ' T+ C (Y + D1 Va1 250)  Coia
<w 'I+ey '
=717, (44)

which implies (38), and the proof is now complete. [ |
After acquiring a uniform lower bound @, , in Theorem
4, we move onto the study of the upper bound:nf;.

Theorem 5:Under Assumption 3, there exists an upper

bound
@ Amax{ Qg } + @0 0Tl

LA IfSEUJrg{T‘k-I—lT‘k—|—2---,7°k+1}
’ ELS)‘max{Qq-,O} +w ZE;S aga
if s€{0,1,---,m}
at each time instard € N such that@, . satisfies
Qq,s < sl (45)
Proof: For s € U SHre+1,re+2,--- ,reg1 ), We have

from (40) that

Qq,s S QO,S
vQ{s—qu,s—l%,{l + B(ns—l)W(ns—l)
_ XWT(nsfl)BT(qu), s¢ U;::i{rk +1} (46)
B Hs—1Qq,s-19L 1 + B(ns—1)W (ns—1) '
xWT(ns-1)BT (ns—1), s € U2 {rs +1}

In light of (46) andB (s 1 )W (ns—1)W T (ns_1) BT (ns—1) <

wl (see Assumption 3), we further derive

Qq,s

< { s— qus 1% 1+'(DI S¢UZ_001{T]€+1} (47)

Ay 1Qq 1L +wl, s € U5 {rp+1}

Then, iterating (47) fog—r, times and utilizinge, &/ < al,
we obtain

Qq.s

< Ay 1Qq 51,1 + 0]

< A1 y—9Qq 52 KAl
+ Wty AL +w]

IN

S %71%72 T mk Qq,rk
+ @l + wets 1AL,
+...+w%_l...%k+l%€‘+l...

S C_LSiTk/\max{Qq,rk }I
+wl +wal +---+wa® "]

s—1—rg

= 8" " Anax{ Qo J + @ Y a'l

£=0

C AR AT

T
Ay_q

= 1.1. (48)

The rest of the proof follows immediately when €
{0,1,---,m}. [ |

Theorem 5 provides a time-varying upper boundXyf, for
eachs € N. Next, based on partial results of Theorem 5, we
shall give a sufficient condition that ensures the existesfce
uniform upper bounds of), s.

Theorem 6:Under Assumption 3, assume that there exist
positive scalarg and « such that the following inequalities
hold for all s € N:

Ng + 0 ( max {@;}+ K+ 1) < Mg, (49)
i=1.2, g

ts <7, (s — max {@;} <k—1) (50)
i=1,2, q
s+1

> om0 s+ D)6 (Y + 29,20) 7!

p=s+1—Kr

xQp,s+1)> @), (s — _max {w;} >rk—1) (1)
where
c2l+a v w,
A .;zfp_l.;zfpfll---.;zfs_l, p<s+1
Q(p,s—l—l)—{l7 et

Then,Q,, s satisfies

Qqs < Ul (52)

for all s € N, where

72 max {Lzr%af<2 {J a } UMLE:O,IE%);fl {O'ZC_LZJrl} }’

om 2 0+wa Y, 02 T g (M, +n)?.

Proof: We first prove the following two inequalities which
will be utilized in the subsequent proof:
;;-H 2 Qa,iﬂa Vs €N, (53)
Qoep1 =0 ' TQu " Vs ¢ He.  (54)

It follows immediately from (40) that (53) holds. Let us
now prove (54).

In accordance with the conditidh< al < ;z{ST;z{S given in
Assumption 3, it can be seen thaf is invertible. Thus, we
have fromB(ns)W (ns )W (ns) BT (ns) < wl and0 < al <
AT o, that

A B )W (ns)W (ns) BT (ns) e, " < a'wl.  (55)

If s ¢ ., we obtain from the definition 0o ;+1, (55)
and Theorem 4 that
= JZ{qu,sJZ{sT + B(HS)W(WS)WT(WS)BT(HS
:»‘Zfs(%_IB(%)W(ns)WT(ns)BT(ﬁs)%_T

