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Abstract: The proportional subdistribution hazards (PSH) model is popularly used to deal with
competing risks data. Censored quantile regression provides an important supplement as well
as variable selection methods due to large numbers of irrelevant covariates in practice. In this
paper, we study variable selection procedures based on penalized weighted quantile regression for
competing risks models, which is conveniently applied by researchers. Asymptotic properties of the
proposed estimators, including consistency and asymptotic normality of non-penalized estimator
and consistency of variable selection, are established. Monte Carlo simulation studies are conducted,
showing that the proposed methods are considerably stable and efficient. Real data about bone
marrow transplant (BMT) are also analyzed to illustrate the application of the proposed procedure.

Keywords: competing risks; cumulative incidence function; bone marrow transplant; re-distribution
method

MSC: 62N02

1. Introduction

In survival analysis, sometimes events fail because of a specific cause or from some
other causes or competing risks. Consider the dataset of bone marrow transplant (BMT)
in [1] for example, which includes 177 patients who received a stem cell transplant for acute
leukemia. Whereas 56 patients in this dataset relapsed (REL), considered as the event of
interest, 75 patients died from causes related to the transplant (transplant related mortality,
TRM), which is considered a competing risk, as it hinders the occurrence of leukemia
relapse. The other 46 patients are regarded as censored due to the end of the study. In the
analysis of such a dataset, treating competing risks (TRM) as censoring cases and using
usual Cox modelling may be inaccurate, as the competing risks are probably affected by co-
variates. To deal with such competing risks data, Ref. [2] proposed a novel semiparametric
proportional hazards for the subdistribution, or PSH model, which directly analyzes the
effect of covariates on the marginal probability function or cumulative incidence function
(CIF). The competing risks data often occur in clinical trials containing large numbers of
covariates, among which only a few have significant or essential influence on the response,
generating the variable selection issues, such as the general penalized log-partial likelihood
method proposed by [3].
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Quantile regression introduced by [4] is widely known to more comprehensively
describe the conditional distribution of response on covariates. Existing work about
competing risks quantile regression includes [5], which first transforms competing risks
quantile regression models to accelerated the failure model and uses an estimating equa-
tion procedure for estimation. In addition, Ref. [6] discussed the quantile regression for
competing risks data with missing cause of failure. Then [7,8] developed variable selection
procedures based on unbiased estimating equations with group structures and penalization
methods for competing risks quantile regression models.

In the paper, in spite of the estimating equation method, we propose developing a
more general method for competing risks quantile regression and expanding the weighted
procedures by considering the re-distribution methods [9] for the PSH model. By trans-
formed responses, we can rewrite the competing risks quantiles formulation as a general
quantile regression objective function, then apply the constructed weights. With unbiased-
ness of the subgradient of this weighted objective function at the true cumulative-incidence
function and coefficient proved, consistency and asymptotic normality of the penalty-free
estimators are established under regularity conditions. To realize the variable selection,
penalization methods such as the least absolute shrinkage and selection operator (LASSO)
proposed by [10] and the adaptive LASSO (ALASSO) developed by [11] are applied to the
weighted objective function, which can be easily applied with the R package. The consis-
tency of the variable selection procedure is also established, and Monte Carlo simulation is
performed to illustrate the efficiency and stability of our proposed procedures. Real data
about bone marrow transplant are analyzed using our methods.

The paper is organized as follows. Our proposed weighted competing risks quantile
regression model and its penalized methods are developed in Section 2, with asymptotic
properties demonstrated in Section 3. Simulation studies as well as the application to the
BMT data are performed in Section 4 to illustrate the performance of proposed methods.

2. Models

We take the formulation of competing risks quantile regression in [5]. In the setting of
competing risks models, assume there exist K causes of failure, denoted by an observable
indicator ε ∈ {1, . . . , K}, the same denotation as [2]. Without loss of generality, we
can set K = 2. Let T and C denote the failure and censoring time, respectively, and we
observe X = min(T, C), and censoring or risk indicator δ = I(T ≤ C), where I(·) is an
indicator function. Denote a p× 1 bounded time-independent covariate vector as Z̃ and
Z = (1, Z̃>)>. Assume that {Xi, δiεi, Zi}, i = 1, . . . , n are independent and identically
distributed observed samples.

Ref. [2] modeled the CIF for failure from cause 1 conditionally on the covariates,
F1(t|Z) = P(T ≤ t, ε = 1|Z). They proposed the PSH model based on the formula of
subdistribution hazard, which is defined as

λ1(t|Z) = lim
∆t→0

1
∆t

P
{

t < T ≤ t + ∆t, ε = 1
∣∣(T ≥ t) ∪ (T ≤ t ∩ ε 6= 1), Z

}
= {dF1(t|Z)/dt}/{1− F1(t|Z)}

in [12]. Analogue to the definition of quantile, we define the conditional quantile as
Qk(τ|Z) = inf{t : Fk(t|Z) ≥ τ}, k = 1, . . . , K, where Fk(t|Z) = P{T ≤ t, ε = k} is the CIF
for cause k; for more details, refer to [5]. For τ ∈ [τL, τU ], consider Q1(τ|Z) to be modeled
as

Q1(τ|Z) = g{Z>β0(τ)}, (1)

where β0(τ) is a (p + 1)× 1 coefficient vector, g(·) is a known monotone increasing and
continuously differential bounded link function, 0 < τL ≤ τU < 1. With the statement
in [2], if we denote T∗1 = I(ε = 1)× T + {1− I(ε = 1)} ×∞, then T∗1 has a distribution
function equal to F1(t|Z) when t < ∞ and a point mass P(T∗ = ∞|Z) = P(T < ∞, ε 6=
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1) = 1− F1(∞|Z) at t = ∞. Then, at τ < F1(∞|Z), the τ−quantile of T∗1 equals F−1
1 (τ|Z) =

Q1(τ|Z) = g{Z>β0(τ)} under the formulation of (1).

Remark 1. According to the formulation of T∗1 , we can see that when τ ≥ F1(∞; Z), the
τ−quantile of T∗1 will become ∞, which is obvious when reviewing the definition that F1(t; Z) =
P(T ≤ t, ε = 1|Z) ≤ P(T ≤ ∞, ε = 1|Z) = F1(∞; Z) and the fact that g(·) is monotone
increasing. This fact provides a thought about the choice of τU .

With reference to [13], for proper τ, β0(τ) is supposed to be the minimizer of the
following expected loss function with respect to β(τ):

β0(τ) = arg min
β(τ)

Eρτ(g−1(T∗1 )− Z>β(τ)), (2)

where E denotes the expectation, and ρτ(u) = u{τ − I(u ≤ 0)} is called the “check”
function.

In a sample scenario, we can obtain the estimator β̂(τ) of β0(τ) via minimizing the
following objective function:

min
β(τ)

n

∑
i=1

ρτ

(
g−1(T∗1,i)− Z>i β(τ)

)
. (3)

2.1. Weighted Competing Risks Quantile Regression

Similar to [5], our paper first considers the case in which there are no missing data
(i.e., there is no censoring). As a result, X = T and δ = 1, δε = ε. As aforementioned,
we can estimate β0(τ) via the minimization problem (3). Because T∗1,i is not observed, we
modify (3) to

n

∑
i=1

I(εi = 1)ρτ(g−1(Xi)− Z>i β(τ)) + I(εi 6= 1)ρτ(g−1(X∞)− Z>i β(τ)), (4)

where X∞ is any value sufficiently large to exceed all Z>i β(τ). Then, it is not difficult to
derive the negative subgradient of (4) with respect to β(τ).

