

Using Domain Specific Language and Sequence to Sequence
models as a hybrid framework for a Natural Language

Interface to a Database solution

A Thesis Submitted for the Degree of Doctor of Philosophy

by

Richard Skeggs

Department of Computer Science, Brunel University London

March 2023

Page: 2

Declaration

I, Richard Skeggs, hereby declare that this thesis and work presented in it is entirely my

own. Some of the work has been previously published in journal or conference papers and

this has been mentioned in the thesis. Where I have consulted the work of others this is

always clearly stated.

Page: 3

Acknowledgement

There is an old proverb which states that a journey of a thousand miles begins with a single

step. The completion of this thesis has been a long-held ambition of mine for a number of

years. I had an idea born out of a common problem that I had continually encountered while

working in data projects. I had approached Brunel University with the idea and after some

manipulation and tweaking of the original idea I eventually had a plan that would actually

make a worthwhile project. For all the help, guidance and support that I have received from

Dr. Stasha Lauria I will be eternally grateful. Without his support and guidance this journey

would have been far harder and may not have even been possible.

Having begun the journey with my idea of what the project should deliver and no support

from an employer the only way I was ever going to reach my goal would have been with the

support of my family. Having just bought a house that requires a lot of work, the demand to

work on the house and work on this research project has been a major conflict.

Understanding from the family has been paramount. The hours I have spent on the keyboard

over the course of the evenings during the week and the days during the weekend has

required a special type of patience from the family. With that in mind I would like to thank my

mother, my partner and all our children. Your support has been essential allowing me the

time and space required to complete this project.

On this journey there has also been the added complexity of trying to complete this project

within the scope of a global pandemic which has caused a massive upheaval to society,

healthcare, work and study. Apart from the usual issues my partner has been on the front

line of covid which has put extra pressure on me to support our children. The support from

Brunel University Computer Science Department has been invaluable in allowing me the

time and space to get this project over the line. In particular I would like to thank Professor

Zidong Wang, Dr Stephen Swift and Professor Xiaohui Liu for their assistance and the input

that they provided proved to have been invaluable.

Page: 4

Abstract

The aim of this project is to provide a new approach to solving the problem of

converting natural language into a language capable of querying a database or data

repository. This problem has been around for a while, in the 1970's the US Navy

developed a solution called LADDER and since then there have been an array of

solutions, approaches and tweaks that have kept the research community busy. The

introduction of electronic assistants into the smart phone in 2010 has given new

impetus to this problem.

With the increasingly pervasive nature of data and its ever expanding use to answer

questions within business science, medicine extracting data is becoming more important.

The idea behind this project is to make data more democratised by allowing access to it

without the need for specialist languages. The performance and reliability of converting

natural language into structured query language can be problematic in handling nuances

that are prevalent in natural language. Relational databases are not designed to understand

language nuance.

This project introduces the following components as part of a holistic approach to improving

the conversion of a natural language statement into a language capable of querying a data

repository.

● The idea proposed in this project combines the use of sequence to sequence models

in conjunction with the natural language part of speech technologies and domain

specific languages to convert natural language queries into SQL. The approach

being proposed by this chapter is to use natural language processing to perform an

initial shallow pass of the incoming query and then use Google's Tensor Flow to

refine the query with the use of a sequence to sequence model.

● This thesis is also proposing to use a Domain Specific Language (DSL) as part of the

conversion process. The use of the DSL has the potential to allow the natural

language query to be translated into more than just an SQL statement, but any query

language such as NoSQL or XQuery.