+ qus)%T
< VQ{s(Qq,s + Qil
=0 Qq,s*Q{sT (56)

which, together with (53), indicates that whenZ 7., the
following

QO,erl

L0Qy )

q, s+1 QO ,s+1 — (UJZ{SQQ-,S"Q{ST)il (57)

is true. It is obvious that the correctness of (54) can bereadsu
by (57).
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In the following, let us prove this theorem based on (53p ¢ a7/ T

and (54). With the set#;., we can divideN (the set of all
natural numbers) into the following several subsets:

N={0,1,---,70 + K}
UUTkJrl TR 1{7’k+1—€3]€:0,1,"'}

Ui {re+0:k=1,2,---} (58)

WhereTo £ max;—=1,2,...
proof into the following three cases.
Case1s € {0,1,---

performed, which means that (54) is satisfied.
From (45) and (50), it can be seen that

Qgs < tsl <0l 5=0,1,--- 70+ Kk —2. (59)

As for s € {ro + k — 1,79 + k}, we have from (53)-(54) that

T
QQ;T(H-H—I < UMO+H_2QQ)TO+H_2%0+K72

< toal, (60)
and
QQ;T(H-H < 0yt 1Q¢177‘0+N—1”Q{7:€+1<71
< w0?a’l. (61)

With (59), (60), (61), and the definition af we know that
(52) is true fors € {0,1,--- , 70 + K}.

Case 25 € Uy re—n= l{rk+1 —0:k=0,1,---}.1In
this case, when € {rk +r+1:k=1,2,---}, it is obvious
thats — k — 1 =1y € He.

For s € {T0+K+1}UUW+I TR 2{Tk+1_€ k=

0,1,---}, utilizing (40) and (54), we have

—1
q,s

=Qut + €I (Y + 2,997,

>J_1sz quS 145 !
+CH Y+ 2,7.97)7'¢,

>0 2 o] q‘s A A
+%ST(T+@;//S.@Z) '€,

+ o A NCE (Y + Do Vs DL ) Gt

IV 1V

o T (s =1k, 8)Q k1 Qs — 1 — K, 5)
+ Y o7 (p.5) 6 (X + 2,%,2)) 600, )

p=s—kK

> Z P20 (p, s)‘pr(T + .@p”f/p.@pT)*l%pQ(p, s)
pP=S—kK
(62)
which, together with (51), ensures (52).
Asforse {r, +rx+1:k=1,2,---}, similarly, we also
obtain from (40) and (54) that

—1
q,rr+r+1

_ 1
- Q07Tk+ﬁ+l + Cg rr+r+1

1
X (Y + Drytni1 Vetnt1 D k+n+1) Crit+rt1

qlwi}. Next, we divide the rest of the

- o1

Tk+R q,rk-l-n rrt+rK
T 1
+<5Tk+n+1(r+@m+ﬁ+l%k+n+1@ kJerl) Critrt1

> .
>0 “QT(rk +1,rp+r+ 1)qu Qe+ 1 +r+1)
rr+r+1
+ Z Upfr’r’/”*lQT(p, e+ K+ 1)%”5
p=r+2

< (Y + 2,92, ) " 6,Qp, 1 + £+ 1). (63)

,70 + x}. In this case, we can see Substituting
from (49) that at time instant, the order reduction is not

-1

_ —1
q,re+1 T QO e+l

+%k+1(r+@rk+l%k+1@k+l) 1(57%4‘1 (64)

into (63), we have

Q_ ktrt+1
>o " (rp + 1,70 + K+ na, rk-l—lQ(Tk +1Lry,+k+1)
re+r+1
Z PR 10T (p oy + A+ 1)%5
p=ri+2

x (Y + 2,92, ) " 6,Qp,re + K+ 1)
o " (rp + 1, + K+ I)Q&ikJrlQ(rk +1Lre+k+1)

re+r+1
+ Z O-P—rk—m—IQT(p, T+ K+ 1)%1’;1"
p=rip+1
< (Y + 2,92, ) " 6,Qp,re + K+ 1)
re+r+1
Z Upfr;rnﬂQT(p’ i+ K+ 1)(51)7’
p=rr+1

x (Y + 2,%,2, ) " 6,Q(p, ke + K+ 1). (65)

It follows now from (51) and (65) that (52) holds when
sef{rr+r+1:k=1,2,---}

Summarizing above discussions, we know that (52) is true
for s e Ulp ™ g1 — 0k =0,1,---}.

