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Abstract 

The aim of this project is to provide a new approach to solving the problem of 

converting natural language into a language capable of querying a database or data 

repository. This problem has been around for a while, in the 1970's the US Navy 

developed a solution called LADDER and since then there have been an array of 

solutions, approaches and tweaks that have kept the research community busy. The 

introduction of electronic assistants into the smart phone in 2010 has given new 

impetus to this problem.  

With the increasingly pervasive nature of data and its ever expanding use to answer 

questions within business science, medicine extracting data is becoming more important. 

The idea behind this project is to make data more democratised by allowing access to it 

without the need for specialist languages. The performance and reliability of converting 

natural language into structured query language can be problematic in handling nuances 

that are prevalent in natural language. Relational databases are not designed to understand 

language nuance.   

This project introduces the following components as part of a holistic approach to improving 

the conversion of a natural language statement into a language capable of querying a data 

repository. 

● The idea proposed in this project combines the use of sequence to sequence models 

in conjunction with the natural language part of speech technologies and domain 

specific languages to convert natural language queries into SQL. The approach 

being proposed by this chapter is to use natural language processing to perform an 

initial shallow pass of the incoming query and then use Google's Tensor Flow to 

refine the query with the use of a sequence to sequence model.  

● This thesis is also proposing to use a Domain Specific Language (DSL) as part of the 

conversion process. The use of the DSL has the potential to allow the natural 

language query to be translated into more than just an SQL statement, but any query 

language such as NoSQL or XQuery.  
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1. Introduction  

The aim of this project is to provide an original approach to solving the problem of 

converting natural language into a language capable of querying a database or data 

repository. This problem has been around for a while, in the 1970's the US Navy 

developed a solution called LADDER and since then there have been an array of 

solutions, approaches and tweaks that have kept the research community busy. The 

introduction of electronic assistants into the smart phone in 2010 has given new 

impetus to this problem.  

 

Figure 1-.1: Shows the number of papers on the subject NLIDB between 2000 and 2019 that were searchable via 

google scholar. 

As can be seen from Figure 1 even taking a narrow search term such as NLIDB it is 

possible to see that the trend in research for this topic has been upwards. It must also 

be remembered that research in this field is not just concentrated on the simple term 

NLIDB, but has also included areas such as semantic parsing, sequence to sequence 

models and augmented memory. The increased depth in this field potentially shown by 

the increased number of published papers and the increased breadth highlighted by 

the number of related research topics would indicate the growing importance of this 

topic.  
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This project looks at simplifying the process of converting a natural language statement 

into a language capable of querying a database. The project also looks at creating a 

simplified interface into accessing algorithms that can convert natural language into a 

structured query language. To achieve both these goals this project introduces two 

novel approaches.  

1. The use of part of speech or shallow parsing to extract keywords from the 

incoming natural language statement. The identified keywords are then 

compared to objects within the underlying database to facilitate the conversion 

from natural language to a language capable of querying a database.  

2. The creation of a domain specific language (DSL) to help create a complete 

solution to the problem of converting natural language into a language capable 

of querying a database. This project proposes using an external DSL based on 

the Bloom knowledge taxonomy to help facilitate the conversion from natural 

language to SQL.  

This project looks at using both flavours of DSL. Initially this chapter highlights the 

possibility of creating an external DSL that is capable of translating a natural language 

statement to a structured query language (SQL) statement for querying a data 

repository. The idea is that the DSL can be used as a front end interface allowing 

parsing techniques and translation models from other research projects to be 

incorporated into the DSL. None of the projects that were reviewed provided an 

interface to using a NLIDB solution. To that extent this project introduces a novel 

approach to converting natural language to SQL, there are more details on this subject 

in the following chapters. This new parsing approach is then incorporated into the DSL 

as a demonstration of how to ensure the new language can be extended to incorporate 

new and expanding techniques. The project also introduces the concept of an internal 

DSL that can be used as part of an approach to convert natural language to a 

structured query language. The implementation of the internal DSL is not fully realised 

within the project as it is beyond the scope of this project. The implementation of the 

internal DSL is something that can be investigated as part of a further project as it is 

not core to the successful competition of this project. 

This project starts with an introduction to the fields of natural language interface to a 

database and domain specific languages. This includes the current state of research 

and development in both fields as well as an introduction of how these fields are being 
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applied within this project. This is then followed by the proposed new multi-phased 

approach of using shallow parsing, sequence to sequence models to extract the salient 

words from the incoming natural language statement to produce a language capable of 

querying a database. The final section in this project then looks at the development 

and use of the domain specific language to provide a simplified interface into using the 

algorithm proposed by this project. 

1.1. Motivation 

The growth in data has been the business story for the last eleven years. The table below 

shows the growth in data marked in both the amount of data being generated in zettabytes 

as well as the revenue value of data in billions of United States Dollars to global business. 

This growth in the production and usage of data along with the expected increase in 

revenues for organisations has fuelled a demand for tools to extract data allowing 

organisation to make value judgements based on data.   

This research project was motivated by the need to democratise the search capabilities of 

large data repositories. Currently to perform a search on a dataset, specialist skills are 

required. The Structured Query Language (SQL) is a powerful tool that can be used to 

extract data. The problem is that it takes a high degree of technical competence to use SQL 

properly. There are tools that can take a natural language statement and convert it into a 

language capable of querying a database. However as will be discussed in Chapter 2 these 

tools provide an interface into a repository but their performance in terms of speed of 

conversion and accuracy in extracting the desired search results from the underlying 

repository is not at the required level of performance. The aims of this project are to provide 

a conversion algorithm that can take the natural language input and provide returned results 

that closely match the expected results of the user in a timeframe that is acceptable to the 

user. With previous experience in providing data repositories most users require results in 

under five seconds. Along with the improve improvements in time and accuracy this project 

will also provide a common extensible interface into the algorithm as well as allowing other 

algorithms to use the same interface. 
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Figure 1-.2: This table shows the growth in data from 2011 with forecasts from 2019 to 2025. The table shows 

the growth in volumes both in billions of US and zettabytes. The data comes from IDC and Gartner. 

With this growth in demand and increased importance to business it is arguably becoming 

increasingly more significant to manage, store and extract value from this data within 

business. Part of this trend within business is democratising access to data, this means 

getting access to the data to the decision makers. Visualisation tools such as Tableau and 

Microsoft PowerBi are becoming increasingly more common as data is becoming too large 

to manage within a desktop environment using spreadsheets. 

Traditionally data storage systems have been heavily siloed data. The ability to search and 

extract data from a range of different systems has been compromised by the differing 

architectures that each repository uses. Even languages used to extract data from these 

data silos such as the Structure Query Language (SQL) often require a high degree of 

technical knowledge.  

The initial idea behind this project was to increase the ease at which data could be extracted 

from a range of data silos. With this in mind developing a solution that could take a natural 

language statement and create a query capable of querying a data repository seemed to be 

the ideal solution. The problem was that these Natural Language Interface to a Database 
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(NLIDB) solutions have been within the research community since the US Navy’s Ladder 

system in the 1970’s.  

Researching the use of NLIDB solutions it became clear that the number of solutions that 

had moved from the research community into general available solutions for use within the 

commercial market was not small. Most of the research projects looked at refining algorithms 

that could perform the translation from a natural language to a language capable of querying 

a database. Yet there seemed to be no description within the literature about how these 

solutions could be implemented or what the interface was between the non-technical user 

and the data silo was. As can be seen in Chapter 2 there also seemed to be a gap between 

expectation and reality from the solutions that had been implemented. This gap existed in 

terms of the performance of implemented systems. Researchers commented that the 

accuracy of the results returned from NLIDB solutions was not accurate enough to provide a 

truly useful solution. There also appeared to be a performance issue when it came to the 

speed of the implemented solution. 

With these three facts this project looks at trying to provide a common interface to the 

implementation question of how can the algorithms that have been implemented by a range 

of researchers be accessed by non-technical users, and how can the performance in terms 

of accuracy and speed be improved to make these systems viable to the non-technical user. 

With this in mind the project looks to create its own domain specific language based on 

natural language using Bloom’s methodology which is discussed in Chapter 6. The project 

also looks to simplify the process of converting a natural language into a language capable 

of querying a data repository. This simplification which is discussed in Chapters 4 and 5 

looks to increase the speed and accuracy of the conversion process.        

1.2. Contribution 

This thesis contributes to two areas in the field of natural language interface into a database. 

Domain Specific Language: This project introduces domain specific languages to the 

problem of converting a natural language into a language capable of querying a data 

repository. The Domain Specific Language within this project is used to provide an interface 

between the user, someone creating the natural language query and the data repository to 

be queried. Current projects provide no clear interface between the user and the repository 

but concentrate purely on the conversion from natural language to a structured query 

language. 
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Simplified Algorithm: This project also shows how simplifying the approach used to 

perform the conversion can elicit performance within both the speed and accuracy of 

conversion. This project shows that using shallow parsing can provide an accurate 

conversion. It also highlights the use of a sequence-to-sequence model can be useful for not 

just converting one natural language to another but also be used to convert from a natural 

language to a machine language capable of querying a database. 

The use of domain specific languages (DSL) within this field has not been covered 

extensively within this field. The use of MELT within the GCC compiler as proposed by 

Starynkevitch (2011) and Polosukhin et al (2018) introduces a DSL and SpeakQL from Shah 

et al (2020) provide some insight into how a DSL could be used. However, none of these 

projects provide much detail of the DSL being used. Both MELT and SpeakSQL provide 

limited functionality and do not appear to be extensible. The DSL being proposed in Chapter 

7 is being proposed as extensible and unlike other papers reviewed in this thesis it provides 

details as to how the DSL works and it describes an interface into how an algorithm that is 

implemented in Chapter 6. 

This project shows how Part of Speech can be used to extract keywords from the input 

natural language statement that can be used to identify database tables and table columns. 

Taking this approach removes the ability of the system to handle language nuance but does 

identify the key elements of the natural language statement that can be used in the 

conversion to an SQL statement. 

1.3. Summary 

The thesis is organised into the following sections: 

Chapter 2: Provides a literature review of the existing concepts which are used within 

this project relating to the simplification of the conversion process from natural 

language to a language capable of querying a data repository. The topics within this 

chapter are looking at the development of solutions based on semantic parsing, 

simplified learning model and augmented memory. It also looks at the use of 

sequence-to-sequence models, neural encoder decoder and multi stepped solutions. 

This chapter also highlights the novel approach that is being taken by this project.  

Chapter 3: This chapter provides an overview of the architecture used by this project. 

This chapter also introduces the concept of a domain specific language as an interface 
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between the user, someone creating the natural language query and the data 

repository to be queried. It also introduces a simplified algorithm and shows how 

simplifying the approach used to perform the conversion can elicit performance within 

both the speed and accuracy of conversion. This project shows that using shallow 

parsing can provide an accurate conversion. It also highlights the use of a sequence-

to-sequence model can be useful for not just converting one natural language to 

another but also be used to convert from a natural language to a machine language 

capable of querying a database. 

Chapter 4: The discussion in this chapter looks at the use of a domain specific 

language in the development of an NLIDB solution. As can be seen from this chapter 

the use of a DSL within the translation of a natural language to a language capable of 

querying a database has not been implemented and the discussion around the topic is 

limited to the use of an internal DSL as part of the conversion process. None of the 

papers reviewed for this thesis provide details as to how the proposed algorithm can 

be implemented. This chapter looks at the development of a domain specific language 

for providing an interface into the conversion algorithms developed in Chapters 5 and 

6. Using Bloom’s taxonomy a more natural domain specific language is created, which 

is far easier to learn than SQL. This chapter also introduces how the algorithms 

created in Chapter 5 and 6 can be used to underpin the DSL.  

Chapter 5: This chapter proposes dismissing the use of language nuance as part of an 

NLIDB solution. The argument being that language nuance is not present in an SQL 

statement and therefore should not be used when parsing from natural language. 

Instead, this chapter proposes using part of speech (shallow parsing) as part of an 

algorithm that can be used to create a statement capable of being used to query an 

algorithm. The algorithm proposed in this chapter introduces a novel approach to 

parsing with the aim of improving the speed and accuracy of the conversion. 

Chapter 6: This chapter takes the work completed in chapter 4 and extends the 

proposed algorithm with a novel approach to parsing the natural language input 

statement. This chapter proposes that SQL is just another language with its own 

syntax and grammar. The idea proposed in this chapter combines the use of 

sequence-to-sequence models in conjunction with the natural language part of speech 

technologies and domain specific languages to convert natural language queries into 

SQL. The approach being proposed by this chapter is to use natural language 

processing to perform an initial shallow pass of the incoming query and then use 
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Google's Tensor Flow to refine the query with the use of a sequence-to-sequence 

model. The thesis is also proposing to use a Domain Specific Language (DSL) as part 

of the conversion process. The use of the DSL has the potential to allow the natural 

language query to be translated into more than just an SQL statement, but any query 

language such as NoSQL or XQuery. 
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2. Related Work  

2.1. Introduction 

Research within the field of natural language to database compliant query has been ongoing 

for a number of years. Early systems like LADDER from the 1970 were developed by the US 

navy. The goal of such systems has been to create a simplified user interface so that users 

could query a database without the in-depth technical knowledge normally associated with 

database queries. The ever-pervasive growth of data available to users and consumers has 

kept this field of research relevant. This chapter looks at the current research being carried 

out in the area of natural language to structured query language (SQL) from 2016. The 

reasoning behind picking this time period is that in 2016 it appears that the research in 

NLIDB solutions changed. This change is highlighted by the review carried out by Wang et al 

(2016) and Allamanis et al (2018). Wang et (2016) highlights the increase in the number of 

machine learning projects used within the field of NLIDB. The Allamanis et al (2018) review 

also highlights that research in the field of NLIDB expands into other fields of research.  

During the period of 2016 to 2020 a few reviews of the use of natural language to sql 

projects were carried out. In a review performed by Wang et al (2016) their work 

concentrated on projects that focused on the use of machine learning techniques. According 

to the review by Wang et al (2016) they categorise deep learning models into three groups 

according to the types of connections between layers. The review identified feedforward 

models (direct connection), energy models (undirected connection) and recurrent neural 

networks (recurrent connection). In contrast to Wang et al (2016) paper the later review 

carried out by Allamanis et al (2018) looks more into the use of probabilistic models in 

interpreting natural language statements into programming languages in general rather than 

just a language capable of querying a database. Their work also looks at the implementation 

of these models within the research arena.  

The more recent review carried out by Kalajdjieski et al (2020) does not just look at the 

methods used to convert natural language to SQL. In contrast to the reviews carried 

out by Wang et al (2016) and Allamanis et al (2018) it also includes a review of the 

datasets such as the WIKISQL dataset created by Zhong et al (2017) which can be 

used to test and validate a model’s performance. The work also includes a section on 

the models used to evaluate performance of natural language to SQL. This review has 

identified that since 2018 most of the work in the area of NLIDB appears to be in the 
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areas of sequence-to-sequence models and semantic parsing. There is also a growing 

body of work in the area of augmented memory and neural encoder decoder for use in 

NLIDB systems. A number of other approaches have also been identified by this 

chapter that are being used to improve the translation of natural to SQL. These 

approaches have been categorised into logical groups for this chapter and they are 

highlighted below. AI solutions being proposed by this project is described in more 

detail in chapter 6. The concept behind it is to use a sequence-to-sequence models as 

part of the conversion from natural language to a language capable of querying a 

database.  The sequence-to-sequence model uses LSTM to improve the accuracy of 

the conversion. 

2.2. Identified Approaches  

This review has identified a number of common approaches that have been used 
within the research community to improve the performance of natural language 

conversion to structured query language. Papers reviewed in this section have been 

grouped together based on the commonality of their research and the following 

sections highlight the common threads. Most of the papers reviewed concentrated on a 

single aspect of the conversion from natural language to a language capable of 

querying a database. The section on multi-step architecture looks at papers that 

combine several approaches to achieve the improvements in converting natural 

language to SQL. This multi-step approach is similar in principle to the approach being 

proposed by this project. As will be discussed later in the project the proposal is to 

combine shallow parsing (chapter 4) with a sequence-to-sequence model (chapter 5) 

and to also provide a domain specific language (chapter 6).  

2.2.1. Semantic Parsing  

The concept of semantic parsing in its simplest form is taking a natural language 

statement and converting it to a logical form that is machine understandable. Lin et al 

(2018) take this concept in its purest form to convert natural language to bash. Lin et al 

(2018) also highlights that it is not just SQL being used as a target for converting 

natural language to machine capable language. This chapter concentrates on the use 

of SQL as a target language. The research by Shah et al (2020) is based on speech to 

SQL and as part of their solution they propose a new language SpeakQL. They also 

create a dataset specifically for speech-based SQL conversions. The conversion 

process from speech to SQL the research still uses techniques used for typed natural 
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language conversion. The approach used by Shah et al (2020) relies on semantic 

parsing for the creation of the SQL statement.  

Though the use of semantic parsing four approaches seemed to be favoured by 

researchers in the goal of improving natural language to SQL conversion. These 

approaches can be classified under the following headings: executed guidance, tree 

structures, underlying database structure, descriptive language and user interactions.  

The first of these executed guidance uses statistical analysis to select the best output 

from a number of possible solutions. This approach originates from the work carried 

out by Wang et al (2018b). Their concept looks at statements in various stages during 

the conversion process and discards those statements that cannot complete the 

conversion to SQL. Yin, Neubig (2019) take a similar approach to Wang by ranking the 

predicted output from the conversion model selecting those with the highest score. 

Talmor and Berent (2018) use the internet as their model for training.  

The equation defined by Yin & Neubig (2019) summarises the work also carried out by 

both Wang et al (2019b), and Talmor and Berent (2018). The equation highlights the 

use of 𝑠!as a bookmark to keep track of the generation process at each step (t) within 

the LSTM cycle.    

𝑠! = 𝑓"#$%		([𝛼!'( ∶ 𝑠!'(	: 𝜌!	], 𝑠!'() 

𝛼!'(is the embedding from the previous step while  𝑠!'(	is the input into the vector𝜌!	.	   

The use of tree structures for solving the problem with semantic parsing has been used 

by both Cheng et al (2018) and Yin et al (2018). In the case of Cheng their work uses 

the tree structure with a domain grammar to ensure that the conversion is accurate. In 

contrast Yin et al use tree structures to hold the training data which can be labelled or 

unlabelled.  

Karki et al (2019) and Bogin et al (2019) both rely on the underlying database structure 

as part of the process in parsing the natural language statement. Bogin et al (2019) 

model the database structure within a graph schema as a method of understanding the 

relationships between tables. In contrast Karki et al (2019) construct a row and 

column-based grid from the database features.  
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The use of a descriptive language can also be used with the semantic parser. In the 

case of Yin and Neubig (2018) they propose using abstract syntax description 

language for parsing the natural language onto an SQL template. Lin et al (2019) use a 

schema dependent grammar to map the natural language onto a SQL syntax. 

Campagna et al (2019) look at using a Virtual Assistant Programming Language 

(VAPL) to formalise the natural language statement. Cheng et al (2019) take a similar 

approach to Campagna et al (2019) as they use templates that can map the text from 

the natural language onto an SQL structured template.  

Other approaches that rely on semantic parsing such as Yao et al (2019) rely on user 

interaction to improve the performance of the conversion by posing questions to 

reduce ambiguities. Whereas Benajiba et al (2019) explore the possibilities of 

Semantic Pattern Similarity (SPS). This approach compares the structure of sentences 

with known structures and then evaluates that to the SQL query. Zhang et al (2020) 

use a sketch-based approach to semantic parsing. Their proposed approach does not 

convert every element of the SQL but extracts just the values and the columns. This is 

very similar to the approach being taken by this project, but instead of sketching this 

chapter uses a sequence-to-sequence model.  

2.2.2. Sequence to Sequence Models  

In contrast to semantic parsing the concept of a sequence-to-sequence model is to 

train a model to take a sequence from one domain or language and convert to another 

domain or language. These models have been used to convert text from one natural 

language to another and have now been introduced to convert from a natural language 

to a programming language such as bash in the case of Lin et al (2018) or SQL as 

proposed by Shi et al 2018.  

Recent research using sequence to sequence models has extended the approach 

typically used by Lin et al (2018) which takes a natural language statement and 

compares it to a bash command. Sequence to sequence research projects can be 

categorised into a number of streams those that have begun using the content from the 

database rather than the database structure to understand the structure of the data, 

those that are chunking the natural language statement into smaller more discrete 

blocks to create multiple seq2seq models. There are those using a scoring mechanism 

to rank the decoder as well as using the underlying database structure. There is also 

work on creating sequence to SQL models.  
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In the model proposed by Shi et al 2018 the work uses a sequence to action model. 

Their solution uses a SQL template with place holders to contain the name of the table, 

columns and variables. The sequence to action model is then used to parse the 

appropriate values into the template. With this project the underlying database 

structure is central to the conversion process.  

There are also extensions to the traditional sequence to sequence model such as the 

work carried out by Xu et al (2018) which uses a graph based neural network to create 

a graph to sequence model. Then the work carried out by Yu et al (2018) uses a tree 

network to create what they refer to as a text-to-SQL model. Wang, Tian et al (2018) 

also take a similar approach with their text to SQL model. Wang instead proposes 

separating the data from the schema within the sequence model. Guo et al (2019) also 

propose a text-to-SQL model by creating a multiple step approach to the problem of 

converting natural language to SQL. As part of the process the solution creates a 

synthetic query language from the natural language statement and database structure. 

The final query is inferred from the synthetic query. The figure summarises the 

approach taken by Guo et al. Within the natural language encoder x represents the 

natural language statement chunked into individual word tokens.  

 

Figure 2-.1: summarises the approach taken by Gua et al (2019) 

For the schema encoder s represents the target database schema with C representing 

the database columns and t the database tables of the target database. The output 

from the decoder is a synthesised SQL statement.  

Natural 
Language 
Encoder 

Schema 
Encoder 

Decoder 

Natural language 
question 

Database schema 

Synthesised SQL 

x = [x1, x2, x3 ...xn] 

s=[(c1,t1), (c2, t2)...(cn, tn)] 
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In parallel to the extension of the sequence-to-sequence model the more traditional 

sequence to sequence model is being refined by the likes of Soru et al (2018) which 

like Xu et al (2018) uses graph patterns to learn the sequence make up relationships 

between elements. The work by Soru though is more of a traditional sequence to 

sequence approach. In comparison Su et al (2018) propose using multiple sequence to 

sequence models at each step along the process of conversion. They also support the 

use of user interaction to correct errors in the process of converting natural language to 

SQL.  

Part of a sequence-to-sequence solution relies on the decoding or the translation from 

the input to the output. Bello et al (2018) assigns an item score as part of the decoding 

process. The score is based on historical data, and according to Bello allows for 

higher-order interactions. In contrast Zavershynskyi et al 2018 use a multiplicative 

attention mechanism as part of the RNN within the decoder.  

The work performed by Guo and Gao (2018) like Su et al (2018) chunked the natural 

language statement into smaller elements thereby creating a chain of sequence-to-

sequence models. Within the WHERE clause the team ranked possible solutions 

based on historic data choice the highest rank.  

Other approaches for handling sequence to sequence models like Petrovski et al 

(2018). The team proposes removing the database structure completely from the 

sequence-to-sequence model and relying solely on the content of the tables to 

describe the content of the database table. Then Sabour et al (2019) were more 

concerned with the method of training the sequence-to-sequence model. Their 

approach was to create an Optimal Completion Distillation (OCD). This required 

statistically sampling the data used for training based on predefined characteristics.  

2.2.3. Simplified Learning Model  

Within machine learning a large corpus of data is traditionally used to train a model. 