Page: 5

Table of Contents

Table of Contents 5	

List of Figures 9	

List of Code Samples 11	

List of Tables 13	

1.	 Introduction 15	

1.1.	 Motivation 17	

1.2.	 Contribution 19	

1.3.	 Summary 20	

2.	 Related Work 23	

2.1.	 Introduction 23	

2.2.	 Identified Approaches 24	

2.2.1.	 Semantic Parsing 24	

2.2.2.	 Sequence to Sequence Models 26	

2.2.3.	 Simplified Learning Model 28	

2.2.4.	 Neural Encoder Decoder 29	

2.2.5.	 Augmented Memory 31	

2.2.6.	 Corpus Tagging 32	

2.2.7.	 Multi Step Architecture 33	

2.2.8.	 Other Approaches 33	

2.3.	 Conclusion 35	

3.	 Architectural Overview 38	

3.1.	 Introduction 38	

3.3.	 Solution Overview 40	

3.4.	 Conclusion 42	

Page: 6

4.	 Using a Domain Specific Language Within an NLIDB Solution 44	

4.1.	 Introduction 44	

4.2.	 Related Work 45	

4.3.	 Using Domain Specific Languages 49	

4.3.1.	 Internal Domain Specific Languages 50	

4.3.2.	 External Domain Specific Languages 51	

4.3.3.	 Internal v External DSL's 52	

4.3.4.	 Extensible Domain Specific languages 52	

4.4.	 Designing the DSL 53	

4.4.1.	 Development Process 54	

4.4.2.	 Language Syntax of the DSL 54	

4.5.	 The Language 56	

4.5.1.	 Creating The Language 58	

4.6.	 Parsing the Natural Language Statement 59	

4.6.1.	 Initial Parse 59	

4.6.2.	 Secondary Parse 61	

4.7.	 Implementing the DSL 62	

4.7.1.	 Validating the DSL Statement 62	

4.8.	 Conclusion 63	

5.	 A Shallow Parsing Approach to Natural Language Queries of a Database 66	

5.1.	 Introduction 66	

5.2.	 Related Work 67	

5.3.	 Football Events Data 69	

5.4.	 Proposed Configuration 71	

5.4.1.	 Parse Input Statement 72	

Page: 7

5.4.2.	 Parse Tokens and tag 73	

5.4.3.	 Join File 76	

5.5.	 Parse Process Conversion Steps 77	

5.6.	 Training the Model 79	

5.7.	 Evaluation 81	

5.7.1.	 Computer System 81	

5.7.2.	 Java Virtual Machine 82	

5.8.	 Conclusions 86	

6.	 Improving The Shallow Parsing Approach 88	

6.1.	 Introduction 88	

6.2.	 Related Work 89	

6.2.1.	 Semantic Parsing 89	

6.2.2.	 Executed Guidance 90	

6.2.3.	 Tree Structures 90	

6.2.4.	 Underlying Database Structure 90	

6.2.5.	 Descriptive Language 90	

6.2.6.	 Sequence to Sequence Models 91	

6.2.7.	 Multi Step Architecture 92	

6.3.	 The Model 93	

6.3.1.	 Natural Language Processing 95	

6.3.2.	 Internal Domain Specific Language 97	

6.3.3.	 Sequence to Sequence Models 97	

6.4.	 Validating the Model 105	

6.4.1.	 SQL Validation 107	

Page: 8

6.4.1.1.	 WikiSQL 109	

6.4.1.2.	 Tokenise 110	

6.4.1.3.	 Stop words 111	

6.4.1.4.	 Sequence to Sequence 111	

6.4.1.5.	 Convert to SQL 111	

6.4.1.6.	 Validation 112	

6.5.	 Conclusion 113	

7.	 Conclusion 114	

7.1.	 Contribution 114	

7.1.1.	 Shallow Parsing 114	

7.1.2.	 Domain Specific Language 116	

7.2.	 Limitations 117	

7.3.	 Future Work 118	

Appendix A – NLP Tags 119	

Appendix B – AirBnB metadata 120	

Appendix C - WikiSQL 121	

Bibliography 126	

Page: 9

List of Figures

Figure 1-.1: Shows the number of papers on the subject NLIDB between 2000 and 2019 that

were searchable via google scholar. ... 15	

Figure 1-.2: This table shows the growth in data from 2011 with forecasts from 2019 to 2025.

The table shows the growth in volumes both in billions of US and zettabytes. The data

comes from IDC and Gartner. .. 18	

Figure 2-.1: summarises the approach taken by Gua et al (2019) .. 27	

Figure 2-.2: The figure shows an overview of the encoder and decoder architecture typically

used within a neural encoder decoder solution. The diagram comes from the work proposed

by Shin (2019). T represents each table in the underlying database and C represents the

columns within the tables. .. 30	

Figure 2-.3 From the McCann et al (2018) paper showing the architecture of their proposed

solution. ... 31	

Figure 3-.1: The overall solution diagram shows the components that make up the complete

solution. ... 41	

Figure 4-.1: Provides an overview of the processing required by the proposed DSL. 57	

Figure 5-.1: Shows an overview of the proposed system. The processes that will be applied

to the natural language statement as it is converted into a language capable of querying a

repository. .. 72	

Figure 5-.2: This shows an extract from the grammar file showing the data structure. Finally,

the tag N defines which column could potentially be used to extract data. 75	

Figure 5-.3: Extract from the grammar file. .. 76	

Figure 5-.4: The join properties file lists the table name with the primary key which allows

multiple tables to be joined. ... 78	

Figure 5-.5: The output from the model training process. .. 80	

Figure 5-.6: This shows the setting for the Java Virtual Machine on the test server. 83	

Page: 10

Figure 6-.1: The diagram shows the flow of data through the proposed system. 94	

Figure 6-.2: The content of the Sequence to sequence file used as part of the configuration

used with the Airbnb dataset. .. 106	

Figure 6-.3: Shows an extract of the sequence to sequence file used by this chapter. The

data used to populate this table comes from the hand annotated WikiSQL dataset. 111	

Page: 11

List of Code Samples
Code Sample 4-.1: A simplified grammar file for the DSL showing how the file can be

constructed to handle a natural language statement. .. 58	

Code Sample 4-.2: The code extract shows the first pass at parsing the incoming natural

language statement. It is this piece of code that determines whether the input statement is in

the correct format. .. 62	

Code Sample 5-.1: A sample Python script that can be used to parse an incoming natural

language statement into tokens. In effect the script splits the incoming string into an array of

words. .. 73	

Code Sample 5-.2: Shows how the tags can be applied to two taggers. In this example a

Name Tagger is being applied as well as the tagger library which is highlighted in Figure 5.2.

 ... 74	

Code Sample 5-.3: This python code shows that the table name or the join key can be used

to extract the attributes used in joining multiple tables together. ... 77	

Code Sample 6-.1: This code extract shows a potential solution to how postcodes could be

handled with the use of regular expressions. It also shows how a regular expression can be

used within the NLP tagging process. ... 95	

Code Sample 6-.2: NLP tagger grammar construct for use in extracting names. 95	

Code Sample 6-.3: A simple Python function that will tag an input statement and create a

JSON construct to contain each word token with the appropriate NLP tag. The function takes

2 taggers. ... 96	

Code Sample 6-.4: JSON output from the simple input query. .. 96	

Code Sample 6-.5: The table shows the content of the tab separated sequence to sequence

translation file. .. 98	

Code Sample 6-.6: A pseudo representation of the sequence to sequence model used in his

project. ... 100	

Code Sample 6-.7: The simple python code used to train the model. 101	

Code Sample 6-.8: A simple python script to test the accuracy of the model. 102	

Page: 12

Code Sample 6-.9: A simple function that is used as an entry point to the sequence to

sequence function. ... 103	

Code Sample 6-.10: The content of the NLP tagger. ... 106	

Code Sample 6-11: Shows the output from the NLP tagger. ... 106	

Page: 13

List of Tables

Table 4-.1: A list of commonly used internal Domain Specific Languages. 51	

Table 4-.2: This above table lists some of the most common external DSL that are in use. . 52	

Table 4-.3: The construct of a simple knowledge-based question. .. 55	

Table 4-.4: A possible table structure that contains the meal times of a restaurant during the

course of a day. ... 56	

Table 4-.5: Shows the output from parsing both the simple questions. The output contains

the word tokens and the part of speech tags associated with each word. 60	

Table 4-.6: Shows the definition for the associated tags assigned to the natural language

statement. .. 60	

Table 5-.1: The EVENTS table describes the structure of the events database. This table is

joined to table 5.2 on the unique identifier for the game, ID_ODSP 70	

Table 5-.2: The GINF table describes the features of the GINF table. This table is joined to

table 4.1 on the unique identifier for the game, ID_ODSP ... 71	

Table 5-.3: Lists the entries extracted from the database for inclusion into the index file. The

table also highlights the structure of both data tables. It can be seen that the column