Case 3 s € U_{rx+¢:k =12} In this case,
there must exist a time instagt € {s—1,s—2,--- ;s — Kk}
satisfyings* € #..

By resorting to the definition 0@, ,,, we have

Qqu _dlag{”el rk”l?” H nm,rk” } (66)
L. A]l0 -0 10 -+ 0
whereée, ,, = |~—0—— ———| By, fOro =

1—1
1,2,---,n;. Noticing that the dimension @fp is not greater
thanM + @, it follows from (66) andHe” Hl < (Mg +

Ng—1

)Hewl\oo < (Mg +n)|éll, |2 that
Qqry < (Mg +n)?diag{lle],, 13, llex, ., 13} (67)
From the definition o}, ., , it is easy to see that
diag{lleT, I3, llen, -, 13} < 0r{Qqr 3L, (68)
which together with (67) gives
Qure < (Mg +n)*tr{Qq,r, H. (69)
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According to (69) and,,, < ¢I (proved inCase 2, we Proof: Recall that

have
~ Z, = <M(773)Cs\s,M(ns)Es|s>,
Quirp < (M, + 1)1 = 0. (70) _
with which we have
Based on (70) and), , > I for eachs > 0 (proved in

Theorem 4), we can obtain | M(ns)Eqsllr = \/tl"{M(ﬁs)Qq,sMT(ns)}- (78)

Qgr < 9Qq,rk. (71) According to conditions 1) and 2) of this corollary, we obtai

Adopting a similar line with the method of obtaining (56)from Theorems 4 and 6 that

we have from (71) and), ., < 7I (proved inCase 2 that m-ul,, < M0n)QsMT (n,) < mil,,. (79)
Qo,r+1 In view of (78) and (79), the proof of this corollary follows

=D, Qq,ry %:: + B )W (1, )WT (N, )BT (1) directly. u
ngqu,rk%z; + By )W (e YW (0,) BT (13, Remark 5:In Theorem 6, a sufficient condition is given

) e, : .
to guarantee tha),, ; is uniformly bounded. Resting on this
_ -1 T T -T q,
= mg ("B )W (00, )W () BT (1, ), condition, a criterion is then proposed in Corollary 1 towees
+ HQq,T,C)MTf that theF-radius of Z,, is uniformly bounded. There are two
< A (0Qq e + a1 Qg )L main factors that complicate the boundedness analysis, i.e
the order reduction and the multi-rate sampling. In general

= UMerQq,rk%f the utilization of order reduction, while beneficial in reihg
<tomal. (72)  computational burden, would degrade the estimation acgura
Utilizing (40) and (72), we further have In oth(_ar vyords, a smallef/, (which means that the order
reduction is performed more frequently), would lead to asgor
Q;}«k+1 estimation accuracy. The effects of the order reductioréo t
=Qoret1 T i1 (Y + Do Vo1 2 ) ™ G uniform boundedness of th&-radius of Z,, are reflected in
SO (49) where thg value .oMq required to ensure the .unlform
=¥0retl boundedness is provided. Also, the order reduction would
>(iopa) ', (73)  affect the uniform upper bound significantly which can besee
which gives in Case 3of the proof of Theorem 6. The effects brought by

the multi-rate sampling are mainly reflected in (50)-(51).
Qq,rp+1 < topral. (74) Remark 6:The usage of the order reduction technique
would make it difficult to obtain a criterion guaranteeing
he existence of a uniform upper bound @f, s by directly
using existing analysis methods (e.g., the uniform observ-