The process is exactly the same as that used by sequence-to-sequence models yet 

the biggest difference in using the simplified learning model is the amount of data used 

within the training model. The concept of a simplified learning model is to use a much 

smaller dataset for training. The work of Huang et al 2018 identifies that such a broad-

brush approach to training can be problematic. Their approach was to reduce the 

amount of training required by the model by specifying which simplified task the 
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machine learning model should concentrate on. In the case of Huang et al 2018 the 

model should use the metadata of the underlying database for training.  

Yavuz et al 2018 simplified the problem and had the sole purpose of trying to score 

100% in translating the natural language queries from the Zhong et al 2107 corpus into 

SQL. The solution proposed takes the question and the database table from the corpus 

and concentrates on generating the WHERE clause. The solution uses a neural 

network bi-directional LSTM for each word in the question.  

2.2.4. Neural Encoder Decoder  

A neural encoder decoder architecture is a neural network design pattern that takes an 

input and produces an output. The formula proposed by Shin (2019) shown below 

neatly highlights the encoding of the natural language input statement. The 

Bidirectional long short-term memory encoding takes the tokenised elements from the 

input statement and without sharing results across the three algorithms identifies 

whether the tokens belong to either the question, table or column.  

(𝑐!,#
$%& , 𝑐 !,#

'()), . . . (𝑐!,|+!|
$%& , 𝑐 !,|+!|

'() )	= 𝐵𝑖𝐿𝑆𝑇𝑀 +,-./0	(𝐶!
234( , 𝑐!,5, . . . , 𝑐!,|+!|); 𝑐!

!0!2 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑐!,|+!|
$%& , 𝑐!,#'())	 

(𝑡!,#
$%& , 𝑡 !,#

'()), . . . (𝑡!,|2 !|
$%& , 𝑡 !,|2!|

'() )	= 𝐵𝑖𝐿𝑆𝑇𝑀 267-(	(𝑡!,5	. . . , 𝑡!,|2!|); 𝑡!
!0!2 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑡!,|+!|
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(𝑞!
$%& , 𝑞 !

'()), . . . (𝑞|8|
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'())	= 𝐵𝑖𝐿𝑆𝑇𝑀 8.(92!,0	(𝑞5, . . . , 𝑞|8|); 𝑞!!0!2 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑞!
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The equation is split into three LSTM functions, one for the question where each word 

or token from the input is represented by ‘q’. The second LSTM identifies the table 

from the tokenized input statement where ‘t’ represents the table. The third LSTM is 

used to identify the column from the database represented by ‘c’ that is extracted from 

the input tokens. The decoder just builds up the resultant query from the most likely 

results of the encoder. The BiLSTM function performs a look up on each word in the 

input question. Additionally, each of the LSTM from the equation do not share any 

parameters  

There are a number of similarities between this approach and sequence to sequence 

models. Though sequence to sequence models do use neural encoders and decoders 

the approach used by the papers discussed in this section is not to emulate a 
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sequence-to-sequence model but to use the neural encoder decoder to understand the 

relationship between either the natural language question and the subsequent SQL or 

the relationships between tables in the database.  

The work by Shin (2019) is concerned about the relationships between tables within a 

database structure. Their paper uses a graph database to handle the relationships 

between the tables. This approach appears to have a good performance when working 

with a natural language query that spans multiple tables but appears not to have been 

tested against a single table. There is also no information as to the upper limit on the 

number of tables that this approach can handle.  

 

 

Figure 2-.2: The figure shows an overview of the encoder and decoder architecture typically used within a neural 
encoder decoder solution. The diagram comes from the work proposed by Shin (2019). T represents each table 
in the underlying database and C represents the columns within the tables. 

In contrast to the approach taken by Shin (2019), Cho et al (2018) use a multi-layer 

sequential network with attention supervision. The model is trained against a value 

pairing of questions and answers. The paper makes no account of the underlying 

structure of the database. It would appear that creating a training set for the approach 

proposed by Cho et al (2018) would require a high degree of manual intervention.  
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Chen et al (2019) identified a number of inefficiencies in the traditional encoder 

decoder paradigm. Their solution uses a multiple step approach with a series of 

intermediate steps that are then processed as part of a chained series of events.  

The work carried out by Suhr et al (2018) and Wang et al (2018) take very similar 

approaches. Both projects use an encoder decoder model in conjunction with a 

sequence-to-sequence model. These papers also use the underlying syntax of the 

database as part of the translation process from natural language to SQL. Suhr also 

uses regular expressions as part of the process to build up the SQL query.  

2.2.5. Augmented Memory  

Augmented memory is a simple approach to leverage a memory buffer. This buffer 

contains a matrix of information used as part of the conversion process. In the case of 

Jai and Lang (2016) the augmented memory is used to inject prior knowledge into the 

RNN model used by the sequence-to-sequence model. McCann et al (2018) uses a 

similar approach first proposed by Jai and Lang (2016) when they create the Natural 

Language Decathlon (decaNLP). The decaNLP was created to test the NLP multi 

domain solution multi-pointer-generator decoder.  

 

Figure 2-.3 From the McCann et al (2018) paper showing the architecture of their proposed solution. 
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This approach was first proposed by Jain and Lang (2016) and was expanded by a 

range of papers. The work by Dadashkarimi, Tatikonda (2019) uses a similar approach 

to McCann et al (2018) when they introduce the concept of a cache which stores the 

required vocabulary for use during decoding. The cache can also be used to find 

related tokens. Xiong and Sun (2019) use the augmented memory approach when 

target domain data is lacking. Liang et al (2018) in a similar manner to Xiong and Sun 

(2019) use the memory to speed up training.  

2.2.6. Corpus Tagging  

The work carried out by Zhong et al 2017 relied on a user community to manually tag 

over 80000 data points. With this tagged corpus the translation of natural language 

query to a language capable of querying a database could then begin. The use of 

natural language processing requires a tagged corpus, whether that is tagging each 

word within a construct with either a label to identify the work as a noun, verb adjective 

or an asset in a database such as a table, column or variable. The equation that 

summaries the work of Zhong et al is:  

x = [<col>; xc
1; xc

2; ...; xc
N ; <sql>; xs; <question>; xq]  

The equation denotes X as a token from the input statement <question> as a relation 

to the columns <col> in the underlying database and an attribute of the SQL statement 

<sql>. X is then passed through a bi-directional long short-term memory network. The 

key to the work proposed by Zhong et al (2017) is the tagging of the large corpus of 

training data that facilities the accuracy of the proposed solution and also provides the 

research community with a large corpus of tagged data know as the ‘WikiSQL’ dataset.  

Work is being carried out to refine and automate the process of tagging natural 

language corpus. Such work was carried out by Shah, Tur and Tur in 2018 with the 

sole purpose of using machine learning to create a tagged dataset that can be used for 

a NLIDB system.  

Finegan-Dollak et al 2018 highlight the accuracy issue with tagging large datasets by 

identifying errors in the tagging across multiple datasets and correcting those errors. 

With this work they also identify that tagging a corpus requires being able to identify a 

range of properties that are not easily identifiable.  
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The work by Weir et al (2020) in contrast to the other papers reviewed in this section 

creates synthetic data to train the model. The work proposes using existing data as a 

basis for the synthetic data. Wier et al (2020) argue that the synthetic data provides a 

more accurate and smaller more concise dataset for training, thereby reducing training 

times.  

2.2.7. Multi Step Architecture  

Most approaches that have been discussed within this chapter have concentrated on 

refining a single component to improve the performance of a NLIDB solution. Few have 

taken a multi-step approach using multiple technologies within an overall solution. 

Polosukhinet et al (2018) use a domain specific language (DSL) along with an 

extension to the sequence-to-sequence model that they refer to as Seq2Tree. This 

work is similar to Shi et al 2018 but Polosukhinet decides to use a DSL rather than ad-

hoc regular expression.  

Likewise Lukovnikov et al 2018 use a combination of augmented pointer along with 

LSTM column encoders, along with a sequence to sequence model in conjunction with 

semantic parsing to translate the natural language statement into a query language. 

Taking a similar approach is Choi et al (2020) again using sketching to extract the 

pertinent data from the natural language input statement which can then be transposed 

on the SQL template. They also propose recursively predicting nested statements.  

The work by Joshi et al (2020) takes a hybrid approach to the conversion of text to 

SQL. Their work uses a series of sequence-to-sequence models to create the SQL 

statement they also propose user interaction. Unlike Gur et al 2018 who propose user 

interaction to refine the process, Joshi et al (2020) are after restricting the inputs from 

users to avoid linguistic variations and ambiguities in the statement.  

2.2.8. Other Approaches  

Apart from the main topics of research that have been identified and discussed in this 

literature review there are several smaller nuanced research projects that have been 

identified. These projects are more embryonic in nature and usually have a single 

paper dedicated to the subject. The research discussed in these papers has not been 

followed up with more papers, yet the approach they propose could be pertinent to the 
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task of converting natural language to a structured query language. The list below 

highlights these approaches.  

Meta data from the underlying database has been used to support and refine the 

process of conversion from natural language to a database query language. The work 

proposed by Agarwal et al 2019 uses this metadata to train a machine learning model 

to refine the translation from natural language to SQL.  

Slot filling as proposed by Yu et al (2018) uses a slot filling regex approach to 

mapping words in the language statement to database assets. The work uses 

techniques similar to domain specific languages by building up a structure of the SQL 

query and then using regular expressions fills in the gaps in the language structure 

with data from the natural query.  

SQL log approach proposed by Baik et al 2019 leveraging information database log file 

to refine the performance of the conversion of natural language to database query. 

Like the work carried out by Agarwal et al 2019 the approach uses information within 

the database architecture to refine the process.  

Subjective Databases was introduced by the work undertaken by Li et al 2019. The 

concept behind this approach is the meaning of contextual data from the underlying 

data. The approach has some similarity to that employed by sequence-to-sequence 

models. From this work came the OpineDB subjective database system.  

User interactions The work carried out by Gur et al 2018 proposes using interaction 

from the user to refine the process of conversion. The researchers identified that the 

where clause had the highest potential to be erroneous. To combat this perceived 

weakness users are asked multiple choice questions to validate or correct errors within 

the conversion.  

Neural classifier is proposed by the work carried out by Wang et al (2020). The 

classifier detects specific components in the natural language. This is used with the 

underlying database structure and a sequence-to-sequence model to translate the 

natural language to SQL.  

Ellis et al 2018 We introduce a model that learns to convert simple hand drawings into 

graphics programs written in a subset of LATEX. The model combines techniques from 
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deep learning and program synthesis., We developed a deep network architecture for 

efficiently inferring a spec, S, from a hand-drawn image,  

Augmented Pointer The Augmented Pointer is used in conjunction with a sequence to 

sequence model for converting natural language to SQL. The approach first proposed 

by Vinyals et al (2015) uses a bidirectional LSTM network to encode the input 

statement. In the case of Zhong et al (2017) the input statement also contains a list of 

the database column names. The output from the LSTM network differentiates 

between the column names required for the returned dataset and the search conditions 

such as the WHERE clause.  

2.3. Conclusion  

Most of the work carried out within this field concentrates on a single approach such as 

the sequence to SQL approach proposed by Zhong et al (2017) or natural language to 

SQL proposed by Weir et al (2020) and Zhang et al (2020). There is also a body of 

work that takes a number of approaches such as Joshi et al (2020) and Polosukhinet 

et al (2018). There has also been the development of innovative approaches such as 

Shin (2019) which has seen the development of research into Neural Encoder Decoder 

which has come from the work into sequence-to-sequence models. Development of 

deep learning models has led to the introduction of novel approaches that have been 

used by Wang et al (2016) and Ellis et al (2018).  

The semantic parsing approach takes the natural language input statement and tries to 

map the natural language words or tokens into a structured query language structure. 

The approach often follows a slot filling Methodology and has a certain similarity to the 

approach proposed by Sequence-to-Sequence models. The approach proposed by 

Seq2Seq explicitly converts a word of phrase from one state to another through the 

use of a mapping file. The domain for sequence-to-sequence models seems to have 

originated in natural language to natural language translation (ie Spanish to English). 

The work undertaken by the likes of Lin et al (2018) and Shi et al (2018) have 

extended the use of sequence-to-sequence models to include computer based 

languages such as natural language to bash.  

The simplified learning model approach and the neural encoder decoder have certain 

similarities. Both approaches use neural networks as part of the translation from 

natural language to structured query language. The idea behind the use of the 
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simplified learning model is to use a smaller dataset and reduce the amount of time 

required to train the model. In contrast, neural encoder decoder are like sequence to 

sequence models more concerned about modelling the relationship between the 

natural language input and the resulting query language output.  

Though this chapter categorised the research topics into six distinct groupings the 

equation that summaries the work of Zhong et al is:  

x = [<col>; x c1; xc
2; ...; xc

N ; <sql>; xs; <question>; xq]  

The equation denotes X as a token from the input statement as a relation to the 

columns in the underlying database and an attribute of the SQL statement. X is then 

passed through a bi-directional long short-term memory network. The key to the work 

proposed by Zhong et al (2017) is the tagging of the large corpus of training data that 

facilities the accuracy of the proposed solution and also provides the research 

community with a large corpus of tagged data know as the ‘WikiSQL’ dataset. There is 

a blurring of the lines between the topics as a certain amount of cross over exists 

across each topic. The topics that have been identified in the multistep architecture 

highlight the interconnectivity between the project, as in the case of Lukovnikov et al 

2018 which use both augmented pointer and sequence to sequence models.  

Of all the papers reviewed only Shah et al (2020), Agarwal et al (2019), Chen et al 

(2019), Guo et al (2019), Liang et al (2018), Polosukhin et al (2018) and Xiong et al 

(2019) discuss the possibility of using or creating a Domain Specific Language as part 

of the solution. With Shah et al the domain specific language they propose is 

SpeakQL, which takes spoken text and converts to SQL and Guo et al (2019) have 

devised the DSL SemQL which is proposed as an intermediary between natural 

language and SQL. Polosukhin et al (2018) mention the possibility of creating rich 

domain specific language but provide no details as to how nor mentions that one has 

been developed. The rest of the papers reviewed for this project provide no detail 

about how to interact with the changes to the algorithm being proposed.  All the 

research reviewed by this chapter could have been incorporated into a domain specific 

language, yet they do not mention nor propose how.  

The concepts that the papers in this review have concentrated on are to provide 

alternative methods in converting a natural language statement into a language 

capable of querying a repository. Details as to how each of these projects improves the 
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speed and accuracy of that conversion process are light on detail in many papers. Also 

from this review it appears that there is a gap in the research which could channel all of 

these projects into an extensible domain specific language used to convert natural 

language into a language capable of querying a repository. It is possible that the 

complexity of creating a DSL was outside the scope of these projects, which was 

focused purely on refining the conversion from natural language to a language capable 

of querying a database. This project will look at the use of a DSL as an interface to the 

conversion process, as well as trying to improve the performance of conversion. 
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3. Architectural Overview 

3.1. Introduction  

With the increasingly pervasive nature of data and its ever expanding use to answer 

questions within business science, medicine extracting data is becoming more important. 

The idea behind this project is to make data more democratised by allowing access to it 

without the need for specialist languages. 

This thesis proposes a solution to solve both the language nuance highlighted by Florin et al 

(2017) and Kiev et at (2011) as well as the performance issues with the use of shallow 

parsing as discussed by Joshi and Akerkar (2008). The use of shallow parsing, also referred 

to as part of speech, negates the requirement for an understanding of language nuances, as 

key words are extracted from the input statement and used within the conversion process. 

The shallow parsing approach being proposed by this chapter is the use of keywords. This 

approach first proposed by the Ratnaparkhi (1996) is used to identify characteristics of the 

input statement that are important for the search. In contrast to Ratnaparki’s approach this 

project not only identifies the keywords that would be useful in the translation process, but 

maps the keywords to tables and columns within the tables. This high level overview of the 

proposed solution hopes to provide an approach that can improve the accuracy and speed 

of conversion. 

This chapter will introduce the use of an index file containing keywords extracted from the 

underlying database that identify the tables and associated columns. It is this approach that 

helps build the performance in translation from natural language to SQL. This builds on the 

work of Jwalapuram & Mamidi (2017) who are among a number of authors who have carried 

out research into using keywords to enable NLIDB based systems to perform searches. 

Unlike that used by Jwalapuram and Mamidi (2017) this project uses Part of Speech (POS) 

processing in conjunction with an index file which allows for individual words to be extracted 

from the natural language query. The individually extracted words can then be used to 

create the query for the NLIDB solution. Details of the architecture for the proposed solution 

can be found in section 4.4. 

Having defined that accuracy of conversion and performance of conversion from natural 

language to a language capable of querying a database. The problem that this project is 



Page: 39 

 

aiming to solve is to improve the speed and accuracy of that conversion process. Having 

also highlighted the work that is currently being undertaken within this arena. The next step 

is to introduce the solution being proposed by this project. 

The work being carried out by this project looks at taking a new approach to the problem of 

converting natural language into language capable of querying a repository. It introduces the 

concept of a domain specific language as an entry or interface between the user and the 

algorithm. It may seem counterintuitive to replace the domain specific language SQL with 

another. Introducing the new DSL which is based on the Bloom Knowledge Taxonomy 

makes the interface for the user far simpler than using SQL. Bloom’s taxonomy is taught in 

school and is used extensively outside the computer industry.  

This project also proposes a novel approach around the use of shallow parsing as part of the 

conversion process. The idea being argued by this project is that trying to understand 

language nuance does not aid the accuracy of the conversion process.  

Finally, this project introduces the concept of sequence to sequence models which are 

usually reserved for chatbots or converting one natural language into another. This novel 

implementation of sequence-to-sequence models to convert natural language into a 

computer based language. An internal DSL is also discussed potentially working with the 

sequence-to-sequence model to improve the speed and performance of the conversion 

process but is not implemented. It is however discussed as a future enhancement to the 

project.  

3.2. Research Challenges 

In the course of this project a number of challenges were identified within the key 

components. The key challenges to the solution of converting a natural language statement 

into a language that is capable of querying a database have frequently been described as 

accuracy of conversion and speed of conversion. For the accuracy of the conversion the aim 

is to return results from the database query that are expected. The question is how can this 

expected value be determined and how to measure the returned result against the expected 

result in that the results returned from the process match the request for information from 

the input statement. This measure of accuracy is examined in chapter 5 and chapter 6.  

For the second key component, which is the speed of conversion. The problem was to 

return results from the underlying database without increasing the latency within the overall 
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solution when compared to extracting data directly out of a database. In the age of search 

engines users have become accustomed to expecting data returned within a 5 second 

window. 

• Domain Specific Language: Using the DSL provides a common interface into the 

use of a parsing algorithm. Existing research concentrates on the mechanism of how 

a solution works rather than on how to implement a solution. The use of a DSL to 

solve this problem has been hinted at the most notably from the work of Polosukhinet 

et al (2018) which uses a domain specific language (DSL) as part of the conversion 

process. Yet there is no detail on how the DSL is implemented. The paper by Skeggs 

and Lauria also mention in passing the use of a DSL but again there is no detail on 

the implementation nor the use of the DSL. An additional problem exists with the 

introduction of the domain specific language. That is how to measure the 

performance of using the DSL against not using it. 

• Shallow Parsing:  The use of shallow parsing is not unique to this project. 

Ratnaparki’s and Jwalapuram & Mamidi (2017) also propose using a shallow parsing 

approach. The difference between the approach proposed by this project and the 

work carried out by Jwalapuram and Mamidi (2017) is that the keywords extracted 

are mapped directly onto the underlying target database. The challenge here is to try 

and correctly identify words from the input statement and correlate them with tables 

and columns from the target database.  

• Sequence to Sequence Models: Sequence to sequence models area currently 

used for converting one natural language to another, such as Spainish to English. 

They are also used within online chat engines. The problem this project faces to turn 

a natural langugae statement into a language capable of querying a database.  Work 

by Lin et al (2018) takes a natural language statement and then transfers it to a bash 

command. These commands are not full-fledged bash programs. Understanding 

language nuance will not translate into a SQL command.  

3.3. Solution Overview 

The overall high level solution architecture is shown in the diagram Figure 3.1. This diagram 
shows all the components and the process flow used within the framework for converting 

natural language into a language capable of querying a database. The diagram also shows 

the flow of data through the system and the steps required to get from the input natural 

language query to a language capable of querying a repository.     
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Figure 3-.1: The overall solution diagram shows the components that make up the complete solution. 

The output from this system is a SQL query capable of querying a database. The simplified 

diagram in figure 3.1 highlights each step through the process of converting the natural 

language input into a language that is capable of querying a repository.  Each step through 

the process is highlighted and an overview of the conversion process is highlighted. 

Individual steps in the process are highlighted below with more details of each step 

described in the following chapters.  

● Natural Language Query. The natural language query is the input into the system, 

entered by the user and the starting point for the conversion process. 

● Domain Specific Language. A DSL is being proposed by this project as an interface 

between the natural language query and the algorithm that converts the natural 

language into a structured query language. This project proposes using a DSL based 

on Bloom’s taxonomy for knowledge. The approach will define a set of guidelines that 

can simplify the conversion process as the structure of the natural language is of a 

defined structure. This structure is also not too restrictive ensuring users do not need 

specialist knowledge to use the language.  

● Parse Input Statement, takes the incoming statement and basically chunks the 

statement into word tokens. For this project python NLTK taggers were used to 

identify words and produce the tags. This project chained a name tagger to identify 

names and a specially built parser to identify elements of the input string with known 

database attributes. Details of this process can be found in section 5.4. The output 

from this process is a list of names and words that can then be tagged.  

● Parse token and tag, this tagging process works in concert with the parsers to 

identify real names as well as keywords from the tokens so that the correct NLP tag 

can be applied to the tokens. The tagging process takes the output from the parsing 

process and applies tags, which can identify names and elements from the underlying 
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process. The output from this process is a JSON string with the chunked words from 

the input statement and the associated tags. The details of this step are highlighted in 

section 5.4. 

● Remove stop words, stop words such as ‘the’, ‘a’, ‘is’ which have no assigned NLP 

tag are removed from the original query as they have no use in the conversion 

process. Removal of stop words is performed at this stage as identified stop words 

may have some meaning within the conversion process. The output from this step is 

the JSON string with the remaining tokenised words from the input statement and the 

tags associated with those words. Details of this process are shown in section 5.4.    

● Sequence to sequence model takes the remaining word tokens from the input 

statement and proposes using a sequence-to-sequence model to convert the words 

into database elements such as table names and column names.     

● Apply DSL, takes the output from the sequence-to-sequence model. The returned 

data is then mapped onto a template for an SQL query. Using an internal DSL within 

this step may provide more flexibility and allow the target language to be a language 

other than SQL. 

The framework describes the steps that a natural language statement goes through to be 

processed into a query capable of querying a database. The entire process was refined over 

several iterations. Details of the model used by this project can be found detailed in chapters 

5,6 and 7.  

3.4. Conclusion 

This project having highlighted gaps in the conversion of natural language to query 

language this section provides a high level overview of the potential solution that is 

being proposed by this project. This thesis contributes to three areas in the field of 

natural language interface into a database. 

● Domain Specific Language: This project introduces domain specific languages to 

the problem of converting a natural language into a language capable of querying a 

data repository. The Domain Specific Language within this project is used to provide 

an interface between the user, someone creating the natural language query and the 

data repository to be queried. Current projects provide no clear interface between the 

user and the repository but concentrate purely on the conversion from natural 
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language to a structured query language. 

● Simplified Algorithm: This project also shows how simplifying the approach used to 

perform the conversion can elicit performance within both the speed and accuracy of 

conversion. This project shows that using shallow parsing can provide an accurate 

conversion.  

● Sequence to Sequence Model: It also highlights the use of a sequence-to-

sequence model can be useful for not just converting one natural language to 

another but also be used to convert from a natural language to a machine language 

capable of querying a database. Research is centred on using sequence to 

sequence models to translate one natural language to another such as Spanish into 

English. There is no detailed research on using sequence to sequence models to 

translate a natural language statement into a computer language such as SQL. A 

SQL statement is after all another language, like natural languages it has syntax, 

grammar and vocabulary. This project makes the proposal that sequence to 

sequence models can be used to translate a natural language into a computer 

language like SQL.  

