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Editorial
This collection gathers all the articles that were submitted and presented at the

20th European Conference on Composite Materials (ECCM20) which took place in
Lausanne, Switzerland, June 26-30, 2022.
ECCM20 is the 20th edition of a conference series having its roots back in time, organized
each two years by members of the European Society of Composite Materials (ESCM).
The ECCM20 event was organized by the Composite Construction laboratory (CCLab) and
the Laboratory for Processing of Advanced Composites (LPAC) of the Ecole Polytechnique
Fédérale de Lausanne (EPFL).
The Conference Theme this year was “Composites meet Sustainability”. As a result, even if all
topics related to composite processing, properties and applications have been covered,
sustainability aspects were highlighted with specific lectures, roundtables and sessions on a
range of topics, from bio-based composites to energy efficiency in materials production and
use phases, as well as end-of-life scenarios and recycling.
More than 1000 participants shared their recent research results and participated to fruitful
discussions during the five conference days, while they contributed more than 850 papers
which form the six volumes of the conference proceedings. Each volume gathers
contributions on specific topics:
Vol 1 – Materials
Vol 2 – Manufacturing
Vol 3 – Characterization
Vol 4 – Modeling and Prediction
Vol 5 – Applications and Structures
Vol 6 – Life Cycle Assessment
We enjoyed the event; we had the chance to meet each other in person again, shake hands,
hold friendly talks and maintain our long-lasting collaborations. We appreciated the high
level of the research presented at the conference and the quality of the submissions that are
now collected in these six volumes. We hope that everyone interested in the status of the
European Composites’ research in 2022 will be fascinated by this publication.

The Conference Chairs
Anastasios P. Vassilopoulos, Véronique Michaud
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POLYMER COATED MATERIAL FOR INNOVATIVE REVERSIBLE DISSIMILAR 

COMPOSITE-METAL JOINING FOR AUTOMOTIVE APPLICATIONS
Faranak, Bahramia, Sadik, Omaireya, Gareth, Boneb, Michael, Matthewsb, Chris, Worrallc, Sofia, 

Sampethaic, Neelmanee, Sarinc, Faisel, Almudaiheshc, Sophie, Cozien-Cazucd, Joaquín, Piccinie, 

Nithin, Jayasreea, Mihalis, Kazilasa,c

a: Brunel Composites Centre, Brunel University London – Faranak.Bahrami@brunel.ac.uk

b: Gestamp, UK 

c: TWI Ltd, UK 

d: Far-UK Ltd, UK 

e: Gestamp- Autotech Engineering, Spain 

Abstract: While the cost of composites has dropped over the past decade, the effective joining 

of these materials to conventional metal parts in the automotive sector remains a significant 

challenge. Existing joining solutions present several limitations, with major manufacturers 

inclined to use mechanical fasteners or adhesive bonding. In this study, Polymer Coated Material 

(PCM) joining process is adapted for thermoplastic composite to metal assembly. This joining 

method uses induction welding to join a thermoplastic composite to a metallic substrate pre-

coated with a compatible thermoplastic polymer film. Compared to mechanical fastening, PCM 

does not induce stress concentrations in the parts, and as the materials are not pierced, the risk 

of water damage is reduced. Compared to adhesives, PCM solution is not subject to curing times 

or shelf-life restrictions. Furthermore, the use of PCM enables easy recyclability of the parts; at 

the end-of-life, the parts can be disassembled through a reversal heat process.  

Keywords: Induction Welding; Dissimilar Material Joining; Thermoplastic Composite; 

Disassembly; Automotive 

1. Introduction

Compared to metals, fibre-reinforced polymer (FRP) composites offer improved stiffness to 

weight ratio, thermal/electrical properties, and corrosion resistance. These properties are 

interesting for advanced industries and applications. For example, the aerospace sector exploits 

these benefits by replacing metal alloys with composites in primary structures [1, 2]. Similarly, 

the automotive industry is replacing more conventional materials with lighter and stiffer 

alternatives that offer higher performance and meet regulating bodies' tighter regulations and 

restrictions to produce environmentally friendly cars [3-6]. The benefit of light-weighting 

expands beyond the drive for using composites in electric vehicles (EVs) and fuel cell electric 

vehicles (FCEVs) where weight reduction is crucial to extend range but also benefits internal 

combustion engine vehicles (ICEVs) where it is estimated that up to 700 litres of fossil fuel can 

be saved over the lifetime of an ICEV for every 100kg weight reduction [7]. A state-of-the-art 

automotive application of thermosetting composites is implemented in BMW’s i3 hatchback.