Fors € Uj_o{rr +¢: k =1,2,---}, it is obvious that
s ¢ Jhe. Thus, from (53), (54), (74) and Assumption 3, w

derive " - ability condition [10]). In this paper, based on the method
Qorit2 < 0sQqr19, < oyroa’l, proposed in [28], we further solve the technical problem
Qurits < 0Qqrrodl < opio?a®l, caused by the order reduction (s€ase 2and Case 3 of

(75) the proof of Theorem 6 for details) by using some matrix
: inequality techniques. It is worth noting that the obtained
Qqriin < 0Q, rotn 1T < opiotTlan . uniform upper bound! of @, . might be conservative due to
. - the usage of inequality techniques, leading to a large tmifo
It follows from (74) and (75) that (52) is satisfied Wherhpper bound of theF-radius of Z,. The main role of the

sE€Ui{me+L:k=12.}. xistence of such a uniform upper bound is to ensure that
Ac_cprdmg to the above _analy_5|s_, We can concludethatuncfé proposed sequential fusion estimation algorithm is-non
_cond|t|ons (49)-(51), (52) is satisfied for allc N. The proof divergent. Moreover, the proposed analysis method on such a
'S how cpmplete. . bound represents one of the first few attempts to handle the
By using Theorem 6, we have the.followmg corollary abOLﬁniform boundedness analysis problem in zonotopic SMSE for
the uniform b.oundedness of tI?_léradms of Z,. time-varying systems. On the other hand, when looking for a
Corollary 1: Under Assumption 3, assume that tighter uniform upper bound @), s becomes a concern, some

1) there exist positive scalars andim such that other inequalities with less conservatism could be usedgiwh
ml < M(ns)M" (ns) < ml; (76) constitutes one of future research topics.
Remark 7:So far, we have solved the sequential fusion
2) there exist positive scalarsand « such that (49)-(51) estimation for MRCNs with uniform quantization effects.
hold. Compared with existing results on fusion estimation of CNs,
Then, theF'-radius of Z; satisfies the main novelties of this paper are indicated as follows: 1)

— the considered sequential fusion estimation problem is new
/m, - < ||M < 4/ . K
m- . < [ M(ns)Egjsllp < /min (77 for MRCNs with UYB noises; 2) under the zonotopes-based

for all s € N™, fusion criterion, the sequential estimator is designed ghat
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the F-radius of the zonotope (containing the estimation error Let the simulation steps b®0 and the allowed maximum
after each measurement update) is minimized; and 3) suffici@umber of columns off|, be 200 (i.e., M, = 200). The
criteria are established to guarantee the uniform bouregsdninitial value of z,, is set as¢y, = 0. By means of the

of the F-radius restraining the estimation error calculated afteé#ATLAB software, the estimator parameters can be obtained

all measurement updates.

IV. ILLUSTRATIVE EXAMPLE

recursively. Based on the calculated estimator parameters
the simulation results are obtained according to Algorithm
1. To be specific, Figs. 2-5 display the element® (7,)

(j = 1,2,3,4) of the signal to be estimated, their esti-

In this section, we present a numerical example to demakyates computed by (13), and the information of their upper
strate the validity of the proposed fusion estimation saiempounds and lower bounds (the estimated signal is denoted as

Consider an MRCN with three sensors, in which the stageﬁns) _

updating period iy = 1, and the positive integets, by and

2D (ns) 2P (ns) 2O(n) 2@ (ns)]T). It can
be observed that the proposed sequential estimation ddgori

bs (representing the multiples of the state updating periog)e_ Algorithm 1) performs indeed well.

are set a9, = 2, by = 3, b3 = 4. The initial transmission

time instants of three sensors are setoas= 1, Wy = 2, and

According to above given system parameters, we have
a = 0.0034, a = 1.0843, ¢ = 0.1727, w = 0.0001,

w3 = 1. The parameters of the MRCN are given as follows:; _ ( go9, ~ = 0.1, m = 0.05 and i = 0.29, by which

1.05

0.12 0.1
Gilns) = {—0.14

0.4
—0.2} » Gans) = {—0.1 —0.15] ’