The next chapter will look at the use of domain specific languages in the field of NLIDB. 

Currently there is not a great deal of work in this field so the number of references are light. 

The discussions starts with a review of what is currently available. 
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4. Using a Domain Specific Language Within an NLIDB 
Solution  

4.1. Introduction  

Domain Specific Languages (DSL) are created to perform a very specific task within a 
narrow operating field and often to perform very specific tasks. Examples of DSL's are 

Structured Query Language for querying a database, and HTML used to display a web 

page in a browser. This chapter is going to introduce the concept of using a domain 

specific language to query a database based on a natural language query. The 

ultimate aim of this work is to create a DSL that is extensible thereby allowing the 

language to develop and expand thereby developing with user expectations. Currently 

the work being carried out in the field of natural language to database query looks to 

enhance a specific algorithm rather than providing a vessel that can be expanded 

encompassing these new thoughts, algorithmic and improvements to existing 

techniques.  

The idea behind using the DSL is to provide an interface between the natural language 

query and the process to transform that query into a query capable of extracting data 

from a repository or database. Most papers in this field concentrate on an algorithm 

that can be applied to improve the conversion from a natural language into a language 

capable of querying a repository. There is little on how to implement the algorithm 

being proposed. The DSL provides the entry point to algorithms that perform the heavy 

lifting when transforming natural language queries to a language capable of querying a 

database.  There is also a gap in the research field of NLIDB that the DSL can fill. The 

work carried out in the previous chapter looked at about 50 projects within this field and 

yet only Skeggs and Lauria (2018) as well as Polosukhinet et al (2018) mentions the 

use of a DSL. The paper from Skeggs and Lauria (2018) specifically suggests using 

the DSL as providing an interface between algorithms being proposed by the project 

and the end user. This thesis takes the DSL proposal and provides details on how to 

create and use it within a NLIDB solution. 

Here we introduce an external natural query language that is capable of being used as part 

of a solution for a natural language interface to a database (NLIDB) solution. As shown in 

chapter 4 this approach has not been covered in detail by other research projects, and 

appears to be mentioned in passing by Skeggs and Lauria (2018) as well as Polosukhinet et 
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al (2018). The advantage of using an external DSL is that the language becomes accessible 

to the user whereas an internal DSL would only be available to the conversion process. This 

project does recommend that an internal DSL is used in the final stages of the conversion 

process but it has not been implemented at this stage.  

Attempts have been made in the past to create a natural query language such as the work 

by Sibuya et al (1978) when they created a query processing system called Yachimata. 

Their system concentrated on the Japanese language to create a query capable of querying 

a database. Their system uses a noun-phrase model to create a framework for creating 

queries. In contrast this project proposes to use strict language grammar to create a 

framework which will be used to transform the natural language query into a language 

capable of querying a database. Using the Bloom taxonomy for knowledge will provide the 

framework against which the rules for the DSL can be developed. The approach being 

proposed by this chapter will follow the recommendation of Rabiser et al (2018) and make 

the language extensible. The advantages being that the language is capable of developing 

as new algorithms and approaches develop.  

Having designed and created the domain specific language the next step is to highlight the 

implementation of the language. This section will also look at how to implement algorithms 

into the language giving the language flexibility to adjust to changes in the research of 

creating a natural language interface to a database. The DSL adds a level of abstraction and 

provides a predefined structure based on the work of Bloom and the resulting taxonomy of 

knowledge. The use of this taxonomy will simplify the structure of the questions being asked 

by reducing the level of variation in the question and thereby simplifying the parsing of the 

incoming natural language query. The abstraction layer provided by the DSL enables 

algorithms to be injected into the DSL providing a constant interface between the user and 

the SQL statement as well as the flexibility to choose the underlying algorithm to perform the 

parsing task as well as the conversion to the resulting SQL statement used for querying the 

target data repository.  

4.2. Related Work  

Domain specific languages (DSL), as highlighted by the work of Klint et al (2009) and 

Starynkevitch (2011) can be used to simplify a specific task. In the case of 

Starynkevitch (2011), the work proposes using MELT a domain specific language in 

the GCC compiler to create plugins for the GCC Compiler. Starynkevitch (2011) argues 

that using the DSL reduces the complexity of creating plugins for the GCC compiler. 
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Like the work proposed by Starynkevitch (2011), Klint et al (2009) uses RASCAL, a 

domain specific language to simplify the process of analysing source code. The review 

of DSL's carried out by Rodrigues et al (2017) also reiterates the idea that DSL's by 

stating that one of the aims of a DSL is to ease the role of developers.  

Langlois et al (2007) highlight the importance of design patterns in the development of a 

DSL, but also recognise that the number of design patterns in use were few. Their work 

describes a number features that a DSL should have  

● Language features are formalised by abstract and concrete syntaxes. According to 

Langlois et al (2007) the concrete syntax describes language structure in human 

usable form. The abstract syntax characterises elements of the domain.  

● Transformation features describe the flow of information through the DSL from the 

problem to the solution.  

● Tool features highlight the tools that are used to develop the DSL.  

● Process features define how the DSL is used within projects.  

The work of Lui et al (2010) highlights the lack of interoperable capabilities of DSL's along 

with the limited support from the available tools. In contrast to Langlois et al (2007) their 

approach to overcome these obstacles is to propose a service-oriented architecture 

approach. Their work proposes using WSDL to analyse web services to define the 

semantics of the DSL. Mernik et al (2005) also supports the concept that building a DSL is 

challenging and the tools for development are few. But from their work they do propose a 

design pattern that could ease the burden of developing a DSL. Again Barisic et al (2017) 

lament the lack of tools and techniques in designing a building DSL's. Their approach is to 

create their own DSL to specify the requirements of a DSL based system, their tool USE-ME 

supports the development of a DSL. In contrast the work by Vissel (2007) highlights a range 

of design patterns and guidelines to create reusable DSL templates.  

The work of Thanhofer-Pilisch (2017) highlights the growing significance of DSL's in the 

ability to solve problems, but they do not look at how language DSL's have evolved. This 

importance of DSL in providing solutions has led to the development of a number tools to 

help create them. In 2016 Microsoft introduced a domain specific language toolset into their 

development tool visual studio. The open source project XText has been around since 2006 

and is now part of the Eclipse Modelling Project. In 2009 JetBrains produced the first 
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commercial IDE based on the MPS platform used to design DSL's. This product is an open 

source project under the Apache License So the tools exist to create the DSL and this 

project uses the XText framework to create the DSL.  

Work by Kapferer (2019) shows how model transformation can be applied to DSL 

processing. The work also highlights that model-to-model transformation can also be applied 

to model to code as well as the reverse code to model transformations. This approach is 

also backed up by the work of Mens et al (2006). Work by the likes of Azuma et al (2003) 

and Goksu (2016) have highlighted the possible use of the Bloom taxonomy in the field of 

computer science. With Azuma et al (2003) the work not only shows how the Bloom can be 

applied to the field of computer science but also proposes a new taxonomy that could also 

be more applicable to software engineering problems. This chapter relies on the knowledge 

taxonomy proposed by Bloom to provide a strong foundation. In the case of Goksu the work 

concentrates on the use of the Bloom taxonomy in web-based expert systems to support 

learning within an educational group and proved to be more effective than just using 

traditional methods.  

The work by Czarnecki et al (2003) highlights two alternative techniques to the embedding 

of a DSL in an independent application or language. The techniques described in the paper 

staged interpreters and templates according to Czarnecki et al (2003) can overcome the 

limitations of embedding. In their research the team looked at using MetOCaml, Template 

Haskell and C++. In their findings Czarnecki et al (2003) did express surprise at the number 

of DSL's that were implemented using the C++ programming language but also highlighted 

the flexible nature of the language and the subsequent flexibility that a language developed 

in C++ provided.  

Zhao et al (2018) created DeepDSL for encoding deep learning networks and generating 

Java source code. At the core of DeepDSL are tensor functions and both tensor and scalar 

expressions. According to Hao et al (2018) there are a number of layers of processing to 

refine the Java code to ensure that it is optimised. The project highlights the processes and 

core components of the language as well as how it was created. This is in contrast to 

Czarnecki et al (2003) which just takes a high level view of the creation of a DSL.  

Like Zhao et al (2018) the work carried out by Sujeeth et al (2013) provides a detailed view 

on the creation of the Forge DSL. Unlike DeepDSL, Forge is an embedded language based 

on the Scala programming language and uses the Delite framework.The work by Zhao et al 

(2013) provides some detail of the creation of the Forge DSL through the use of simplified 
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code extracts. This chapter will follow the same path set down by both Zhao et al (2018) and 

Czarnecki et al (2003) by showing simplified code extracts as to how the language can be 

implemented.  

Domain specific languages (DSL), as highlighted by the work of Klint et al (2009) and 

Starynkevitch (2011) can be used to simplify a specific task. In the case of 

Starynkevitch (2011), the work proposes using MELT a domain specific language in 

the GCC compiler to create plugins for the GCC Compiler. Starynkevitch (2011) argues 

that using the DSL reduces the complexity of creating plugins for the GCC compiler. 

Like the work proposed by Starynkevitch (2011), Klint et al (2009) uses RASCAL, a 

domain specific language to simplify the process of analysing source code. The review 

of DSL's carried out by Rodrigues et al (2017) also reiterates the idea that DSL's by 

stating that one of the aims of a DSL is to ease the role of developers.  

The work by Klint et al (2009), Starynkevitch (2011), Starynkevitch (2011) and 

Rodrigues et al (2017) highlights the benefits of using DSL but their work is more 

generic than that required for this project. This project is looking solely at the use of a 

DSL for performing the translation from a natural language to a language capable of 

querying a database. 

The Elasticsearch search engine has also been proposed as part of an interface 

between natural language and SQL. From the work carried out by Badhya et al (2019) 

they propose using the Elasticsearch as the training corpus for the conversion. The 

idea is that the keywords from natural language input statements are passed through 

Elasticsearch and compared to descriptive columns in the underlying database. The 

application uses an internal DSL called multi-match as part of the translation process. 

Again the work by Badhya et al (2019) provides a limited subset of the use of a DSL by 

this project.  Badhya et al (2019) propose using an internal DSL to assist with the 

translation of natural language but the details on the implementation are not central to 

their proposal and as a result are scant on details. 

When looking at the use of a DSL in the domain of a Natural Language Interface to 

Database (NLIDB) the work by Polosukhin et al (2018) introduces a DSL based on a 

Seq2Tree model. Their work also shows that this approach outperforms a sequence-

to-sequence model in the conversion of a natural language into a language capable of 

searching a repository. However, the narrow approach taken by Polosukhin et al 

(2018) does not allow for the growth of the language by embracing other technologies 
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or methodologies in the pursuit of converting natural language to SQL. The project also 

uses the DSL as an internal DSL which provides a solution as an alternative to a 

sequence-to-sequence model. The proposed use of the DSL within this project is to 

provide an interface between the end user and the underlying database. This interface 

provides a simpler interface with the aim of making data more accessible to users who 

now no longer need a high level of technical expertise to query and access data. More 

details of the DSL can be found in Chapter 5. 

Few other projects in the field of NLIDB reference the use of a DSL. Most work 

consists of a solution based on either the use of augmented memory as in the work by 

McCann et al (2016), or that of Lin et al (2018) with their research into the use of 

semantic parsing. This work is in isolation essential to push the boundaries in 

improving the translation from natural language to a repository based query language. 

However, these approaches do not appear to provide an overall framework for building 

an inclusive approach, for this it appears that a domain specific language may provide 

a holistic framework. 

4.3. Using Domain Specific Languages 

Natural Language Interface to a Database solution has been around for a while, yet a review 
by Radu et al (2020) highlights only one project that uses a DSL and that was the SemQL 

from Guo et al 2019. Though work carried out by Skeggs and Lauria (2018) as well as 

Polosukhin et al (2018) have hinted at the use of a DSL as part of a solution to the problem 

of NLIDB.  

Landauber et al (2016) proposed using an API as part of their solution. Their proposal uses 

a natural language command interpreter that models an API which acts as the interface for 

the translation. The SemQL domain specific language is a proposed DSL that is used as part 

of the decoder which was also part of the solution proposed by Skeggs and Lauria (2019). 

Yet the main focus on the Guo et al (2019) paper is the neural approach IRNet that sits 

behind the SemQL. The model proposed by Hanane et al (2020) appears to be a DSL light 

solution to converting the Arabic language into a language capable of querying a database. 

Though the hint of a DSL has been mentioned there appears to be no move to develop a 

language that can encompass the array of algorithms and approaches that have been 

developed over the years.  
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The review of domain specific languages carried out by Mengerink et al (2018) highlights 

how DSL's have been used to model systems. The conversion of natural language to a 

language which can query a repository is just another system. The paper by Namavari 

(2017) also highlights how a DSL can be used as part of a transformation process which is 

exactly what a NLIDB solution is, as it transforms one language into another. Namavari 

(2017) proposed using DAWPL (Digital Audio Workstation Programming Language) to 

generate, sequence and process sounds by using an API.  

Domain specific languages are created to perform very specific tasks and as the work 

of Starynkevitch (2011) highlights they can be used to simplify what could otherwise be 

a difficult and time consuming process. DSL's are divided into two categories and are 

either internal or external, both variants of DSL have their own specific use. Internal 
DSL can also be referred to as an embedded DSL that is often embedded within 

another programming language or platform. The internal DSL LINQ as an example is 

used within the Microsoft .NET framework and the work by Boronat (2018) in creating 

YAMTL as a model transformation internal DSL of Xtend. External DSL in contrast are 

standalone languages that are implemented via an independent compiler or interpreter. 

HTML is a good example of an external DSL as its sole role is to render a web page.  

The use of DSL's in the domain of natural language interface to a database refers 

often to the fact that SQL (Structured Query Language) is a domain specific language 

that is designed to manipulate a database. The use of a DSL in this scenario is that of 

the target as highlighted by Desai et al (2016). A target repository does not have to be 

a relational database but can also be a NoSQL or document based repository not 

supporting a standard RDBMS (Relational Database Management System) using SQL.  

4.3.1. Internal Domain Specific Languages  

As stated by Hinkel et al (2014) models can be transformed into other artefacts through 

code. Though according to Wimmer et al (2012) in their review of model-to-model 

transformations they highlighted that most transformations happen without the concept 

of a reuse mechanism making each transformation almost unique. Any similarity 

between transformations is there accidental rather than by design. Since this review 

was carried out work has been undertaken to simplify the process of model 

transformation and the use of DSL has been explored to allow for some reuse. Table 

4.1 shows some of the most commonly used DSL’s. 
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Language Usage 
React A language for building front ends to 

applications hosted by JavaScript  
JQuery JavaScript library designed to simplify HTML 

DOM tree traversal and manipulation of 
data. 

Hyper Text Mark-Up Language 
(HTML) 

Used within the internet to present page 
content through a browser. 

Structured Query Language (SQL) Used to query a database.  
Table 4-.1: A list of commonly used internal Domain Specific Languages.  

The work carried out by Boronat (2018) in developing the YAMTL DSL shows that it is 

possible for a DSL to be used as part of a transformation process as it is used to transform 

large models. This chapter is introducing the concept of a DSL as part of a transformation 

from natural language to a query language capable of querying a data repository. The work 

by Tisi et al (2018) also shows how a DSL can be used as part of a transformation process 

for large complex models, such as graph and rules-based models. The result of the work by 

Tisi et al (2018) was the introduction of the domain specific language CoqTL. The project 

highlights the transformative nature of CoqTL by transforming a Moore Machine into a Mealy 

Machine. 

In addition the approach taken by Krikava (2015) is to propose an internal DSL as part of a 

solution to apply structural constraints to modelling languages. The team highlighted the 

difficulty of using general programming languages as well as using an external DSL. For this 

project their solution was to implement an internal DSL. Gulwani et al (2014) created an 

internal DSL that works within the bounds of Microsoft Excel. The aim of this project is to use 

natural language to help with the expressive algebra, map, reduce, join and formatting within 

a spreadsheet.  

4.3.2. External Domain Specific Languages  

External DSL's according to Riti (2018) are far more complex than internal DSL's to create. 

Part of the reason for this is that an interpreter or compiler needs to be created as part of the 

language structure that allows the DSL to run independently of any other structure. A 

number of external DSL's exist to perform a range of tasks, Table 4.2 lists some of the 

common external DSL's in common use with a brief description of the task each performs. 
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Language Usage 
HTML A XML like language for displaying data within a web browser 
SQL A language to insert modify or extract data from a relational database 
XML A text human readable format for storing and transmitting data 
NoSQL An SQL like language for querying non relational databases 

Table 4-.2: This above table lists some of the most common external DSL that are in use.  

Both Sobernig (2020) and Storl et al (2015) have shown how Object Relational Mappers can 

be used to access NoSQL data stores just as well as dedicated Object-NoSQL Mappers. 

This work highlights the possibility of using object mappers to map data from a natural 

language onto the structure of potentially a relation and NoSQL database. Using the object 

mapper within a DSL could be the key to creating an interface between a natural language 

and a data repository.  

4.3.3. Internal v External DSL's  

Both internal and external DSL's have their place. According to Barringer et al (2011) DSL's 

can be difficult to extend which can prove limiting for a DSL as having initially created a DSL 

users will always want more features. The general argument for an internal DSL is to provide 

a quick easy interface making it easier to add functionality to the host application or 

language. The creation of the internal DSL is constrained by the host application. Internal 

DSL are more simplistic to write but knowledge of the host application can make access to 

the DSL difficult.  

In contrast external DSL's can be harder to develop as they have no host and are required to 

work as a standalone application. The interface into the language can make external DSL's 

more user friendly. Cuadrado et al (2013) states that the DSL's have been created to 

improve efficiency in performing a specific task. The creation of Structured Query Language 

(SQL) is a prime example of this role in DSL's. SQL was designed to extract data from a 

database by providing an interface to the database which was easier to understand. DSL's in 

general are easier to learn than non-DSL's like C or Java.  

4.3.4. Extensible Domain Specific languages  

Barringer et al (2011) makes the argument that domain specific languages are difficult to 

extend but without the ability to change and adapt a DSL will have a limited life span. The 

aim is therefore to create a DSL that can change and adapt to users requirements over time. 

Since the Barringer et al (2011) paper a number of extensible DSL have been produced, a 

number of approaches have been used to achieve extensibility. Hinkel et al propose that a 

DSL should inherit tool support from the host language to allow for extensibility, though this 
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is suitable for internal DSL's obviously for an external DSL this approach is not, therefore 

another approach needs to be used. According to Sutii et al (2018) designing a language to 

be modular is one of the key components of making the language extensible. The SteelCore 

extensible DSL came out of the work by Swamy et al and as Sutii et al (2018) proposed the 

use of a modular design. The PENROSE system from Ni et al (2017) uses yet another 

extensible DSL called Substance that renders mathematical notation. Heeren et al (2017) 

also created an extensible domain specific language, again by making it modular in design.  

4.4. Designing the DSL  

In this section we look at how to design the language structure grammar and syntax. 

Understanding design patterns in the creation of the DSL can focus the development 

process shortening the time and effort required in the creation of the DSL. This approach is 

backed up by the work carried out by Spinellis (2001). Their work identifies eight design 

patterns that should be used when creating a DSL.  

● Piggyback looks for a host language or application to provide the foundation of the 

DSL around. The support from the host could potentially include expression handling 

and linguistic support.  

● Pipeline describes how the DSL process marshals data through a process as 

described by Bentley (1986). 

● Lexical processing looks at the language elements of the DSL which can be 

overcome by piggybacking on another language or application.  

● Language extension shows how a DSL can be used as an extension of an exiting 

language introducing new features, components or core functionality.  

● Language specification identifying which elements of the host language will not be 

implemented as part of the final solution.  

● Source to source transformation looks at the compilation or interpretation of the 

language.  

● Data structure representation looks at how data will be handled by the DSL.  

● System front end looks at how the DSL can be integrated with other systems or 

programmed.  
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Most of the design patterns identified by Spinellis (2001) revolve around the grammar, 

syntax and general language structure of the DSL. These design patterns could be fulfilled 

by piggybacking off another language or application. The question of the language 

constructs would then be defined by the host language or application.  

In contrast to Spinellis (2001), Zdun et al (2010) states that when implementing a reusable 

architectural design for a DSL states that there are three main decisions that need to be 

made for a DSL to be successful. According to Zdun et al (2010) these are, development 

process, language syntax of the DSL and whether the DSL is internal or external. For the 

purposes of this chapter the DSL is going to be external which just leaves the syntax and the 

development process which will be covered in this section.  

4.4.1. Development Process  

According to Zdun et al (2010) the DSL development process has three design patterns: 

Language Model Driven, Mockup Language Driven, piggybacking. For a language model 

driven design pattern the approach is to model the language features understanding the 

limitations of the language. With the Mockup Language Driven model the idea is to start with 

a concrete idea of the language structure and to then refine and build the model from that 

design. The piggybacking design model takes a host language or application as a starting 

point for the DSL. The idea is to identify existing elements within the host language or syntax 

and provide an interface to those features.  

Each approach has upsides and liabilities which are set out in the Zdun et al (2010) paper. 

The approach taken by this chapter is the Mockup Language Design. The mock up for the 

language starts with understanding the Bloom taxonomy for Knowledge. Having an 

understanding of this taxonomy then enables the creation of a language mockup which is 

expanded in the next section.  

4.4.2. Language Syntax of the DSL  

The proposal for the language syntax is based on the concept of a question. After all, the 

purpose of a question is to elicit an answer. The language construct will follow the Bloom 

taxonomy for Knowledge as set down by Benjamin Bloom an American educational 

psychologist. The knowledge taxonomy is based around the standard questions who, what , 
when, where, why and how which are sometimes referred to as wh questions or the 5 W's 
(and 1 H). Bloom's taxonomy has been used in education for a number of years as a way of 
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getting students to understand the subject matter, it has also been used by both journalists 

and law enforcement to try and understand the timelines of how and why events, stories or 

crimes unfolded.  

The proposed language will concentrate on the first four questions: who, what , when and 

where . The remaining two questions why and how could be argued are too subjective. 

Further work would need to be undertaken to bring these two questions into the project.  

There is a standard construct for a who, what , when and where based questions. In 

normal speech the wh word is the first article followed by an auxiliary verb (be, do or have), 

then the subject then finally the main verb. An alternative would be the wh word as the first 

article followed by model verb then subject and main verb. This chapter proposes to use 

these established language constructs as the foundation for the DSL, which establishes the 

ground rules for the language grammar.  

This grammar can allow for the easy transformation from a knowledge based natural 

language question to a simple query capable of searching a repository. Using the grammar 

rules of the DSL the simple natural language query could be what time is lunch served. From 

this simple natural language question, Table 4.3 shows how the question is parsed into the 

salient elements of a knowledge based question.as well as the potential for how those 

mapping could be applied to a database.  

Word  Word description Database Mapping 

what  the 'wh' article  N/A 

time  an auxiliary noun  Database table 

is  the auxiliary verb  N/A 

Lunch the subject of the question Database table column 

served the main verb from the question Database table column 

Table 4-.3: The construct of a simple knowledge-based question.  

The first column in Table 4.3 shows the words separated out. The second column shows the 

type of word (whether it is a noun or verb). The third column then maps the word to a 

construct in a database. The underlying table meal_times holds the times meals are served 

at a given restaurant is shown in Table 4.4. So by simply parsing the natural language 

question into the constituent parts and mapping those to a database construct such as a 
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table or column it is possible to convert the input statement into the structured query select 

time from meal_times where meal = 'Lunch'.  