For the censoring case, we aim to construct such a weighted quantile objective function
to estimate β0(τ) as follows:

Q(β(τ), w0) =
n

∑
i=1

{
w0iρτ(g−1(Xi)− Z>i β(τ))

+(1− w0i)ρτ(g−1(X+∞)− Z>i β(τ))
}

. (5)

The weight function is re-constructed based on competing risks analogy to [14], as
follows:

w0i =


1, δiεi = 1,
0, δiεi 6= 1, F1(Ci|Zi) > τ,
τ−F1(Ci |Zi)
1−F1(Ci |Zi)

, δiεi 6= 1, F1(Ci|Zi) ≤ τ.
(6)

Remark 2. In our case of competing risks quantile regression, each point contributes to the sub-
gradient condition only via the sign of g−1(T∗1,i)− Z>i β0(τ). For data with δiεi = 1, we know
Xi = Ti ≤ Ci, εi = 1, i.e., Xi = T∗1,i, and I(g−1(T∗1,i) − Z>i β0(τ) < 0) can be observed,
thus we assign a weight of 1 for this case. For data with δiεi 6= 1 and F1(Ci|Zi) > τ, then
Ti > Ci, F1(Ci|Zi) > τ or Ti ≤ Ci, εi = 2, F1(Ci|Zi) > τ; in the first scenario, T∗1,i ≥
Ti ≥ Xi = Ci > g(Z>i β0(τ)), I(g−1(T∗1,i) − Z>i β0(τ) < 0) = 0; in the second scenario,
Ti ≤ Ci, ε = 2, I(g−1(T∗1,i) − Z>i β0(τ) < 0) = 0, where we assign a weight of 0. The
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ambiguous situation is δiεi 6= 1 and F1(Ci|Zi) < τ, i.e., Ci ≤ F−1
1 (τ|Zi) = g(Z>i β0(τ)).

If δi = 1, εi = 2, Xi = Ti < Ci < g(Z>i β0(τ)), or I{g−1(Xi) − Z>i β0(τ) < 0} = 1;
if δi = 0, Xi = Ci < Z>i β0(τ), i.e., I{g−1(Xi) − Z>i β0(τ) < 0} = 1. However, the
I(T∗1,i − g(Z>i β0(τ)) < 0) cannot be observed.

Thus, we assign the weight wi(F0) =
τ−F1(Ci |Zi)
1−F1(Ci |Zi)

for this case, where given (Zi, Ci),

E
{

I(g−1(T∗1,i)− Z>i β0(τ) < 0)|δiεi 6= 1, Zi

}
=

P
{

εi = 1, Ti < g(Z>i β0(τ))|Zi
}
− P{εi = 1, Ti < Ci}

1− P(Ti ≤ Ci, εi = 1|Zi)

=
τ − F1(Ci|Zi)

1− F1(Ci|Zi)
. (7)

We can show that a subgradient of the weighted quantile objective function (5) with
respect to β(τ)

Mn(β(τ), w0) =
n

∑
i=1

Zi

{
τ − w0i I(g−1(Xi) < Z>i β(τ))

}
(8)

is an unbiased estimating function of β0(τ).

E
[
w0i I{g−1(Xi) < Z>i β0(τ)}|Zi

]
= E

(
I{δiεi = 1}w0i I{g−1(Xi) < Z>i β0(τ)}|Zi

)
+E
(

I{δiεi 6= 1, F1(Ci) > Z>i β0(τ)}w0i I{g−1(Xi) < Z>i β0(τ)}|Zi

)
+E
(

I{δiεi 6= 1, F1(Ci) ≤ Z>i β0(τ)}w0i I{g−1(Xi) < Z>i β0(τ)}|Zi

)
= P

(
εi = 1, g−1(Ti) < Z>i β0(τ)|Zi

)
= τ.

Although the unbiasedness of (8) is proved with F1(Ci|Zi) in w0i, the underlying
distribution F1(t|Z) or w0i is unknown in practice. Here we use the IPCW [15] estimator
proposed by [5] to estimate F1(t|Z),

F̂1(x|Z) = 1
n

n

∑
i=1

{
I(Xi ≤ x, δiεi = 1)

1− Ĝ(Xi|Zi)

}
, (9)

where 1− G(·t|Z) is the survival function of C given Z, which can be estimated semipara-
metrically or nonparametrically. Here for simplicity, as in [2], we assume the indepen-
dence of C and (T, ε, Z), then the Kaplan–Meier estimator in [16] could be used. Such a
computation-friendly estimator (9) has been proved to behave quite well in simulation
results, which should be well improved combined with more effective estimators of F1(t|Z).

By plugging (9) in the expression of w0i, we can get the estimated weights wi(F̂1),

wi(F̂1) =


1, δiεi = 1,
0, δiεi 6= 1, F̂1(Ci|Zi) > τ,
τ−F̂1(Ci |Zi)

1−F̂1(Ci |Zi)
, δiεi 6= 1, F̂1(Ci|Zi) ≤ τ,

(10)

where F̂1 is as in (9) or replaced with other consistent estimators. Then, we obtain the
weighted censoring quantile regression estimator β̂(τ) by minimizing the weighted objec-
tive function,
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Q(β(τ), F̂1) =
n

∑
i=1

{
wi(F̂1)ρτ(g−1(Xi)− Z>i β(τ))

+(1− wi(F̂1))ρτ(g−1(X+∞)− Z>i β(τ))
}

. (11)

2.2. Variable Selection Procedure

To select important variables, a penalty function is added to the weighted objective
function (11) to obtain the penalized estimator β̃(τ):

Qp(β(τ), wi(F̂1)) =
n

∑
i=1

{
wi(F̂1)ρτ(g−1(Xi)− Z>i β(τ))

+(1− wi(F̂1))ρτ(g−1(X+∞)− Z>i β(τ))
}

+
p

∑
j=1

pλ(|β j(τ)|), (12)

where pλ(·) can be LASSO, adaptive LASSO, and so on.
For LASSO and ALASSO penalty, we can easily write pλ(|β j|) = λn|β̂ j|−γ, where

|β̂ j| is the jth element of the initial consistent unpenalized estimator. We choose γ = 0 for
LASSO and γ = 1 for ALASSO. The minimization of (12) and (11) can be directly solved
with the R package quantreg without linear programming, leading our proposed methods
to conveniently applicable tools.

3. Theoretical Property

To establish the asymptotic results in this paper, we require the following assumptions:

A1 The covariate Z is bounded in probability. There exists a constant Kz such that
E‖Z‖3 ≤ Kz, and E(ZZ>) is a positive definite (p + 1)× (p + 1) matrix.

A2 The functions F1(t|Z) and G(t) have first derivatives with respect to t, denoted as
f1(t|Z) and g0(t), which are uniformly bounded away from infinity. Additionally,
F1(t|Z) and G(t) have bounded (uniformly in t) second-order partial derivatives with
respect to Z.

A3 For β in the neighborhood of β0(τ), E(ZZ>g′(Z>β) f1(g(Z>β)|Z){1− G(g(Z>β))})
and E(ZZ>g′(Z>β)g0(g(Z>β))) are positive definite.

Assumption A1 states some tail and moment conditions on the covariate Z, which
are standard for the quantile regression. Assumption A2 is needed for the local Kaplan–
Meier estimator. It allows us to obtain the local expansions of F1(t|z) and G(t) in the
neighborhood of Z>β0(τ) in order to obtain the uniform consistency and the linear repre-
sentation of F̂1(t|Z). Assumption A3 ensures that the expectation of the estimating function
E{Mn(β, F1)} has a unique zero at β0(τ), and it is needed to establish the asymptotic
distribution of β̂(τ).

C1 There exists ν > 0 such that P(C = ν) > 0 and P(C > ν)=0.
C2 β0(τ) is Lipschitz continuous for τ ∈ [τL, τU ].
C3 P(ε = 1|Z) < 1 a.s.

Assumptions C1 and C2 are regularity conditions for competing risks quantile regres-
sions. Assumption C3 is easily satisfied for the situation of competing risks; otherwise, it
will turn out to be a standard Cox model.

Theorem 1. Assume that triples {Zi, Xi, δiεi}, i = 1, · · · , n constitute an i.i.d. multivariate
random sample and that the censoring variable Ci is independent of Ti conditionally on the covariate
Zi. Under model (1) and assumptions A1–A3, C1–C3,

β̂(τ)→ β0(τ) (13)
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in probability as n→ ∞.

Theorem 2. Under the assumptions of Theorem 1 and r < 1/4, we have

n1/2(β̂(τ)− β0(τ))
D→ N(0, Γ−1VΓ−1), (14)

where
Γ−1 = E[ZZ>g′(Z>β0(τ)){1− G(g(Z>β0(τ)))} f1(g(Z>β0(τ))|Z)], (15)

and
V = Cov(mi(β0, F1) + (1− τ)φi), (16)

with mi(β0, F1) = Zi{τ − wi(F1)I(Xi < g(Z>i β0(τ)))}, φi defined in Equation (A9).

