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A B S T R A C T   

Flightpath 2050, the European Commission's vision for aviation, requires that the aviation industry achieves a 
75 % reduction in CO2 emissions per passenger mile and airports become emission-free by 2050. Airport shuttle 
buses in the airfields are going to be electrified to reduce ground emissions. Simultaneously, the airfield 
movement space and time schedules are becoming more limited for adopting stationary charging facilities for 
electrified ground vehicles. Therefore, the dynamic wireless charging technology becomes a promising tech-
nology to help improve the stability of electrification of the airfield transport network. This paper proposes a 
techno-economic assessment of wireless charging, wired charging, and conventional technologies for electrifying 
airport shuttle buses. A bi-level planning optimisation approach combines the multi-objective Non-dominated 
Sorting Genetic Algorithm (NSGA-III) and mixed integer linear programming (MILP) algorithm to handle a large 
number of decision variables and constraints generated from the investigated problem. The airport shuttle bus 
transport is simulated through a multi-agent-based model (MABM) approach. Four case studies are analysed for 
illustrating the techno-economic feasibility of wireless charging technology for airport electric shuttle buses. The 
results show that the wireless charging technology enables the electric shuttle buses to carry smaller batteries 
while conducting the same as tasks conventional diesel/petrol vehicles and the bi-directional wireless charging 
technology could help mitigate the impact of electrification of shuttle buses on the distribution network.   

1. Introduction 

As transport electrification has become an important approach to 
reducing emissions and mitigating pollution, the way how electric ve-
hicles (EVs) are recharged also become a popular research topic [1,2]. 
However, the unavailability of charging infrastructure when EVs are 
away from home has become a critical challenge. Wireless power 
transfer technology used in EV charging might help to address the lim-
itation of wired charging infrastructure because it does not require a 
physical connection between the power supply and EVs [3]. Wireless 
power transfer technology enables EV charging while both in stationary 
status and in motion by installing wireless chargers underneath the 
ground surface [4]. 

Wired EV charging systems are a mature technology with set stan-
dards [5]. These systems require a physical (ohmic) connection between 
EVs and the power grid through electric circuits, which consist of the ac- 
dc rectifier and dc-dc converters or a converter with power factor 
correction circuits directly from a low-frequency ac to a high-frequency 

ac. The wireless charging infrastructures are categorised according to 
the status of EVs operation while charging into the following three 
categories: 1) static wireless charging (SWC); 2) quasi-dynamic wireless 
charging (QWC); and 3) dynamic wireless charging (DWC) [3,6]. 

SWC means charging EVs when it is stationary [7], usually being 
installed in temporary public parking areas and domestic garages. SWC 
has a higher efficiency of power transfer than DWC because of the 
enhanced alignment [8]. SWC also requires a specific stationary parking 
area to charge the battery of the EV. However, SWC does not need any 
human intervention during the automatic charging procedure, which 
will be particularly beneficial for disabled people. The main benefit in 
the technological aspect of adopting SWC compared with wired EV 
charging technology is eliminating the shock hazards caused by wired 
chargers [9]. Among the three types of wireless charging technologies, 
SWC achieves the highest efficiency of 95 % since the alignment be-
tween EV pick-up devices and wireless charging coils is enhanced [10]. 

DWC technology means charging the EV when it is in motion 
[11,12]. It does not require the EVs to stop and wait for charging, thus 
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the travel range of EVs would be lengthened [3]. This technology is 
attractive as it solves almost all problems of the EV, including range 
anxiety and battery cost. Similar to static wireless charging technology, 
the power transition between power supply units and EVs relies on the 
magnetic coupling effect between the transmitter coils buried under-
ground and the EV pick-up device. A research team at the Korea 
Advanced Institute of Science and Technology (KAIST) lead the devel-
opment of DWC technology and has installed a dynamic wireless 
charging system adopted to supply passenger buses [13]. An optimisa-
tion framework based on a genetic algorithm was proposed in [14] for 
designing the operation velocity profile of electric buses. Ref. [15] 
proposed a flow-capturing location model for designing the optimal 
location of wireless charging facilities that could maximise the demand- 
supply coverage. A comprehensive optimisation approach for designing 
dynamic wireless charging pads for EVs is presented in [16]. QWC was 
defined as the EV being charged when it is moving at low speed or 
stopped at stop-and-go positions [17]. The potential implementation 
positions of QWC include traffic lights, bus stops and taxi parking stands. 
The KAIST research group has tested a wireless charging system 
charging electric buses at lower power levels during its motion while 
charging at high power at bus stops [3], which shows the potential of 
quasi-dynamic charging to further improve the range of electric buses. 
Ref. [18] developed a novel user equilibrium model to illustrate the 
travel choices of electric vehicle drivers when wireless power trans-
mitters are installed. In this work, the trade-off for vehicle speed against 
travel time is captured because the faster speed will make the wireless 
charging less efficient than the lower speed. When more and more 
wireless charging infrastructures are implemented, there will be more 
customers who choose to buy EVs and hence increase the amount of 
dynamic charging EVs on the traffic network [19]. The impact of 
different traffic scenarios (motorway, highway, and urban stretch) on 
wireless charging power for an ordinary EV with 24 kWh battery is 
compared [20], the results reveal that the EV could be recharged aver-
agely of 0.6 kWh/km in the urban stretch and 0.25 kWh/km on the 
highway. Financial feasibility of DWC system has been examined in [21] 
for Auckland motorway, which provides essential decision support on 
implementation of DWC to stakeholders. Ref [22] assessed the impact of 
DWC implementation on the realistic driving patterns. 