 

Time  Meal 

6:00  Breakfast 

7:00  Breakfast 

8:00  Breakfast 

9:00  Breakfast 

10:00 Mid Morning Coffee 

11:00 Mid Morning Coffee 

12:00  Lunch 

13:00 Lunch 

14:00  Lunch 

15:00 Afternoon Tea 

16:00 Afternoon Tea  
Table 4-.4: A possible table structure that contains the meal times of a restaurant during the course of a day.  

Not all knowledge based questions are so simple or can be converted to an SQL statement 

so easily. In the example above there would also need to be a mapping for the word or term 

time to the database table meal_time. Yet the algorithm that performs the conversion for a 

more complex conversion can be abstracted behind the use of a domain specific language.  

4.5. The Language  

Having chosen the approach that this chapter will follow in the creation of the DSL the next 

step is to select the toolset. A number of tools and frameworks exist to simplify the process 

of creating a DSL. Tools like the eclipse Xtext framework, Visual Studio from Microsoft MPS 

from JetBrains and the python based textX which is based on the Xtext framework. These 

tools simplify the process of creating a DSL by providing language parsing, linking, type 

checking and compiling covering most of the design patterns highlighted by Spinellis (2001). 

Bunder (2017) describes an approach to convert UML (Unified Modelling Language) models 

to a DSL using Xtext. Though the description in Bunder (2017) is brief the idea is to use the 

Xtext DSL tool in parallel with the Java Eclipse IDE to provide the heavy weight lifting. 

Figure 4.1 provides a high level view of the process used to take the proposed DSL 

statement, validate the statement and tag the tokenised word elements of the statement with 
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labels to identify how the words can be extracted into another language capable of querying 

a repository. 

● The diagram shows that the parser uses the Xtext grammar file shown in code 

sample 4.1 to identify elements of the underlying database that have been identified 

as useful for the validation of the input statement. 

● The input statement can then be validated to ensure that it meets the requirements of 

the prescribed language syntax. 

● If successful the word elements or tokens from the input statement are tagged with 

standard OpenNLP tags to produce an output. 

● If the input validation process is not successful the question becomes does the 

process raise an error. As it currently stands with this project the option is not to raise 

an error. As will be described chapter 6 and 7, the parsing statement can take a 

natural language statement and parse it into a language capable of querying a 

repository.   

 

Figure 4-.1: Provides an overview of the processing required by the proposed DSL. 

The concept behind creating the DSL is to provide some common structure to the natural 

language input statement. This structure can be used to reduce the complexity of the input 

statement making the parsing easier and quicker to perform. More details on the parsing of 

the input statement can be found in chapters 5 and 6.   
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4.5.1. Creating The Language  

The language can be created using a tool such as Xtext and for the purposes of this chapter 

is to show how the language is prototyped using Xtext. Codes sample 4.1 shows an extract 

from an Xtext grammar file which is used to establish the feasibility of the language. From an 

example grammar file it is possible to see how a simple natural language query ‘what time is 

lunch served’ can be parsed. The grammar file shows how the word tokens from the natural 

language question can be mapped to attributes within the underlying database, in an 

approach that is similar to a sequence-to-sequence model. 

1. Model: 
2.     declarations += Declaration*; 
3. Declaration: 
4.     Rule; 
5. Table: 
6.     name=ID; 
7. Meal: 
8.     name=ID; 
9. Rule: 
10.  ‘what’ description=STRING' 

11.   ‘time’ time=[Table|QualifiedName] 'is' 

12.   ‘lunch’ lunch=[Meal|QualifiedName]; 

13.QualifiedName:  

14.    ID('.'ID)* 

Code Sample 4-.1: A simplified grammar file for the DSL showing how the file can be constructed to handle a 
natural language statement.  

The grammar file has to know and understand the structure of the database it is expected to 

query. Therefore the grammar file needs to be created from the underlying database. The 

structure of the grammar file contains the elements used to extract the salient points from 

the underlying database. 

The first rule in this grammar file is a ‘Model’. This model is made up of a single or multiple 

‘Declarations’. In the case of the grammar file in code sample 4.1 the model contains a 

single declaration which is a ‘Rule’. The Rule has three elements the first is a string which 

from the example is the string ‘what’. In a more complete grammar file this should include 
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the other ‘wh’ words as defined in Bloom's knowledge taxonomy (see section 4.4).  The 

second rule seen in line 11 is the word ‘time’ which should also be present in the input 

string , and should be qualified by the trailing word ‘is’ . The word ‘time’ has also been 

identified as having a rule named ‘Table’ associated with it. The text ‘lunch’ also has a rule 

associated with it, called ‘Meal’. The rule is shown in line 5 and 6. attribute of the underlying 

database. The grammar file should contain elements of all the keywords that should be in 

the corpus of questions that can be asked of the database.  

The more complex the grammar rules used to define the DSL the more complex the 

grammar file. For the simple example that is highlights in codes sample 4.1 the content of 

the grammar file can become unwieldy and prone to errors.  

The idea behind the language is to provide a framework on which algorithms from other 

research projects can be implemented. This section looks at how algorithms can be 

implemented within the DSL. The algorithms to be implemented will be for the parsing of the 

natural language statement, the thesis will then look at how to implement a sequence-to-

sequence model.  

4.6. Parsing the Natural Language Statement  

There are two stages of parsing required for creation of the DSL, the first is to ensure that 

the input natural language statement meets the language constructs or grammar defined 

within the language specification. The second parse required takes the elements of the 

natural language input statement and identifies the database elements that are associated 

with those input elements. This becomes the foundation for the creation of the resulting SQL 

statement. This section of the thesis splits out the two parses and shows how they are to be 

treated.  

4.6.1. Initial Parse  

The first step when creating the domain specific language is to parse the incoming 

statement to ensure that the incoming statement meets the requirements of the DSL. This 

would include the use of reserved words, the grammar involved with the DSL and any 

potential mark to identify the extent of the input statement along with any special characters 

to define comments. Chapter 6 details how the design of the DSL can simplify the process of 

parsing the input statement, for a simplified version looking at who, what, where and when 

questions the standard grammar is the wh word as the first article followed by an auxiliary 
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verb (be, do or have), then the subject then finally the main verb. An alternative could be the 

wh word as the first article followed by model verb then subject and main verb.  

With these simplified ground rules in place we can start to build the parser. Using the 

Stanford CoreNLP parser to parse an incoming request using the simplified natural language 

questions What time is lunch served? and When is lunch served? The output from the 

tagger is shown in Table 4.5 and the definition of the assigned tags are shown in Table 4.6. 

 

Word Token Part of Speech Tag 
What WDT 
Time NN 
When WDT 
Is VBZ 
Lunch NN 
Served VBZ 

Table 4-.5: Shows the output from parsing both the simple questions. The output contains the word tokens and 
the part of speech tags associated with each word.  

 

Part of Speech Tag Tag Definition 

WDT  Wh determiner 

NN  Noun 

VBZ Verb, 3rd person 
singular present 

NN  Noun, singular or mass 

VBN  Verb, past participle 

VBZ Verb, 3rd person 
singular present 

WRB  Wh adverb 

Table 4-.6: Shows the definition for the associated tags assigned to the natural language statement.  

Both questions are valid in English and both are valid in the context of the context of the 

DSL. Both statements start with the wh article. In the first statement the next word is time 

which can be either a verb or a noun. The tagger has incorrectly defined the word as a noun, 

but it still meets the requirements of the language. This is then followed by a verb is then the 

noun lunch which is the subject lastly by the main verb served. Refining the parsing of the 

incoming natural language statement to ensure that the word time can be parsed correctly 

as a verb instead of a noun is a requirement.  
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4.6.2. Secondary Parse  

Having identified that the input natural language statement is valid the next step is to 

reparse the statement ensuring that the database elements can be identified from the input 

statement which can then be used to create the resulting structured query language 

statement.  

This section will show how to implement the shallow parsing model created by Skeggs and 

Lauria (2019) which is also Chapter 6 of this project. The approach proposed was to take a 

shallow parsing approach to querying the natural language statement. The idea behind 

shallow parsing as described by Li and Roth (2001) is to chunk a sentence into base 

components whether that is phrases or words. The work by Li and Roth (2001) goes on to 

show the effectiveness of shallow parsing as an approach for extracting meaning from a 

natural language statement.  

The proposal is a four step process, from parsing the incoming natural language statement 

to creation of the structured query language statement.  

● The first step is the tagging of the input statement with the appropriate tag. For 

example the statement What time is lunch served? the tagging would look like 

What_IRR time_AP is_IRR lunch_NP served_IRR ?_IRR . The tagging process uses 

a slightly modified part of speech tagger from the OpenNLP project. The standard 

OpenNLP tags are used to identify which elements in the incoming statement are 

identifiable. There is also an additional custom tag ‘_IRR’ which is used to identify 

which word tokens in the incoming natural language statement can be ignored by the 

conversion process.   

● The next step would be to take the identified key words time and lunch and try to map 

them to elements within the database to identify the select part of the SQL query and 

come with the result *select * from time*.  

● The next step is to try and create the conditional part of the SQL statement with the 

result where meal = lunch.  

● The final step is to create the full statement *select * from time where meal = lunch*.  
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● The functions used to create the SQL statement are hidden within the domain 

specific language but it allows for the shallow parsing approach with keyword 

identification to be implemented.  

4.7. Implementing the DSL  

The next step is to show how the DSL is to be implemented using the parser defined in the 

previous section. The advantage of using the DSL is that the structure of the incoming 

natural language statement is set to a predefined language construct. This language 

construct reduces the complexity of parsing and processing free-formed natural language 

text.  

4.7.1. Validating the DSL Statement  

Having defined that the DSL is conforming to Bloom's taxonomy of knowledge parsing the 

incoming natural language question to ensure the correct language structure is met as set 

out in Section 4.4. The code to parse and validate the incoming natural language statement 

is shown in the code extract below.  

from nltk import pos_tag 

from nltk import RegexpParser 

input_text = ‘What time is lunch served’ 

print(pos_tag(input_text)) 
Code Sample 4-.2: The code extract shows the first pass at parsing the incoming natural language statement. It 
is this piece of code that determines whether the input statement is in the correct format.  

The output from the code above is  

[(‘What’, ‘WDT’), (‘time’, ‘NN’), (‘is’, ‘VBZ’), (‘lunch’, ‘NN’), (‘served’, ‘VBN’)]  

A simple pattern match to the target structure will determine that the natural language 

statement meets the desired input. Having validated that the incoming natural language 

statement is in the correct format the next step is to parse the incoming statement into a 

language capable of querying a data repository. The details of how this chapter proposes to 

parse the incoming natural language statement can be found in chapters 5 & 6. 
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The concept of the DSL is to simplify the translation process from natural language to a 

language capable of querying a repository. Structuring the input language into a predictable 

format reduces the complexity of parsing the natural language input statement.The question 

then becomes what happens when the input statement does not match the expected format. 

The two possible approaches are: 

1. Ignore the error and parse the statement as if the input statement does match the 

expected input. 

2. Display an error to the user stating that the format is not of the expected type. 

The approach being taken by this project is to ignore the error and continue parsing. Even 

though the DSL is part of the project the language is currently designed not to be strongly 

typed and the format as well as the structure of the language are not strongly enforced. The 

idea being that the language syntax should not become onerous to learn enabling the 

democratisation of the language. As can be seen in Chapter 5 and 6 is that the parsing 

algorithm that has been developed as part of this project can parse natural language 

statements. 

4.8. Conclusion  

The idea within this chapter was to initially create a simple prototype of the DSL by using a 

simplistic parsing approach with a sequence-to-sequence model to map the word tokens 

from a natural language input statement onto the comparable database assets. This 

simplistic sequence to sequence model has limitations as work by the likes of Guo and Gao 

(2018) and Su et al (2018) has highlighted. A solution based on parsing a natural language 

text would need to be incorporated into the model to fulfil the purpose of the DSL being 

extensible.  

This chapter uses Xtext to quickly create and prototype a functional DSL. Advantages of 

using a tool like Xtext is that the tool creates and manages an environment in which the DSL 

can be developed and accessed. The downside to this approach is that the grammar file and 

parsing tools within Xtext are limited. It soon became apparent that these limitations would 

not allow the flexibility required to create an extensible DSL. Therefore a new approach is 

required which requires that the parser, grammar and development environment would need 

to be created explicitly for the new DSL.  
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The section 4.5 highlighted the limitation of using a tool like XText to create the DSL. The 

complexity of the Xtext grammar can make creating and managing the file when the 

grammar rules become more complex extremely difficult. This increased complexity inherent 

in the Xtext grammar file goes against one of the underlying principles of this project in that 

the DSL should be extendable. The project has already shown how the natural language 

statement can be parsed into a language that can be used to extract data from a repository. 

The next two chapters show how the incoming natural language statement can be parsed 

meaning extracted and ultimately converted into a language capable of querying a data 

repository. This leaves the Xtext component just the task of validating the incoming natural 

language statement to ensure that it is compliant with the desired DSL language structure.  

The simplicity of the Bloom Knowledge Taxonomy on which the DSL is based makes 

parsing the incoming natural language statement simple. The objective of this parse is 

primarily to ensure that the input statement matches the approved grammar. The more 

detailed parse for converting the natural language statement into a language capable of 

querying a database is covered in both Chapter 5 and Chapter 6.  

Having seen the uses of Domain Specific Languages and how they can be used within a 

transformation, the next step is to create a DSL that can be used not just as a language to 

convert natural language to SQL but also as a wrapper to host the algorithms currently in 

research projects. The work by Gulwani et al (2014) comes close to the aim of this project by 

showing how an internal domain specific language NLyze, can be used to manipulate a 

spreadsheet. But this project has failed to show how this approach can be used to extract 

data within a large data repository and is also tightly bound to Microsoft Excel which makes 

the solution non interoperable. With work such as the AskMe NLIDB system from Llopis and 

Ferrandez (2016) which provided a framework for the other research projects the team did 

not create a domain specific language but more of an application.  

The work of Gulwani et al (2014) and Badhya et al (2019) show that domain specific 

languages have a place in the translation of a natural language to a language capable of 

querying a database. But their work also highlights the fact that to fully create an extensible 

DSL capable of working with a range of repositories is to create an external DSL. Both 

solutions proposed by Gulwani et al (2014) and Badhya et al (2019) are internal DSL's which 

bind them inextricably to their host, therefore, to make an interoperable DSL it has to be 

external.  
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This project looks at providing a domain specific language as an interface to a natural 

language interface to a database. From the literature review carried out as part of this 

project there appears to be no mention that this approach has been taken by another 

project. Most of the projects reviewed for this thesis have provided no details as to how the 

proposed algorithm could be implemented. This project is proposing developing a DSL that 

can act as the interface between the user and the underlying data. Using the DSL 

streamlines the translation process as the inbound natural language text comes into the 

system in an understood and predefined manner thereby streamlining the translation 

process. Using the DSL also has the capability to reduce the complexity of setting up the 

system as parsing the incoming statement will be in a predefined structure with a high 

degree of known words. The following chapters highlight how the data parsing is part of the 

translation process. 
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5. A Shallow Parsing Approach to Natural Language Queries 
of a Database  

5.1. Introduction  

Two of the key goals of this thesis are to improve the speed of converting natural language 
into a language capable of querying a repository, and to also improve the returned search 

results. This chapter looks at the use of shallow parsing or as it is sometimes referred to as 

part of speech as an approach to solving these issues. The concept behind shallow parsing 

is to extract the important key words from the incoming natural language query and map 

those keywords to attributes within the underlying database. This approach ignores the 

natural language concept of nuance. 

The performance and reliability of converting natural language into structured query 

language can be problematic in handling nuances that are prevalent in natural language. 

Relational databases are not designed to understand language nuance.  The natural 

language query ‘who are my 10 worst customers’ can cause problems with translation to an 

SQL query and what does the word worst mean. Does it mean the customers who buy the 

least amount of goods from me or the customers who return the highest percentage of the 

goods bought, or the ones whose products cost more to produce. It could even mean 

something completely different. The structure of a SQL query when retrieving data is to 

select a value from a column within a database table. There is no room for language nuance 

in the query ‘select name from customer order by qty asc limit 10’. This query will order my 

customers by the quantity of goods sold. It will not necessarily highlight my worst customers 

as new customers are likely to have bought less goods.  

Therefore the question is must we try and handle language nuance when converting from 

natural language to a language that can be used to query a database. Within this thesis what 

is being proposed is that language nuance should not be considered when converting 

natural language to a language capable of querying a database. There is no language 

nuance within the target language of SQL and the risk of misinterpreting language nuance is 

too high. The idea is to therefore create a DSL which can reduce the need and reliance on 

language nuance. By formally structuring the format of the language and grammar of the 

incoming statement it can become easier to perform the parsing of the input statement and 

convert the statement more accurately to a language that is capable of querying a data 

repository. 
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This chapter is based on the Skeggs and Lauria (2019) paper published in the Journal of 

Software Engineering and Applications. The Skeggs, Lauria (2019) paper proposes an 

alternative solution to that proposed by the likes of Bais et al (2018) and Jwalapuram & 

Mamidi (2017) for the conversion of a Natural Language Query into a Structured Query 

Language (SQL) capable of being used to search a relational database. The proposed 

process uses the natural language concept, Part of Speech, to extract keywords from the 

input natural language statement that can be used to identify database tables and table 

columns. Taking this approach removes the ability of the system to handle language nuance 

but does identify the key elements of the natural language statement that can be used in the 

conversion to an SQL statement. As an example of this the query ‘which customers have 

bought the most goods this month’, using Part of Speech the sales table is required for the 

search and the columns used within the query would be the quantity customer number and 

data fields.    

The solution being proposed in this chapter uses the Apache OpenNLP application to enable 

the NLP parsing. The OpenNLP standard configuration is enhanced with additional 

configuration files to assist in the translation from natural language to query language. 

Having used part of speech processing within OpenNLP to identify which tables and which 

columns contain the pertinent data the next step is to create the SQL statement. A more 

detailed description of the architecture being proposed by this project is discussed in section 

5.3.  

5.2. Related Work 

With the quantity of real-time data and the speed of data increases the need to search and 

extract data from multiple sources is becoming more important. Natural Language 

Processing can be useful for converting natural language text into a formal structure that can 

be processed by a computer program.  

The growth in size and importance of data within society has led to the development of a 

new range of tools to query, examine and analyse data. Even the increasing use of tools like 

Siri, Bixby, Alexa and Google Assistant to perform searches is changing the way users look 

for information. Amazon is one of the largest retailers, AirBnB is one of the largest hotel 

groups but neither company owns a single store or hotel. Both organisations class 

themselves as data companies. The rise of the importance of data is driving a need for new 

tools and techniques for managing the storage and retrieval of information from data 

repositories. With large quantities of data stored within databases or database backed 
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repositories providing an interface between a non-technical user and data is becoming 

increasingly important.  

The use of a natural language interface to a database enables non-technical users to search 

a database using natural language statements, whether that is the spoken or written word. 

The Natural Language Interface to Database (NLIDB) provides the interface between a 

natural query and a structured data query language like SQL. This allows for data retrieval 

without the need for technical knowledge or a detailed understanding of the Structured 

Query Language (SQL) or even knowledge of the underlying database.  

A number of systems described by Reshma and Remya (2017) such as LADDER, CHAT-80, 

NaLIX and WASP have all been developed to become the interface between natural 

language and the database but none of them have come into mainstream use. The issues 

these tools have struggled with revolve around natural language complexity. The most 

common one of these complexities has been understanding the language nuance of the 

natural language statement as described by Bais et al (2018), Florin et al (2017) and Deuter 

(2015). Other issues have revolved around the performance of the interface in converting the 

natural language query not only in a timely fashion but also with the accuracy of the returned 

results which was initially highlighted by Gallant (1990) but has also been raised by Joshi 

and Akerkar (2008).  

This chapter is proposing a solution to solve both the language nuance highlighted by Florin 

et al (2017) and Kiev et at (2011) as well as the performance issues with the use of shallow 

parsing as discussed by Joshi and Akerkar (2008). The use of shallow parsing, also referred 

to as part of speech, negates the requirement for an understanding of language nuances, as 

key words are extracted from the input statement and used within the conversion process. 

The shallow parsing approach being proposed by this chapter is the use of keywords. This 

approach first proposed by the Ratnaparkhi (1996) is used to identify characteristics of the 

input statement that are important for the search. In contrast to Ratnaparki’s approach this 

project not only identifies the keywords that would be useful in the translation process, but 

maps the keywords to tables and columns within the tables. This chapter will introduce the 

use of an index file containing keywords extracted from the underlying database that identify 

the tables and associated columns. It is this approach that helps build the performance in 

translation from natural language to SQL. This builds on the work of Jwalapuram & Mamidi 

(2017) who are among a number of authors who have carried out research into using 

keywords to enable NLIDB based systems to perform searches. Unlike that used by 

Jwalapuram and Mamidi (2017) this project uses Part of Speech (POS) processing in 
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conjunction with an index file which allows for individual words to be extracted from the 

natural language query. The individually extracted words can then be used to create the 

query for the NLIDB solution. Details of the architecture for the proposed solution can be 

found in section 5.4.  

5.3. Football Events Data  

To test the performance of the NLIDB application an open data set was selected for testing 

and benchmarking. The website Kaggle.com has several openly available large datasets 

that can be used freely. The Football Events dataset was chosen and is available via the 

following link (https://www.kaggle.com/secareanualin/football-events). This dataset was 

chosen as it contains two tables which ensure that the feature to join the two tables together 

can also be tested. The concept of being able to join two or more tables together is important 

as this feature is often useful when searching data repositories as data can be held across 

multiple tables.  

The dataset comes in the form of two comma separated value (CSV) files which are labelled 

EVENTS and GINF. The events recorded in the tables cover 9074 football games from 

across Europe. The two tables are in CSV format which makes it easier to load into a 

database whether that is a no-SQL or RDBMS version. The two tables within the data set 

are: 

● The EVENTS table as shown in Table 5.1 contains details about 

each game. The data has been scrapped from bbc.com, espn.com 

and onefootball.com and has 941009 recorded items.  

● The GINF table, details are shown in Table 5.2 contains metadata 

and market betting odds for each game and contains 10112 entries. 

The odds for the dataset were supplied by oddsportal.com.  

The two tables can be joined using the common key ID_ODSP, which is the unique 

identifier for the game.  
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Column Name Description 

ID_ODSP  Unique id of the game 
ID_EVENT  Unique identifier of event (ID_ODSP + SORT_ORDER) 
SORT_ORDER Chronological sequence of events in a game 
Time Minutes into the match 

Text  Description of event 
EVENT_TYPE  Primary event. 11 unique events (1-attempt (shot), 2-corner, 3-

foul, 4-yellow card, 5second yellow card, 6-(straight) red card, 7-
substitution, 8-free kick won, 9-offside, 10-hand ball, 11-penalty 
conceded)  

EVENT_TYPE_2 Secondary event. 4 unique events (12-key Pass, 13-failed 
through ball, 14-sending off, 15-own goal)  

Side Home or away team (1-home, 2-away)  
EVENT_TEAM Team that produced the event (In case of Own goals, event team 

is the team that beneficiated from the own goal)  
Opponent Opposing team 
Player  Player involved 
Player 2  Player involved 
PLAYER_IN  Player that came in (only applies to substitutions) 
PLAYER_OUT  Player substituted (only applies to substitutions) 
SHOT_PLACE  Placement of the shot (13 possible placement locations, 

available in the dictionary, only applies to shots) 
SHOT_OUTCOME 4 possible outcomes (1-on target, 2-off target, 3-blocked, 4-hit 

the post) 
IS_GOAL  binary variable if the shot resulted in a goal (own goals included) 
Location  Location on the pitch where the event happened (19 possible 

locations, available in the dictionary) 
Body Part  Body part ball touches (1-right foot, 2-left foot, 3-head) 
ASSIST_METHOD In case of an assisted shot, 5 possible assist methods (details in 

the dictionary) 
Situation In case of an assisted shot, 5 possible assist methods (details in 

the dictionary) 
FAST_BREAK Did a fast break occur 

Table 5-.1: The EVENTS table describes the structure of the events database. This table is joined to table 5.2 on 
the unique identifier for the game, ID_ODSP 
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Column Name Data Type Description 
ID_ODSP String Unique ID of the game 
LINK_ODSP String Link to odd sportal page 
ADV_STATS Boolean Availability of advanced statistics 
Date Date Date of event 
League String The league the match was played 
Season Number The year the season finished 
Country Number The country the match was played in 
Ht String Home team 
At String Away team 
Fthg Number Full time home goals 
Ftag Number Full time away goals 
ODD_H Number Highest home wim market odds 
ODD_A Number Highest away market odds 
ODD_OVER String Highest over 2.5 market odds 
ODD_UNDER String Highest under 2.5 market odds 
ODD_BTS String Highest both teams to score market odds 
ODD_BTS_N String Highest both teams not to score market 

odds 
Table 5-.2: The GINF table describes the features of the GINF table. This table is joined to table 4.1 on the 
unique identifier for the game, ID_ODSP 

5.4. Proposed Configuration  

This chapter is proposing to use three index files to aid the conversion from natural language 

query to SQL. The files being proposed are the Grammar file, Join file and Index file. The 

use of these files ultimately describes the structure of the underlying database which will 

become the target for searching, while providing an index-like data structure that can be 

used to identify the database table(s) and table columns relevant for the database search.  