ID_ODSP is common between both tables and can be used to join them. 74	

Table 5-.4: Server specifications used for testing. The server specifications shown highlights

the fact that commodity hardware is suitable for supporting the proposed conversion

process. ... 81	

Table 5-.5: Shows the performance figures from the Joshi and Akerkar (2007) paper. 84	

Table 5-.6: Shows the execution time the conversion process takes through the components

of the conversion code. The data comes from YourKit Java Profiler. The screenshot is in

Appendix D. ... 84	

Table 5-.7: Shows the memory allocation for the conversion process. Original screenshot is

shown in Appendix E ... 85	

Page: 14

Table 6-.1: An extract from a data dictionary used in this thesis to highlight the use of a

sequence to sequence model. This is based on the data from code sample 6.5 but

represented as two lists of data. .. 99	

Table 6-.2: Shows the value of the neural network parameters used by this chapter. The

parameter values have not been changed from the original model. 104	

Table 6-.3: This table shows the results from measuring the SQL statements created by the

algorithm proposed by this chapter and the expected output using the Levenshtein Damerau

Distance. The underlying data for this table is shown in Appendix C. 108	

Table 6-.4: This table shows the results from measuring the SQL statements created by the

algorithm proposed by this chapter and the expected output using the Jaro Winkler Distance.

The underlying data for this table is shown in Appendix C. ... 108	

Table 6-.5: The table contains an extract of the WikiSQL dataset used to validate the model

proposed by this chapter. .. 110	

Table 7-.1: is actually table 5.5 and is used to highlight the speed of conversion when using

the approach being proposed by the project. .. 115	

Table 7-.2: is actually table 5.6. Performance from the proposed system which includes the

conversion from natural language to SQL.. ... 116	

Page: 15

1. Introduction

The aim of this project is to provide an original approach to solving the problem of

converting natural language into a language capable of querying a database or data

repository. This problem has been around for a while, in the 1970's the US Navy

developed a solution called LADDER and since then there have been an array of

solutions, approaches and tweaks that have kept the research community busy. The

introduction of electronic assistants into the smart phone in 2010 has given new

impetus to this problem.

Figure 1-.1: Shows the number of papers on the subject NLIDB between 2000 and 2019 that were searchable via

google scholar.

As can be seen from Figure 1 even taking a narrow search term such as NLIDB it is

possible to see that the trend in research for this topic has been upwards. It must also

be remembered that research in this field is not just concentrated on the simple term

NLIDB, but has also included areas such as semantic parsing, sequence to sequence

models and augmented memory. The increased depth in this field potentially shown by

the increased number of published papers and the increased breadth highlighted by

the number of related research topics would indicate the growing importance of this

topic.

Page: 16

This project looks at simplifying the process of converting a natural language statement

into a language capable of querying a database. The project also looks at creating a

simplified interface into accessing algorithms that can convert natural language into a

structured query language. To achieve both these goals this project introduces two

novel approaches.

1. The use of part of speech or shallow parsing to extract keywords from the

incoming natural language statement. The identified keywords are then

compared to objects within the underlying database to facilitate the conversion

from natural language to a language capable of querying a database.

2. The creation of a domain specific language (DSL) to help create a complete

solution to the problem of converting natural language into a language capable

of querying a database. This project proposes using an external DSL based on

the Bloom knowledge taxonomy to help facilitate the conversion from natural

language to SQL.

This project looks at using both flavours of DSL. Initially this chapter highlights the

possibility of creating an external DSL that is capable of translating a natural language

statement to a structured query language (SQL) statement for querying a data

repository. The idea is that the DSL can be used as a front end interface allowing

parsing techniques and translation models from other research projects to be

incorporated into the DSL. None of the projects that were reviewed provided an

interface to using a NLIDB solution. To that extent this project introduces a novel

approach to converting natural language to SQL, there are more details on this subject

in the following chapters. This new parsing approach is then incorporated into the DSL

as a demonstration of how to ensure the new language can be extended to incorporate

new and expanding techniques. The project also introduces the concept of an internal

DSL that can be used as part of an approach to convert natural language to a

structured query language. The implementation of the internal DSL is not fully realised

within the project as it is beyond the scope of this project. The implementation of the

internal DSL is something that can be investigated as part of a further project as it is

not core to the successful competition of this project.

This project starts with an introduction to the fields of natural language interface to a

database and domain specific languages. This includes the current state of research

and development in both fields as well as an introduction of how these fields are being

Page: 17

applied within this project. This is then followed by the proposed new multi-phased

approach of using shallow parsing, sequence to sequence models to extract the salient

words from the incoming natural language statement to produce a language capable of

querying a database. The final section in this project then looks at the development

and use of the domain specific language to provide a simplified interface into using the

algorithm proposed by this project.

1.1. Motivation

The growth in data has been the business story for the last eleven years. The table below

shows the growth in data marked in both the amount of data being generated in zettabytes

as well as the revenue value of data in billions of United States Dollars to global business.

This growth in the production and usage of data along with the expected increase in

revenues for organisations has fuelled a demand for tools to extract data allowing

organisation to make value judgements based on data.

This research project was motivated by the need to democratise the search capabilities of

large data repositories. Currently to perform a search on a dataset, specialist skills are

required. The Structured Query Language (SQL) is a powerful tool that can be used to

extract data. The problem is that it takes a high degree of technical competence to use SQL

properly. There are tools that can take a natural language statement and convert it into a

language capable of querying a database. However as will be discussed in Chapter 2 these

tools provide an interface into a repository but their performance in terms of speed of

conversion and accuracy in extracting the desired search results from the underlying

repository is not at the required level of performance. The aims of this project are to provide

a conversion algorithm that can take the natural language input and provide returned results

that closely match the expected results of the user in a timeframe that is acceptable to the

user. With previous experience in providing data repositories most users require results in

under five seconds. Along with the improve improvements in time and accuracy this project

will also provide a common extensible interface into the algorithm as well as allowing other

algorithms to use the same interface.