Theorems 1 and 2 established the consistency and asymptotic normality of the un-
penalized estimator β̂(τ). We then establish the property of consistency in variable
selection of the proposed penalized estimator β̃(τ). Let A(τ) = {j : β0j 6= 0} and
Ac(τ) = {j : β0j(τ) = 0}.

Theorem 3. If A1–A3, C1–C3 hold, and if n−1/2λn → 0 and n(γ−1)/2λn → ∞, then

P
(
{j : β̃ j(τ) 6= 0} = A(τ)

)
→ 1 as n→ ∞.

Theorem 3 states that the proposed procedure is able to select the correct model with
probability approaching one. By the remark of Theorem 2 of [14], the oracle properties are
satisfied by the proposed estimators.

The proofs are presented in Appendix A.

4. Numerical Studies
4.1. Monte Carlo Simulation

We conduct Monte Carlo simulations to evaluate the performance of the proposed
methods and consider the data-generating ways as in [5] with a larger dimension of
covariates.

We generate (T, ε) satisfying P(ε = 1|Z) = p0 I(Z2 = 0) + p1 I(Z2 = 1), P(T ≤ t|ε =
1, Z) = Φ(log t− γ>0 Z), and P(T ≤ t|ε = 2, Z) = Φ(log t− α>0 Z), where Φ(·) denotes the
standard normal distribution function, p0 = 0.8, p1 = 0.6, γ0 and α0 are true parameters in
the model above. Set γ0 = (−2,−2.5, 2,−2.4, 0, · · · , 0) while α0 = −γ0. Then

log Q1(τ|Z) = Φ−1
(

τ

p0

)
+ γ

(1)
0 Z1 +

{
γ
(2)
0 + Φ−1

(
τ

p1

)
−Φ−1

(
τ

p0

)}
Z2

+γ
(3)
0 Z3 + γ

(4)
0 Z4

where Zj is the jth component of covariate Z, and γ
(j)
0 is the jth component of γ0. Then the

estimated coefficient in model (1) is

β0(τ) = (Φ−1
(

τ

p0

)
, γ

(1)
0 , γ

(2)
0 + Φ−1

(
τ

p1

)
−Φ−1

(
τ

p0

)
, γ

(3)
0 , γ

(4)
0 , 0, · · · , 0).

Thus the true number of non-zero coefficients is 5 for τ 6= 0.4 and 4 for τ = 0.4 due to
Φ−1

(
0.4
p0

)
= 0.

In simulations, we set the number of irrelevant predictors to be s = #{j : β0j 6= 0} = 30,
the sample size to be n = 200. For the structure of the covariance matrix for covariates, we
consider Σ1,ij = ρ ,where ρ = 0, 0.25, 0.5, 0.75.
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We generate the covariate vector Z = (Z1, Z2, Z3, · · · , Zp)> as follows: Z1 ∼ Unif(0,1)
and Z2 ∼ Bernoulli(0.5), Zj ∼ N(0, Σ), j = 3, · · · , p. For each scenario, the simulation is
repeated 500 times. The censoring rate average is 36%.

We use the following criteria to evaluate the performances: the ratio of number of rele-
vant variables correctly selected to true number of relevant variables (TPr) defined as TPr =
#{{j:|β̂ j(τ)|6=0}∩{j:|β0j(τ)|6=0}}

#{j:|β0j(τ)|6=0} , the ratio of number of irrelevant variables incorrectly selected

to true number of irrelevant variables (FPr) defined as FPr =
#{{j:β̂ j(τ) 6=0}∩{j:|β0j |=0}}

#{j:|β0j |=0} , the ab-

solute error P1 = ∑
p
j=1 |β̂ j(τ)− β0j(τ)|, and the squared error P2 = ∑

p
j=1 |β̂ j(τ)− β0j(τ))|2.

The closer TPr is to 1 and FPr is to 0, the better. Both TPr and FPr range from 0 to 1, thus
we present them together in Figure 1 for comparison.
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Figure 1. Case n = 200, s = 30, p0 = 0.8, p1 = 0.6. Comparison of TPr and FPr for four levels of ρ. In
each subplot, the Y axis reports the TPr and FPr values at different τ. The solid line is TPr and the
dashed line is FPr. Four colors are used to represent the methods: red for wcqr, green for wcqr0, blue
for wcqr1, and purple for wcqr2. Light colors represent the LASSO penalty and dark colors are the
ALASSO penalty for all methods.

We compare our proposed weighted estimators with the estimated estimator of com-
peting risks quantile regression model proposed in [8], denoted as wcqr and cqr, respec-
tively, implying the weighting method or not. In simulation tables, we use cqr.l and cqr.a
to represent cqr estimators with LASSO and ALASSO penalty, respectively. Similarly, our
estimators, denoted as wcqri.l and wcqri.a, i = 0, 1 stands for administrative censoring
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where C is known and randomly right censoring cases where X is in place of C, respectively;
wcqr2 uses a different weight:

wi(F1) =


1 δiεi = 1

τ−F̂1(Ci)

1−F̂1(Ci)−F̂2(Ci)
δi = 0, F̂1(Ci) < τ

0 otherwise.

As the weight above involves the estimation of F2(t|Z) = P(T ≤ t, ε = 2|Z), which
probably is complicated in practical circumstances, we only use it for comparison in
simulations. Here in wcqr2, we apply a similar estimating method of F1 to F2.

Alhough our theoretical results are not based on these two estimators of wi, most
simulation results show that wcqr0 and wcqr1 are considerably close, as the weight is
only different at δ = 1, suggesting good estimates in large censoring rates. Research about
massive competing risks data with enormous censored observations will appear in our
future work.

Before the variable selection, we also conduct the simulation for unpenalized estima-
tors. In this case, we use γ0 = (1,−1.5,−0.5), p0 = 0.8, p1 = 0.6, and ρ = 0. We repeat this
1000 times and compare the empirical bias (EmpBias) and average coverage probabilities
based on 95% confidence intervals computed with empirical variance. The results are
summarized in Table 1, where in lower quantiles, the cqr method shows extreme excellence,
whereas in high quantiles, it displays some instability. For weighted methods, though
inferior to cqr in lower quantiles, these methods still behave well in most simulations,
especially wcqr1 and wcqr2. The average coverage probabilities display similar patterns;
cqr behaves well until τ < 0.4. In relatively high quantiles such as τ = 0.5, wcqr2 behaves
the best for most coefficients.

Table 1. Bias and empirical coverage; n = 300, ρ = 0, p0 = 0.8, p1 = 0.6.

τ Method
Bias EmpCoverage

β1 β2 β3 β4 β1 β2 β3 β4

0.1 cqr −0.012 −0.003 0.003 0.003 0.952 0.953 0.953 0.958
wcqr1 −0.027 −0.026 0.031 0.014 0.950 0.952 0.950 0.949
wcqr2 −0.027 −0.032 0.036 0.018 0.948 0.952 0.946 0.950

0.2 cqr 0.000 −0.015 −0.007 0.008 0.946 0.950 0.943 0.952
wcqr1 −0.024 −0.061 0.042 0.032 0.948 0.944 0.949 0.943
wcqr2 −0.019 −0.081 0.055 0.040 0.949 0.940 0.952 0.940

0.3 cqr −0.010 −0.023 0.008 0.014 0.947 0.949 0.956 0.953
wcqr1 −0.042 −0.108 0.095 0.055 0.938 0.952 0.944 0.943
wcqr2 −0.027 −0.131 0.104 0.065 0.939 0.949 0.934 0.941

0.4 cqr 0.219 −1.244 −0.069 0.316 0.999 0.999 0.999 0.999
wcqr1 −0.065 −0.203 0.168 0.121 0.947 0.943 0.931 0.937
wcqr2 0.007 −0.153 0.111 0.095 0.949 0.939 0.941 0.922

0.5 cqr −5.878 −25.526 −12.526 10.139 0.975 0.957 0.967 0.953
wcqr1 −0.313 −0.632 0.594 0.280 0.965 0.943 0.963 0.914
wcqr2 0.144 0.034 0.041 −0.007 0.913 0.955 0.952 0.953