Similar to the vehicle-to-grid (V2G) concept of plug-in EVs, an 
emerging technology known as bidirectional wireless power transfer 
technology will potentially achieve V2G flow remotely between EVs and 
the power system. Ref. [23] reported the development of a large air-gap 
bidirectional wireless charger without an additional current chopper. 
Ref. [24,25] compared V2G power flow based on wired and wireless 
charging infrastructures. The results show that the connectivity pro-
vided by EVs with wireless connection to the grid is higher than that of 
wired connectivity [26], because the wireless charging infrastructure 
could detect the condition of EVs automatically through wireless 
communication devices [3]. The methodologies that enable long-term, 
mid-term, and short-term traffic-power network modelling and man-
agement have been reviewed in [27]. The design of a bidirectional 20 
kW wireless charging system with an air gap of 11 in. is presented in 
[28]. A heuristic optimisation approach based on a chicken swarm al-
gorithm for designing simply reachable charging stations for EVs is 
proposed in [29]. The potential of future deployment of bidirectional 
wireless charging facilities that will enable the EVs to charge and 
discharge wirelessly in regional road traffic networks is investigated in 
[30], which reveals that the individual entity building up the wireless 
charging infrastructures should be responsible for both traffic network 
and power network, e.g. the government agency and airport designers 
and operators. 

The main limitation in the existing literature is the lack of techno- 
economic assessment of bidirectional wireless charging technology 
from a power system planning perspective. [31] studied the techno- 
economic feasibility of zero-emission microgrids with a second-life 
battery energy system. [32] proposed a techno-economic study of 

vehicle charging systems with 100 % renewable generation, hydrogen, 
and superconductor. The techno-economic study of energy systems with 
advanced technology in feasible scenarios is essential for exploring new 
technology solutions [33]. In this paper, the feasibility of the wireless 
charging system for airport electric shuttle buses is evaluated through a 
techno-economic assessment. One of the potential application scenarios 
for adopting wireless charging technology is the charging system of 
airport ground support vehicles. These vehicles are normally powered 
by gasoline and diesel engines, which would contribute to the airport's 
ground emissions. According to the goal set up by Flightpath 2050, the 
elimination of airport ground emissions is a high priority of airport 
operators [34], and the ambitious target towards electrifying airport 
ground support equipment is attracting widespread interest [35]. One of 
the challenges of electrifying these ground support vehicles is the limi-
tation of space in the airfield to install charging infrastructures while the 
demand for ground support tasks is high [36]. Simultaneously, the 
airport operator has a dramatically high demand for ground support 
tasks, which may not permit these vehicles to stop for recharging during 
operation. The wireless power transfer technology will enable the power 
supply for airport ground support vehicles when they are moving to 
conduct tasks by installing wireless power transmitters underneath the 
airfield [37]. Ref. [38,39] proposed a novel concept of “Aviation-to-Grid 
(A2G)”, which describes the process of bidirectional power transfer 
between aviation transportation and the power grid based on wired 
charging. The Non-dominated Sorting Genetic Algorithm (NSGA) has 
been adopted for solving air traffic network improvement problems, and 
the results show that the algorithm performs well in the air traffic 
network management area [40]. In this paper, a new aviation-to-grid 
network nexus through adopting bidirectional Wireless power transfer 
technology to achieve bidirectional power transfer between airport 
shuttle buses and the power network is proposed. 

In this paper, the bidirectional wireless charging facilities are 
considered to be implemented in the airfield of the commercial airport 
for recharging the electric shuttle buses. The proposed system will 
combine the airport ground-side transport network with the power grid 
network towards a sustainable aviation target. To evaluate the techno- 
economic potential of the bidirectional and unidirectional wireless 
charging technology, a bi-level optimisation framework is presented for 
seeking the optimal design of the proposed wireless charging system. 
There are three main contributions outlined as follows:  

(1) A multi-agent-based model for airfield shuttle bus transport 
network simulation is proposed for generating detailed position 
profiles and energy consumption profiles of the shuttle buses. 

(2) A bi-level optimisation framework combining the NSGA-III al-
gorithm and mixed-integer linear programming (MILP) algorithm 
is proposed to solve the optimal planning problem for the wireless 
charging system.  

(3) The techno-economic assessment of implementing airport shuttle 
buses powered by conventional diesel fuel, stationary wired 
charging, unidirectional wireless charging, and bidirectional 
wireless charging systems was conducted to investigate the po-
tential cost reduction (including capital and operational costs) 
and support for the distribution network operation. 

This paper is structured as follows: Section 2 briefly describes the key 
aspects of dynamic wireless charging technology for airport electric 
shuttle buses. The multi-agent-based model framework for airport 
airfield traffic network simulation is proposed in Section 3. In Section 4, 
the mathematical formulation of the bi-level optimisation framework 
that is developed from the NSGA-III algorithm and mixed integer linear 
programming (MILP) algorithm is presented. Case studies based on a 
realistic commercial airport (London City Airport) and conclusions are 
summarised in Sections 5 and 6, respectively. 
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2. Dynamic wireless charging system for airport electric shuttle 
buses 

An increasing number of commercial airports have implemented 
electric vehicle fleets to eliminate airfield ground emissions, and 
charging infrastructures are necessary to facilitate the adoption of these 
electric fleets. However, the space of the airfield is valuable because of 
the intensity of airport movement, and the electric ground vehicle fleets 
could not stop tasks and turn to be recharged at stationary facilities 
during rush hours. Frequent plug-ins and plug-out will reduce the effi-
ciency of airfield ground transportation. Due to the intensive flight 
missions and ground operation tasks, the electric ground operation ve-
hicles on the airfields are required to be operated throughout the airport 
operational from 8:00 to 24:00 8:00 to 24:00 (some airports may start 
operations earlier depending on flight schedules), without the need for a 
stationary recharging. In this study, the stationary charging period for 
electric shuttle buses is scheduled during non-operational time (0:00 to 
8:00).This means considerable battery installations on these vehicles to 
main the full day's demand. To address the conflicts of limited space and 
time schedule, and the avoidance of excessive battery weight and the 
associated costs, the wireless charging system becomes an appealing 
technology. The dynamic wireless charging system does not require the 
electric fleets to stop at a stationary position for recharging, the electric 
fleet batteries could be recharged while the fleet is in motion and con-
ducting tasks. Importantly, battery weight could be significantly 
reduced. 