The files described in this section can be created either manually or through scripting. The 

grammar file should be created through the collection of queries that have been used to 

query the underlying database. With a historic record of prior questions, the grammar file can 

be enhanced.  

Figure 5.1 shows an overview of the proposed architecture for the NLIDB solution being 

discussed in this chapter. The details of which will be expanded in this section but the steps 

are highlighted:  

● Parse the input statement into tokens: The natural language query is broken into 

word tokens using the appropriate tagger. This chapter proposes the use of two 

taggers OpenNLP Part of Speech tagger and the OpenNLP Names Tagger. Both 

taggers can be used in parallel each to perform the task of identifying key words that 
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are useful to the conversion process and to identify names that are within the input 

statement.  

● Parse Tokens and tag. The next step is to take the word tokens which is the output 

from the previous step and apply a tag. The grammar file contains the details of the 

tags to be applied to each token.  

● Remove stop words. The next step is to remove the stop words from the process as 

these words add nothing to the conversion process.   

● Parse Process. The parse process uses a template for the standard SQL statement 

and creates the final SQL statement using the join file for searching multiple tables. 

 

Figure 5-.1: Shows an overview of the proposed system. The processes that will be applied to the natural 
language statement as it is converted into a language capable of querying a repository. Here the taggers are 
separated into name and part of speech. 

This section will look in depth at the process used to convert the natural language statement 

into a language capable of querying a data repository. As part of that process the 

configuration of the configuration files will also be explained. 

5.4.1. Parse Input Statement 

The simplistic approach to parsing the natural language statement into tokens is to remove 

punctuation from the statement and split each word into an array of tokens. A simple 

approach is shown in Code Sample 5.1: 
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#Simply split the string on the space character 

def tokenizer(query): 

    tmp= re.sub('[^A-Za-z0-9 ]+', '', query) 

    return tmp.split() 

Code Sample 5-.1: A sample Python script that can be used to parse an incoming natural language statement 
into tokens. In effect the script splits the incoming string into an array of words. 

5.4.2. Parse Tokens and tag  

The database extraction process which provides data for the three configuration files 

manually extracts data from the target database. Though the process is manual there is 

nothing about the structure of the configuration files nor the data used by the files which stop 

their creation from being automatic. The process was completed manually as the dataset 

was small enough for this task to be completed. 

The first of these is the Apache OpenNLP grammar file which is used to identify words in the 

natural language query. The content from the database is used to create the grammar file, 

column names from the database tables are tagged with N and the database tables are 

tagged with AP within the grammar file, an example of a grammar file can be seen in Figure 

5.2. Separate tags are assigned to each word which identifies words of importance that can 

be labelled as either a table name or column name. The convention for tags is that VB 

identifies a verb, N for noun and ADJ for adjective, a full list of tags can be found in Appendix 

A. The list of tags is used by convention rather than being statically defined, therefore 

custom tags can be created to fulfil a specific task. This chapter uses a custom tag IRR to 

identify words that are irrelevant in the conversion from natural language to query language. 

In the example used for this chapter, the grammar file is constructed from entries from both 

the GINF and EVENTS tables. Questions posed to the application are also used as part of 

the grammar file. Table 5.3 lists the column names from both source files that are used 

within the grammar file. Sample code that can be used to achieve the tagging required by 

this process is shown in Code Sample 5.2 

def tagger (tokens, patterns, names): 

    name_tagger = nltk.RegexpTagger(names) 

    regexp_tagger = nltk.RegexpTagger(patterns, backoff=name_tagger) 

     

    tagged=regexp_tagger.tag(tokens) 

     

    for x in range(len(tagged)): 
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        if (tagged[x][1] == 'out' and tagged[x+1][1] == 'in'): 

            tagged.append((tagged[x][0] + " " + tagged[x+1][0], 'PC')) 

     

    return tagged 

Code Sample 5-.2: Shows how the tags can be applied to two taggers. In this example a Name Tagger is being 
applied as well as the tagger library which is highlighted in Figure 5.2. 

The index data extracted from the GINF table contain 10,643 entries which are made up of 

the original entries with some additional data. Entries from the Events table create an index 

file with 1201 unique entries in the data. The structure of the table is made up of potential 

questions that could be posed to the NLIDB application. Each word is assigned a tag 

representing how that word should be treated. The tags follow the appropriate word and are 

separated from it by an underscore.  

The grammar file (an extract of which is Figure 5.2) for this chapter uses a couple of tags, 

IRR which stands for irrelevant and ensures that the word will be ignored in the conversion 

from natural language to structure query language. The IRR tag is defined as being words or 

values not found within the underlying database as either table names, columns or values.  

NP, which signifies that the word is important in the conversion process and states that is a 

value of significance and will be used within the search as this is the search criteria. Words 

tagged with AP signify the table that must be searched.  

 

Events GINF 
ID_ODSP ID_ODSP 
Side Date 
EVENT_TEAM League 
Opponent Season 
Player Country 
Player 2 Ht 
SHOT_PLACE At 
SHOT_OUTCOME Fthg,±Ftag, ODD_H, ODD_D 

Table 5-.3: Lists the entries extracted from the database for inclusion into the index file. The table also highlights 
the structure of both data tables. It can be seen that the column ID_ODSP is common between both tables and 
can be used to join them. 
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Which_IRR event_AP has_IRR  

Which_IRR opponent_AP has_IRR ustaritz_NP faced_IRR 
What_IRR are_IRR the_IRR odds_N on_IRR a_IRR game_IRR with_IRR an_IRR event_AP 

involving_IRR caro_NP 

What_IRR are_IRR the_IRR odds_N on_IRR an_IRR event_AP that_IRR caro_NP is_IRR 
involved_IRR with_IRR 

Figure 5-.2: This shows an extract from the grammar file showing the data structure. Finally, the tag N defines 
which column could potentially be used to extract data.  

The grammar file highlighted in figure 5.2 was created manually having been built up from a 

list of historically asked questions and the content of the underlying database. The tagging 

used replicates the process used by the OpenNLP tagger. The figure shows that each word 

in the natural language statement has an associated tag. The tag ’_IRR’ indicates that the 

word has no associated tag whereas the word odds has been identified as being a noun by 

the tagger if it has the tag ‘_N’.  The full list of tags can be found in Appendix A. The idea 

behind creating the file manually was so the tags could be tested to ensure that the tagging 

process could be optimised and tested. 

t_IRR are_IRR the_IRR odds_N on_IRR a_IRR game_IRR with_IRR an_IRR event_AP 

In this project the grammar file is currently created manually but there is nothing within the 

file that prevents its creation through automated scripts. The reasoning behind creating this 

file manually was to allow for testing and refining of the grammar file to optimise the 

conversion process. The file contains elements from the database being searched; an 

extract from the index file is shown in Figure 5.3. The data is made up of three columns; the 

first column shows the relationship between the table, the table column and the database 

value. The index file uses the same tags as the grammar file to identify elements that are 

within the database such as the tables, columns and values. Figure 5.3 shows that the AP 

tag is assigned to the value event, this represents the table. The second value is player 

which is assigned the tag N, which represents the column in the table. The third column 

shows a value in this case the name of a player (Abdoulaye Diaby) which has been assigned 

the tag NP.  

From this, information the query is beginning to be built and simplistically the query is “select 

* from event”. The second column describes which variable from the table to use as part of 

the condition. In the example below, the word player is identified as a noun which can in this 

example identify the columns from the table event.  
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Event_AP player_N Abdoulaye#Diaby_NP 

Event_AP player_N Abdoulaye#Faye_NP 

Event_AP player_N Aboubkra#Kamara_NP 

Event_AP player_N Adam#Federici_NP 

Event_AP player_N Alberto#Garcia_NP 

Event_AP player_N Aleksandr#Iakovenka_AP 

Event_AP player_N Alemde_NP 

Figure 5-.3: Extract from the grammar file.  

This now means that the query is “select * from event where player =”. The only element 

missing is the value to search on or in this case the player’s name. This information comes 

from the third column labelled NP. From the extract in Figure 5.3, there is an extract of 

abdoulaye#diaby_NP, so the final query is now “select * from event where player = 

‘abdoulaye diaby’’’. The use of the # symbol between the first and last name of the player 

makes it easier for this simple application to identify names. It is also possible to use a name 

tagger to identify the names of the players.  

5.4.3. Join File  

The above example shows the first step into parsing a natural language query into a simple 

SQL statement. Not all queries are that simplistic as some will require that tables are joined 

to extract the required data. A key aspect is how the joins between tables can be identified 

not just from the natural language query but also from the table structure. One possible 

solution is from the configuration within the grammar files.  

This chapter suggests using a join file which lists the table and the primary key for the table. 

This table (see Figure 5.4) allows two tables to be joined. The table contains two entries 

which are the table name and the primary key of the table. In the example below, both the 

Event table and the GINF table can be joined and both share the same primary key 

(ID_ODSP).  

 

# load the join file into a dictionary 

join = {}  

with open("file.txt") as f:  

    for line in f:  
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        (key, val) = line.split()  

        d[int(key)] = val 

 

# extract the join key for a given table 

join[table_name] 

 

#extract the table from a given join key 

for key, value in join.items(): 

     if value == join_key: 

             return(key) 

Code Sample 5-.3: This python code shows that the table name or the join key can be used to extract the 
attributes used in joining multiple tables together.  

 

The join details from code sample 5.3 are loaded into a python dictionary called join. The 

look up becomes a simple function join[table_name] to return the join key. From a join key 

the look up becomes a simple loop. The process for creating the join file is manual but as 

discussed above in the section titled Proposed Configuration there is the possibility of 

automating this process. The caveat when creating an automatic script is to identify which 

tables have an identifiable relationship as well as what contrives to make that relationship. In 

the simple case discussed within this chapter, the relationship is easy to identify and easy to 

create as only two tables exist. In larger more complicated database environments 

identifying these relationships may be harder to identify. Using deep learning techniques to 

identify which tables are related and how that relationship exists may be required for an 

automated script.  

5.5. Parse Process Conversion Steps  

Having highlighted the components of the conversion process, the next step is to show how 
the whole process works. The solution proposed by this chapter allows for the example 

natural language query “What are the odds on a game involving Caro?” to be converted into 

an SQL statement. The starting point for the conversion process is a simple SQL template 

that defines the basis of a select query. The template is:  

SELECT <parameters> FROM <table name> JOIN <table name> ON <field name> = 

<value> WHERE <field name> = <value> AND  <field name = value>  
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Using the following steps, the parse process takes the SQL template, extracts relevant data 

from the natural language statement and transposes values where appropriate onto the 

template. The steps to perform this process are highlighted below. 

event=ID_ODSP 

ginf=ID_ODSP 

Figure 5-.4: The join properties file lists the table name with the primary key which allows multiple tables to be 
joined.  

● Tag the natural language statement. The OpenNLP tagger 

process takes the original statement and labels each word 

component with a natural language tag. An example output from 

the tagging process will look like.  

what_IRR are_IRR the_IRR odds_NP on_IRR a_IRR game_IRR event_AP 

involving_IRR caro_NP.  

The code used to produce the output would use NLTK library (such as the 

Python Natural Language Toolkit or the OpenNLP library).  

 

import nlp_library 

query_text = ‘<somestring>’ 

nlp = new nlp_library 

processed_string = nlp.word_tokenizer(query_text) 

print(processed_string)  

 

● Looking at Figure 5.1 the grammar file identifies that the word 

event has the tag “AP”. The conversion process identifies AP as a 

table. Using this information, the first part of the query is “select * 

from event”.  

● The next step taken by the proposed system is to identify that the 

query should join the events and the GINF table together as the 

query is asking for odds from the GINF table and player (Caro) 

from the events table. The join table specifies that the tables’ 
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event and ginf are joined by the column ID_ODSP. This creates 

the where clause “where event.id_odsp = ginf.id_odsp”.  

● The final step is to identify that the player being searched for is 

“caro” (see above). This gives the final part of the query where 

player = “caro’’.  

● The query can now be joined into select * from events where 

event.id_odsp= ginf.id_odsp and player = “Caro”.  

● Currently, the select statement just uses “select * from”. The next 

step is to retrieve just the requested data or columns from the 

database. Through the use and application of machine learning 

techniques it is anticipated that select everything could be 

reduced to selecting only relevant columns from the query. The 

following statement shows the structure of the target SQL 

statement where P is the parameter to be ‘select from the target 

table T select <P1>,<P2>, <Pn> from <T>’.  

5.6. Training the Model  

Having created the model the next step is training the model. The OpenNLP toolkit model 

uses machine learning algorithms at its core. Having created the configuration files to be 

used as a model, the next step is training the Apache OpenNLP model. Training the model is 

an important aspect of the Apache OpenNLP process. The mathematical models used by 

the OpenNLP application require that the model is trained. As the model being used by this 

project is a bespoke model, training allows the model to perform the word tagging using the 

grammar file more accurately than would have been otherwise achieved. The machine 

learning models used by OpenNLP for training include maximum entropy and perceptron-

based machine learning.  

The use of a maximum entropy model as described by Ratnaparkhi (1996), ensures that the 

model best represents the current state of knowledge. The current state of knowledge in the 

case of the model proposed by this chapter is the training set of questions being asked by 

users querying the underlying data repository.  

The solution allows for more questions to be added as the process evolves. The additional 

questions can be added as part of an automated process or manually. Each question added 
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would need to be tagged and the process retrained. This allows for the continued evolution 

of the system.  

The tagging model used for this solution is the Part of Speech (POS) tagger which converts 

every word into a token. Each token has an associated tag. OpenNLP will use a probability 

model to predict the correct tag for each word in the sentence. The fewer the tags used the 

quicker the performance, this can be seen from testing and appears to be supported by 

Taghipour and Ng (2015) but more thorough performance testing is required. The tests that 

were carried out were performed on whole sentences, which included tags that can be 

identified as having a database related value. An example of this would be where the name 

of a database table or table column appears in the natural language query. In the case of the 

natural language query “Which event has Abdoulaye Diaby played in.”, “event” is an 

identifiable database table. The sentence can then be processed, and relevant tags will be 

applied to the parts of the query (see Table 5.1), irrelevant tags will be ignored.  

The OpenNLP model training task process output: The output from training the model 

against the grammar file, which contains the list of potential asked questions that is shown in 

Figure 5.5. Due to the fact that this model is only proof of concept, not much training and 

comparative analysis was performed on the parameters used. In fact the parameters used 

for training came from a previous model that had been used for a totally unrelated task. The 

results from which can be seen in section 5.7 shows that without fine tuning the model can 

perform well.  

Indexing events cutoff 5 

    Computing event counts... done. 36432 events. 

    Indexing… done. 

Sorting and merging events... done. Reduce 36432 to 11666 events. 

done indexing. 

Incorporating index data for training… 

done. 

    Number of Event Tokens: 11666. 

         Number of Outcomes: 3 

         Number of Predicates: 2241 

done. 

Computing model parameters ... 

Figure 5-.5: The output from the model training process. 
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As can be seen from the training output, the test was run against a training file with 

approximately 36,000 entries that were processed and indexed. From the 36,432 source 

entries, 11,666 were identified as either significant or unique. The number of outcomes in 

Figure 4.5 refers to the number of possible outcomes from the model. For the shallow 

parsing approach proposed by this chapter, the number is not significant. Though not 

significant for this chapter the number of predicates could indicate the number of sentences 

in the data frame. The predicate identifies what is happening with the subject of a sentence. 

Though this might be helpful when trying to understand the content or meaning of the 

sentence for the shallow parse approach being taken by this chapter the number of 

predicates is inconsequential.  

5.7. Evaluation  

During the evaluation phase of the proposed system, the idea was to measure the 
performance of the natural language conversion to SQL. For this chapter the evaluation 

looks at the speed of conversion from natural language query to SQL and highlights the fact 

that commodity hardware can be used for the conversion process. Measuring the accuracy 

of conversion will be tested in the next chapter. The Java Virtual Machine (JVM) usage was 

monitored, and the code profiled. The details of the proposed system performance are 

discussed in this section.  

5.7.1. Computer System  

The computer used for the development and testing of the application is of a standard 

desktop configuration. The very utilitarian nature of the computer used for developing and 

testing this solution supports the concept that the conversion process does not require a 

large, expensive dedicated server. The specifications of the test machine for the natural 

language to SQL conversion are shown in Table 4.4. 

 Variable Value 

Operating System Windows 7 Enterprise 

Service pack SP1 

Processor Intel Core i5-4570 CPU “3.2GHz 

Installed Memory 8 GB 

System Type 64-bit operating system 
Table 5-.4: Server specifications used for testing. The server specifications shown highlights the fact that 
commodity hardware is suitable for supporting the proposed conversion process.  
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5.7.2. Java Virtual Machine  

The Java Machine used for the development and testing of the application is again a 

standard build. The application does run on a single JVM instance, the settings for which are 

shown in Figure 5.6.  

The profiling of software allows for some tangible method to measure software excellence as 

proposed by both Ratnaparkhi (1996) and Siewiorek et al (1993). The tests performed on the 

software show the resources used for converting a natural language query into a SQL based 

query. A number of tools have been employed to monitor the performance of the application  

which includes Java Visual VM from Oracle, YourKit Java Profiler, and the Coverage tool 

from JetBrains IntelliJ Java IDE. These tools highlight the computer resources used by the 

code in terms of virtual memory allocation and call time per function. The concept of 

benchmarking software performance provides a tangible metric to evidence the performance 

of a software solution as supported by Sims et al. (2003) .  

The benchmarking work carried out by Siewiorek et al. (1993) highlights the fact that 

monitoring memory is key to understanding the performance of a software solution. The 

techniques proposed by Siewiorek et al. (1993) and the project findings have been updated 

by the work of Gama et al. (2011) and Whaley (2000) which also proposed that application 

memory could also have an important role to play in the performance of an application. In 

the case of the solution proposed in this chapter the Java Virtual Machine (JVM) is a key 

component and the memory associated with the JVM is just as important.  

JVM: OpenJDK 64-Bit Server VM (25.152-b8, mixed mode) 

Java: version 1.8.0_152-release, vendor JetBrains 

Java Home: c:\Program Files\JetBrains\IntelliJ IDEA Community Edition 2017.3.1\jre64 

JVM Flags: <none> 

-Xxs24m 

-Xxx256m 

-Dsun.jvmstst.perdata.syncWaitMs=10000 

-Dsun.java2d.noddraw=true 

-Dsun.java2d.d3d=false 
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-Dnetbeans.keyring.no.master=true 

-Djdk.home=C:\Program Files\Java\jdk1.8.0_25 

-Dnetbeans.home=C:\Program Files\Java\jdl1.8.0_25\lib\visualvm\platform 

-Dnetbeans.user=C:\Users\rskeggs\AppData\Roaming\VisualVM\8u20 

-Dnetbeans.default_userdir_root=C:\Users\rskeggs\AppData\Roaming\VisualVM 

-XX:+HeapDumpOnOutOfMemoryError 

-XX:HeapDumpPath=C:\Users\rskeggs\AppData\Roaming\VisualVM\8u20\var\log\heapdump.hprof 

-Dsun.awt.keepWorkingSetOnMinimize=true 

-Dnetbeans.dirs=C:\Program Files\Java\jdk1.8.0_25\lib\visualvm\visualvm;C:\Program 

Files\Java\jdk1.8.0_25\lib\visualvm\ 

Figure 5-.6: This shows the setting for the Java Virtual Machine on the test server. 

The YourKit Java profiler was used to measure the CPU of a conversion from a natural 

query to SQL. The profile modelled the application through the required classes as part of 

the execution cycle. Figure 5.6 shows the performance in milliseconds that each class takes 

to complete a task.  

Table 5.6 shows just how much of the code gets executed when converting a simple natural 

language query to an SQL statement. For the simple example used as part of the test the 

execution time to convert the natural language query to SQL took a total of 665 milliseconds.  

The Java Visual VM tool provides detailed information about Java applications while being 

executed on a Java Virtual Machine. The performance figures highlight the fact that no 

specialist hardware is required to run the process, which could be hosted on commodity 

hardware. To substantiate this table 5.6 shows the results from the Visual Machine usage, 

that the largest resource allocation during testing was 42 Mb which accounted for 51% of all 

memory allocations by the virtual machine. Running tests against larger data will use more 

resources but the need to move to specialist hardware may not be a requirement, though 

further testing will need to be conducted to determine more accurately resource 

requirements. Tuning for performance in high throughput environments can also be 

managed by distributing resources across a platform when bottlenecks are identified. More 

in depth testing will need to be carried out to understand where and when these limits are 

reached. Figure 5.8 shows the memory usage of the conversion process used when 
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converting a simple string like “What are the odds on a game involving abdoulaye diaby?” 

into the SQL statement “select * from event where player = ‘abdoulaye diaby’’. 

Having completed a conversion and extraction of data from the dataset the next step was to 

compare performance of the system discussed in this chapter with other comparable 

systems. For this, the paper by Joshi and Akerkar (2008) proposed a similar approach using 

a Part of Speech based algorithm for converting natural language into an extraction-based 

query. The researchers compared the performance for two systems and the results are 

summarised in Table 5.5.  

 

Type of Data No of 
words 

Time Required by 
QTAG (Used in 
Enlight) 

Time Required by 
Minipar (Used in 
Sapere) 

Times of India 202 1.71 secs 2.88 secs 

Reply START QASystem 

(251Words) University 

Information 

251 3.11 secs  

NMU Broadcaster 226 1.55 secs 2.86 secs 

Wikipedia 226 1.67 secs 3.13 secs 

Average  1.705 secs 2.9925 secs 
Table 5-.5: Shows the performance figures from the Joshi and Akerkar (2007) paper.  

 

Call Tree Time (ms) % 
All threads  665 100 
nlidbPOSNLIDB.main  509 77 
POSNLIDB.java nlidb.POSNLIDB.translate 156 23 
POSNLIDB.java nlidb.POSNLIDB.tokenizer 156 23 
NLTokenizer.java opennlp.tools.tokenizer.TokenizerModel 124 19 
NLTokenizer.java  31 5 

Table 5-.6: Shows the execution time the conversion process takes through the components of the conversion 
code. The data comes from YourKit Java Profiler. The screenshot is in Appendix D. 

The main figures to take away from table 5.6 is that the whole processing time was 

665 milliseconds, and the nlidb.POSNLIDB library used 509 milliseconds. 