With moderate dimensions of covariates (s = 30), Figure 1 presents the TPr and FPr
values evaluated for n = 200 and τ ∈ (0, 0.6) and four ρs for Σ1, respectively. Generally
speaking, we can observe that almost all selection performances appear to decline as τ
increases, and with higher TPr and lower FPr, ALASSO penalized methods are overall
superior to LASSO methods. Specifically, in quantiles lower than 0.4, with ALASSO penalty,
cqr and wcqr both have good performances for identification of important variables, with
TPr close to 1. Compared to the ALASSO method, LASSO methods have higher FPr
values and tend to select much more irrelevant variables. In Figure 1, wcqr estimators
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display comparable performance with cqr estimators according to high TPr and low FPr at
moderate τ ∈ (0, 0.35). At higher quantiles, although a little bit inferior to cqr estimators
in TPr, wcqr estimators have very low FPr values despite a rapid increase of FPr for cqr
estimators, which means wcqr estimators have a strong ability to drop irrelevant variables
as well as select correct variables even when cqr estimators almost fail in particularly high
quantiles. We should state that in all simulations, wcqr estimators present quite stable
performances in higher quantiles and higher dimensions. The decline of performance with
increasing τ can be explained by a higher τ that is approaching the probability P(ε = 1|Z),
which induces larger biases. In addition, it is notable that TPr has a very small decrease
when ρ increases except for cqr.l, which has a large decrease, since when the correlation of
covariates increases, it is more difficult for identification. Even when ρ = 0.75, the wcqr
estimators with ALASSO behave quite well in simulations.

Figure 2 shows the P1 and P2 performances for the eight methods, and the two values
for cqr estimators are too large to be displayed in the plot. In contrast, wcqr estimators
stably indicate a decrease from 0.1 to about 0.27 and an increase from 0.3 to 0.6. It can
be explained that in low quantiles, few ambiguous cases are used for estimation, which
causes insufficient use of information; whereas in high quantiles, where more ambiguous
observations are weighted, the accuracy of weights will affect the estimation performance.
The improvement of estimation for w0i can be an investigation in the future.
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Figure 2. Case n = 200, s = 30, p0 = 0.8, p1 = 0.6. Comparison of P1 and P2 for four levels of ρ. In
each subplot, the Y axis reports the P1 and P2 values at different τ. The solid line is P1 and the dashed
line is P2. Four colors are used to represent the methods: red for cqr, green for wcqr0, blue for wcqr1,
and purple for wcqr2. Light colors represent the LASSO penalty and dark colors are the ALASSO
penalty for all methods.
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We also present other simulation results in Figures S1–S11 in the supplementary
material. Figures S1 and S2 show the TPr, FPr, P1, and P2 for s = 20 and 50, respectively.
We can observe that, in Figure S1, the TPr of wcqr estimators with ALASSO are above 0.9
except for very high quantiles, indicating stability with low FPr compared to cqr estimators;
in Figure S2, the tendency remains but the selection performance is inferior, although TPr
still stays higher than 0.8 at τ = 0.4. We also conduct the case when s = 100, n = 100, which
means the number of predictors exceeds the sample size. In this case, cqr estimators fail
due to singular design matrix as well as the ALASSO estimator. We discover, surprisingly,
that our wcqr estimators still work and behave quite well, as illustrated in Figure S3.
Numerical studies for s = 10 and γ0 = (−2,−2.5, 0.5, 0, · · · , 0) are also discussed in the
supplementary material, illustrated by Figures S4–S11. For the structure of the covariance
matrix, we consider another kind of setup: Σ2,ij = ρ|i−j|. We also consider a different choice
for p0 and p1 as 0.6 and 0.45, respectively, in order to test the performance under a different
probability of P(εi = 1). In addition, we also simulate the heavy-tailed distributions
t(3) instead of Gaussian distribution for P(T ≤ t|ε = 1, Z). Figures S4–S7 show that
the ALASSO penalty significantly decreases the FP for both estimators, which suggests
the superiority of ALASSO. Our estimators behave fairly close to the cqr estimator in
most cases. Although the TP of our estimators behave slightly worse, the FP shows a
relatively better performance. Not only does wcqr shows smaller deviation about estimated
coefficients, but it also shows great stability, especially for the ALASSO penalty, in the case
of higher quantiles τ = 0.5. This shows the meaningful application of our estimators in
high quantiles. Figure S8 represents the case of n = 400, where the performances of all
criteria are greatly improved.

Figure S9 shows the performance for Σ2, which presents slightly better results than
the case of Σ1. Figure S10 is for a different pair of (p0, p1) = (0.6, 0.45), and our τs ranges
from 0 to 0.4, and τ = 0.3 turns out to be the quantile of 3 nonzero coefficients, which fits
our simulation results. Figure S11 simulates t(3) distribution in place of standard normal
distribution, displaying that our estimators behave significantly well for heavy-tailed
distributions.

To conclude, wcqr estimators behaves comparably with the cqr estimator, with slightly
worse performance for TP but better for FP. Interestingly, for the higher correlations and
higher quantiles and heavy-tailed distribution, the superior performance the wcqr estima-
tors display show good potential applicability to more complex data and higher quantiles.

4.2. Real Data Analysis

In this subsection, we use the BMT dataset in [1] for practical application. As the
simulation illustrates, wcqr estimators display more stability to the complexity of data and
high quantiles than existing cqr estimators, which motivates us to conduct the data analysis
with our methods.

In this dataset, a total of 177 patients received a stem cell transplant for acute leukemia.
The failure event is relapse (REL, 56 patients), and death from causes related to the trans-
plant (transplant related mortality, TRM, 75 patients) is the competing risk. Forty-six
patients are censored, thus the censoring rate is 26%. Covariates that affect REL and TRM
includes sex, disease (lymphoblastic or myeloblastic leukemia), phase at transplant (Re-
lapse, CR1, CR2, CR3), source of stem cells (bone marrow and peripheral blood, coded as
BM+PB, or peripheral blood, coded as PB), and age. The link function is assumed to be
exponential.

Figures 3–5 report the numbers of selected variables as well as coefficient estimates by
our weighted estimators compared with penalized quantile estimating equations proposed
by [8] and the penalty-free methods with τ ranging from 0 to 0.4.

From the figure we can see mainly our estimators select similar numbers of variables to
cqr estimators at lower quantiles, but in higher quantiles, the wcqr estimators lie between
the cqr-LASSO and cqr-ALASSO. For the intercept, in lower quantiles, five estimators
appears conincident with one another, although cqr-ALASSO estimators tend to be unstable,
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whereas wcqr estimators shows stability here. For age, all estimators regard this variable as
unimportant, except that the two LASSO estimators probably overestimate the importance.
For sex:F, almost all estimators shrink the corresponding coefficients to zero. The ALASSO
estimators tend to treat D:AML as an unimportant variable, except for quantiles around 0.1.
For phase:CR1 and phase:CR2, all estimators tend to select them in lower quantiles, but
wcqr tends to select phase:CR1 at higher quantiles larger than 0.21 but neglects phase:CR2
from 0.22 to 0.27. For phase:CR3, all the estimators show analogue performances but
with slight shifts. For source:PB, the wcqr estimators perform more stably than cqr for all
quantiles. The estimations for F1 based on the five methods are placed in Figure 6.
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Figure 3. Variable selection and estimation results for intercept and βAge. The Y axis reports the
coefficient values at different τ. Various colors of lines represent eight methods.
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values at different τ. Various colors of lines represent eight methods.
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To conclude, our wcqr estimators present stability and keep similar performances to
the results of cqr estimators. More importantly, our weighted estimates provide a relatively
general objective function for researchers to directly use R packages for application.
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5. Conclusions

In this paper, we proposed a weighted method for competing risks quantile regression
model to transform the estimating equation to a common weighted objective function and
applied the LASSO and ALASSO penalization for variable selection. We established the
consistency and asymptotic normality for penalty-free estimators as well as the consistency
of variable selection. Monte Carlo simulations were conducted for several scenarios,
presenting good variable selection performance and stability. Finally, a real dataset was
utilized to illustrate the application of our methods, which is comparable with other
methods.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/math11061295/s1, Figure S1: Case n = 200, s = 20, p0 = 0.8, p1 =