The technology framework is shown in Fig. 1. The system is 
composed of wireless power transmitters (WPT) installed underneath 
the ground and the pick-up device installed in the electric shuttle bus. A 
power supply unit (PSU) is required for converting power from the 
distribution network to the WPT coils [41]. When the electric shuttle bus 
is operating on a road installed with a power transmitter, the high- 
frequency current in the WPTs generates a magnetic field following 
Ampere's Law and the magnetic field will generate a high-frequency 
current in the coils of the pick-up device following the Faraday's Law. 
Then the current is finally rectified to charge the battery of the shuttle 
bus. In bidirectional WPT scenario, the bus would discharge back to the 
grid when the battery SOC is guaranteed within the safety range (20 % to 
80 % of the total energy of the battery) and there is excess power 
available for discharging. The bidirectional WPT enables the vehicle to 
both charge and discharge, depending on the requirements of the grid. 
The system is designed to automatically regulate the charging and dis-
charging process, and the bus drivers would not need to be aware of this 
operation. 

3. Multi-agent-based airport transport network simulation 

The airport transport network involves complex vehicle trans-
portation and frequent communications between different individuals. 

Multi-agent-based modelling (MABM) is a computational approach that 
enables the development of an environment where different agents are 
communicating and interacting with each other [42]. In this section, a 
multi-agent-based model is proposed to investigate the corporative 
behaviour of three agents involved in airport ground transportation 
dispatching. There are three agents in the proposed multi-agent airport 
transport simulation system namely, the flight agent, air traffic control 
agent, and shuttle bus agent. The interactions between the agents are 
shown in Fig. 2. 

3.1. Assumptions for the simulations 

This research paper determines the multi-agent-based simulations 
for airport transport networks based on the following assumptions:  

(1) All the flight missions are considered arriving and departing 
punctually, the flight delays caused by weather, operation late-
ness, and maintenance issues are neglected.  

(2) When there is no flight mission dispatched, the shuttle buses will 
park at the parking space close to the airport terminal buildings.  

(3) Only in the cases where airports lack contact apron and jet bridge, 
the shuttle bus will operate to transport passengers to and from 
the aircraft. 

The authors are aware that the proposed simulations contain a va-
riety of uncertainties. However, this research aims to compare the 
wireless charging solutions for airport electric shuttle buses, rather than 
optimal dispatch strategy under uncertain situations. In future work, 
optimisation approaches designated for handling uncertainties, 
including stochastic optimisation, robust optimisation, chance- 
constrained programming-based methods, and information gap deci-
sion theory, can be adopted for optimal dispatch of the proposed airport 
shuttle bus wireless charging system. 

3.2. Flight agent 

The flight agent in this system represents the aircraft that requires 
boarding and deboarding services provided by airport shuttle buses. The 
functionality of the flight agent involves several key processes: 

• The population of flight agents and their entry time into the envi-
ronment are based on realistic flight demand and schedules at the 
airport. This means that the system takes into account real-world 
data and schedules to simulate the behaviour of flights and their 
associated services.  

• When the aircraft arrives at the airport, the ground service time and 
departure time are determined. The flight agent then sends a service 
request to the air traffic control agent to notify them that shuttle bus 
services are required for the aircraft. 

Fig. 1. Multi-agent-based dispatch framework of airport transportation network and distribution network combining by wireless charging systems for electric airport 
shuttle buses. 
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• When the shuttle bus arrives, the passengers on the aircraft will 
disembark and travel to the terminal building via the shuttle buses.  

• When the flight is about to depart in 15 min, the flight agent will send 
another request for shuttle bus services. This ensures that passengers 
are transported from the terminal building to the remote gates in a 
timely manner. 

Overall, the flight agent plays a critical role in coordinating the 
boarding and deboarding services for aircraft at the airport. By simu-
lating the behaviour of real-world flights and schedules, the system can 
accurately model and optimise the use of airport shuttle buses to ensure 
efficient and timely passenger transportation. 

3.3. Shuttle bus agent 

As mentioned in the previous section, the shuttle buses are respon-
sible for managing the shuttle buses that transport passengers to and 
from the aircraft at remote gates. When the shuttle buses are not con-
ducting a transport task, they will be part of the “Aggregator” of shuttle 
buses. The air traffic control agent will send task messages to the 
Aggregator when shuttle bus services are required to transport passen-
gers. The shuttle bus agent records the position information and energy 
consumption profiles of shuttle buses. The energy consumption profiles 
are calculated based on the time duration of operation, which is deter-
mined by the transport tasks assigned by the air traffic control agent, as 
Eq. (1). Once the assigned task is completed, the shuttle bus returns to 
the Aggregator and becomes available for the next task. The shuttle bus 
agent ensures that the shuttle buses are used efficiently and effectively to 
transport passengers in a timely manner. The interactions between 
shuttle bus agents, Aggregator, and the air traffic control agent are 
shown in Fig. 2. 

Es,t = Es,t− 1 −
(
1 − us,t

)
⋅vs,t⋅f (1)  

where Es, t is the stored energy in the sth shuttle bus at time t, in kWh. us, t 
is the operation status factor of shuttle buses, 1 stands for operating, and 
0 stands for idling. vs, t represents the velocity of shuttle buses, in m/h. f 
is the energy consumption rate, in kWh/m. 