Allocated Object Bytes Allocated Objects Allocated 
int[] 42355328 501458 
char[] 13223970 243009 
java.lang.String 3141200 130887 
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java.util.HashMap 2043264 63852 
java.nio.HeapCharBuffer 1691904 35241 
java.langLong 1626240 67750 
jazva.lang.Object[] 1238920 22331 

Table 5-.7: Shows the memory allocation for the conversion process. Original screenshot is shown in Appendix E 

Tables 5.7 and 5.6 highlight the fact that the compute resources required to run a conversion 

process to translate a natural language statement to a language capable of querying a 

database does not require a large amount of resources, either in terms of memory or CPU. 

main figure to take away from the screenshot in figure 5.8 is that the bulk of the resourcing 

required memory for an int array  (42355320 bytes)  and char array (13223976 bytes) 

The paper by Joshi and Akerkar (2008) did not specify the specification of the computer used 

to carry out the benchmark. The questions used by the Joshi and Akerkar (2008) paper were 

taken from the TREC-2005 Question Database but there was some ambiguity in identifying 

the actual datasets used for the benchmarking. In comparison, this chapter has taken a much 

larger dataset and has added the additional complexity of creating a join between two tables. 

The natural language questions used by this chapter were of a similar complexity to the 

questions used in testing carried out by Joshi, Akerkar (2008) and are listed in Figure 5.8.  

The use of an older computer configuration as can be seen from Table 5.4 should be more 

comparable to the server used by Joshi and Akerkar (2008) in their paper. This makes the 

comparison between the two papers more about the performance of the software than the 

hardware. The average conversion time using the solution proposed by Joshi et al (2008). 

was 1.7 seconds with the fastest being 1.5 seconds.  

Testing the solution proposed by this chapter the conversion time from natural language to 

structured query language took consistently under 700 milliseconds. The datasets from this 

chapter consists of two files one containing over 36,000 events and the other over 11,000 

(see Figure 5.5). Were also larger than the datasets used by Joshi et al (2008). as these 

datasets contained approximately 220 records (see Table 5.5). Table 5.5 also shows the 

completion of time for the solution proposed by Joshi et al. (2008) and Table 4.7 also 

contains the times of each process to complete by the solution discussed in this chapter. In 

summary, the tables highlight the improvements in performance the approach being taken 

by the thesis as compared to other existing solutions.  

● Who killed militants? 

● Who did Forman defeat for his first heavyweight championship? 



Page: 86 

 

● What do frogs eat? 

● Who visited Bill Clinton? 

● Who did France beat for the World Cup? 

● What is the largest volcano in the solar system? 

● What is the longest river in the world? 

Figure 5-.7: Sample questions used for performance comparison by Joshi, AkerKer (2007).  

Collection Number of 
Words 

SQL Conversion Data  
Extraction 

ginf.csv  19531  0.665 secs 0.9 secs 
Table 5-.8: Performance from the proposed system which includes the conversion from natural language to SQL. 

5.8. Conclusions  

There are a number of limitations to the system being proposed in this chapter. The storage 

space required for the grammar file and index file might make this solution unworkable. More 

testing against larger datasets is also required to understand the limitations and performance 

of the proposed solution. This chapter has suggested a solution for joining tables together. 

Further testing would also be required to validate the performance of joining more than two 

tables.  

The biggest issue that has not been addressed by this chapter is around the selection of 

data points being retrieved from the underlying database. Currently, the solution relies on the 

statement SELECT * which retrieves all data points from the tables being searched. 

Retrieving data from all columns in the target database could prove to be costly in terms of 

memory and processing resources. Refining the SELECT statement could possibly be 

achieved through the use of deep learning techniques. It may be possible to identify columns 

in tables that have a higher probability of being selected.  

Regardless of the identifiable shortcomings from the proposed system, the thesis has 

reinforced the benefits of using part of speech within a framework that translates natural 

language into a query language for searching a database. Performance of NLIDB solutions 

has been an issue that researchers are continually trying to improve upon the performance 

of NLIDB based solutions. According to the likes of Florin et al. (2017), Gallant (2019), Joshi 

et al (2008), Voorhees (2001) the common performance issues are speed and accuracy of 

conversion. As can be seen from this chapter the performance of the proposed system is an 

improvement in speed when compared against the performance recorded by Joshi and 

Akerkar (2008) as recorded in Table 5.6.  



Page: 87 

 

The question posed at the beginning of this chapter revolved around the requirement to 

understand nuance when converting natural language to a language capable of querying a 

database. This chapter shows that the shallow nature of the parsing through the use of the 

natural language part of speech also reduces the need to understand the complexity 

underpinning language nuance. This has been highlighted by the steps required to take a 

natural language statement and produce a query capable of querying a database. The 

results from the speed of conversion as shown in Section 5.7 shows the improvement in 

performance without understanding language nuance. The next chapter continues the use of 

shallow parsing that highlights not only the increase in the speed of conversion but also 

highlights an improvement to accuracy. The improvement in performance stems from the 

use of machine learning techniques within a sequence-to-sequence model. 
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6. Improving The Shallow Parsing Approach  

6.1. Introduction  

The ideas in this chapter expand on papers presented at the EFiC and IDA conferences in 

2017. Converting natural language into a structured query language (SQL) should be as 

straightforward as translating text from one natural language to another such as French or 

Spanish. SQL is just another language with its own syntax and grammar. The fact that work 

has been ongoing in this field since the LADDER project of the 1960's shows that the 

conversion from Natural Language to SQL is not simplistic. This chapter expands on the 

concepts from the previous chapter and introduces a novel approach to solving this problem. 

The idea proposed in this chapter combines the use of sequence-to-sequence models in 

conjunction with the natural language part of speech technologies and domain specific 

languages to convert natural language queries into SQL. The approach being proposed by 

this chapter is to use natural language processing to perform an initial shallow pass of the 

incoming query and then use Google's Tensor Flow to refine the query with the use of a 

sequence-to-sequence model. The thesis is also proposing to use a Domain Specific 

Language (DSL) as part of the conversion process. The use of the DSL has the potential to 

allow the natural language query to be translated into more than just an SQL statement, but 

any query language such as NoSQL or XQuery.  

Natural Language into Database (NLIDB) has been within the research lexicon for a number 

of years. Early systems such as LADDER, PRECISE, NaLIX and WASP emerged from the 

research community but failed to make any major impression within industry. A recent 

literature review by Ahkouk et al (2019) has highlighted the lack of uptake by the commercial 

software vendors was based on the poor performance of the translation from natural to SQL. 

The performance issues can be categorised into two broad based areas. The first of these is 

how to handle the nuance of language in the conversion from natural language to SQL. This 

point has been identified by the likes of Voorhees et al (2001) and Bais et al (2018). The 

second of these issues is based on the accuracy of the conversion from natural language to 

SQL through lack of understanding the underlying database. This has previously been 

highlighted by the work of both Joshi et al (2008) and Skeggs et al (2019).  

This chapter proposes a solution to solve both the language nuance that was highlighted by 

both Voorhees et al (2001) and Bais et al (2018) and performance issues with accuracy of 
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converting natural language to SQL as shown by Joshi et al (2008). The approach being 

proposed is to use shallow parsing as this does not require an under-standing of language 

nuances, it identifies keywords in the input text as discussed in the paper of Ratnaparkhi and 

Adwait (1996). These keywords are used to identify characteristics in the input statement 

that are important for the search. Jwalapuram and Mamidi (2007) are among a number of 

authors who have carried out research into using keywords to enable NLIDB based systems 

to perform searches. The keyword searching proposed in this chapter is built from the 

underlying database unlike that proposed by Jwalapuram & Mamidi (2007). Both 

Jwalapuram & Mamidi (2007) and this chapter propose using a Part of Speech (POS) tagger 

but this chapter is also proposing to use a sequence to sequence model to refine the 

translation to SQL. 

To support the testing and validation of the work being discussed in this chapter, the 

process is tested against an AirBnB dataset. The rational for using this dataset is that it is 

used by the WikiSQL project and has a process for marking the output for the text to SQL 

conversion process. There are few datasets available that allow for the same type of 

validation as the datasets found in the WikiSQL project.  

6.2. Related Work  

Most of the work related to this project have either taken an approach that has relied on 
semantic parsing or on the use of sequence-to-sequence models. Some projects like the 

approach being proposed by this chapter have taken a multi-step approach. The sections 

below discuss the work within semantic parsing and sequence to sequence that relate to this 

chapter along with the use of combining multiple steps and technologies to convert natural 

language to structured query language.  

6.2.1. Semantic Parsing  

The concept of semantic parsing in its simplest form is taking a natural language statement 

and converting it to a logical form that is machine understandable. Lin et al (2017) take this 

concept in its purest form to convert natural language to bash. This chapter also highlights 

that it is not just SQL being used as a target for converting natural language to machine 

capable language. This chapter concentrates on the use of SQL as a target language. The 

research by Shah et al (2020) is based on speech to SQL and as part of their solution they 

propose a new language SpeakQL. They also create a dataset specifically for speech-based 

SQL conversions. The approach used by Shah et al (2020) relies on semantic parsing for 
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the creation of the SQL statement. Research into the use of semantic parsing can be 

classified under the following headings: executed guidance, tree structures, underlying 

database structured, descriptive language and user interactions.  

6.2.2. Executed Guidance  

The first of these executed guidance uses statistical analysis to select the best output from a 

number of possible solutions. This approach originates from the work carried out by Wang et 

al (2018). Their concept looks at statements in various stages during the conversion process 

and discards those statements that cannot complete the conversion to SQL. Yin, Neubig 

(2019) take a similar approach to Wang by ranking the predicted output from the conversion 

model selecting those with the highest score. Talmor and Berent (2018) take this one step 

further by using the internet as their model for training.  

6.2.3. Tree Structures  

Use of tree structures for solving the problem with semantic parsing has been used by both 

Cheng et al (2018) and Yin et al (2018). In the case of Cheng their work uses the tree 

structure with a domain grammar to ensure that the conversion is accurate. In contrast Yin et 

al use tree structures to hold the training data which can be labelled or unlabelled.  

6.2.4. Underlying Database Structure  

Karki et al (2019) and Bogin et al (2019) both rely on the underlying database structure as 

part of the process in parsing the natural language statement. Bogin et al (2019) model the 

database structure within a graph schema as a method of understanding the relationships 

between tables. In contrast Karki et al (2019) construct a row and column based grid from 

the database features.  

6.2.5. Descriptive Language  

The use of a descriptive language can also be used with the semantic parser. In the case of 

Yin and Neubig (2018) they propose using abstract syntax description language for parsing 

the natural language onto an SQL template. Lin et al (2019) use a schema dependent 

grammar to map the natural language onto a SQL syntax. Campagna et al (2019) look at 

using a Virtual Assistant Programming Language (VAPL) to formalise the natural language 

statement. Cheng et al (2019) take a similar approach to Campagna et al (2019) as they use 

templates that can map the text from the natural language onto an SQL structured template.  
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6.2.6. Sequence to Sequence Models  

In contrast to semantic parsing the concept of a sequence-to-sequence model is to train a 

model to take a sequence from one domain or language and convert to another domain or 

language. These models have been used to convert text from one natural language to 

another and have now been introduced to convert from a natural language to a programming 

language such as bash in the case of Lin et al (2018) or SQL as proposed by Shi et al 2018.  

Recent research using sequence to sequence models has extended the approach typically 

used by Lin et al (2018) which takes a natural language statement and then compares it to a 

bash command. In short a sequence to sequence model is a type of Encoder-Decoder 

model using recurrent neural networks (RNN).  From the research undertaken in this field a 

Sequence-to-sequence research project can be categorised into two streams.   

● Models that have begun using the content from the database rather than the 

database structure to understand the structure of the data,  

● Models that are chunking the natural language statement into smaller more discrete 

blocks to create multiple seq2seq models.  

In the model proposed by Shi et al 2018 their work uses a sequence to action model. The 

solution uses a SQL template with place holders to contain the name of the table, columns 

and variables. Sequence to action models are then used to parse the appropriate values into 

the template. With this project the underlying database structure is central to the conversion 

process.  

There are also extensions to the traditional sequence to sequence model such as the work 

carried out by Xu et al (2018) which uses a graph based neural network to create a graph to 

sequence model. The work carried out by Yu et al (2018) uses a tree network to create what 

they refer to as a text-to-SQL model. Wang , Tian et al (2018) also take a similar approach 

with their text to SQL model. Wang instead proposes separating the data from the schema 

within the sequence model. Guo et al (2019) also propose a text-to-SQL model by creating a 

multiple step approach to the problem of converting natural language to SQL. As part of the 

process the solution creates a synthetic query language from the natural language 

statement and database structure. The final query is inferred from the synthetic query.  

In parallel to the extension of the sequence-to-sequence model the more traditional 

sequence to sequence model is being refined by the likes of Soru et al (2018) which like Xu 
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et al (2018) uses graph patterns to learn the sequence make up of relationships between 

elements. The work by Soru though is more of a traditional sequence to sequence approach. 

In comparison Su et al (2018) propose using multiple sequence to sequence models at each 

step along the process of conversion. They also support the use of user interaction to 

correct errors in the process of converting natural language to SQL.  

Part of a sequence-to-sequence solution relies on the decoding or the translation from the 

input to the output. Bello et al (2018) assigns an item score as part of the decoding process. 

The score is based on historical data, and according to Bello allows for higher-order 

interactions. In contrast Zavershynskyi et al 2018 use a multiplicative attention mechanism 

as part of the RNN within the decoder.  

The work performed by Guo and Gao (2018) like Su et al (2018) chunked the natural 

language statement into smaller elements thereby creating a chain of sequence-to-

sequence models. Within the WHERE clause the team ranked possible solutions based on 

historic data to choose the option with the highest ranking score.  

Other approaches for handling sequence to sequence models like Petrovski et al (2018). 

The team proposes removing the database structure completely from the sequence-to-

sequence model and relying solely on the content of the tables to describe the content of the 

database table. Then Sabour et al (2019) were more concerned with the method of training 

the sequence-to-sequence model. The approach they propose was to create an Optimal 

Completion Distillation (OCD). This required statistically sampling the data used for training 

based on predefined characteristics. 

The Python TensorFlow library provides a sequence-to-sequence library which is employed 

by this project to build the model. The sequence-to-sequence model was not and does not 

need to be a highly refined custom model. This project, even though it is a proof-of-concept 

project, wants to show that sequence to sequence models could be used in the context of a 

natural language to structured query language domain capable of successfully searching a 

database.  

6.2.7. Multi Step Architecture  

Sequence to sequence models and semantic parsing are two approaches that concentrate 

on a single part of the process required to convert natural language to a structured query 

language. Few like the approach being proposed in this chapter have taken a multi step 

approach to refining the process of converting natural language to SQL. Polosukhinet et al 



Page: 93 

 

(2018) use a multi step approach within their work which takes a similar approach to that 

being proposed by this chapter. Both this chapter and the work by Polosukhinet et al (2018) 

use a domain specific language (DSL) as part of the conversion process. In contrast the 

work carried out by Polosukhinet et al (2018) use an extension to the sequence-to-sequence 

model that they refer to as Seq2Tree whereas the solution being proposed by this chapter 

uses a more standard version of the sequence to sequence model as proposed by Soru et al 

(2018).  

Likewise Lukovnikov et al 2018 use a combination of augmented pointer along with LSTM 

column encoders, and a sequence to sequence model in conjunction with semantic parsing 

to translate the natural language statement into a query language. Taking a similar approach 

is Choi et al (2020) again using sketching like the work carried out by Zhang et al (2020) to 

extract the pertinent data from the natural language input statement which can then be 

transposed on the SQL template. Unlike the work being proposed by this chapter they also 

propose recursively predicting nested statements.  

In Joshi et al (2020) take a hybrid approach to the conversion of text to SQL. Their work 

uses a series of sequence-to-sequence models to create the SQL statement they also 

propose user interaction. Unlike Gur et al 2018 who propose user interaction to refine the 

process, Joshi et al (2020) are after restricting the inputs from users to avoid linguistic 

variations and ambiguities in the statement.  

6.3. The Model  

The model being proposed by this chapter uses a multi architectural approach similar to 
Polosukhinet et al (2018) encompassing a number of technologies in the pursuit of 

converting a natural language query into an SQL statement. The approach uses not just 

sequence to sequence models but also domain specific languages and shallow syntactic 

parsing. Natural Language Parsing is used to identify important features in the input 

statement. Having identified the features, the detail is wrapped into a JSON object for 

storage and ultimate transformation to SQL. Figure 6.1 shows the flow of data through the 

proposed system highlighting the steps that the input natural query statement undergoes as 

part of the translation to structured query language. This process differ slightly from the 

previous section in that a sequence to sequence model has now been introduced into the 

flow and the parse process that finally creates the SQL statement has been refined into an 

internal light DSL. This section discusses the process in detail.  
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Figure 6-.1: The diagram shows the flow of data through the proposed system. The sequence to sequence model 
is introduced to the conversion process. The input is now the DSL proposed by this chapter. 

The processing steps through the system are: 

• The input into the process is the proposed DSL. Taking this approached reduces the 

amount of configuration required for the parsing and tagging steps. It may also be 

possible to remove the step that takes out the stop words, though more testing is 

required. 

● Parse the input statement into tokens: The natural language query is broken into 

word tokens using the appropriate tagger. This chapter proposes the use of two 

taggers OpenNLP Part of Speech tagger and the OpenNLP Names Tagger. Both 

taggers can be used in parallel each to perform the task of identifying key words that 

are useful to the conversion process and to identify names that are within the input 

statement.  

● Parse Tokens and tag. The next step is to take the word tokens which is the output 

from the previous step and apply a tag. The grammar file contains the details of the 

tags to be applied to each token.  

● Remove stop words. The next step is to remove the stop words from the process as 

these words add nothing to the conversion process. This step potentially redundant 

with the use of the DSL as an input.  

● Run untagged words through sequence to sequence. Then any words that remain 

untagged can be run through the TensorFlow sequence to sequence model and 

appropriate tags can be applied to those word tokens. 

● Apply DSL. The proposal is to use an internal light DSL which will take the data 

structure that contains all the tagged data and create the SQL statement. The idea 
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for the internal DSL is that the output from this step could in fact be any query 

language not necessarily SQL. 

6.3.1. Natural Language Processing  

The Natural Language toolkit used by this chapter is the NLTK Python based NLP toolkit 

developed by Bird et al (2008). The advantage of using this library with Python was the 

speed at which a proof of concept application could be developed. The idea behind the use 

of natural language processing in this chapter is for the identification of important 

components within the natural language input to facilitate the conversion to structured query 

language. This chapter uses part of speech and name tagging to extract pertinent data from 

the input query. Having first specified elements which are important for the processing step 

as shown in code sample 6.1 and code sample 6.2. The structure used stores the keywords 

and associated tag as a Python list. The first element in the list is the keyword or identifying 

regular expression followed by the tag.  

As part of the NLP process the input statement is tokenised with each word being extracted 

using the space character as identifying when a word ends. Known elements are extracted 

from the input query and tagged before being stored as a JSON object. Code sample 6.1 

shows how a regular expression can be used as part of the tagging process. The regular 

expression statement shown in code sample 6.1 identifies postcodes within the input query. 

patterns= [ 

(r’( [ A-Za-z ] [ A-Za-z ] ? [0-9] [0-9] ? [ \s ] ? [ A-Za-z ] ? [0-9] [0-9] ? [ A-Za-z ] 

[ A-Za -z]) 

(r’( [ A-Za-z ] [ A-Za-z ] ? [0-9] [0-9] ?)’,’out’), 

(r’( [ A-Za-z ] ? [0-9] [0-9] ? [ A-Za-z ] [ A-Za-z]),’in’)) 

Code Sample 6-.1: This code extract shows a potential solution to how postcodes could be handled with the use 
of regular expressions. It also shows how a regular expression can be used within the NLP tagging process.  

The code extract shown in code sample 6.2 shows a more conventional approach to setting 

up a NLP tagger within an NLP process. A value extracted from the underlying database is 

tagged with the column name from where it came. The tag is later used within the SQL 

statement as part of the select statement.  

names =[ 

( ‘Chris’ , ‘firstname’) 

] 

Code Sample 6-.2: NLP tagger grammar construct for use in extracting names.  
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The grammar construct is used by the tagger function shown in code sample 6.3 to identify 

each individual word in the input statement. The tagger function takes three parameters:  

● tokens: This is each word from the input query as a list of tokens. The tokens are created 

from the tokeniser function by splitting the input statement on the space character.  

● patterns: This is the list of predetermined keywords with associated tags. This is the first 

of the taggers  

● names: This is the list of predetermined keywords with associated tags. This is the 

second of the taggers and in the example, it is used as the back-off tagger. A back-off tagger 

comes into its own when the primary tagger fails to identify a word for tagging.  

def Tagger (tokens, patterns, names): 

    name_tagger = nltk.RegexpNameTagger(names) 

    regexp_tagger = nltk.RegexpTagger(patterns, backoff=name_tagger) 

    tagged = regexp_tagger.tag(tokens) 

 

    for x in range(len(tagged)): 

        if tagged[x][1] ==’out’ and tagged[1+x][1] = ‘in’: 

            tagged.append (tagged[x][1] + ‘ ‘ +  tagged[1+x][1], 

‘postcode’) 

 

    return tagged 

Code Sample 6-.3: A simple Python function that will tag an input statement and create a JSON construct to 
contain each word token with the appropriate NLP tag. The function takes 2 taggers. 

Code Sample 6.3: A simple Python function that will tag an input statement and create a 

JSON construct to contain each word token with the appropriate NLP tag. The function takes 

2 taggers.  

The returned value from the function shown in Table 5.3 is the chunked input statement 

tagged with the appropriate NLP tag stored as a JSON object. From the following example a 

simple natural language input query ‘which Chris lives in the area EC2A 5AP. The output 

from the tagging function is shown in Table 5.4. 

[(‘which’, ‘None’), (‘Chris’, ‘firstname’),  (‘lives’, ‘None’), (‘in’, 

‘None’),  (‘the’, ‘None’ ), ( ‘area’, ‘None’), ( ‘EC2A 5AP’, ‘postcode’)] 

Code Sample 6-.4: JSON output from the simple input query.  



Page: 97 

 

Words from the input query that cannot be identified by the tagging processes are tagged 

with None. The untagged words can still be useful for the transformation to SQL. Next, stop 

words are removed from the list of untagged words. The final step is then used by the 

Sequence-to-Sequence Model (section 6.3) to identify which words can be identified and 

tagged as having a relevance to the underlying database and should be part of the query.  

6.3.2. Internal Domain Specific Language  

Having identified which words within the input statement are pertinent to the conversion from 

natural language query to SQL statement. Expanding on the parse process in the previous 

chapter the process has been refined and now resembles a domain specific language. 

Dursen et al define a Domain Specific Language as a "small declarative language that offers 

expressive power focused on a particular problem domain". The particular domain that this 

chapter is concerned with is converting JSON (JavaScript Object Notation) to SQL. The 

current process will need to be refined further for it to be a pure domain specific language 

implementation.  

During the development phase of the internal domain specific language, it was noticed that 

the target output could potentially be another language such as Xquery or NoSQL. More 

work will be required to complete the internal DSL with further work required to target other 

languages.        

6.3.3. Sequence to Sequence Models  

Sequence to sequence models are currently being used in speech recognition systems as 

shown by the work carried by Chui (2018) as well as in language translation scenarios using 

neural networks which as proposed by Weiss et al (2017). The paper by Weiss et al (2017) 

highlights their use in language translation as it proposes a solution for translating Spanish 

text to English. The same principles can be applied in the translation from English to 

Spanish as English to SQL. Structured Query Language is after all just another language but 

one that is designed to work with databases as described in ISO/IEC 9075-2:2016.  