Page: 18

Figure 1-.2: This table shows the growth in data from 2011 with forecasts from 2019 to 2025. The table shows

the growth in volumes both in billions of US and zettabytes. The data comes from IDC and Gartner.

With this growth in demand and increased importance to business it is arguably becoming

increasingly more significant to manage, store and extract value from this data within

business. Part of this trend within business is democratising access to data, this means

getting access to the data to the decision makers. Visualisation tools such as Tableau and

Microsoft PowerBi are becoming increasingly more common as data is becoming too large

to manage within a desktop environment using spreadsheets.

Traditionally data storage systems have been heavily siloed data. The ability to search and

extract data from a range of different systems has been compromised by the differing

architectures that each repository uses. Even languages used to extract data from these

data silos such as the Structure Query Language (SQL) often require a high degree of

technical knowledge.

The initial idea behind this project was to increase the ease at which data could be extracted

from a range of data silos. With this in mind developing a solution that could take a natural

language statement and create a query capable of querying a data repository seemed to be

the ideal solution. The problem was that these Natural Language Interface to a Database

Page: 19

(NLIDB) solutions have been within the research community since the US Navy’s Ladder

system in the 1970’s.

Researching the use of NLIDB solutions it became clear that the number of solutions that

had moved from the research community into general available solutions for use within the

commercial market was not small. Most of the research projects looked at refining algorithms

that could perform the translation from a natural language to a language capable of querying

a database. Yet there seemed to be no description within the literature about how these

solutions could be implemented or what the interface was between the non-technical user

and the data silo was. As can be seen in Chapter 2 there also seemed to be a gap between

expectation and reality from the solutions that had been implemented. This gap existed in

terms of the performance of implemented systems. Researchers commented that the

accuracy of the results returned from NLIDB solutions was not accurate enough to provide a

truly useful solution. There also appeared to be a performance issue when it came to the

speed of the implemented solution.

With these three facts this project looks at trying to provide a common interface to the

implementation question of how can the algorithms that have been implemented by a range

of researchers be accessed by non-technical users, and how can the performance in terms

of accuracy and speed be improved to make these systems viable to the non-technical user.

With this in mind the project looks to create its own domain specific language based on

natural language using Bloom’s methodology which is discussed in Chapter 6. The project

also looks to simplify the process of converting a natural language into a language capable

of querying a data repository. This simplification which is discussed in Chapters 4 and 5

looks to increase the speed and accuracy of the conversion process.

1.2. Contribution

This thesis contributes to two areas in the field of natural language interface into a database.

Domain Specific Language: This project introduces domain specific languages to the

problem of converting a natural language into a language capable of querying a data

repository. The Domain Specific Language within this project is used to provide an interface

between the user, someone creating the natural language query and the data repository to

be queried. Current projects provide no clear interface between the user and the repository

but concentrate purely on the conversion from natural language to a structured query

language.

Page: 20

Simplified Algorithm: This project also shows how simplifying the approach used to

perform the conversion can elicit performance within both the speed and accuracy of

conversion. This project shows that using shallow parsing can provide an accurate

conversion. It also highlights the use of a sequence-to-sequence model can be useful for not

just converting one natural language to another but also be used to convert from a natural

language to a machine language capable of querying a database.

The use of domain specific languages (DSL) within this field has not been covered

extensively within this field. The use of MELT within the GCC compiler as proposed by

Starynkevitch (2011) and Polosukhin et al (2018) introduces a DSL and SpeakQL from Shah

et al (2020) provide some insight into how a DSL could be used. However, none of these

projects provide much detail of the DSL being used. Both MELT and SpeakSQL provide

limited functionality and do not appear to be extensible. The DSL being proposed in Chapter

7 is being proposed as extensible and unlike other papers reviewed in this thesis it provides

details as to how the DSL works and it describes an interface into how an algorithm that is

implemented in Chapter 6.

This project shows how Part of Speech can be used to extract keywords from the input

natural language statement that can be used to identify database tables and table columns.

Taking this approach removes the ability of the system to handle language nuance but does

identify the key elements of the natural language statement that can be used in the

conversion to an SQL statement.

1.3. Summary

The thesis is organised into the following sections:

Chapter 2: Provides a literature review of the existing concepts which are used within

this project relating to the simplification of the conversion process from natural

language to a language capable of querying a data repository. The topics within this

chapter are looking at the development of solutions based on semantic parsing,

simplified learning model and augmented memory. It also looks at the use of

sequence-to-sequence models, neural encoder decoder and multi stepped solutions.

This chapter also highlights the novel approach that is being taken by this project.

Chapter 3: This chapter provides an overview of the architecture used by this project.

This chapter also introduces the concept of a domain specific language as an interface

Page: 21

between the user, someone creating the natural language query and the data

repository to be queried. It also introduces a simplified algorithm and shows how

simplifying the approach used to perform the conversion can elicit performance within

both the speed and accuracy of conversion. This project shows that using shallow

parsing can provide an accurate conversion. It also highlights the use of a sequence-

to-sequence model can be useful for not just converting one natural language to

another but also be used to convert from a natural language to a machine language

capable of querying a database.

Chapter 4: The discussion in this chapter looks at the use of a domain specific

language in the development of an NLIDB solution. As can be seen from this chapter

the use of a DSL within the translation of a natural language to a language capable of

querying a database has not been implemented and the discussion around the topic is

limited to the use of an internal DSL as part of the conversion process. None of the

papers reviewed for this thesis provide details as to how the proposed algorithm can

be implemented. This chapter looks at the development of a domain specific language

for providing an interface into the conversion algorithms developed in Chapters 5 and

6. Using Bloom’s taxonomy a more natural domain specific language is created, which

is far easier to learn than SQL. This chapter also introduces how the algorithms

created in Chapter 5 and 6 can be used to underpin the DSL.