0.6. Reports of TPr, FPr, P1 and P2 at different τ. Four colors are used to represent the methods:
red for cqr, green for wcqr0, blue for wcqr1 and purple for wcqr2. Light colors represent LASSO
penalty and dark colors for ALASSO penalty. Figure S2: Case n = 200, s = 50, p0 = 0.8, p1 = 0.6.
Reports of TPr, FPr, P1 and P2 at different τ. Four colors are used to represent the methods: red for
cqr, green for wcqr0, blue for wcqr1 and purple for wcqr2. Light colors represent LASSO penalty
and dark colors for ALASSO penalty. Figure S3: Case n = 100, s = 100, p0 = 0.8, p1 = 0.6, Reports
of TPr, FPr, P1 and P2 at different τ. Various colors of line represent eight methods respectively.
Figure S4: Case n = 200, p0 = 0.8, p1 = 0.6. Comparision of TP and FP for four levels of ρ. In
each subplot, the Y axis reports the TP values at different τ. Various colors of line represent eight
methods respectively. Figure S5: Case n = 200, p0 = 0.8, p1 = 0.6, Plots of FP for four levels of
ρ. In each subplot, the Y axis reports the FP values at different τ. Various colors of line represent
eight methods respectively. Figure S6: Plots of P1 for four levels of ρ. In each subplot, the Y axis
reports the P1 values at different τ. Various colors of line represent eight methods respectively.
n = 200, p0 = 0.8, p1 = 0.6. Figure S7: Plots of P2 for four levels of ρ. In each subplot, the Y axis
reports the P2 values at different τ. Various colors of line represent eight methods respectively,
n = 200, p0 = 0.8, p1 = 0.6. Figure S8: Case n = 400, ρ = 0.5, p0 = 0.8, p1 = 0.6. Reports of TP, FP,
P1 and P2 at different τ. Various colors of line represent eight methods respectively. Figure S9: Case
n = 400, ρ = 0.5, p0 = 0.8, p1 = 0.6, Σ2. Reports of TP, FP, P1 and P2 at different τ. Various colors of
line represent eight methods respectively. Figure S10: Case n = 400, ρ = 0.5, p0 = 0.6, p1 = 0.45, Σ1.
Reports of TP, FP, P1 and P2 at different τ. Various colors of line represent eight methods respectively.
Figure S11: Case n = 400, ρ = 0.5, p0 = 0.8, p1 = 0.6, Σ2, t(3). Reports of TP, FP, P1 and P2 at different
τ. Various colors of line represent eight methods respectively.
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Appendix A. Technical Details of Proofs

To simplify the presentation, we omit τ in such expressions as β(τ).
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Since the weights wi depend on F∗1 , we take wi as wi(F∗1 ). Additionally, we define
Mn(β, F∗1 ) = n−1 ∑n

i=1 mi(β, F∗1 ) as the subgradient of the weighted quantile objective
function (11), where

mi(β, F∗1 ) = Zi{τ − wi(F∗1 )I(g−1(Xi) ≤ Z>i β)}

= Zi

(
τ − I{εi = 1, Ti ≤ Ci, Ci ≤ g(Z>i β)}

−I{εi = 1, Ti ≤ Ci, g−1(Ti) ≤ Z>i β, Ci > g(Z>i β)}

−
τ − F∗1 (Ci)

1− F∗1 (Ci)

[
I{F∗1 (Ci) ≤ τ, Ci ≤ g(Z>i β)}(1− I{Ti ≤ Ci, εi = 1})

]
−

τ − F∗1 (Ci)

1− F∗1 (Ci)
I{εi = 2, F∗1 (Ci|Zi) ≤ τ, Ti ≤ g(Z>i β), Ci > g(Z>i β)}

)
Let M(β, F∗1 ) = E{mn(β, F∗1 )} = E{Z

(
τ − H(g(Z>β))− R(β, F∗1 )− J(β, F∗1 )

)
}, where

H(t|Z) =
∫ t

−∞
F1(u)g0(u)du + (1− G(t))F1(t|Z),

R(β, F∗1 ) = EC|Z
τ − F∗1 (C)
1− F∗1 (C)

I{F∗1 (C) ≤ τ, C ≤ g(Z>β)}(1− I{T ≤ C, ε = 1})

=
∫ g(Z>β)

0
g0(u)I{F∗1 (u) ≤ τ}(1− F1(u|Z))

τ − F∗1 (u)
1− F∗1 (u)

du,

J(β, F∗1 ) = EC|Z I{ε = 2, F∗1 (C) ≤ τ, T ≤ g(Z>β), C > g(Z>β)}
τ − F∗1 (C)
1− F∗1 (C)

= (F0(g(Z>β)|Z)− F1(g(Z>β)|Z))
∫ ∞

g(Z>β)
I{F∗1 (u) ≤ τ}

τ − F∗1 (u)
1− F∗1 (u)

g0(u)du

where g0(u) is the density of censoring variable C conditionally on Z, and F0(t|Z) = P(T ≤
t|Z). It is noteworthy that J(β0, F1) ≡ 0, and it is easy to derive that M(β0, F1) ≡ 0.

Lemma A1. Assume assumptions A1–A3, C1–C3 hold. Then

‖F̂1 − F1‖H
·
= sup

t
sup

z
|F̂1(t|z)− F1(t|z)| = op(n−1/2+r) (A1)

for every r > 0.

Remark A1. Lemma A1 directly guarantees the consistency of our weight estimation wi(F̂1) to
wi(F1), which is the w0i in Equation (6).

Proof. By condition C1 and A1 and [17], Ref. [5] has developed that for every r > 0,
supt<ν |Ĝ(t)− G(t)| = o(n−1/2+r), a.s. This, coupled with C2, implies that

sup
x

∥∥∥∥∥n−1
n

∑
i=1

(
I{Xi ≤ x}I{δiεi = 1}

1− Ĝ(Xi)

)

−n−1
n

∑
i=1

(
I{Xi ≤ x}I(δiεi = 1)

1− G(Xi)

)∥∥∥∥∥ = o(n−1/2+r), a.s. (A2)
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Simultaneously , for t < ν, 1− G(t) is uniformly bounded away from 0, thus by
Chebyshev’s inequality, for every r > 0,

P

{
n1/2−r

∣∣∣∣∣n−1
n

∑
i=1

(
I{Xi ≤ x}I(δiεi = 1)

1− G(Xi)

)

−n−1
n

∑
i=1

E
(

I{Xi ≤ x}I(δiεi = 1)
1− G(Xi)

|Zi

)∣∣∣∣∣ ≥ ε

}

≤ n−2rVar(I{Xi ≤ x}I(δiεi = 1)|Zi)

ε2 → 0, n→ ∞,

which holds for any x, that is

sup
x,z

∥∥∥∥∥n−1
n

∑
i=1

(
I{Xi ≤ x}I(δiεi = 1)

1− G(Xi)

)
− F1(x|Zi)

∥∥∥∥∥ = op(n−1/2+r). (A3)

Combining Equations (A2) and (A3), we have

sup
x,z
‖F̂1(x|Z)− F1(x|Z)‖ = op(n−1/2+r)

holds uniformly for Z, that is,

‖F̂1 − F1‖H
·
= sup

t
sup

z
|F̂1(t|z)− F1(t|z)| = op(n−1/2+r).