3.4. Air traffic control agent 

The air traffic control agent is a crucial component of the proposed 
MABM simulation. Its main function is to coordinate the interactions 
between various agents, receiving service request messages from flight 
agents and asking the Aggregator to assign specific shuttle buses to 
conduct the required services. The main processing function of the air 
traffic control agent is shown in Fig. 2. The air traffic control agent holds 
all the information about air transport movements, including the spatial 
information and operational status of shuttle buses and the gate and 
departure time of flights. It acts as a communication bridge between 
different agents, allowing them to share and exchange information. 
When the flight agents send their request messages, the air traffic control 
agent processes the messages and creates task requests to the Aggre-
gator. The task requests are discrete events that allocate the appropriate 
vehicle agents to serve various aircraft based on the information gath-
ered by the Aggregator. The air traffic control agent also records the 
position information Ls, t of the shuttle buses, which is an essential 
profile generated by the MABM simulation. 

4. Bi-level optimisation framework formulation 

After the MABM simulation presented previously in Section 3, the 
position information and energy consumption profiles of shuttle buses 
are obtained. There are many requirements that need to be met for 
optimising the charging and discharging behaviours as well as WPT 
installation solutions. Most of existing studies related to the planning of 
energy systems with EVs solve the problems with either mixed-integer 
programming (MIP) or heuristic algorithms [43]. The benefits of MIP 
models are efficiency and accuracy through solving the problem by 
commercial solvers (e.g. CPLEX and Gurobi) [44]. The heuristic algo-
rithms are capable for multi-objective optimisation problems. However, 
the heuristic algorithms might not be able to find optimal solutions 
when there is a large number of decision variables [45]. To handle a 
large number of constraints and decision variables, the WPT installation 
problem is formulated as a bi-level optimisation framework. Fig. 3 
shows the overall process of the algorithm. At the primary level, the 

Fig. 2. The interactions between flight agent, air traffic control agent, aggregator, and shuttle bus agent.  
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Non-dominated Sorting Genetic Algorithm (NSGA-III) is adopted for 
deciding the WPT and PSU installation positions based on the power 
system voltage and power loss, which are passed to the second-level 
problem. The secondary level optimises the charging and discharging 
behaviours of the electric shuttle buses under the WPT and PSU instal-
lation decisions based on electric shuttle bus battery and charging costs 
and is formulated as a mixed integer linear programming (MILP) model. 

4.1. NSGA-III infrastructure design 

The proposed primary infrastructure design problem was solved 
using the effective multi-objective heuristic algorithm known as the 
NSGA optimisation algorithm [46], which is described in this section. 
Following the NSGA-II algorithm, the NSGA-III algorithm uses a 
reference-point-based technique presented in [47] to enhance perfor-
mance while addressing multi-objective problems. The selection oper-
ator, which was created for maintaining variety among population 
members by updating reference points, is the only distinction between 
the NSGA-III algorithm and the NSGA-II algorithm. The NSGA-III opti-
misation technique was used to produce a number of Pareto front so-
lutions. The reference points are selected using the Das and Denis 
approach [48] prior to running the NSGA-III algorithm. The trade-off 
between two or more objectives is displayed by the Pareto Front. The 
NSGA-III algorithm's logic flow is as follows:  

(1) Random non-dominated sorting and crowding: Sort the particles 
and validate their rank to establish how far apart they are from 
one another as they move along fronts. The crowding distance 
between particles is calculated after sorting people by rank.  

(2) Game selection: Binary tournament is a gaming approach for 
selecting two populations to participate in upcoming crossover 
and mutation operations. The game selection theory states that 
particles in a less congested zone and with a lower (better) rank 
are adopted first.  

(3) Crossover and mutation: Following the crossover and mutation, a 
new population is created.  

(4) Population recombination: By assessing the dominance criterion 
of all feasible solutions, a combined population with the parent 
and current populations is formed at each generation to develop 
non-dominant fronts.  

(5) NSGA-III sorting and selection procedure: In the new generation, 
apply the sorting approach following three steps: (a) normalise 
the objective functions of the population into numbers within the 
range 0 to 1, (b) associate each individual of the population to a 
reference point, (c) perform niche preservation operation by 
counting the number of members of the population that are 
associated with reference points, and exclude the reference points 
that there is no member associated. Then apply the non- 
dominated sorting approach.  

(6) New population generation: The replicated population is used to 
create a new generation using the same methodology as 
previously. 

The aforementioned steps result in the generation of a set of probable 
optimal solutions that represent distinct energy dispatch scenarios. 

Р = {f1(x) , f2(x) ,…fr(x) }, x ∈ ℂ (2)  

where ℂ is the feasible search space, ft(x) are sets of Pareto optimal 
solutions, and r is the number of populations. 

The primary level makes the decisions on the installation positions of 
WPT and PSU, which are expressed as two sets of binary variables Θwpt 

and Θpsu. In this work, there is no limitation on how many WPTs will be 
installed while only one PSU will be installed to connect all WPTs and 
the network. 

Θwpt = {x1, x2,…xw},w ∈ ℝ (3)  

Θpsu =
{

p1, p2,…pz
}
, z ∈ ℕ (4)  

∑

z
pz = 1 (5)  

where ℝ and ℕ denote collections of routes that are potentially being 
installed with WPT and network nodes being installed with PSU 
respectively. 

Combining with the position information of shuttle buses Ls, t ob-
tained through MABM simulation, the connectivity information of 
shuttle buses could be obtained. A matrix Cs, t containing full of binary 
parameters are created representing whether the shuttle bus is con-
nected with the network at each time interval. For example, if the route 
xw is installed with WPT, all the values in Ls, t equals to xw are set as 1 at 
the same position in Cs, t. 