Chapter 5: This chapter proposes dismissing the use of language nuance as part of an

NLIDB solution. The argument being that language nuance is not present in an SQL

statement and therefore should not be used when parsing from natural language.

Instead, this chapter proposes using part of speech (shallow parsing) as part of an

algorithm that can be used to create a statement capable of being used to query an

algorithm. The algorithm proposed in this chapter introduces a novel approach to

parsing with the aim of improving the speed and accuracy of the conversion.

Chapter 6: This chapter takes the work completed in chapter 4 and extends the

proposed algorithm with a novel approach to parsing the natural language input

statement. This chapter proposes that SQL is just another language with its own

syntax and grammar. The idea proposed in this chapter combines the use of

sequence-to-sequence models in conjunction with the natural language part of speech

technologies and domain specific languages to convert natural language queries into

SQL. The approach being proposed by this chapter is to use natural language

processing to perform an initial shallow pass of the incoming query and then use

Page: 22

Google's Tensor Flow to refine the query with the use of a sequence-to-sequence

model. The thesis is also proposing to use a Domain Specific Language (DSL) as part

of the conversion process. The use of the DSL has the potential to allow the natural

language query to be translated into more than just an SQL statement, but any query

language such as NoSQL or XQuery.

Page: 23

2. Related Work

2.1. Introduction

Research within the field of natural language to database compliant query has been ongoing

for a number of years. Early systems like LADDER from the 1970 were developed by the US

navy. The goal of such systems has been to create a simplified user interface so that users

could query a database without the in-depth technical knowledge normally associated with

database queries. The ever-pervasive growth of data available to users and consumers has

kept this field of research relevant. This chapter looks at the current research being carried

out in the area of natural language to structured query language (SQL) from 2016. The

reasoning behind picking this time period is that in 2016 it appears that the research in

NLIDB solutions changed. This change is highlighted by the review carried out by Wang et al

(2016) and Allamanis et al (2018). Wang et (2016) highlights the increase in the number of

machine learning projects used within the field of NLIDB. The Allamanis et al (2018) review

also highlights that research in the field of NLIDB expands into other fields of research.

During the period of 2016 to 2020 a few reviews of the use of natural language to sql

projects were carried out. In a review performed by Wang et al (2016) their work

concentrated on projects that focused on the use of machine learning techniques. According

to the review by Wang et al (2016) they categorise deep learning models into three groups

according to the types of connections between layers. The review identified feedforward

models (direct connection), energy models (undirected connection) and recurrent neural

networks (recurrent connection). In contrast to Wang et al (2016) paper the later review

carried out by Allamanis et al (2018) looks more into the use of probabilistic models in

interpreting natural language statements into programming languages in general rather than

just a language capable of querying a database. Their work also looks at the implementation

of these models within the research arena.

The more recent review carried out by Kalajdjieski et al (2020) does not just look at the

methods used to convert natural language to SQL. In contrast to the reviews carried

out by Wang et al (2016) and Allamanis et al (2018) it also includes a review of the

datasets such as the WIKISQL dataset created by Zhong et al (2017) which can be

used to test and validate a model’s performance. The work also includes a section on

the models used to evaluate performance of natural language to SQL. This review has

identified that since 2018 most of the work in the area of NLIDB appears to be in the

Page: 24

areas of sequence-to-sequence models and semantic parsing. There is also a growing

body of work in the area of augmented memory and neural encoder decoder for use in

NLIDB systems. A number of other approaches have also been identified by this

chapter that are being used to improve the translation of natural to SQL. These

approaches have been categorised into logical groups for this chapter and they are

highlighted below. AI solutions being proposed by this project is described in more

detail in chapter 6. The concept behind it is to use a sequence-to-sequence models as

part of the conversion from natural language to a language capable of querying a

database. The sequence-to-sequence model uses LSTM to improve the accuracy of

the conversion.

2.2. Identified Approaches

This review has identified a number of common approaches that have been used
within the research community to improve the performance of natural language

conversion to structured query language. Papers reviewed in this section have been

grouped together based on the commonality of their research and the following

sections highlight the common threads. Most of the papers reviewed concentrated on a

single aspect of the conversion from natural language to a language capable of

querying a database. The section on multi-step architecture looks at papers that

combine several approaches to achieve the improvements in converting natural

language to SQL. This multi-step approach is similar in principle to the approach being

proposed by this project. As will be discussed later in the project the proposal is to

combine shallow parsing (chapter 4) with a sequence-to-sequence model (chapter 5)

and to also provide a domain specific language (chapter 6).

2.2.1. Semantic Parsing

The concept of semantic parsing in its simplest form is taking a natural language

statement and converting it to a logical form that is machine understandable. Lin et al

(2018) take this concept in its purest form to convert natural language to bash. Lin et al

(2018) also highlights that it is not just SQL being used as a target for converting

natural language to machine capable language. This chapter concentrates on the use

of SQL as a target language. The research by Shah et al (2020) is based on speech to

SQL and as part of their solution they propose a new language SpeakQL. They also

create a dataset specifically for speech-based SQL conversions. The conversion

process from speech to SQL the research still uses techniques used for typed natural

Page: 25

language conversion. The approach used by Shah et al (2020) relies on semantic

parsing for the creation of the SQL statement.

Though the use of semantic parsing four approaches seemed to be favoured by

researchers in the goal of improving natural language to SQL conversion. These

approaches can be classified under the following headings: executed guidance, tree

structures, underlying database structure, descriptive language and user interactions.

The first of these executed guidance uses statistical analysis to select the best output

from a number of possible solutions. This approach originates from the work carried

out by Wang et al (2018b). Their concept looks at statements in various stages during

the conversion process and discards those statements that cannot complete the

conversion to SQL. Yin, Neubig (2019) take a similar approach to Wang by ranking the

predicted output from the conversion model selecting those with the highest score.

Talmor and Berent (2018) use the internet as their model for training.

The equation defined by Yin & Neubig (2019) summarises the work also carried out by

both Wang et al (2019b), and Talmor and Berent (2018). The equation highlights the

use of 𝑠!as a bookmark to keep track of the generation process at each step (t) within

the LSTM cycle.