However, poor energy absorption, high production cost, long production time, limited 

recyclability and end of life options of thermosets question their advantages and sustainability 

with full-body implementations. Hence, although weight reduction is an important aspect, the 

use of metals remains technically and economically sustainable, especially as metals allow 

manufacturers to meet the EU’s reuse and recycling of ≥ 85 % and reuse and recovery of ≥ 95%
(EU Directive 2000/53/EC). As a result, manufacturers seek to increase the stiffness of the 

vehicle structure at specific locations utilising the available design space. For instance, Jaguar 
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Land Rover (JLR) in the Tucana project [8] are replacing the rear section of the body-in-white 

(BIW) aluminium and steel with composites capable of handling the increased torque generated 

by high-performance batteries, while improving range efficiency and reducing CO2 impact. In 

another example, Hexcel Composites developed thermosetting fibre reinforced patches that can 

be bonded to aluminium subframes using adhesive to reduce noise, vibration and harshness 

(NVH) [9]. Nevertheless, these applications do not change the fact that the circular economy for 

thermosetting composites remains a challenge. Instead, manufacturers are shifting to 

thermoplastic composites as they offer excellent material options thanks to their weldability, 

low density, low overall production cost, improved fracture toughness, and recyclability. This is 

explored in projects such as MAI Skelett [10] (BMW as an end-user partner) to replace the i3’s 
CFRP roof structure with a composite thermoplastic version. Extruded thermoplastics sections 

combined with overmoulding achieved better overall stiffness responses, and energy absorption 

in crash load cases outperformed the Carbon fibre reinforced polymer (CFRP), creating a ductile 

failure mode. Conversely, FlexHYjoin [11] project focused on joining an application-oriented 

multi-material roof stiffener, namely thermoplastic composite roof crossbar with Cant rail via 

steel brackets. The project used laser joining to undercuts the steel brackets, then applying 

pressure and laser beam to initiate induction welding of the thermoplastic to the steel bracket 

with a primary focus on automation aspects and bond strength via non-destructive testing 

(NDT). 

The above projects demonstrated thermoplastics potential in terms of welding ability. Yet, the 

scope of the state-of-the-art use of advanced composites is still limited by the number of joining 

techniques, the areas where these techniques were implemented, commercial feasibility, and 

disassembly for end-of-life recycling. Therefore, the BRACE project aims to use an advanced 

joining technique for fibre reinforced thermoplastic composites to lightweight and improve the 

performance of chassis components while emphasising: 1) the design for disassembly by using 

polymer-coated materials (PCM) joining technique in which joints can be separated by heat 

application without damaging any of substrates, 2) the use of thermoplastic patches that are 

compatible with PCM and offer improved performance and recycling options, and 3) commercial 

feasibility as PCM process can be integrated with existing manufacturing line and do not require 

additional time for cure cycle. 

2. PCM joining approach  

Joining dissimilar materials is challenging as it involves different mechanical properties, surface 

behaviour and thermal expansion coefficients. Traditional joining technologies for metallic 

components such as welding, mechanical fastening, and riveting are not directly transferable to 

fibre reinforced composites because drilling or punching composites with post-manufacture 

mechanical fasteners or rivets damage the reinforcement [12]. Hence, adhesives are widely 

adopted for dissimilar joining as they offer several advantages over mechanical fastening, such 

as uniform stress distribution along the bonded area, sealing and electrical insulation, excellent 

fatigue strength, damping, and shock absorption, in addition to commercial benefits. However, 

despite their benefits, the performance of adhesively bonded joints is affected by various types 

of defects that are hard to inspect and require a high level of quality control. Recently, attention 

is increasing towards the importance of sustainability and end-of-life recycling by designing 

products that can be easily disassembled for efficient in-service repair, reuse, and end-of-life 

recycling. Consequently, using adhesives limits the disassembly opportunity as they are hard to 
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separate once set and hard to remove from the substrates without damaging them. Prototypes 

for developing a disbanding solution for adhesively bonded joints include the use of thermally 

expandable microspheres to separate joint substrates were investigated. However, separated 

joints using this approach will still have adhesive remains on joint interfaces, and bond strength 

is slightly reduced with the introduction of microspheres [13]. 