In each evaluation cycle, the NSGA algorithm performs power flow 
to avoid network constraint violations. The ac power flow is solved with 
the backward forward sweep (BFS) algorithm, which is an accurate and 
computationally efficient voltage-dependent power flow algorithm 
[49,50].  

1) Backward sweep 

The first step of the BFS algorithm is the backward sweep procedure. 

Fig. 3. Flowchart of the overall process.  
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In this step, the current at each bus is calculated with Kirchhoff's current 
law (KCL) based on the assumed value of voltage Vi, t

k . The bus current Ii, tk 

and apparent power Si, t are calculated as follows: 

Ik
i,t =

(
Si,t

Vk
i,t

)*

(6)  

Si,t = Pi,t + jQi,t =
(

PG
i,t + jQG

i,t

)
−
(

PL
i,t +PES

i,t + jQL
i,t

)
(7)  

where Pi, t and Qi, t represent the real and reactive power at bus i, Pi, t
G and 

Qi, t
G denote the real and reactive generation power output at bus i, Pi, t

L 

and Qi, t
L are the real and reactive power consumption of conventional 

loads, Pi, t
ES is the aggregate charging/discharging power of the WPT 

system. 
Then the current Iij, tk is calculated by summing in the backward di-

rection from the end node j to the root node p, which is given by: 

Ik
ij,t = Ik

j,t +
∑

p
Ik

jp,t, p ∈ Ψj (8)  

where Ψj is the set of all buses that are adjacent to bus j downwards.  

2) Forward sweep 

The forward sweep process seeks the voltage drop from the upstream 
bus towards the downstream bus under the updated branch current 
based on Kirchhoff's Voltage Law (KVL). 

Vk
j,t = Vk

i,t − ZijIk
ij,t (9)  

where Zij is the impedance of the branch ij.  

3) Voltage tolerance 

The iteration convergence condition is set as the voltage difference 
between the current step and the previous step that has been less than 
the tolerance parameter σ (σ = 10− 4 in this work): 

ΔVk
j,t = Vk

j,t − Vk− 1
j,t (10)  

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⃒
⃒
⃒Re
(

ΔVk
j,t

) ⃒
⃒
⃒ ≤ σ

⃒
⃒
⃒Im
(

ΔVk
j,t

) ⃒
⃒
⃒ ≤ σ

⃒
⃒
⃒ΔVk

j,t

⃒
⃒
⃒ ≤ σ

(11) 

When the iteration is terminated, the voltage Vi, t and current Ii, t at 
each node equal the final value of Vi, t

k and Ii, tk , respectively. 
The apparent power of each branch Sbr, t should be within the 

limitation: 

Sbr,t =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Pbr,t
2 + Qbr,t

2
√

≤ Smax
br (12)  

Pbr,t =
∑

ij
PG

ij,t −
∑

ij
PL

ij,t (13)  

Qbr,t =
∑

ij
QG

ij,t −
∑

ij
QL

ij,t (14) 

The following constraints are node voltage constraints and feeder 
thermal limits. 

(1 − ε)V0 ≤ Vi,t ≤ (1 − ε)V0 (15)  

Iij,t ≤ Imax
ij (16) 

The power loss of the network Pt
loss can be calculated by the equation: 

Ploss
t =

∑

i,t
Rij

[⃒⃒Vi,t − Vj,t
⃒
⃒

Zij

]2

(17)  

where Rij denotes the resistance of the branch ij. 
The proposed primary optimisation framework has two conflict 

objective functions: the first objective aims to minimise the battery 
costs, including capital and operation and maintenance (O&M) costs for 
batteries, while the second objective seeks the lowest infrastructure 
installation costs for wireless power charging points (CAPEX) and the 
energy consumption cost of shuttle buses (OPEX). The power loss of the 
network is also included in the OPEX. Both battery costs and the CAPEX 
are annualised with the capital recovery factor (CRF), which is calcu-
lated with Eq. (21). 

Minimise Obj1 = CRF⋅Cbatt⋅Ebatt (18)  

Minimize Obj2 = CAPEX +OPEX (19)  

CAPEX = CRF⋅
∑

k

(
CK ⋅ρC

K

)
(20)  

CRF =
r⋅(1 + r)y

(1 + r)y
− 1

(21)  

OPEX = 365⋅

(
∑

t

( (
ρe

t + ρCO2
⋅ϑgrid)×

(
Pg

t + Ploss
t

) )
+ ρpmax

(
Pg

t

)
)

(22)  

where the subscript K denotes the installed devices, CK is the installed 
capacity of the device K, r is the discount rate, y is the number of years in 
the lifetime. ρt

e is the electricity time-of-use price, ρK
C is the capital cost of 

the device K. Pt
g is the imported grid electricity, ρCO2 is the penalty fee for 

CO2 emissions. ϑgrid denotes the emission factor of the grid electricity. ρp 

is the demand charges for the peak electricity demand. 
The primary decision variables including installation positions of 

WPT and PSU will be passed to the secondary level for optimisation of 
charging and discharging dispatch. 