𝑠! = 𝑓"#$%		([𝛼!'(∶ 𝑠!'(: 𝜌!], 𝑠!'()

𝛼!'(is the embedding from the previous step while 𝑠!'(is the input into the vector𝜌!	.	

The use of tree structures for solving the problem with semantic parsing has been used

by both Cheng et al (2018) and Yin et al (2018). In the case of Cheng their work uses

the tree structure with a domain grammar to ensure that the conversion is accurate. In

contrast Yin et al use tree structures to hold the training data which can be labelled or

unlabelled.

Karki et al (2019) and Bogin et al (2019) both rely on the underlying database structure

as part of the process in parsing the natural language statement. Bogin et al (2019)

model the database structure within a graph schema as a method of understanding the

relationships between tables. In contrast Karki et al (2019) construct a row and

column-based grid from the database features.

Page: 26

The use of a descriptive language can also be used with the semantic parser. In the

case of Yin and Neubig (2018) they propose using abstract syntax description

language for parsing the natural language onto an SQL template. Lin et al (2019) use a

schema dependent grammar to map the natural language onto a SQL syntax.

Campagna et al (2019) look at using a Virtual Assistant Programming Language

(VAPL) to formalise the natural language statement. Cheng et al (2019) take a similar

approach to Campagna et al (2019) as they use templates that can map the text from

the natural language onto an SQL structured template.

Other approaches that rely on semantic parsing such as Yao et al (2019) rely on user

interaction to improve the performance of the conversion by posing questions to

reduce ambiguities. Whereas Benajiba et al (2019) explore the possibilities of

Semantic Pattern Similarity (SPS). This approach compares the structure of sentences

with known structures and then evaluates that to the SQL query. Zhang et al (2020)

use a sketch-based approach to semantic parsing. Their proposed approach does not

convert every element of the SQL but extracts just the values and the columns. This is

very similar to the approach being taken by this project, but instead of sketching this

chapter uses a sequence-to-sequence model.

2.2.2. Sequence to Sequence Models

In contrast to semantic parsing the concept of a sequence-to-sequence model is to

train a model to take a sequence from one domain or language and convert to another

domain or language. These models have been used to convert text from one natural

language to another and have now been introduced to convert from a natural language

to a programming language such as bash in the case of Lin et al (2018) or SQL as

proposed by Shi et al 2018.

Recent research using sequence to sequence models has extended the approach

typically used by Lin et al (2018) which takes a natural language statement and

compares it to a bash command. Sequence to sequence research projects can be

categorised into a number of streams those that have begun using the content from the

database rather than the database structure to understand the structure of the data,

those that are chunking the natural language statement into smaller more discrete

blocks to create multiple seq2seq models. There are those using a scoring mechanism

to rank the decoder as well as using the underlying database structure. There is also

work on creating sequence to SQL models.

Page: 27

In the model proposed by Shi et al 2018 the work uses a sequence to action model.

Their solution uses a SQL template with place holders to contain the name of the table,

columns and variables. The sequence to action model is then used to parse the

appropriate values into the template. With this project the underlying database

structure is central to the conversion process.

There are also extensions to the traditional sequence to sequence model such as the

work carried out by Xu et al (2018) which uses a graph based neural network to create

a graph to sequence model. Then the work carried out by Yu et al (2018) uses a tree

network to create what they refer to as a text-to-SQL model. Wang, Tian et al (2018)

also take a similar approach with their text to SQL model. Wang instead proposes

separating the data from the schema within the sequence model. Guo et al (2019) also

propose a text-to-SQL model by creating a multiple step approach to the problem of

converting natural language to SQL. As part of the process the solution creates a

synthetic query language from the natural language statement and database structure.

The final query is inferred from the synthetic query. The figure summarises the

approach taken by Guo et al. Within the natural language encoder x represents the

natural language statement chunked into individual word tokens.

Figure 2-.1: summarises the approach taken by Gua et al (2019)

For the schema encoder s represents the target database schema with C representing

the database columns and t the database tables of the target database. The output

from the decoder is a synthesised SQL statement.

Natural
Language
Encoder

Schema
Encoder

Decoder

Natural language
question

Database schema

Synthesised SQL

x = [x1, x2, x3 ...xn]

s=[(c1,t1), (c2, t2)...(cn, tn)]

Page: 28

In parallel to the extension of the sequence-to-sequence model the more traditional

sequence to sequence model is being refined by the likes of Soru et al (2018) which

like Xu et al (2018) uses graph patterns to learn the sequence make up relationships

between elements. The work by Soru though is more of a traditional sequence to

sequence approach. In comparison Su et al (2018) propose using multiple sequence to

sequence models at each step along the process of conversion. They also support the

use of user interaction to correct errors in the process of converting natural language to

SQL.

Part of a sequence-to-sequence solution relies on the decoding or the translation from

the input to the output. Bello et al (2018) assigns an item score as part of the decoding

process. The score is based on historical data, and according to Bello allows for

higher-order interactions. In contrast Zavershynskyi et al 2018 use a multiplicative

attention mechanism as part of the RNN within the decoder.

The work performed by Guo and Gao (2018) like Su et al (2018) chunked the natural

language statement into smaller elements thereby creating a chain of sequence-to-

sequence models. Within the WHERE clause the team ranked possible solutions

based on historic data choice the highest rank.

Other approaches for handling sequence to sequence models like Petrovski et al

(2018). The team proposes removing the database structure completely from the

sequence-to-sequence model and relying solely on the content of the tables to

describe the content of the database table. Then Sabour et al (2019) were more

concerned with the method of training the sequence-to-sequence model. Their

approach was to create an Optimal Completion Distillation (OCD). This required

statistically sampling the data used for training based on predefined characteristics.

2.2.3. Simplified Learning Model

Within machine learning a large corpus of data is traditionally used to train a model.