This chapter proposes taking these already defined use cases for sequence-to-sequence 

modelling and applying them to translate a natural language into an SQL statement capable 

of querying a database. In this chapter the first sequence of words is the natural language 

input and the second sequence is the equivalent SQL translation.  
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We propose using the machine learning components within TensorFlow to create the 

Sequence-to-Sequence model. Both Chung-Cheng Chui et al (2018) and Yaser et al (2019) 

propose using sequence to sequence models for translating one natural language into 

another natural language, proposing that the approach improves accuracy of translation. 

The researchers have not considered the application of this approach for use with a query 

language like SQL, and the improvement in accuracy it gives. In this section we look at the 

implementation of the following approach.  

The sequence-to-sequence model first takes the words that were not successfully tagged as 

part of the natural language process defined in section 3.1 and were not identified as stop 

words. These words are then compared to the translation file, an extract of which is shown in 

code sample 6.5. Associated with each input statement is a corresponding sequence which 

is used to build up the final SQL statement. From code sample 6.5 the first column shows 

the words from the input statement which are to be translated (area, name, address). The 

second column contains the appropriate translation to be used. In the case of the word area 

the translation is tbl_customer, address.  

area    tbl_customer, address 

name    tbl_customer, firstname surname 

address    tbl_customer, house_name_number first_line town city postcode  

Code Sample 6-.5: The table shows the content of the tab separated sequence to sequence translation file.  

The entries in the second column (tbl_customer, address) are database components. Within 

this chapter the first element tbl_customer is the name of the database table, the second 

element address is the column within the table that could be applied as part of the 

translation for area.  

The sequence-to-sequence model requires a data definition file that takes the expected 

input and the corresponding output file. Sequence to Sequence (seq2seq) models typically 

use Recurrent Neural Network (RNN) architectures to solve language problems like machine 

translation and chatbots. The sequence-to-sequence model being used in this thesis falls 

into the machine translation grouping as it takes a natural language input and converts to a 

machine language output. The approach being used in this thesis differs from the normal 

approach which is to convert from one natural language to another. Like most sequence-to-

sequence models the approach being used in this thesis is to use an encoder-decoder 

model. 
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The sequence-to-sequence model requires a dictionary of terms, this is an expected input 

and a corresponding expected output. In the case of this project the input is a series of 

natural language words and the expected output is a series of database objects that can be 

extracted from the underlying database. These database objects are database table names 

and table attributes (column names).  

Model Input Model output 
['area', 
 'room', 
 'accomodation', 
 'address', 
 'district', 
 'city', 
 'country', 
 'organisation', 
 'person', 
 'school', 
 'club', 
 'team'] 

['ab_nyc_2019, neighbourhood_group', 
 'ab_nyc_2019, room_type', 
 'ab_nyc_2019, room_type', 
 'ab_nyc_2019, neighbourhood_group', 
 'ab_nyc_2019, neighbourhood_group', 
 'organisations, city ', 
 'organisations, country ', 
 'organisations, org_name ', 
 'contacts, lastname', 
 'sports_clubs, school_name', 
 'sports_clubs, club_name', 
 'sports_club, team_name'] 
 

Table 6-.1: An extract from a data dictionary used in this thesis to highlight the use of a sequence to sequence 
model. This is based on the data from code sample 6.5 but represented as two lists of data. 

The content of code sample 6.5 cannot be generated initially through an automated script. 

Identifying the database table and the associated database column can be automated. 

Matching the keyword with the appropriate database table and column is not currently 

possible to automate. The process for building up the file in this chapter was a manual 

process. The design and testing of the model should allow for keywords to be identified and 

matched with the underlying database table and table attributes. Using production queries to 

identify and match keywords with database components should be encouraged.  

The sequence-to-sequence model used for this chapter was a small sequence model 

published in a python reference book State of-the-Art Speech Recognition with Sequence-to-

Sequence Models. Part of the logic for choosing this particular algorithm was to emphasise 

that a simplistic sequence to sequence model could be used as part of an architecture for 

translating natural language into SQL. The sequence-to-sequence algorithm was originally 

designed and used to demonstrate how it could act as a chat-bot. With the addition of the 

natural language tagger from section 3.1 and the domain specific language described in 

section 3.2 this chapter shows how the same algorithm can be applied to the translation of a 

natural language statement to SQL.  

The model used in this project was created using Google’s TensorFlow. The Figure 6.2 is a 

pseudo code representation of the actual python model. Within the pseudo code example 
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the data to be modelled is split between the input which is extracted from the incoming 

natural language statement and the output which is the data from the dictionary or in the 

case of Table the model output.   

 

Seq2SeqModel 

    #intialise a number of terraform placeholders that will contain the 

data for the sequence to sequence model. 

    X = placeholder 

    Y = placeholder 

    X_len = placeholder 

    Y_len = placeholder 

 

    # for the encoder  

    Create a randomised tensor  

    create a look-up for the tensor 

    Add an index to the data 

 

     # for the decoder  

    Create a randomised tensor  

    create a look-up for the tensor 

    Add an index to the data 

     

    # for the encoder  

    Create the RNN cell 

 

    # for the decoder  

    Create the RNN cell 

 

    create logits for the softmax function  

    

    Use the Adam optimizer for training. 

Code Sample 6-.6: A pseudo representation of the sequence to sequence model used in his project. 

Tensors are created for both the encoder which is the input data to the model and the 

decoder which is the output from the model. A tensor lookup and an index are also created 

for both the encoder and the decoder. Multi RNN cells are created for both the encoder and 

the decoder. A logits is also used before using the Adam optimizer. 

The Sequence-to-Sequence model within this chapter uses a long short-term memory 

(LSTM) recurrent neural network (RNN). The internal memory of the LSTM network is 

particularly useful for the processing of sequence data. Prabhavalkar1 et al (2017) and 
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Chung et al (2014) both support the concept of using RNN within a Sequence-to-Sequence 

model, for the performance benefit over other neural network models. Prabhavalkar1 et al 

(2017) also states that increasing the numbers of layers in the decoder increases the 

performance of the model by up to 7%. Their paper does not identify a recommendation of 

the optimal number of layers nor does it recommend what the upper limit on number of 

layers should be. The number of layers that are being used by this chapter are two which is 

highlighted in Table 6.6. Setting the number of layers to two ensured that this proof of 

concept model was not optimally tuned and would also reduce the amount of time required 

to run the model.  

The python code for testing the model is a simple script that follows the following steps. 

● Reset the tensor flow DAG. 

● Create a tensorflow interactive session. 

● Pass the parameters into the tensorflow model. 

● Bookmark and save model. 

 

The actual code used for testing is shown in code sample 6.7. 
 
tf.reset_default_graph() 

sess = tf.InteractiveSession() 

model = seq2seq(size_layer, num_layers, embedded_size, 

vocabulary_size_from + 4,  

                vocabulary_size_to + 4, learning_rate, batch_size) 

 

sess.run(tf.global_variables_initializer()) 

 

saver = tf.train.Saver(tf.global_variables(), max_to_keep=2) 

checkpoint_dir = os.path.abspath(os.path.join('./', 

"checkpoints_chatbot")) 

checkpoint_prefix = os.path.join(checkpoint_dir, "model") 

Code Sample 6-.7: The simple python code used to train the model. 
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The code sample 6.8 shows a simple testing script written in Python to test the accuracy of 

the model.  

 

for i in range(epoch): 

    total_loss, total_accuracy = 0, 0 

    for k in range(0, (len(text_from) // batch_size) * batch_size, 

batch_size): 

        batch_x, seq_x = pad_sentence_batch(X[k: k+batch_size], PAD) 

        batch_y, seq_y = pad_sentence_batch(Y[k: k+batch_size], PAD) 

        predicted, loss, _ = sess.run([tf.argmax(model.logits,2), 

model.cost, model.optimizer],  

                                      feed_dict={model.X:batch_x, 

                                                model.Y:batch_y, 

                                                model.X_seq_len:seq_x, 

                                                model.Y_seq_len:seq_y}) 

             

        total_loss += loss 

        total_accuracy += check_accuracy(predicted,batch_y) 

            

    total_loss = (len(text_from) / batch_size) 

    total_accuracy = (len(text_from) / batch_size) 

    print('epoch: %d, avg loss: %f, avg accuracy: %f'%(i+1, total_loss, 

total_accuracy)) 

    path = saver.save(sess, checkpoint_prefix, global_step=i+1) 

 

            

    total_loss = (len(text_from) / batch_size) 

    total_accuracy = (len(text_from) / batch_size) 

Code Sample 6-.8: A simple python script to test the accuracy of the model. 

The output from the test script is. 

epoch: 1, avg loss: 0.156250, avg accuracy: 0.156250 

The value for the epoch is a parameter that is passed into the model as can be seen from 

Table 6.2. The average loss value at 0.15 and an accuracy of 0.15 has little meaning from 

the sample set used as the sample set is too small to produce accurate values. 

The sample python script in code sample 6.9 shows how the word passed into the function 

calls the model to produce an output. Taking the word ‘area’ from the dictionary in Table 6.1, 

the return value from the model is ‘neighbourhood_group’. 
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def predict(sentence, rev_dictionary_to): 

    X_in = [] 

    for word in sentence.split(): 

        try: 

            X_in.append(dictionary_from[word]) 

        except: 

            X_in.append(PAD) 

            pass 

         

     

    test, seq_x = pad_sentence_batch([X_in], 1)#PAD 

     

    input_batch = np.zeros([batch_size,seq_x[0]]) 

    input_batch[0] =test[0]  

         

    log = sess.run(tf.argmax(model.logits,2),  

                                      feed_dict={ 

                                              model.X:input_batch, 

                                              model.X_seq_len:seq_x, 

                                              model.Y_seq_len:seq_x 

                                              } 

                                      ) 

     

    result=' '.join(rev_dictionary_to[i] for i in log[0]) 

    return result 

Code Sample 6-.9: A simple function that is used as an entry point to the sequence to sequence function. 

The parameter values used for this model are shown in code sample 6.8. There was no 

performance tuning carried out to optimise the performance of this model. The values were 

chosen based on experience working with other similar models.  
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VARIABLE  VALUES  DESCRIPTION 

SIZE_LAYER  128 Long short-term memory unit (LSTM) recurrent network cell. The 

number of units in the LSTM cell. 

NUM_LAYERS  2 RNN cell composed sequentially of a number of multiple simple 

cells. 

EMBEDDED_SIZ E 128 The generated values follow a uniform distribution in the given 

range 

LEANING_RATE  0.001 The default value of is 0.001 is a highly recommended default 

value [27] 

BATCH_SIZE  32 defines the number of samples to work through before updating 
the internal model parameters 

EPOCH  1 The number of times the algorithm is going to run 

Table 6-.2: Shows the value of the neural network parameters used by this chapter. The parameter values have 
not been changed from the original model.  

The parameter values used for the model were selected based on the parameters used by 

another model that had previously been developed to identify certain words in a streamed 

dataset. From previous experience working with sequence-to-sequence models it was 

believed that the parameters chosen would provide a satisfactory response for a proof of 

concept scenario. Further refinement of the parameter values may provide improved 

performance in both speed and accuracy of conversion. This model refinement was not part 

of the original project scope. The idea behind these settings was to deliberately use 

parameter values that were not optimised.   

For the model used in this chapter the epoch was set deliberately low and not just to 

improve the speed at which the model is trained but to also show that the model was 

effective with minimal training. With the epoch being set to 1 the training time was only 0.001 

seconds. A side effect of having such a low epoch is to highlight in the simple example of 

this chapter the accuracy of the sequence-to-sequence translation is still high which is 

discussed in section 6.4.   

The training values from the algorithm are epoch 1, average loss 0.093750 and average 

accuracy of 0.093750. With an epoch of 1 and a batch size of 32 reading too much into the 

values of loss and accuracy should be discouraged. Parsing name and area into the Tensor  
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Flow sequence to sequence model the output is as expected, area returns the table 

tbl_customer and the attribute address. The input of name returns the table tbl_customer 

with the attributes firstname and surname.  

Putting all the pieces together, the algorithm takes the natural language input statement of 

‘Chris lives in the area EC2E 5BR?’. The input statement is passed to the model and the 

parameters from the input query make up the requested parameters from the select 

statement. Then using the details from the sequence-to-sequence model details of the table 

to be queried and conditions of the query are constructed. The returned SQL statement from 

the model is,  

select address, house_name_no, first_line, town, city, country, 

postcode, firstname, surname where firstname like ‘Chris’ or out 

like ‘EC2E’ or in like ’5BR’ or postcode like ‘EC2E 5BR’  

The entire process from input statement to SQL query took 7 seconds which also includes 

the training time for the model on a laptop running OS Name Microsoft Windows 10 Pro 

Version 10.0.18362 Build 18362. The processor is Intel(R) Core(TM) i57200U CPU @ 

2.50GHz, 2712 Mhz, 2 Core(s), 4 Logical Processor(s) running 8Gb RAM.  

6.4. Validating the Model  

Having developed the approach against a small dataset the next step was to validate the 
model against a larger dataset. To test the approach being proposed by this chapter we 

used the New York City Airbnb data available from Kaggle  

(https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data/data) as the underlying 

dataset. The data set has 49000 entries and 16 columns in a single CSV file, the meta data 

for the dataset is shown in Appendix B. Using the same preparation as discussed in section 

3 the first step is to build a tagging model for the data. A sample configuration for tagging the 

words is shown in code sample 6.10, the values are taken from the underlying dataset which 

in the case of the New York City AirBnB dataset is the column names, therefore we have 

tags such as firstname, neighbourhood_group and room_type.  

names =[ 

(‘Chris’,’firstname’), 

(‘Brooklyn’,‘neighbourhood_group’), 

(‘Manhattan’, ‘neighbourhood_group’), 
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(‘Queens’, ‘neighbourhood_group’), 

(‘Staten Island’, ‘neighbourhood_group’), 

(‘Bronx’, ‘neighbourhood_group’), 

(‘Private Room’, ‘room_type’), 

(‘Entire Home/Apt’, ‘room_type’), 

(‘Shared Room’, ‘room_type’), 

] 

Code Sample 6-.10: The content of the NLP tagger.  

With the NLP tagging configuration shown in code sample 6.10 the natural language query 

looking for a room in Brooklyn can be tagged, the output of which is shown in code sample 
6.11. The tagging phase only picks up the name Brooklyn the rest of the words are labelled 

as None.  

[(looking, ‘None’),  (‘for’, ‘None’),  (‘a’,  ‘None’), (‘room’, ‘None’) 

(‘in’, ‘None) , (‘Brooklyn’, ‘neighbourhood_group’)] 

Code Sample 6-.11: Shows the output from the NLP tagger. 

The content of the JSON object is just {"neighbourhood_group":"Brooklyn"}. Next step is to 

drop stop words from the input state statement which just leaves the word room. From the 

sequence-to-sequence model an extract of which is shown in figure 6.2. it can be 

determined that the word room will be mapped to room_type which is a column in table 

AB_NYC_2019.  

area              AB_NYC_2019, neighbourhood_group 

room              AB_NYC_2019, room_type 

accommodation     AB_NYC_2019, room_type 

address           AB_NYC_2019, neighbourhood_group 

district          AB_NYC_2019, neighbourhood_group 

Figure 6-.2: The content of the Sequence to sequence file used as part of the configuration used with the Airbnb 
dataset.  

The last step of the natural language to SQL process is building the SQL statement. The 

model generates the statement select neighbourhood_group,room_type from ab_nyc_2019 

where neighbourhood_group like 'Brooklyn' from the natural language query looking for a 

room in Brooklyn. Part of the reasoning behind using the Airbnb dataset was not just the size 

of the dataset but also all the data was stored in a single table. More work will need to be 

completed to show how the process would work with a query searching multiple tables.  
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6.4.1. SQL Validation  

Having created the SQL statements the next step is to validate the accuracy of the 

conversion. The thesis is proposing to use two metrics to perform the marking process. The 

first of these metrics is the Jaro Winkler distance metric (1999) and the second is the 

Damerau Levenshtein distance. The work carried out by Cahyono (2019) and Zhao (2019) 

highlight a use case for using these algorithms. The advantage of using Damerau 

Levenshtein is the algorithm takes into consideration character insertion, deletion and 

transposition as described by Damerau (1964). The approach taken by Jaro Winkler (1999) 

uses a prefix scale p which gives a more favourable rating to strings that match from the 

beginning for a set prefix length l.  

Both the Levenshtein Damerau and the Jaro Winkler distance measure the similarity 

between two strings. The two strings in question are firstly the SQL statement that the 

algorithm created by this chapter and the second is the SQL statement that is expected from 

the translation process. Pitchaimalai et al (2008) proposed using the Euclidean distance for 

evaluating the performance of SQL queries. The Levenshtein Damerau distance allows 

insertion, deletion, substitution, and the transposition of two adjacent characters. The Jaro 

Winkler metric compares the commonality between characters. The Euclidean distance 

treats the string as two vectors and compares the distance between them. It is arguable but 

when comparing SQL statements for this chapter the Euclidean distance did not prove to be 

as useful as Levenshtein Damerau and Jaro Winkler metrics. More research into this area is 

required as the current level of research appears to be lacking.  

Appendix C shows a table extract of expected SQL statements compared with calculated 

statements. The calculated statements have been designed with the ‘UNION’ directive as it 

was found to be easier to compare two types of SQL statements using this clause. For 

comparison the compound calculated statement is separated into individual select 

statements separated by the ‘UNION’. The first five columns from both table 6.3 and 6.13 

are for queries that have configuration within sequence-to-sequence configuration file. 

These queries have been tuned so keywords in the natural language input statement have 

been mapped to database objects such as table or column names. The remaining entries 

have no such configuration within the sequence to sequence model and as such can be 

classed as untuned.  
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Table 6-.3: This table shows the results from measuring the SQL statements created by the algorithm proposed 
by this chapter and the expected output using the Levenshtein Damerau Distance. The underlying data for this 
table is shown in Appendix C. 

From Table 6.3, each column represents an output from the algorithm which is made up of a 

number of SQL statements combined together using the SQL JOIN directive. Each row 

represents a SQL query separated by the JOIN directive. It should be noted that the 

resulting output from query 4 only has only three SQL statements as compared to the other 

queries having five SQL statements being joined.  

 

Table 6-.4: This table shows the results from measuring the SQL statements created by the algorithm proposed 
by this chapter and the expected output using the Jaro Winkler Distance. The underlying data for this table is 
shown in Appendix C. 
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In Table 6.4 each column represents an output from the algorithm which is made up of a 

number of SQL statements combined together using the SQL JOIN directive. Each row 

represents a SQL query separated by the JOIN directive. It should be noted that the 

resulting output from query 4 only has only three SQL statements as compared to the other 

queries having five SQL statements being joined.  

Using the Jaro Winkler distance the scores for the SQL statements range from 0.5 to 0.8 

with an overall average of 0.6. The average score for the tuned SQL statements is 0.65 

while the score for the untuned statements is 0.67. The closer the score is to 1 the more 

accurate the calculated output is to the expected output. Looking at the average scores 

sample test carried out within this chapter shows that the results are inconclusive but for 

query 5 the average score is a more respectable 0.7 and a maximum value of 0.84 is even 

closer to 1. The small sample from this chapter shows that the untuned data can be just as 

accurate as the tuned queries. With the Levenshtein Damerau Distance the closer the score 

is to 100 the more accurate the translation. The average score for the tuned SQL statements 

is 50, while the average score for the untuned statements is 56. Again while the score of 50 

is inconclusive query 9 shows that an untrained query can obtain an average of 80.  

The approach being proposed by this chapter does require further refinement and more data 

to test against. The results highlight the problem that marking an SQL statement, against an 

arbitrary idealised statement, could bias the results as the score is calculated by comparing 

two arbitrary strings. Further research will need to be carried out on comparing SQL 

produced by this chapter against an optimised SQL statement.  

6.4.1.1. WikiSQL  

Having tested the proposed approach with the Kaggle New York AirBnB dataset and using 

Levenshtein Damerau Distance as well as the Jaro Winkler Distance to measure the 

accuracy of the resulting SQL statements. The next step in validating the usefulness of the 

proposed approach is to test the model against the Victor Zhong et al (2017) WikiSQL 

dataset and show how it compares against other approaches. The WikiSQL corpus is a 

record of over 80,000 natural language questions that can be asked against a database, this 

corpus has been hand annotated, which this chapter uses for building up a grammar file. 

Along with the corpus the WikiSQL team provides the corresponding SQL statements and 

associated database tables for marking and testing any NLIDB solution.  

Table 6.5 is an extract of the test dataset supplied as part of the WikiSQL project. It shows 

the natural language questions as well as some of the annotation that is supplied with the 
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dataset. In testing the accuracy of the model proposed by this chapter the supplied 

annotation was used to build up the configuration required to run the model.  

 

sel Operator 
Index 

Question Condition condsWord
s 

Column 

Index 

agg table_id 

2 0 What is 

terrence ross' 

nationality 

Terrence 

Ross 

NaN 0 0 1- 

10015132- 

16 

5 0 What club was 

in toronto 

1995-96 

1995-96 NaN 4 0 1- 

10015132- 

16 

5 0 which club was 

in toronto 

2003-06 

2003-06 NaN 4 0 1- 

10015132- 

16 

5 0 how many 

schools or 

teams had 

jalen rose 

Jalen 

Rose 

NaN 0 3 1- 

10015132- 

16 

2 0 Where was 

Assen held? 

Assen NaN 3 0 1- 

10083598- 

1 
Table 6-.5: The table contains an extract of the WikiSQL dataset used to validate the model proposed by this 
chapter.  

6.4.1.2. Tokenise  

Using a sample input natural language query from the above data extract 'What is terrence 

ross' nationality'. Along with the supplied annotation the first step is to tokenise the input 

string. From the annotation supplied by the dataset it is known that the string Terrence Ross 

is a conditional word or by using a name tagger the string can be identified as a name. Using 

the hand annotated WikiSQK corpus the extract the extract from the name tagger that 

identifies Terrence Ross as a player is  

names=[(‘terrence ross’, ‘player’)]  
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6.4.1.3. Stop words  

The next step is to remove the stop words from the string which will leave just the word 

nationality. The list of columns from the WikiSQL dataset table labelled as ‘1-10015132-16’ 

are “Player”, “No”, “Nationality” “Position”, “Years in Toronto”, “School / Club Team”. As can 

be seen from the column list there is a column called ‘nationality’. This then gives us a key 

word for the SQL statement  

6.4.1.4. Sequence to Sequence  

The last piece of configuration required to complete the transformation from natural 

language to SQL is the sequence to sequence file. From the original input statement of 

'What is terrence ross nationality' the only word left to deal with is nationality. It is already 

known that it is a column in the table so the next step is to configure this in the sequence to 

sequence file.  

nationality 1-10015132-16, nationality 

player      1-10015132-16, player 

name        1-10015132-16, player 

Figure 6-.3: Shows an extract of the sequence to sequence file used by this chapter. The data used to populate 
this table comes from the hand annotated WikiSQL dataset.  

Using the sequence to sequence file shown in figure 6.3 it is possible to identify that the 

word nationality is a column from the table ‘1-10015132-16’.  

6.4.1.5. Convert to SQL  

This chapter proposes using a DSL to convert the JSON conditional construct [('terrence 

ross','player')] along with the output from the sequence to sequence model into the following 

SQL statement select nationality from 1-10015132-16 where player = 'terrence 

ross' . The flexibility provided by the DSL also enables the same conditional construct to be 

converted into other languages such as XQuery or in the case of WikiSQL into a format that 

could be marked by the python evaluate script.  
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6.4.1.6. Validation  

When running the WikiSQL data through the system proposed by this chapter and using the 

WikiSQL utility to compare the results from the proposed process with the WikiSQL desired 

result, the WikiSQL  marking gives a result of 92%. This can be compared to the best of the 

published results from the WikiSQL project which shows that Lyu (2020) scored 92.2% and 

He (2019) 91.8%. What is not discussed with these papers is their ability to generate queries 

that can be used against non relational databases. The use of an internal DSL which is 

proposed by this project can potentially add the flexibility to convert a natural language 

statement potential into a no sql query.   