Lemma A2. For all positive values εn = o(1), we have

sup
‖β−β0‖≤εn ,‖F∗1−F1‖≤εn

‖Mn(β, F∗1 )−M(β, F∗1 )−Mn(β0, F1)‖ = op(n−1/2) (A4)

Proof. Let Zij and mij denote the jth coordinates of Zi and mi, respectively. For nota-
tional simplicity, in the following we omit the subscript i in various expressions such as
Zi, Zij, Ti, Ci. Let Kj, j = 1, · · · , 5 be some positive constants. Note that for j = 1, · · · , p,

|mj(β, F∗1 )−mj(β′, F∗
′

1 )|2 ≤ B1 + B2 + B3 + B4,

where

B1 = Z2
j |I{ε = 1, T ≤ C, C ≤ g(Z>β)} − I{ε = 1, T ≤ C, C ≤ g(Z>β′)}|

B2 = Z2
j |I{ε = 1, T ≤ C, T ≤ g(Z>β), C > g(Z>β)}

−I{ε = 1, T ≤ C, T ≤ g(Z>β′), C > g(Z>β′)}|

B3 = Z2
j

∣∣∣∣τ − F∗1 (C)
1− F∗1 (C)

[
I{F∗1 (C) ≤ τ, C ≤ g(Z>β)}(1− I{T ≤ C, ε = 1})

]
−

τ − F∗
′

1 (C)
1− F∗′1 (C)

[
I{F∗′1 (C) ≤ τ, C ≤ g(Z>β′)}(1− I{T ≤ C, ε = 1})

]∣∣∣∣∣
B4 = Z2

j

∣∣∣∣τ − F∗1 (C)
1− F∗1 (C)

I{ε = 2, F∗1 (C|Z) ≤ τ, T ≤ g(Z>β), C > g(Z>β)}

−
τ − F∗

′
1 (C)

1− F∗′1 (C)
I{ε = 2, F∗

′
1 (C) ≤ τ, T ≤ g(Z>β′), C > g(Z>β′)}

∣∣∣∣∣
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It is easy to verify that

sup
β′ :‖β−β′‖≤εn

|I(g(Z>β) < C)− I(g(Z>β′) < C)|

≤ ‖Z‖{I(g(Z>β)− εn < C)− I(g(Z>β) + εn < C)}

or multiplied by a constant, by Assumption C3. Therefore, by Assumptions A1 and A2,

E

(
sup

β′ :‖β−β′‖≤εn

B1

)

= E

[
sup

β′ :‖β−β′‖≤εn

Z2
j |I{C ≤ g(Z>β)} − I{C ≤ g(Z>β′)}|

]
≤ E‖Z‖3{G(g(Z>β) + εn)− G(g(Z>β)− εn)}
≤ K1εn.

Following similar arguments, we can show that

E

(
sup

β′ :‖β−β′‖≤εn

B2

)
= E

[
sup

β′ :‖β−β′‖≤εn

Z2
j I(εi = 1)

×|I{T ≤ g(Z>β), C > g(Z>β)} − I{T ≤ g(Z>β′), C > g(Z>β′)}|
]

≤ E[‖Z‖3{G(g(Z>β) + εn)− G(g(Z>β)− εn)}
+‖Z‖3{F1(g(Z>β) + εn)− F1(g(Z>β)− εn)}]
≤ K2εn.

Note that

B3 ≤ Z2
j

∣∣∣∣∣
[

1− 1− τ

1− F∗1 (C)

]
I{F∗1 (C) ≤ τ} −

[
1− 1− τ

1− F∗′1 (C)

]
I{F∗′1 (C) ≤ τ}

∣∣∣∣∣
+Z2

j

∣∣∣I{C ≤ g(Z>β)} − I{C ≤ g(Z>β′)}
∣∣∣

·
= B31 + B32.

Similarly to B1, it is easy to verify that E
(

supβ′ :‖β−β′‖≤εn
B32

)
≤ K1εn. Then

B31 = Z2
j I{F∗1 (C) < τ, F∗

′
1 (C) < τ}

(1− τ)[F∗1 (C)− F∗
′

1 (C)]
(1− F∗1 (C))(1− F∗′1 (C))

+Z2
j I{F∗1 (C) < τ < F∗

′
1 (C)} 1− τ

1− F∗1 (C)

+Z2
j I{F∗′1 (C) < τ < F∗1 (C)}

1− τ

1− F∗′1 (C)

≤ Z2
j

F∗1 (C)− F∗
′

1 (C)
(1− τ)

+Z2
j I{F∗1 (C) < τ < F∗

′
1 (C)}+ Z2

j I{F∗′1 (C) < τ < F∗1 (C)}.
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Since

E

 sup
F∗′1 :‖F∗1−F∗′1 ‖H

I{F∗1 (C) < τ < F∗
′

1 (C)}


≤ P{F∗1 (C) < τ < F∗1 (C) + εn}
≤ G{F∗−1

1 (τ)} − G{F∗−1
1 (τ − τ)} ≤ K3εn.

Then by Assumption A1, we have E
(

supβ′ :‖β−β′‖≤εn
B31

)
≤ K4εn. Consequently,

E

(
sup

β′ :‖β−β′‖≤εn

B3

)
≤ K5εn.

Similar arguments to proving B3, by adding and subtracting τ−F∗
′

1 (C)
1−F∗′1 (C)

I{ε = 2, F∗
′

1 (C) ≤

τ, T ≤ g(Z>β), C > g(Z>β)}, yields

B4 ≤ Z2
j

∣∣∣∣∣τ − F∗1 (C)
1− F∗1 (C)

I{F∗1 (C) ≤ τ} −
τ − F∗

′
1 (C)

1− F∗′1 (C)
I{F∗′1 (C) ≤ τ}

∣∣∣∣∣
+Z2

j

∣∣∣I{T ≤ g(Z>β′), C > g(Z>β′)} − I{T ≤ g(Z>β), C > g(Z>β)}
∣∣∣

·
= B41 + B42.

By the proof of B31 and B2, we can easily get that E
(

supβ′ :‖β−β′‖≤εn
B41

)
≤ K4εn and

E
(

supβ′ :‖β−β′‖≤εn
B42

)
≤ K2εn. Thus E

(
supβ′ :‖β−β′‖≤εn

B4

)
≤ K5εn.

Therefore, condition (3.2) of [18] holds with r = 2 and sj = 1/2, and condition (3.3)
is satisfied by remark 3(ii) of their paper. Thus, Lemma 2 holds by applying Theorem 3
of [18].

Proof of Theorem 1. Note that F1(t|Z) < τ is equivalent to t < g(Z>β0) and F1(g(Z>β0))
= τ. Therefore, when plugging in the true β0 and F1 into M, we get

M(β0, F1) = E{Z
(

τ − H(g(Z>β0))− R(β0, F1)− J(β0, F1)
)
} = 0.

Because β0 is the solution of M(β, F1) with M(β, F1) being a continuous function of β in a
compact parameter neighborhood B.

Therefore, the consistency of β̂ is the direct conclusion of Theorem 1 of [18], and we
only need verify conditions (1.1), (1.2), and (1.5’) in their paper, as (1.3) is trivially satisfied
and (1.4) follows from Lemma A1.

(1.1) By the subgradient condition of quantile regression [13], there exists a vector v with
coordinates |vi| ≤ 1 such that

‖Mn(β̂, ŵ)‖ = n−1‖(Zivi) : i ∈ Ξ‖ = op(n−1/2) (A5)

by Assumption A.1, where Ξ denotes a (p + 1)−element subset of {1, 2, · · · , n}.
(1.2) For any ε > 0 and β ∈ B,

inf
‖β−β0‖≥ε

‖M(β, F1)‖

= inf
‖β−β0‖≥ε

‖M(β, F1)−M(β0, F1)‖

≥ inf
‖β−β0‖≥ε

‖E[ZZ>(β− β0)]g′(ξ∗){1− G(g(ξ∗)|Z)} f1(g(ξ∗)|Z)‖,
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which is strictly positive under Assumptions A1 and A3. Here ξ∗ is some value
between Z>β and Z>β0.

(1.5’) Let {an} be a sequence of positive numbers approaching zero as n → ∞. Note that
E{‖Ziwi I(Xi ≤ g(Z>i β))‖2} ≤ E(‖Zi‖2) ≤ Kz, under Assumption A1. It then follows
from Chebyshev’s inequality that

sup
β∈B,‖F∗1−F1‖H≤an

‖Mn(β, F∗1 )−M(β, F∗1 )‖ = op(1).

Then the proof of Theorem 1 is complete with the conclusion of Theorem 1 of [18].

Proof of Theorem 2. The asymptotic normality of β̂ relies on the results of Theorem 2
in [18]. We need to prove conditions (2.1)–(2.4), (2.5’), and (2.6’) in their paper. Conditions
(2.1), (2.4), and (2.5’) hold directly by (A5), Lemma A1, and Lemma A2, respectively.