4.2. Decision making 

One approach for representing the best solutions in multi-objective 
optimisation that satisfy several goals is the Pareto optimal front. The 
next stage is to select between the two objectives of annualised total 
system cost and microgrid operating indices after acquiring the Pareto 
Front. There is only one possible solution from a Pareto perspective. In a 
variety of applications, TOPSIS has been widely employed as a multiple- 
attribute decision-making method based on the alternative's Euclidean 
distance from the positive ideal solution and the negative ideal solution 
[51]. The final planning option among the Pareto-optimal sites is chosen 
after computing the closeness degree. The two objectives are normalised 
by the following equation, which normalises all objectives on the same 
dimension scale from 0 to 1: 

f norm
nm =

fnm − min(fnm)

max(fnm) − min(fnm)
(23)  

where fnm is the value of nth solution of mth objective. 
The “ideal” and “nadir” points, which stand for the best and worst 

positions, respectively, are used as two reference points by the TOPSIS 
technique to choose the optimum compromising solution. The smallest 
Euclidean distances between “ideal” and “nadir” locations and non- 
dominated solutions are EDn+ and EDn− , respectively. 

EDn+/n− =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑Nobj

m=1

(
fnm − f ideal/nadir

nm

)

√
√
√
√ (24) 

The lower the value of EDn+, the closer the solution is to the optimum 
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decision point. The relative closeness index is calculated using Euclidean 
distance, as presented in (25). The overall ideal solution is determined 
by the solution with the highest relative closeness index. 

πn =
EDn−

EDn+ + EDn−
(25) 

The solutions are ranked in ascending order according to the value of 
πn, and the solution with the maximum relative closeness index (πn) is 
then selected as the final ideal solution of the optimisation problem. 

4.3. MILP-based wireless charging management 

The secondary layer problem was formulated with mixed integer 
linear programming (MILP) because the problem contains many deci-
sion variables and constraints in the heuristic algorithm that could not 
manage, but MILP formulation will be more efficient for solving this 
type of problem. The MILP problem is solved for each evaluation of the 
population generated in the NSGA-III algorithm. The MILP problem aims 
to derive the optimal charging/discharging dispatch profile of electric 
shuttle buses under the current WPT and PSU installation choice of the 
individual in the NSGA-III algorithm. 

The charging constraints are translated from the transportation 
profiles of electric shuttle buses, including the energy consumption 
profile Es, t

cons and the connectivity profile Cs, t. The charging and dis-
charging behaviour are controlled by two binary variables us, t

ch and us, t
disc, 

respectively. 

uch
s,t + udisc

r,t ≤ 1 (26)  

Pch
s,t = uch

s,t⋅P
rated (27)  

Pdisc
s,t = udisc

s,t ⋅Prated (28) 

The connectivity of electric shuttle buses and WPTs are expressed as 
a matrix Cs, t, if the sth electric shuttle bus is connected to one installed 
WPT at time t, the value of the Cs, t equals one, otherwise, the value is 
zero. 

The power limit for the connectivity of electric shuttle buses and 
WPTs is shown in the following equation: 

Pdisc
s,t ,Pch

s,t ≤ Cs,t⋅Prated (29) 

The stored energy of each shuttle bus is expressed as follows: 

Ebatt
s,t = Ebatt

s,t− 1 + ηch⋅Pch
s,t − ηdisc⋅Pdisc

s,t − Econs
s,t− 1 (30)  

Ebatt
s,0 = Ebatt

s,T (31)  

0.2⋅Emax ≤ Ebatt
s,t ≤ Emax (32) 

The aggregate charging/discharging power of shuttle buses is 
formulated as follows: 

PES
t =

∑

s

(
Pch

s,t − Pdisc
s,t

)
(33) 

After solving the MILP problem, the total charging power of electric 
shuttle buses is passed back to the NSGA-III algorithm for power flow 
compliance analysis. 

4.4. Secondary objective function 

The secondary level problem aims to minimise the annualised cost of 
the electric shuttle bus batteries as well as the annual electricity pur-
chase cost of charging power. 

Minimise

(

CRF⋅Cbatt⋅Nev⋅Emax + 365⋅
∑

i

∑

t
ρe

t ⋅P
ES
t

)

(34)  

5. Case studies 

To show how to apply the proposed approach to real-world sce-
narios, a detailed case study investigated the London City Airport (IATA 
code: LCY), which is a regional airport with a standard linear terminal 
building that lies in London, England. The airfield transport network and 
power network topologies of LCY airport are shown in Fig. 5, with the 
location of the power network nodes (N1–N9), gate position numbers 
(G1 – G24), and shuttle bus transport route numbers (R1 – R18). It is 
worth noting that in our study, the power network supplying LCY airport 
is assumed to be IEEE 9-bus radial distribution network, and each node 
is located at one contact gate at the terminal building. The candidate 
installation positions of WPT and PSU are all power network nodes and 
shuttle bus transport routes. The wired charging facilities cannot be 
installed in the routes of aircraft and ground support equipment and 
must be installed close to buildings for safety reasons. Based on our 
assessment, the selected area was found to be the best option due to its 
proximity to the shuttle bus route, electrical network constraints, and 
minimum disruption to airport operations. As a result, the electric 
shuttle buses are assumed to recharge wired stationarily at the station 
area. The flight demand on one of the busiest days (31st March) at LCY 
airport in 2019 is selected in this simulation, as shown in Fig. 4. The total 
number of shuttle buses has been set at 60, which is the minimum 
required to support the operation of LCY Airport during peak demand 
days without causing delays, based on our simulation tests. The energy 
consumption rate of the shuttle bus is 0.32 L/km for diesel and 1.27 
kWh/km for electricity, which are taken from [52]. The speed of shuttle 
buses is set as 15 miles per hour. The line and load data of the IEEE 9-bus 
radial distribution network is shown in Table 1. The economic param-
eters and energy factors are shown in Tables 2 and 3, respectively. 

There are two benchmark scenarios: Case 1: no electrification, all 
shuttle buses are using diesel; Case 2: wired charging; and two investi-
gated scenarios: Case 3: wireless charging; Case 4: bidirectional wireless 
charging.  

1) Case 1: Electrification is not considered; the shuttle buses will remain 
using conventional diesel fuel. 