The process is exactly the same as that used by sequence-to-sequence models yet

the biggest difference in using the simplified learning model is the amount of data used

within the training model. The concept of a simplified learning model is to use a much

smaller dataset for training. The work of Huang et al 2018 identifies that such a broad-

brush approach to training can be problematic. Their approach was to reduce the

amount of training required by the model by specifying which simplified task the

Page: 29

machine learning model should concentrate on. In the case of Huang et al 2018 the

model should use the metadata of the underlying database for training.

Yavuz et al 2018 simplified the problem and had the sole purpose of trying to score

100% in translating the natural language queries from the Zhong et al 2107 corpus into

SQL. The solution proposed takes the question and the database table from the corpus

and concentrates on generating the WHERE clause. The solution uses a neural

network bi-directional LSTM for each word in the question.

2.2.4. Neural Encoder Decoder

A neural encoder decoder architecture is a neural network design pattern that takes an

input and produces an output. The formula proposed by Shin (2019) shown below

neatly highlights the encoding of the natural language input statement. The

Bidirectional long short-term memory encoding takes the tokenised elements from the

input statement and without sharing results across the three algorithms identifies

whether the tokens belong to either the question, table or column.

(𝑐!,#
$%& , 𝑐 !,#

'()), . . . (𝑐!,|+!|
$%& , 𝑐 !,|+!|

'())	= 𝐵𝑖𝐿𝑆𝑇𝑀 +,-./0	(𝐶!
234(, 𝑐!,5, . . . , 𝑐!,|+!|); 𝑐!

!0!2 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑐!,|+!|
$%& , 𝑐!,#'())	

(𝑡!,#
$%& , 𝑡 !,#

'()), . . . (𝑡!,|2 !|
$%& , 𝑡 !,|2!|

'())	= 𝐵𝑖𝐿𝑆𝑇𝑀 267-((𝑡!,5	. . . , 𝑡!,|2!|); 𝑡!
!0!2 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑡!,|+!|

$%& , 𝑡!,5'())	

(𝑞!
$%& , 𝑞 !

'()), . . . (𝑞|8|
$%& , 𝑞 |8|

'())	= 𝐵𝑖𝐿𝑆𝑇𝑀 8.(92!,0	(𝑞5, . . . , 𝑞|8|); 𝑞!!0!2 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑞!
$%& , 𝑞!'())	

The equation is split into three LSTM functions, one for the question where each word

or token from the input is represented by ‘q’. The second LSTM identifies the table

from the tokenized input statement where ‘t’ represents the table. The third LSTM is

used to identify the column from the database represented by ‘c’ that is extracted from

the input tokens. The decoder just builds up the resultant query from the most likely

results of the encoder. The BiLSTM function performs a look up on each word in the

input question. Additionally, each of the LSTM from the equation do not share any

parameters

There are a number of similarities between this approach and sequence to sequence

models. Though sequence to sequence models do use neural encoders and decoders

the approach used by the papers discussed in this section is not to emulate a

Page: 30

sequence-to-sequence model but to use the neural encoder decoder to understand the

relationship between either the natural language question and the subsequent SQL or

the relationships between tables in the database.

The work by Shin (2019) is concerned about the relationships between tables within a

database structure. Their paper uses a graph database to handle the relationships

between the tables. This approach appears to have a good performance when working

with a natural language query that spans multiple tables but appears not to have been

tested against a single table. There is also no information as to the upper limit on the

number of tables that this approach can handle.

Figure 2-.2: The figure shows an overview of the encoder and decoder architecture typically used within a neural
encoder decoder solution. The diagram comes from the work proposed by Shin (2019). T represents each table
in the underlying database and C represents the columns within the tables.

In contrast to the approach taken by Shin (2019), Cho et al (2018) use a multi-layer

sequential network with attention supervision. The model is trained against a value

pairing of questions and answers. The paper makes no account of the underlying

structure of the database. It would appear that creating a training set for the approach

proposed by Cho et al (2018) would require a high degree of manual intervention.

T1

C1 C2 Cn

Tn T2 Encode
r

C1 C2 Cn

Decoder

Count Where

Column

Select

Page: 31

Chen et al (2019) identified a number of inefficiencies in the traditional encoder

decoder paradigm. Their solution uses a multiple step approach with a series of

intermediate steps that are then processed as part of a chained series of events.

The work carried out by Suhr et al (2018) and Wang et al (2018) take very similar

approaches. Both projects use an encoder decoder model in conjunction with a

sequence-to-sequence model. These papers also use the underlying syntax of the

database as part of the translation process from natural language to SQL. Suhr also

uses regular expressions as part of the process to build up the SQL query.

2.2.5. Augmented Memory

Augmented memory is a simple approach to leverage a memory buffer. This buffer

contains a matrix of information used as part of the conversion process. In the case of

Jai and Lang (2016) the augmented memory is used to inject prior knowledge into the

RNN model used by the sequence-to-sequence model. McCann et al (2018) uses a

similar approach first proposed by Jai and Lang (2016) when they create the Natural

Language Decathlon (decaNLP). The decaNLP was created to test the NLP multi

domain solution multi-pointer-generator decoder.

Figure 2-.3 From the McCann et al (2018) paper showing the architecture of their proposed solution.

Page: 32

This approach was first proposed by Jain and Lang (2016) and was expanded by a

range of papers. The work by Dadashkarimi, Tatikonda (2019) uses a similar approach

to McCann et al (2018) when they introduce the concept of a cache which stores the

required vocabulary for use during decoding. The cache can also be used to find

related tokens. Xiong and Sun (2019) use the augmented memory approach when

target domain data is lacking. Liang et al (2018) in a similar manner to Xiong and Sun

(2019) use the memory to speed up training.

2.2.6. Corpus Tagging

The work carried out by Zhong et al 2017 relied on a user community to manually tag

over 80000 data points. With this tagged corpus the translation of natural language

query to a language capable of querying a database could then begin. The use of

natural language processing requires a tagged corpus, whether that is tagging each

word within a construct with either a label to identify the work as a noun, verb adjective

or an asset in a database such as a table, column or variable. The equation that

summaries the work of Zhong et al is:

x = [<col>; xc
1; xc

2; ...; xc
N ; <sql>; xs; <question>; xq]

The equation denotes X as a token from the input statement <question> as a relation

to the columns <col> in the underlying database and an attribute of the SQL statement

<sql>. X is then passed through a bi-directional long short-term memory network. The

key to the work proposed by Zhong et al (2017) is the tagging of the large corpus of

training data that facilities the accuracy of the proposed solution and also provides the

research community with a large corpus of tagged data know as the ‘WikiSQL’ dataset.