On the other hand, BRACE project aims to remove the need for adhesives by utilising the 

weldability of thermoplastics by adopting an innovative PCM joining approach [14]. PCM 

involves using thermoplastics as structural adhesives where the final assembly operation is a 

polymer weld. For example, in the manufacture of a joint between dissimilar materials with one 

of the substrates being thermoplastic based composite, the non-thermoplastic component is 

first coated with a compatible thermoplastic before both components are welded together using 

heat and pressure action. As for disassembly, heat application is repeated until the interface 

reaches the glass transition temperature and the joint separates efficiently without damaging 

substrates. A schematic illustration for the PCM joint and Carbon/PEEK to aluminium joint 

demonstrations can be seen in Figure 1 and Figure 2, respectively. 

 

Figure 1 Schematic cross-section through a PCM joint. 

 

Figure 2 TWI Ltd PCM joining demonstration: a) Carbon/PEEK stiffener joined the PCM 

aluminium alloy panel. B) PCM Aluminum alloy stiffener joined to carbon/PEEK panel (copyright 

TWI). 

3. Joining and disassembly steps 

In this study, five main process steps are followed to achieve an effective PCM joint; these steps 

are: 

1) Cleaning and decontamination: In this stage, surface preparation of the metal (laser 

processing, etching, surface texturing, or abrasion) takes place to prepare the metallic 

substrate for coating with the polymer material, PCM, see Figure 3(a). 
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2) Coat: a low-viscosity polymer solution is applied to the metal component by either spraying, 

dipping, or painting. Following effective cleaning and decontamination in the first step, the 

polymer solution penetrates the micro-features on the surface of the metal as it dries and 

adheres to the surface through a combination of attachment forces with additional chemical 

bonding enhancing the strength of the interface, see Figure 4. 

3) Heat: The thermoplastic composite part is then brought into contact with the PCM applied 

to the metal part. A work coil is then used to heat the composite and/or metal by 

electromagnetically inducing eddy currents in the conductive parts of the assembly.  

4) Joint: Fusion bonding occurs between PCM (applied to the metallic substrate) and 

composite as the required temperature of the PCM is reached. For effective joints, 

mechanical pressure is applied along with the induced heat to ensure sufficient contact 

between the substrates; applying this pressure can vary based on the application. 

5) Disassemble: At the end-of-life of the product, in the same way as heat is needed to create 

the joining bonds, the process can also be reversed through the application of heat. The 

joined parts are easily released and disassembled at end-of-life for recycling, or reuse. 

 

Figure 3 PCM joining (a-e) and end-of-life process (f). 

 

Figure 4 PCM coating process: (a) as received; (b) cleaning, texturing/pre-treatment; (c) 

polymer coating applied, ready for joining. 

4 PCM Automotive Application 

In the BRACE project, the consortium further develops the PCM joining process to adapt it for 

automotive chassis parts. For this purpose, three standard components manufactured by 

Gestamp Chassis are selected, aluminium and steel (painted and unpainted) lower control arms, 

see Figure 5. The aim is to apply the patch to these parts to increase their stuffiness, improve 

NVH for higher-end models, and explore the possibility of downgauging standard parts where 

economically viable weight reduction is possible. The following sections of this study present the 

coils developed, coating approach, planned experimental testing and numerical simulation 

strategy. 
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Figure 5 The proposed metallic chassis components by Gestamp that will be strengthened with 

thermoplastic composite patches using PCM joining method. 

4.1 Work coils 

One of the advantages of thermoplastic over thermoset composites is that they can be melted 

and reshaped. Hence, they can be joined by welding, also known as fusion bonding. In induction 

welding, a conducting work coil is used. In this technique, a work coil connected to a high-

frequency power supply is placed in close proximity to the joint. As high-frequency electric 

current passes through the coil, a dynamic magnetic field is generated whose flux couples with 

the conductive components of the part. Consequently, an electric current is induced, thus 

heating up the conducting material, which leads to melting of the surrounding thermoplastic. 

Pressure applied to the joint helps ensure that molten thermoplastic forms a strong bond [15]. 

In this study, several coils will be used, the first coil used is a pancake coil which mirrors the size 

of the joint sample. This coil was used to conduct an initial lab-scale joining demonstration, see 

Figure 6. 