2) Case 2: The electric shuttle buses are assumed to recharge statio-
narily at the station area charging facilities, which are connected to 
node 9 of the distribution network, as shown in Fig. 5. This case 
assumes that all electric buses are equipped with batteries that are 
fully charged at the beginning of the day and that can meet the power 
requirements of the day's flight service missions. In this case, a reg-
ular AC charger with a rated power of 50 kW is used to charge the 
buses during the off-peak period from 0:00 to 6:00 when the airport 
is not in operation. The required energy capacity of the electric 
shuttle bus battery is 174.5 kWh while the total required number of 
chargers is 33. 

Fig. 4. Flight demand at LCY airport on 31st March 2019 on a half- 
hourly basis. 
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3) Case 3: The electric shuttle buses will be able to charge wirelessly 
through installed unidirectional WPT and PSU. It is assumed that the 
PSU connects with multiple WPTs through the closest WPT.  

4) Case 4: The electric shuttle buses will be able to interact with the 
distribution network by charging or discharging power through 
bidirectional WPT and PSU. 

The MABM simulation is implemented in the Anylogic software, and 
the bi-level optimisation framework is developed in the MATLAB 2021a 
environment and solved with the Gurobi solver and YALMIP software. 
All the modelling and simulations are conducted on a PC with AMD 
Ryzen 5 3500 @ 3.6 GHz processor and 16 GB RAM. The multi-agent- 
based simulation takes 1 min 12 s while the optimisation times for 
Case 3 and Case 4 are 25 min and 41.5 min respectively. The time of use 
(TOU) pricing mechanism of electricity price is introduced as £0.07 
(00:00–07:00), £0.15 (10:30–16:00 and 21:00–24:00), and £0.2 
(07:00–10:30 and 16:00–21:00) per kWh, with an additional demand 
charge of £0.2 per kW per day. The demand charge will be calculated 
based on the maximum power demand during the operation. 

5.1. Pareto fronts 

The resulting non-dominated Pareto front solutions of Case 3 and 

Case 4 are shown in Fig. 6. The annualised CPEX and OPEX for the 
Pareto solutions in Case 3 are between 0.36 and 0.39 million pounds, 
while the figure in Case 4 varies from 0.40 to 0.45 million pounds. This 
significant increase in the CAPEX and OPEX is mainly due to the 
consequence of the energy injected by electric shuttle buses through 
bidirectional wireless charging transmitters. As seen in Fig. 6, the 
optimal population of Case 4 seems to have higher values of the battery 
cost, this is because the bidirectional wireless charging option might 
make them decide to carry larger batteries to inject power back into the 
grid for reducing the grid electricity cost and network power loss cost. 

The optimal WPT installation positions for Case 3 and Case 4 are 
shown in Fig. 7(a) and (b), respectively. The distance from PSU to the 
closest WPT is around 68 m. There are 7 routes installed with WPT in 
both cases, while the PSU is installed on node 4 in Case 3 and on node 8 
in Case 4. This is because the shuttle buses with sole-directional wireless 
charging are loads, but the shuttle buses with bi-directional wireless 
charging work as energy storage units. The former tends to be installed 
on the upstream node while the latter tends to be installed on the 
downstream node. These are reasonable choices for operating in radial 
distribution networks in terms of reducing power loss and reducing 
voltage drop. The aggregation of bidirectional wireless charging shuttle 
buses works as a large energy storage unit in the airport distribution 
network. 

Table 1 
Line and load data of the IEEE 9 bus radial test system.   

Bus number 

1 2 3 4 5 6 7 8 9 

P (kW)  1840  980  1790  1598  1610  780  1150  980  1640 
Q (kVar)  460  340  446  1840  600  110  60  130  200 
i bus  0  1  2  3  4  5  6  7  8 
j bus  1  2  3  4  5  6  7  8  9 
Ri,j (Ω)  0.1233  0.0140  0.7463  0.6984  1.9831  0.9053  2.0552  4.7953  5.3434 
Xi,j (Ω)  0.4127  0.6051  1.2050  0.6084  1.7276  0.7886  1.1640  2.7160  3.0264  

Table 2 
Economic parameters of technologies [37].  

Device Installation cost Maintenance cost Cases 

WPT 89,264 £/mile 892 £/mile per year 3, 4 
PSU 10,000 £/each 100 £/year 3, 4 
Pickup device 5000 £/each – 3, 4 
EV 50 kW Chargers 2500 £/each 250 £/10 years 2  

Table 3 
Energy prices/factors of airport power system.  

Parameter Value Ref 

Fuel price 1.3 £/kg [53] 
CO2 Emission factor of diesel fuel 2.68 kg/L [54] 
CO2 Emission factor of electricity 0.257 kg/kWh [55] 
CO2 Emission cost 75 £/t [56]  

Fig. 5. The airport ground transportation network and the IEEE 9-bus radial distribution network framework at London City Airport (LCY).  

Fig. 6. Pareto fronts of Case 3 and Case 4.  
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5.2. Charging power and aggregate stored energy 

Figs. 8 and 9 show the electric shuttle bus charging power dispatch 
and the aggregate stored energy in the shuttle bus fleet. As shown in 
Fig. 9(a), the electric shuttle buses recharge during the early morning (1 
to 5 am) when there is no flight demand because the fleet is in use during 
the daytime. As a result, the electric buses have to carry large size bat-
teries to guarantee the daytime energy consumption is met, as shown in 
Fig. 8. By contrast, the wireless charging demand of electric buses is 
mainly distributed evenly during the daytime, as shown in Fig. 9(b) and 
(c). The bidirectional wireless charging power discharges during the 
morning peak (8–10 am) of the electricity demand of the terminal 
building. Table 4 compared the characteristics of the demand profile of 
Cases 2, 3, and 4. The results show that the Case 3, which used wireless 
charging technology, had similar peak and average demand values as 
Case 2, which used wired charging technology. This suggests that 
wireless charging can provide the same level of power output and 
charging capacity as wired charging, while eliminating the need for 
physical connections between the vehicle and the charger. The results 
also show that Case 4, which used bidirectional wireless charging 
technology, had a higher peak demand value than Cases 2 and 3, but a 
similar average demand value. This is because bidirectional wireless 
charging allows energy to be transferred between the vehicle and the 
grid, enabling the vehicle to serve as a mobile energy storage system. 
This feature can help to balance the power grid and provide additional 
flexibility and resilience in managing the electric power system. 