0.11 0.1
Gs(ns) = {_0_1 0.1} , Ga(ns) = —0.21,
03 01 01 01
0.1 —021 001 0.1 .
Am) =101 oo —om o | ©%ae{01011}
01 01 0 02

B (ns) = diag{0.1,0.2}, By(n,) = diag{0.15,0.1},
Bs(n,) = diag{0.3,0.2}, By(n,) = diag{0.15,0.2},
Mi(ns) = [0.1 0.2], Ma(n,) =[0.2 0.5],

Ms(ns) = [0.15 0.2], Mu(ns) = [0.3 0.2],
Ci(wis) =[0.1 0.240.01sin(Ews )], Di(wis) =1,

0.12 0.1
CQ(WQ,S) = |:02 015:| ) DQ(wQ,S) = I’

0.13 0.2
Calwsa) = [0.31 0.17}  Dalwss) =1

where ®" denotes the Kronecker product.
In this example, the quantizing levels are set tothe=

Yo = Y3 = 0.1. Moreover, the external noises are chosen a

w1 (n:) {0.1 cos(O.lns)} ws(ns) = {0.1 sin(o.lns)} 7

0.1sin(0.1n5) |’ 0.1 cos(0.17;)
0.1 cos(0.17) ~ 10.1sin(0.17s)
( )} » wa(s) = {0.1005(0.1173) ’
0.1sin(0.1wg ¢
vi(wi,s) = 0.1cos(0.1wy 5), va(was) = [0.0850125(0.;0@2 3)}

ws(1s) = {0.1 sin(0.17,

_ 1 0.1sin(0.1ws )
va(was) = [0.09 cos(o.mg_,s)] ’

from which we haveWi(ns) = Wa(ns) = Ws(ns) =
Wi(ns) = 0.11, Vi(wr,s) = 0.1, Va(wes) = 0.1, and
Vs(ws,s) = 0.11. Furthermore, the initial values are set as

T T

z1(no) = [0.1 —0.1]", za(mo) = [-0.1 0.1]",

T T

w3(mo) = [0.1 0.1]", z4(no) = [-0.05 0.05]

by which we obtain thatc;(no), Fi(no)) = (0,0.11) (i =
1,2,3,4).

S

we can see that Assumption 3 is satisfied. Accordingly, we
know from Theorem 4 thaf), ; has a uniform lower bound
oI with the calculated. being 9.9983 x 10~°. Furthermore,

it can be checked that, whel, = 200, 7 = 3.1706 x 107,
and x = 6, (49)-(51) are satisfied. Therefore, we have from
Theorem 6 that), , also has a uniform upper bound with

the calculated being 7.4805 x 10%5. Moreover, it is obvious
that Assumption 3 and the conditions 1) and 2) of Corollary 1
are satisfied simultaneously, and therefore fheadius of Z,

is uniformly bounded according to Corollary 1. The uniform
upper and lower bounds of thiE-radius of Z; are plotted in
Fig. 6, from which it can be confirmed th#i (1) E, o ||
stays within the calculated bounds. All simulation resshliew
the effectiveness of the proposed fusion estimation medimad
validate the correctness of the obtained results on bouredsd
analysis.

V. CONCLUSION

In this paper, we have studied the sequential fusion estima-
tion problem for MRCNs with uniformly quantized measure-
ments under the zonotopic SMSE framework. With the aid
of virtual measurements, the MRCNs have been transformed
into single-rate switched ones. By virtue of the propertés
zonotopes, desired zonotopes have been derived such ¢hat th
estimation error after each measurement update satisies th
pre-defined€-dependent constraint. The sequential estimator
parameters have been then computed by minimizingihe
radii of these zonotopes. In addition, sufficient criteravé
been proposed to guarantee the uniform boundedness of the
F-radius of the zonotope restraining the estimation errtaraf
all measurement updates. Finally, a numerical example has
been proposed to illustrate the effectiveness of the pexpos
sequential fusion estimation method.

In addition, related topics for further research work imgu
the extension of our results to other complex systems such
as neural networks [18], switched systems [32] and nonlinea
systems [33].
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