Note that for any Ci lying above the τth conditional quantile Z>i β0, the quantile fit
will not be affected if we assign the entire weight to either (Zi, Ci) or (Zi, X+∞). Then we
obtain

Γ1(β0, F1) =
∂M(β, F1)

∂β

∣∣
β=β0

= −E[ZZ>g′(Z>β0){1− G(g(Z>β0)|Z)} f1(g(Z>β0)|Z)],

which is continuous at β0 and of full rank under Assumption A3. For all β ∈ B , we define
the functional derivative of M(β, F∗1 ) at F1 in the direction [F∗1 − F1] as

Γ2(β, F1)[F∗1 − F1]

= lim
ε→0

1
ε
[M{β, F1 + ε(F∗1 − F1)} −M{β, F1}]

= lim
ε→0

1
ε

E[R(β, F1)− R(β, F1ε) + J(β, F1)− J(β, F1ε)]

where F1ε = F1 + ε(F∗1 − F1). Since

lim
ε→0

1
ε

EZ[R(β, F1)− R(β, F1ε)]

= EZ[A1(β) + A2(β)] +

(1− τ)EZ
∫ g(Z>β)

0
g0(u)I{F1(u|Z) ≤ τ}

F∗1 (u|Z)− F1(u|Z)
1− F1(u|Z)

du

where

A1(β) = lim
ε→0

1
ε

∫ g(Z>β)

0
g0(u)(1− F1(u))[I{F1(u|Z) ≤ τ} − I{F1ε(u|Z) ≤ τ}du]

A2(β) = lim
ε→0

1
ε

∫ g(Z>β)

0
g0(u)(1− F1(u))(1− τ)

I{F1ε(u|Z) ≤ τ} − I{F1(u|Z) ≤ τ}
1− F1ε(u|Z)

du.

Similarly , we can derive

lim
ε→0

1
ε

EZ[J(β, F1)− J(β, F1ε)]

= EZ[A3(β) + A4(β)] + (1− τ)EZ[F0(g(Z>β)|Z)− F1(g(Z>β)|Z)]

×
∫ ∞

g(Z>β)
g0(u)I{F1(u|Z) ≤ τ}

F∗1 (u|Z)− F1(u|Z)
(1− F1(u|Z))2 du
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where

A3(β) = [F0(g(Z>β)|Z)− F1(g(Z>β)|Z)] lim
ε→0

1
ε

∫ ∞

g(Z>β)
g0(u)

I{F1(u|Z) ≤ τ} − I{F1ε(u|Z) ≤ τ}du

A4(β) = [F0(g(Z>β)|Z)− F1(g(Z>β)|Z)](1− τ)

lim
ε→0

1
ε

∫ ∞

g(Z>β)
g0(u)

I{F1ε(u|Z) ≤ τ} − I{F1(u|Z) ≤ τ}
1− F1ε(u|Z)

du.

For β such that g(Z>β) < g(Z>β0), A1(β) = 0, A2(β) = 0. For sufficiently small ε,
F−1

1ε (τ) > g(Z>β), then

A3(β) = [F0(g(Z>β)|Z)− F1(g(Z>β)|Z)] lim
ε→0

1
ε

{
G(g(Z>β0))− G(F−1

1ε (τ|Z))
}

A4(β) = (1− τ)[F0(g(Z>β)|Z)− F1(g(Z>β)|Z)] lim
ε→0

1
ε

{
G̃(F−1

1ε (τ|Z))− G̃(g(Z>β0|Z))
}

where dG̃(u|Z)
du = g0(u)

1−F1(u|Z)
.

For β such that g(Z>β) > g(Z>β0), A3(β) = 0, A4(β) = 0. For sufficiently small ε,
F−1

1ε (τ) < g(Z>β), then

A1(β) = lim
ε→0

1
ε

{
Ğ(g(Z>β0|Z))− Ğ(F−1

1ε (τ|Z))
}

where dĞ(u|Z)
du = g0(u)(1− F1(u|Z)) and

A2(β) = (1− τ) lim
ε→0

1
ε

{
G(F−1

1ε (τ|Z))− G(g(Z>β0))
}

.

For β = β0, note that I{F0(t|Z) < τ} = 1 for t ∈ (0, g(Z>β)), then

A1(β) = lim
ε→0

1
ε

{
Ğ(g(Z>β0|Z))− Ğ(F−1

1ε (τ|Z))
}

A2(β) = (1− τ) lim
ε→0

1
ε

{
G(F−1

1ε (τ|Z))− G(g(Z>β0))
}

and I{F0(t|Z) < τ} = 0 for t ∈ (g(Z>β), ∞), then

A3(β) = [F0(g(Z>β)|Z)− F1(g(Z>β)|Z)] lim
ε→0

1
ε

{
G(g(Z>β0))− G(F−1

1ε (τ|Z))
}

A4(β) = (1− τ)[F0(g(Z>β)|Z)− F1(g(Z>β)|Z)]

· lim
ε→0

1
ε

{
G̃(F−1

1ε (τ|Z))− G̃(g(Z>β0|Z))
}

.

By expanding G̃(F−1
1ε (τ|Z)) (treated as a function of ε) around ε = 0, and using the

fact that d
dε F−1

1ε (τ|Z)|ε=0 =
τ−F∗1 (g(Z>β0))

f1(g(Z>β0))
(example 20.5 in [19]), we obtain

G(F−1
1ε (τ|Z)) = G(g(Z>β0)) + g0(g(Z>β0))

τ − F∗1 (g(Z>β0))

f1(g(Z>β0))
ε + O(ε2).
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Similarly, we have

Ğ(F−1
1ε (τ|Z)) = Ğ(g(Z>β0)) + g0(g(Z>β0))(1− F1(g(Z>β0)))

·
τ − F∗1 (g(Z>β0))

f1(g(Z>β0))
ε + O(ε2).

G̃(F−1
1ε (τ|Z)) = G̃(g(Z>β0)) +

g0(g(Z>β0))

1− F1(g(Z>β0))

·
τ − F∗1 (g(Z>β0))

f1(g(Z>β0))
ε + O(ε2).

Therefore, for β such that g(Z>β) < g(Z>β0),

A3(β) + A4(β) = −[F0(g(Z>β)|Z)− F1(g(Z>β)|Z)]g0(g(Z>β0))

τ − F∗1 (g(Z>β0))

f1(g(Z>β0))

F1(g(Z>β0))− τ

1− F1(g(Z>β0))
≡ 0

for β such that g(Z>β) ≥ g(Z>β0),

A1(β) + A2(β) = g0(g(Z>β0))(F1(g(Z>β0))− τ)
τ − F∗1 (g(Z>β0))

f1(g(Z>β0))
≡ 0.

That is

Γ2(β0, F1)[F∗1 − F1]

= (1− τ)EZ
∫ g(Z>β)

0
g0(u)I{F1(u|Z) ≤ τ}

F∗1 (u|Z)− F1(u|Z)
1− F1(u|Z)

du

+(1− τ)EZ[F0(g(Z>β)|Z)− F1(g(Z>β)|Z)]

×
∫ ∞

g(Z>β)
g0(u)I{F1(u|Z) ≤ τ}

F∗1 (u|Z)− F1(u|Z)
(1− F1(u|Z))2 du. (A6)

With the process of Taylor expansion, we can verify condition (2.3) of [18] under
Assumptions A1 and A2.