Model Execution 
Accuracy 

 

Exact 
Match 

Accuracy 
 

Paper Year 

NL2SQL-
RULE 

89.2 83.7 Content Enhanced BERT-based Text-to-SQL 
Generation 

2019 

TypeSQl
+TC 

82.6  TypeSQL: Knowledge-based Type-Aware Neural 
Text-to-SQL Generation 

2018 

Tranx 78.6 68.8 TRANX: A Transition-based Neural Abstract Syntax 
Parser for Semantic Parsing and Code Generation 

2018 

STAMP+
RL 

74.6 61 Semantic Parsing with Syntax- and Table-Aware 
SQL Generation 

2018 

STAMP+
RL 

74.4 60.7  
Semantic Parsing with Syntax- and Table-Aware 
SQL Generation 

2018 

TypeSQl
+TC 

73.5   
TypeSQL: Knowledge-based Type-Aware Neural 
Text-to-SQL Generation 

2018 

PT-
MAML 

68 62.8 Natural Language to Structured Query Generation 
via Meta-Learning 

2018 

Seq2SQ
L 

59.4 48.3 Seq2SQL: Generating Structured Queries from 
Natural Language using Reinforcement Learning 

2017 

Seq2Seq 35.9 23.4 Seq2SQL: Generating Structured Queries from 
Natural Language using Reinforcement Learning 

2017 

Table 6.6: This table shows the top performing projects that have tested against the 

WikiSQL dataset (https://paperswithcode.com/sota/code-generation-on-wikisql) 

The 92% that the WikiSQL marking system gave for the results generated for the Exact 

Match by this project can be compared to the published results of other projects listed in 

Table 6.6. Though the code used for this project is a proof of concept rather than a robust 

performance-oriented production ready application the results are favourable. 
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6.5. Conclusion  

This chapter shows that a sequence-to-sequence model can translate a natural language 

statement into more than just another natural language such as Spanish. Most research is 

centred on translating one natural language to another, this chapter shows that sequence to 

sequence models can be used to translate a natural language statement into a computer 

language such as SQL. A SQL statement is after all another language, like natural 

languages it has syntax, grammar and vocabulary. The thesis also highlights how sequence 

to sequence models can be used to improve the overall accuracy as part of the conversion.  

The use of Levenshtein Damerau and Jaro Winkler metrics to measure the accuracy of the 

conversion from natural language to SQL give some metric of success but the accuracy 

usefulness of such metrics needs to be examined further. For the purpose of this chapter 

using Jaro Winkler the results range from 55% to over 80% accuracy of all the conversions 

and Levenshtein Damerau marks the SQL conversion in an even greater range with values 

from 30% to over 90%.  

The approach proposed in this chapter has been tested against two large datasets firstly 

against the Kaggle dataset and then against the dataset supplied by the WikiSQL project. 

Comparing the resulting SQL statement against an expected statement can be subjective. 

The results have been encouraging as the test datasets are unrelated yet the accuracy of 

the conversation for the WikiSQL data was 92% by their own marking. Though more work 

needs to be carried out the results show some potential for improving the accuracy of 

converting natural language to SQL. Having defined the core as a potential solution to the 

problem of converting a natural language statement into a language capable of querying a 

database, the next step is to provide an interface using the approach proposed by this 

research. For that the project is proposing to design an overarching external DSL. 
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7. Conclusion  

The idea behind this project was to provide the viability and the performance improvements 

to convert a natural language to a structured query language capable of querying a 

database. As has been discussed by this project the current solutions lack a commercial 

viability which manifests itself in the lack of solutions providing an application that can 

extract data from a repository based on a natural language query.  

Part of this problem has been highlighted by several researchers which shows the 

performance of such systems are lacking in both speed and accuracy. During the research 

phase of this project, it became apparent that there was also a gap in how to implement the 

solutions that research teams were proposing. Research projects were refining the 

algorithms used to convert natural language into another language capable of searching a 

repository. However, there was little to no consideration on implementing the refined 

algorithms. Researchers such as Polosukhin as well as Skeggs & Lauria has briefly 

highlighted the issue but had not proposed a solution. As a result this thesis proposes an 

algorithm using shallow parsing that could be used to convert a natural language statement 

into a language capable of extracting data from a database repository. The second aim was 

to provide a common interface to enable retrieval to take place. To this extent the project 

has proposed creating a domain specific language (DSL) that can be used as an interface 

into the natural language shallow parsing algorithm.  

7.1. Contribution 

The original contribution being proposed by this project is made up of two elements. The first 

is a new algorithm based on a shallow parsing of the natural language statement as part of 

the conversion to a language capable of querying a repository. The aim being to improve the 

time to conversion and the accuracy of the SQL output from the conversion process. The 

second element is the development of a domain specific language (DSL) that can reduce the 

need for relying on language nuance and help with the conversion process.  

7.1.1. Shallow Parsing 

The first element of originality being proposed by this project is the shallow parsed algorithm 

from chapter 5. The algorithm is unique in a number of ways, first it proposes to combine a 

number of differing techniques to convert natural language into SQL. The project also 
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demonstrates the advantage in speed of performance of the conversion process against 

similar solutions.  

In Chapter 6, the project goes even further in the use of shallow parsing to refine the 

process converting natural language to a structured query language. Through the 

combination of shallow parsing and the use of RNN within sequence to sequence modelling 

the conversion process can be improved in terms of both accuracy and speed when 

compared to existing approaches. Most research projects had concentrated on refining a 

single approach to converting natural language to SQL. This project proposes combining 

techniques as well as proposing to use domain specific languages to solve the interface 

problem as well as assisting within the conversion process.  

The performance enhancements of the approach proposed by this project have been 

addressed in both chapters 5 and 6. Chapter 5 highlighted the improvements in speed when 

using shallow parsing to perform the conversion from a natural language to a language 

capable of querying a data repository.  

There are no performance metrics when it comes to the duration of the conversion process. 

Table 7.1 provides one of the few speed-based metrics when it comes to measuring the time 

a conversion process takes. Because there is no direct comparison with the datasets from 

Table 7.1 speed comparisons may be regarded as being speculative.  

Type of Data No of 
words 

Time Required by 
QTAG (Used in 
Enlight) 

Time Required by 
Minipar (Used in Sapere) 

Times of India 202 1.71 secs 2.88 secs 

Reply START QASystem 
(251Words) University 

Information 

251 3.11 secs  

NMU Broadcaster 226 1.55 secs 2.86 secs 

Wikipedia 226 1.67 secs 3.13 secs 

Average  1.705 secs 2.9925 secs 
Table 7-.1: is actually table 5.5 and is used to highlight the speed of conversion when using the approach being 
proposed by the project. 

However, when looking at the speed comparisons between the datasets being referenced in 

Table 7.1 and the dataset used in Chapter 5 for converting natural language to a languga 

capable of querying a database (table 7.2). It should be noted that the dataset referenced in 

table 7.2 contains more data than those referenced in table 7.1. The speed of conversion 
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and extraction is faster using the approach being proposed by this project in Chapter 5 even 

though the data used in this test has far more data than the datasets in table 7.1. 

Collection Number of Words SQL Conversion Data  
Extraction 

ginf.csv  19531  0.665 secs 0.9 secs 
Table 7-.2: is actually table 5.6. Performance from the proposed system which includes the conversion from 
natural language to SQL..  

The same can also be true when it comes to the accuracy of the conversion process being 

proposed by this thesis. The details of the accuracy can be seen in section 6.4. The use of 

Levenshtein Damerau and Jaro Winkler metrics to measure the accuracy of the conversion 

from natural language to SQL give some metric of success but the accuracy usefulness of 

such metrics needs to be examined further. For the purpose of this project using Jaro 

Winkler the results range from 55% to over 80% accuracy of all the conversions and 

Levenshtein Damerau marks the SQL conversion in an even greater range with values from 

30% to over 90%.  

The approach proposed in this project has been tested against two large datasets firstly 

against the Kaggle dataset and then against the dataset supplied by the WikiSQL project. 

Comparing the resulting SQL statement against an expected statement can be subjective. 

The results have been encouraging as the test datasets are unrelated yet the accuracy of 

the conversation for the WikiSQL data was 92% by their own marking. The results of the 

marking process can then be compared to the published results from the WikiSQL project 

which are shown in Table 6.6. The 92% compares against the next highest mark of 89%. 

Though more work needs to be carried out the results show some potential for improving the 

accuracy of converting natural language to SQL. Having defined that shallow parsing is a 

potential solution to the problem of converting a natural language statement into a language 

capable of querying a database, the next step is to provide an interface using the approach 

proposed by this research. For that the project is proposed the design of an overarching 

external DSL. 

7.1.2. Domain Specific Language 

The second contribution this project adds to the field of natural language interface to a 

database is the introduction of a domain specific language (DSL). Creating and using a DSL 

might sound counterintuitive to the NLIDB problem. Using Bloom's knowledge taxonomy as 

the construct of the DSL still allows for the proposal in this project to be classed as an 

NLIDB solution. The DSL also provides a common interface into using algorithms to convert 
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natural language to SQL. Initially the Xtext application was proposed to create a framework 

for building the DSL. Xtext proved to be useful for creating a quick mock-up of a suitable 

grammar file for validating a proof of concept for the language. However, with more testing 

and expanding the grammar of the DSL using the Xtext grammar files the process began to 

become difficult to modify and extend the DSL grammar file. The final idea was to use Xtext 

to just validate the structure of the input query based on the Bloom taxonomy. 

There are two advantages to using the DSL and these advantages are: 

1. The advantage of using a DSL provides for a simplified process. The grammar file 

used to parse the incoming natural language statement can be simplified as the 

structure of the DSL is known. With more development it may even be possible to 

rewrite the entire translation process, streamlining how the conversion is performed.  

2. Currently within this project XText is only being used to validate the incoming query. 

The algorithms used and discussed within chapters 5 & 6 could also be refined to 

work more closely with the DSL. This tighter binding between the parsing algorithm 

and the DSL would negate the need for XText. 

7.2. Limitations 

The full implementation of this project has only been tested against sample datasets, which 

is designed to show that the solution proposed by this project works. A full implementation 

within a commercial setting has yet to be completed. During testing the project it became 

apparent that there is the potential for some limitations on the system when deployed into a 

commercial environment. These limitations are listed below. 

● The grammar file used by Xtext for creating a grammar from chapter 4 is used for 

defining the DSL and has the potential to become unwieldy. The size of this file may 

make extending the grammar rules for the DSL too complicated and prone to errors. 

The size of the file may also ensure that there are size requirements for storing such 

a large file. The size and complexity of the grammar file may also have a negative 

impact on the performance of the DSL parse in terms of speed and accuracy. 

● The grammar files used by the OpenNLP described in chapter 5 library also have the 

potential to keep the configuration up to date cumbersome and prone to error. These 

files could also have an impact on storage requirements as well as the speed of 

conversion if they became too large. 
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● The sequence-to-sequence model described in chapter 6 uses text files to define 

how words can be translated from one domain into another. These text files again 

have the potential to become exceedingly large and difficult to manage. Along with 

the difficulty this could potentially pose with maintaining the files to ensure the 

content is kept up to date. The size could also have a negative impact on the speed 

of conversion as well as the potential for special storage requirements. 

More testing is required against large and more complex environments to fully understand 

the limitations of the solution being proposed by this thesis. 

7.3. Future Work  

The algorithms used to create both the domain specific language and the shallow passed 

algorithm have been written as proof of concept code. The code will need to be enhanced 

and parts rewritten to make the code production ready. When the code rewrite is complete it 

will become available via a Git repository. It must also be added that currently the framework 

proposed by this project has been implemented in a number of various guises in four 

projects that I have worked on. A complete implementation of all the points proposed by this 

project has yet to be implemented. 

There is also an argument for pursuing ISO accreditation for the domain specific language 

that would then lead to a wider audience. Before ISO accreditation can be achieved a tighter 

definition and promotion of the language grammar syntax would need to be completed. 

Future refinements of the DSL are also actively encouraged and a platform supporting the 

development and refinement of the language will need to be developed. 

Currently this project concentrates on converting natural language statements to SQL. 

Chapter 4 and 6 introduce the concept of an internal DSL which can be used as part of the 

conversion process. The internal DSL has not been implemented within this thesis, but the 

concept of the internal DSL can be used to convert the natural language to a query language 

other than SQL.  
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Appendix A – NLP Tags 

The list of NLP tags that are used by this project to determine which how to deal with the 

input word tokens. The tags are based the tags that are used within the OpenNLP project.  

Parts of Speech Meaning of parts of speech 

NN Noun, singular or mass 

DT Determiner 

VB Verb, base form 

VBD Verb, past tense 

VBZ Verb, third person singular present 

IN Preposition or subordinating conjunction 

NNP Proper noun, singular 

TO to 

JJ Adjective 

IRR Irrelevant and can be ignored. 
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Appendix B – AirBnB metadata 

The table describes the meta data of the Airbnb dataset used in Chapter 6. 

 
Variable Name Data Type 

Id Numeric 
Name String 
Host_id Numeric 
Host_name Sting 
neighbourhood_group String 
neighbourhood String 
latitude Numeric 
longitude Numeric 
room_type String 
price Numeric 
minimum_nights Numeric 
number_of_reviews Numeric 
last_review Date 
reviews_per_month numeric 
calculated_host_listings_count Numeric 
availability_365 Numeric 
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Appendix C - WikiSQL  

The table below shows the output from the algorithm used in Chapter 6, when the approach 
is used against the WikiSQL dataset. This table shows the algorithm generated SQL 
statements against the expect SQL as devised by the WikiSQL project along withe the 
markings calculated using the Damerau and the Jaro algorithms. The data in the table is the 
source of data for the  tables 6.12 and 6.13. 

NLP Question: The WikiSQL input statement 

Calculated SQL: The SQL output from the proposed model. 

Expected SQL: The SQL expected from the output. 

Damerau: The Demerau similarity between the expected output and the Calculated output. 
The Calculated output uses multiple queries and uses union to join them. The marking takes 
the individual statement and marks them. The results are the individual scores.  

Jaro: The Jaro similarity between the expected output and the Calculated output. The 
Calculated output uses multiple queries and uses union to join them. The marking takes the 
individual statement and marks them. The results are the individual scores.  
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NLP Question  Calculated SQL Expected 
SQL 

Damerau Jaro 

What is the local name 
given to the city of 
Canberra? 

select 'neighbourhood_group', 
'room_type' from ab_nyc_2019  
where 'city'= 'Canberra' union  

select 
org_name from 
organisations 
where 
ORGANIZATION 
like 'Canberra' 

36 0.65069347 

 select 'city', 'country', 'org_name' 
from organisations  where 'city'= 
'Canberra' union  

50 0.633942221 

select 'lastname' from contacts  
where or 'city'= 'Canberra'  

36 0.65069347 

select 'school_name', 'club_name' 
from sports_clubs  where 'city'= 
'Canberra' union  

41 0.656749381 

select 'team_name' from sports_club  
where 'city'= 'Canberra' 

58 0.62615075 

          

Which teams won when 
Bobby Rahal was their 
winning driver? 

select 'neighbourhood_group', 
'room_type' from ab_nyc_2019  where 
'person'= 'Bobby' or 'person'= 'Rahal' 
union 

select contacts, 
lastname from 
person where 
lastname like 
Rahal 

51 0.660164879 

select 'city', 'country', 'org_name' from 
organisations  where 'person'= 'Bobby' 
or 'person'= 'Rahal' union 

56 0.651948052 

select 'lastname' from contacts  where 
'person'= 'Bobby' or 'person'= 'Rahal' 
union 

50 0.680152601 

select 'school_name', 'club_name' from 
sports_clubs  where 'person'= 'Bobby' or 
'person'= 'Rahal' union  

61 0.639483913 

select 'team_name' from sports_club  
where 'person'= 'Bobby' or 'person'= 
'Rahal' 

71 0.61468254 

          

What school or club team 
is Amir Johnson on? 

select 'neighbourhood_group', 
'room_type' from ab_nyc_2019  where 
'person'= 'Amir' or 'person'= 'Johnson' 
union 

select 
org_name from 
organisation 
where 
ORGANIZATION 
like 'Johnson' 

45 0.649559432 

select 'city', 'country', 'org_name' from 
organisations  where 'person'= 'Amir' or 
'person'= 'Johnson' union 

60 0.595422886 

select 'lastname' from contacts  where 
'person'= 'Amir' or 'person'= 'Johnson' 
union 

44 0.638423952 

select 'school_name', 'club_name' from 
sports_clubs  where 'person'= 'Amir' or 
'person'= 'Johnson' union 

51 0.614573146 

select 'team_name' from sports_club  
where 'person'= 'Amir' or 'person'= 
'Johnson' 

68 0.616723081 

          

looking for a room in 
Brooklyn 

select 'neighbourhood_group', 
'room_type' from ab_nyc_2019  
where 'city'= 'Brooklyn' union  

select 
AB_NYC_2019, 
room_type 
from 
ab_nyc_2019 
where 
ORGANIZATION 
like 'Brooklyn' 

49 0.588821991 

select 'city', 'country', 'org_name' from 
organisations  where 'city'= 'Brooklyn' 
union  

56 0.559475622 

select 'lastname' from contacts  where 
'city'= 'Brooklyn' 

41 0.651079769 
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What is the team located 
at philips arena 18? 

select 'neighbourhood_group', 
'room_type' from ab_nyc_2019  where 
'ORGANIZATION'= 'Philips' or 
'ORGANIZATION'= 'Arena' union 

select 
'school_name', 
'club_name' 
from 
sports_clubs  
where 
'ORGANIZATION
'= 'Philips' 

46 0.70198273 

select 'city', 'country', 'org_name' from 
organisations  where 'ORGANIZATION'= 
'Philips' or 'ORGANIZATION'= 'Arena' 
union 

29 0.771597134 

select 'lastname' from contacts  where 
'ORGANIZATION'= 'Philips' or 
'ORGANIZATION'= 'Arena' union 

55 0.675170614 

select 'school_name', 'club_name' from 
sports_clubs  where 'ORGANIZATION'= 
'Philips' or 'ORGANIZATION'= 'Arena' 
union 

58 0.686731787 

select 'team_name' from sports_club  
where 'ORGANIZATION'= 'Philips' or 
'ORGANIZATION'= 'Arena' 

61 0.841704079 

          

What season features 
writer Michael Poryes? 

select 'neighbourhood_group', 
'room_type' from ab_nyc_2019  where 
'ORGANIZATION'= 'Michael' or 
'ORGANIZATION'= 'Poryes' union 

select 
'school_name', 
'club_name' 
from 
sports_clubs 
where 
'lastname'= 
'Michael' or 
lastname='Pory
es' " 

48 0.658642724 

select 'city', 'country', 'org_name' from 
organisations  where 'ORGANIZATION'= 
'Michael' or 'ORGANIZATION'= 'Poryes' 
union 

30 0.714551084 

select 'lastname' from contacts  where 
'ORGANIZATION'= 'Michael' or 
'ORGANIZATION'= 'Poryes' union 

56 0.630672254 

select 'school_name', 'club_name' from 
sports_clubs  where 'ORGANIZATION'= 
'Michael' or 'ORGANIZATION'= 'Poryes' 
union 

59 0.643629113 

select 'team_name' from sports_club  
where 'ORGANIZATION'= 'Michael' or 
'ORGANIZATION'= 'Poryes' 

61 0.641079315 

          

Which visitors have a 
leading scorer of Roy 

select 'neighbourhood_group', 
'room_type' from ab_nyc_2019  where 
'ORGANIZATION'= 'Roy' union 

select 
'school_name', 
'club_name' 
from 
sports_clubs 
where 
'lastname'= 
'Roy' 

31 0.664444444 

select 'city', 'country', 'org_name' from 
organisations  where 'ORGANIZATION'= 
'Roy' union 

15 0.754215103 

select 'lastname' from contacts  where 
'ORGANIZATION'= 'Roy' union  

41 0.645974224 

select 'school_name', 'club_name' from 
sports_clubs  where 'ORGANIZATION'= 
'Roy' union 

44 0.639440921 

select 'team_name' from sports_club  
where 'ORGANIZATION'= 'Roy' 

46 0.657438672 
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What is the location of the 
Carousel toll plaza? 

select 'neighbourhood_group', 
'room_type' from ab_nyc_2019  where 
'ORGANIZATION'= 'What' or 
'ORGANIZATION'= 'Carousel' union 

"select 'city', 
'country', 
'org_name' 
from 
organisations 
where 
'ORGANIZATION
'= 'Carousel'" 

55 0.749606258 

select 'city', 'country', 'org_name' from 
organisations  where 'ORGANIZATION'= 
'What' or 'ORGANIZATION'= 'Carousel' 
union 

58 0.733595608 

select 'lastname' from contacts  where 
'ORGANIZATION'= 'What' or 
'ORGANIZATION'= 'Carousel' union 

53 0.752954035 

select 'school_name', 'club_name' from 
sports_clubs  where 'ORGANIZATION'= 
'What' or 'ORGANIZATION'= 'Carousel' 
union 

29 0.871049924 

select 'team_name' from sports_club  
where 'ORGANIZATION'= 'What' or 
'ORGANIZATION'= 'Carousel' 

63 0.704758632 

          

What is the rank of 
manager Rob Mcdonald? 

select 'neighbourhood_group', 
'room_type' from ab_nyc_2019  where 
'ORGANIZATION'= 'What' or 
'ORGANIZATION'= 'Rob' or 
'ORGANIZATION'= 'Mcdonald' union 

Select rank from 
organisations 
where person = 
'Rob' or person 
= 'Mcdonald'  

76 0.643498242 

select 'city', 'country', 'org_name' from 
organisations  where 'ORGANIZATION'= 
'What' or 'ORGANIZATION'= 'Rob' or 
'ORGANIZATION'= 'Mcdonald' union 

90 0.647154778 

select 'lastname' from contacts  where 
'ORGANIZATION'= 'What' or 
'ORGANIZATION'= 'Rob' or 
'ORGANIZATION'= 'Mcdonald' union 

73 0.629231785 

select 'school_name', 'club_name' from 
sports_clubs  where 'ORGANIZATION'= 
'What' or 'ORGANIZATION'= 'Rob' or 
'ORGANIZATION'= 'Mcdonald' union 

82 0.672111457 

select 'team_name' from sports_club  
where 'ORGANIZATION'= 'What' or 
'ORGANIZATION'= 'Rob' or 
'ORGANIZATION'= 'Mcdonald' 

98 0.629215485 

          

What were the results for 
incumbent Jim McCrery? 

select 'neighbourhood_group', 
'room_type' from ab_nyc_2019  where 
'ORGANIZATION'= 'Jim' or 
'ORGANIZATION'= 'McCrery' union  

select votes 
from 
organisations 
where person = 
'Jim or person = 
'McCrery' 

52 0.640116407 

select 'city', 'country', 'org_name' from 
organisations  where 'ORGANIZATION'= 
'Jim' or 'ORGANIZATION'= 'McCrery' 
union 

67 0.621724813 

 select 'lastname' from contacts  where 
'ORGANIZATION'= 'Jim' or 
'ORGANIZATION'= 'McCrery' union  

50 0.637406188 
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select 'school_name', 'club_name' from 
sports_clubs  where 'ORGANIZATION'= 
'Jim' or 'ORGANIZATION'= 'McCrery' 
union  

58 0.660036356 

select 'team_name' from sports_club  
where 'ORGANIZATION'= 'Jim' or 
'ORGANIZATION'= 'McCrery' 

73 0.665442741 
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