5.3. Voltage deviation 

The bus voltage profiles and voltage variation profiles across time for 
four cases are illustrated in Fig. 10(a) and (b), respectively. As the 

reference case, the voltage profile of Case 1 is the highest among the four 
cases and varies with the basic electric load curve through 24 h. It can be 
seen from Fig. 10(a) that the voltage of Case 2 drops from 0.98 to 0.96 
during the night-time hours (1 to 5 am) because of the highly intensive 
power drawn by the stationary charging shuttle buses. It also seems that 
the voltage at node 9 drops sharply by 1 %, which is most remarkable 
among the four cases, as shown in Fig. 10(b). It appears that the voltage 
profile of Case 3 fluctuates more during the daytime and drops most 
significantly at 14:00 and 24:00 by 0.16 % and 0.77 % respectively. The 
voltage profile in Case 4 is almost overlapped with Case 1, showing that 
the bi-directional wireless charging scenario has the lowest impact on 
the network operation in terms of voltage deviation compared with 
other shuttle bus electrification scenarios. Overall, the voltage de-
viations caused by the proposed cases are not too severe. However, the 
results also imply that the adoption of wireless charging or wired 
charging might pose a potential threat to the operation of airport dis-
tribution networks. Apparently, the flexibility of bidirectional wireless 
charging could help mitigate the impact of airport ground vehicle 
electrification. 

Fig. 7. WPT and PSU installation positions. (a) Case 3: wireless charging, (b) 
Case 4: bidirectional wireless charging. 

Fig. 8. Aggregate energy storage of all-electric shuttle buses in Case 2, Case 3 
and Case 4. 

Fig. 9. Airport electricity demand and the charging and discharging power of 
electric shuttle buses dispatch results for (a) Case 2, (b) Case 3, and (c) Case 4. 

Table 4 
Comparison of demand characteristics between three cases.  

Cases Peak 
demand 
(MW) 

Average 
demand 
(MW) 

Peak 
hour 

Annual electricity charges 

TOU charge 
(million £) 

Demand 
charge 
(million £)  

2  12.37  9.69  21:00  6.37  0.12  
3  12.37  9.72  21:00  6.47  0.11  
4  12.94  9.73  11:00  6.43  0.18  
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5.4. Economic analysis 

The total annualised cost results for the four cases are presented in 
Fig. 11. The annualised costs of conventional diesel shuttle buses (Case 
1) are significantly higher than electrification cases (Case 2 - 4), mainly 
caused by the fuel price. Among the electrification cases, the plug-in 
charging option has a higher cost from the larger size of batteries, 
while the electricity cost will be less because of the lower electricity 
price during night-time. The cost of bidirectional wireless charging 
technology (Case 4) is generally higher than that of unidirectional 
wireless charging (Case 3), but it is still lower than the cost of traditional 
wired charging systems which require significant large battery capacity. 
There is a trend that the electric shuttle buses would prefer to carry a 
larger battery when there is a bidirectional charging option available, 
which is consistent with the analysis in previous sections. While the 
higher cost of bidirectional wireless charging systems may be a limiting 
factor in some cases, the potential benefits of enhanced grid resilience 
and flexibility may outweigh these costs in certain contexts. 

It is worth noting that, the emission cost of Case 1 is 159 %, 132 % 
and 120 % higher than that of Case 2, Case 3 and Case 4, respectively. 
This shows that the emission tax might be a vital factor that will push 
airport designers and operators to consider the electrification of shuttle 
fleets as soon as possible to avoid high carbon tax in the future. 

6. Conclusion 

This paper proposes a techno-economic assessment of wireless 
charging, wired charging, and conventional technologies for electrifying 
airport shuttle buses. A bi-level optimisation approach for allocating 
WPTs and PSU in the airfield traffic network and distribution power 
network of a commercial airport is proposed. Four case studies are 
analysed for illustrating the techno-economic feasibility of wireless 
charging technology for airport electric shuttle buses. The bi-directional 
wireless charging technology could help mitigate the impact of the 
electrification of shuttle buses on the distribution network because there 
are fewer voltage drops during the operation time. The economic anal-
ysis shows that the annualised operation cost of conventional diesel 
shuttle buses is far more expensive in the future, which makes electri-
fication a promising option. The wireless charging technology enables 

the electric shuttle buses to carry smaller batteries while conducting the 
same tasks. The bi-directional wireless charging shuttle buses might 
carry larger batteries for reducing the overall cost by injecting power 
back into the grid and reducing power loss. In summary, future airport 
designers and operators are highly likely to electrify the ground vehicles 
in the airside of the airport, and wireless charging technology could be 
an attractive option for both technological (in terms of distribution 
network operation) and economic reasons. A real-life example has been 
used to demonstrate the benefits gained with the present approach. 
Future research will explore the potential of the cooperation between 
electric ground support vehicles and airport parking lot EVs and future 
adopted electric aircraft. And the feasibility of wireless charging tech-
nology on road traffic and ordinary electric vehicles could be investi-
gated as well. 
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