Then, we verify condition (2.6). Combining (A6) and the analysis above, we have

Γ2(β0, F1)[F̂1 − F1]

= (1− τ)EZ
∫ g(Z>β0)

0
g0(u)

F̂1(u|Z)− F1(u|Z)
1− F1(u|Z)

du (A7)

Denote FG
1 (t|Z) = 1

n ∑n
i=1

I{Xi≤t,δiεi=1}
1−G(Xi)

, NG
i (t) = I(Xi ≤ t, δiεi = 0), Yi(t) = I(Xi ≥

t), y(t) = P(X ≥ t), λG(t) = lim∆→0 P(X ∈ (t, t + ∆)|X ≥ t), ΛG(t) =
∫ t

0 λG(s)ds and
MG

i (t) = NG
i −

∫ ∞
0 Yi(s)dΛG(s). Follow the proof in [5], supt∈[0,ν) ‖n1/2{Ĝ(t)− G(t)−

n−1/2 ∑n
i=1 G(t)

∫ t
0 y(s)−1dMG

i }‖ → 0, from [17], and n−1 ∑n
i=1 Yi(t)I{Xi ≤ x}I(δiεi =

1)(1 − G(Xi))
−1 converges to π(x, t) uniformly in both x ∈ R and t ∈ [0, ν), where

π(x, t) = EYi(t)I{Xi ≤ x}I(δiεi = 1)(1− G(Xi))
−1. Then
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F̂1(x|Z)− F1(x|Z) = FG
1 (x|Z)− F1(x|Z) + F̂1(x|Z)− FG

1 (x|Z)

=
1
n

n

∑
i=1

ξ1,i(x)− 1
n

n

∑
i=1

Ĝ(Xi)− G(Xi)

Ĝ(Xi)G(Xi)
I(Xi ≤ x)I(δiεi = 1)

≈ 1
n

n

∑
i=1

ξ1,i(x)− 1
n

n

∑
i=1

n−1 ∑n
j=1 Yi(s)y(s)−1dMG

j

G(Xi)
I(Xi ≤ x)I(δiεi = 1)

=
1
n

n

∑
i=1

ξ1,i(x)− 1
n

n

∑
i=1

∫ ∞

0

(
n

∑
j=1

Yj(s)I(Xj ≤ x)I(δjεj = 1)
nG(Xj)

)
dMG

i (s)
y(s)

≈ 1
n

n

∑
i=1

ξ1,i(x)− 1
n

n

∑
i=1

∫ ∞

0
π(x, s)

dMG
i (s)

y(s)

=
1
n

n

∑
i=1
{ξ1,i(x)− ξ2,i(x)},

where ≈ denotes asymptotic equivalence uniformly in τ ∈ [τL, τU ], ξ1,i(x) = I(Xi ≤
x)I(δiεi = 1)G(Xi)

−1− F1(x|Z) and ξ2,i =
∫ ∞

0 π(x, s)y(s)−1dMG
i (s), i = 1, . . . , n. Similarly

derived as [5],
∫ ∞

0 π(x, s)y(s)−1dMG
i is Lipshitz in x, F̂1(x|Z)− F1(x|Z) converges weakly

to a mean zero Guassian process with covariance matrix Σ(x) = E{ξ1(x)′ξ1(x)}. Then
by (A7),

Γ2(β0, F1)[F̂1 − F1]

≈ (1− τ)n−1
n

∑
i=1

Ez

[
Z
∫ g(Z>β0)

0
g0(u)

ξ1,i(u)− ξ2,i(u)
1− F1(u|Z)

du

]

= (1− τ)n−1
n

∑
i=1

φi (A8)

where

φi = EzZ
∫ g(Z>β0)

0
g0(u)

ξ1,i(u)− ξ2,i(u)
1− F1(u|Z)

du (A9)

is a random vector with mean 0 and E‖φi‖2 < ∞ by Assumptions A1–A3.
Recall Mn(β0, F1) = n−1 ∑n

i=1 mi(β0, F1) being independent mean 0 random vectors.

mi(β0, F1)

= Zi

(
τ − I{εi = 1, Ti ≤ Ci, Ci ≤ g(Z>i β0)}

−I{εi = 1, Ti ≤ Ci, g−1(Ti) ≤ Z>i β0, Ci > g(Z>i β0)}

−τ − F1(Ci)

1− F1(Ci)

[
I{F1(Ci) ≤ τ, Ci ≤ g(Z>i β0)}(1− I{Ti ≤ Ci, εi = 1})

])
·
= Zi(τ − D1 − D2 − D3).

Since Emi(β0, F1) = 0, and DiDj = 0 for i 6= j, it is easy to verify

Cov{mi(β0, F1)}

= EZ,CE
{

ZiZ>i

[
τ(1− τ)I(Ci > g(Z>i β0)) + I(Ci ≤ g(Z>i β0))

F1(Ci)(1− τ)2

1− F1(Ci)

]}
·
= d1.

Then applying the central limit theorem gives

n1/2{Mn(β0, F1) + Γ2(β0, F1)[F̂1 − F1]}
D→ N(0, V),
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where

V = Cov{mi(β0, F1) + (1− τ)φi}
·
= d1 + d2 + d2

d1 = (1− τ)E{mi(β0, F1)φ
>}

d2 = (1− τ)2E{φ>φ}

Then the proof for (14) is thus complete by Theorem 2 of [18].

Proof of Theorem 3. Let Ân = {j : β̃ j 6= 0}. We first show that for any j 6= A, P(j ∈
Ân) → 0 as n → ∞. Suppose there exists a k ∈ Âc such that |β̃k| 6= 0. Let β∗ be a vector
constructed by replacing β̃k with 0 in β̃. For simplicity, we write ŵi = wi(F̂1). Note that
|ρτ(a)− ρτ(b)| ≤ |a− b|max{τ, 1− τ} < |a− b|. Therefore, for large enough n,

Qp(β̃, ŵi)−Qp(β∗, ŵi)

=
n

∑
i=1

ŵi

{
ρτ(g−1(Xi)− Z>i β̃)− ρτ(g−1(Xi)− Z>i β∗)

}
+

n

∑
i=1

(1− ŵi)
{

ρτ(g−1(X+∞)− Z>i β̃)− ρτ(g−1(X+∞)− Z>i β∗)
}
+ pλn(|β̃k|)

≥ −2
n

∑
i=1
‖Zi‖ · |β̂k|+ λn|β̂k|−γ|β̃k|.

By Theorem 1, β̂k − βk = Op(n−1/2) and βk, thus β̂k = Op(n−1/2). As ∑n
i=1 ‖Zi‖ =

Op(1) and n−1λn|β̂k|−γ ≥ nr/γ−1λn → ∞, which yields

Qp(β̃, ŵi)−Qp(β∗, ŵi) ≥ −2
n

∑
i=1
‖Zi‖ · |β̂k|+ λn|β̂k|−γ|β̃k|

≥ |β̃k|n
[
−Op(1) + n−1λn|β̂k|−γ

]
≥ c∗nγ/2−1/2λn > 0, as n→ ∞, (A10)

where c∗ is any positive constant. This contradicts the fact that Qp(β̃, ŵi) ≤ Qp(β∗, ŵi).
We next show that for any j ∈ A, P(j /∈ Ân) → 0. We write bA = (bj, j ∈ A) for any

vector b ∈ Rp, and BAA as the sub-matrix of a (p + 1)× (p + 1) matrix B with both row
and column indices in A. By Taylor expansion

Mn(βA, F∗1 ) = Mn(β0A, F1) + Γ1AA(βA − β0A)

+Γ2AA(β0A, F1)[F∗1 − F1] + op(n−1/2) (A11)

uniformly over βA, F1 such that ‖βA − β0A‖ = O(n−1/2) and ‖F∗1 − F1‖H = o(n−1/2+r).
Let βA − β0A = n−1/2u , we have

nu>Mn(βA, F̂1) = nu>{Mn(β0A, F1) + Γ2AA}
+n1/2u>Γ1AAu + op(n1/2) (A12)

where Γ2AA = Γ2AA(β0A, F1)[F̂1 − F1]. Therefore, with probability tending to 1,

−nu>Mn(βA, F̂1) ≥ −nu>{Mn(β0A, F1) + Γ2} − n1/2u>Γ1AAu + o(n1/2)

≥ k0n1/2+r (A13)

for some positive k0 and r > 0. However, the subgradient condition (A5) requires that

‖nu>Mn(βA, F̂1)‖+ λn ∑
j∈A
|β̂ j|−r|τ − I(β̃ j < 0)| ≤ Op(max

i
‖Zi‖). (A14)
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When λn = o(n1/2) and Assumption A1 holds, (A13) and (A14) suggest that the
subgradient condition cannot hold if ‖β̃A − β0A‖ = Kn−1/2 for some positive K. Using the
monotonicity argument in [20] , we can show that the subgradient condition also cannot
hold if ‖β̃A − β0A‖ > Kn−1/2. Therefore, ‖β̃A − β0A‖ ≤ Kn−1/2 with probability tending
to 1. Equivalently speaking, for all j ∈ A, P(j ∈ Ân)→ 1 or P(j /∈ Ân)→ 0. The proof of
Theorem 3 is thus complete.
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