 

Figure 6 Lab-scale demonstration of dissimilar joining of thermoplastic-metal using PCM 

technology for BRACE project at TWI Ltd. 

A second coil is designed to be used for the single-lap shear (SLS) test coupon samples, see Figure 

7. The PCM technology will be first applied on SLS coupons to optimise the process. Then further 

SLS testing will be conducted to obtain mechanical property parameters, which can be used as 

input into the finite element analysis (FEA). A third work coil will be designed later in the project 
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suitable for the optimised shape composite patch used for chassis parts; the movement of the 

coil will be automated and integrated within the production line. 

 

Figure 7 Work coil designed by TWI Ltd to be used in the SLS coupon manufacture using PCM 

technology. 

4.2 Coating process 

The metal surface is activated prior to the polymer coating. The surfaces are either grit blasted 

or mechanical braised and are solvent wiped to remove any contamination. Post deoxidisation 

of the metal surface is treated with an automotive standard surface Pre-Treatment primer. Once 

the primer sets in, the surface of the metal is now ready to be coated. The surface can be sprayed 

or dip-coated with the polymer solution to get a uniformly coated polymer thickness 

throughout. The final coating method will be aligned with the manufacturing process of the 

chassis component to ensure maintaining a high production rate. 

4.3 Experimental and Numerical Modelling 

To design the required patch for the selected automotive parts, there is a need to obtain the 

mechanical properties of the joint. Hence, in the experimental stage of the study, the SLS test 

will be completed on both PCM and adhesively bonded coupons. The results will allow 

characterising the bond for use in the FEA model and comparing the two joining methods. A 

preliminary FEA model has been generated for the SLS coupons using the commercial FEA 

software Abaqus. It is assumed that the PCM joint behaves similarly to those of adhesively 

bonded joints. Hence, a standard solid model was created based on the traction separation 

method and cohesive zone section property. The cohesive zone parameters will be obtained 

from the experimental testing of the SLS samples. This model will also be used to optimise PCM’s 
process parameters, i.e. power, time, pressure, coil distance, and PCM coating concentration, 

to maximise the joint performance. The validated and optimised high-fidelity model of the 

dissimilar joint section will be analysed under various loading conditions to create a low-fidelity 

join section that can capture the joint system properties which can then be used in the upscaled 

case studies.   

Simultaneously, a preliminary component scale analysis using was created to assess the buckling 

behaviour of the chosen demonstration parts with and without the thermoplastic patches. 

Based on assumed joint parameters, the buckling force needed for both the steel and aluminium 

was increased by 13.5% and 13.9% after using the thermoplastic patch, respectively as seen in 

Figure 8. These models will further be calibrated in future work as testing results become 

available. 
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Figure 8 Preliminary simulations by Gestamp show an increase in buckling strength of the LCA 

after using a thermoplastic patch.  

5 Conclusions 

Although the cost of composites has dropped over the past decade, there are still significant 

challenges to effectively join these materials to conventional metal parts. Mechanical fastening 

and adhesive bonding are amongst the most common joining techniques. Nonetheless, both 

solutions present several limitations. In this study, PCM joining process is adapted for 

thermoplastic composite to metal assembly. This joining method uses induction welding to join 

a thermoplastic composite to a metallic substrate pre-coated with a compatible thermoplastic 

polymer film. Compared to mechanical fastening, PCM does not induce stress concentrations in 

the parts, and as the materials are not pierced, the risk of water damage is reduced. Compared 

to adhesives, PCM solution is not subject to curing times or shelf-life restrictions. Furthermore, 

the use of PCM enables easy recyclability of the parts; at the end-of-life, the parts can be 

disassembled through a reversal heat process.  

The PCM method is used in conjunction with thermoplastic patches to strengthen automotive 

chassis parts. In order to assess the performance of PCM joints, experimental and numerical 

modelling has been utilised. SLS will be used for both PCM and adhesively bonded joints to allow 

a direct comparison between the two joining techniques. A preliminary FEA model has been 

completed to evaluate the buckling behaviour of the automotive demonstration parts with and 

without the thermoplastic patch. The results indicated that thermoplastic patches have led to 

an approximately 14% increase in the force required to buckle the parts. Further work is ongoing 

to complete the testing campaign and calibrate the models to optimise the patch geometry 

accordingly. 
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