Work is being carried out to refine and automate the process of tagging natural

language corpus. Such work was carried out by Shah, Tur and Tur in 2018 with the

sole purpose of using machine learning to create a tagged dataset that can be used for

a NLIDB system.

Finegan-Dollak et al 2018 highlight the accuracy issue with tagging large datasets by

identifying errors in the tagging across multiple datasets and correcting those errors.

With this work they also identify that tagging a corpus requires being able to identify a

range of properties that are not easily identifiable.

Page: 33

The work by Weir et al (2020) in contrast to the other papers reviewed in this section

creates synthetic data to train the model. The work proposes using existing data as a

basis for the synthetic data. Wier et al (2020) argue that the synthetic data provides a

more accurate and smaller more concise dataset for training, thereby reducing training

times.

2.2.7. Multi Step Architecture

Most approaches that have been discussed within this chapter have concentrated on

refining a single component to improve the performance of a NLIDB solution. Few have

taken a multi-step approach using multiple technologies within an overall solution.

Polosukhinet et al (2018) use a domain specific language (DSL) along with an

extension to the sequence-to-sequence model that they refer to as Seq2Tree. This

work is similar to Shi et al 2018 but Polosukhinet decides to use a DSL rather than ad-

hoc regular expression.

Likewise Lukovnikov et al 2018 use a combination of augmented pointer along with

LSTM column encoders, along with a sequence to sequence model in conjunction with

semantic parsing to translate the natural language statement into a query language.

Taking a similar approach is Choi et al (2020) again using sketching to extract the

pertinent data from the natural language input statement which can then be transposed

on the SQL template. They also propose recursively predicting nested statements.

The work by Joshi et al (2020) takes a hybrid approach to the conversion of text to

SQL. Their work uses a series of sequence-to-sequence models to create the SQL

statement they also propose user interaction. Unlike Gur et al 2018 who propose user

interaction to refine the process, Joshi et al (2020) are after restricting the inputs from

users to avoid linguistic variations and ambiguities in the statement.

2.2.8. Other Approaches

Apart from the main topics of research that have been identified and discussed in this

literature review there are several smaller nuanced research projects that have been

identified. These projects are more embryonic in nature and usually have a single

paper dedicated to the subject. The research discussed in these papers has not been

followed up with more papers, yet the approach they propose could be pertinent to the

Page: 34

task of converting natural language to a structured query language. The list below

highlights these approaches.

Meta data from the underlying database has been used to support and refine the

process of conversion from natural language to a database query language. The work

proposed by Agarwal et al 2019 uses this metadata to train a machine learning model

to refine the translation from natural language to SQL.

Slot filling as proposed by Yu et al (2018) uses a slot filling regex approach to

mapping words in the language statement to database assets. The work uses

techniques similar to domain specific languages by building up a structure of the SQL

query and then using regular expressions fills in the gaps in the language structure

with data from the natural query.

SQL log approach proposed by Baik et al 2019 leveraging information database log file

to refine the performance of the conversion of natural language to database query.

Like the work carried out by Agarwal et al 2019 the approach uses information within

the database architecture to refine the process.

Subjective Databases was introduced by the work undertaken by Li et al 2019. The

concept behind this approach is the meaning of contextual data from the underlying

data. The approach has some similarity to that employed by sequence-to-sequence

models. From this work came the OpineDB subjective database system.

User interactions The work carried out by Gur et al 2018 proposes using interaction

from the user to refine the process of conversion. The researchers identified that the

where clause had the highest potential to be erroneous. To combat this perceived

weakness users are asked multiple choice questions to validate or correct errors within

the conversion.

Neural classifier is proposed by the work carried out by Wang et al (2020). The

classifier detects specific components in the natural language. This is used with the

underlying database structure and a sequence-to-sequence model to translate the

natural language to SQL.

Ellis et al 2018 We introduce a model that learns to convert simple hand drawings into

graphics programs written in a subset of LATEX. The model combines techniques from

Page: 35

deep learning and program synthesis., We developed a deep network architecture for

efficiently inferring a spec, S, from a hand-drawn image,

Augmented Pointer The Augmented Pointer is used in conjunction with a sequence to

sequence model for converting natural language to SQL. The approach first proposed

by Vinyals et al (2015) uses a bidirectional LSTM network to encode the input

statement. In the case of Zhong et al (2017) the input statement also contains a list of

the database column names. The output from the LSTM network differentiates

between the column names required for the returned dataset and the search conditions

such as the WHERE clause.

2.3. Conclusion

Most of the work carried out within this field concentrates on a single approach such as

the sequence to SQL approach proposed by Zhong et al (2017) or natural language to

SQL proposed by Weir et al (2020) and Zhang et al (2020). There is also a body of

work that takes a number of approaches such as Joshi et al (2020) and Polosukhinet

et al (2018). There has also been the development of innovative approaches such as

Shin (2019) which has seen the development of research into Neural Encoder Decoder

which has come from the work into sequence-to-sequence models. Development of

deep learning models has led to the introduction of novel approaches that have been

used by Wang et al (2016) and Ellis et al (2018).

The semantic parsing approach takes the natural language input statement and tries to

map the natural language words or tokens into a structured query language structure.

The approach often follows a slot filling Methodology and has a certain similarity to the

approach proposed by Sequence-to-Sequence models. The approach proposed by

Seq2Seq explicitly converts a word of phrase from one state to another through the

use of a mapping file. The domain for sequence-to-sequence models seems to have

originated in natural language to natural language translation (ie Spanish to English).

The work undertaken by the likes of Lin et al (2018) and Shi et al (2018) have

extended the use of sequence-to-sequence models to include computer based

languages such as natural language to bash.

The simplified learning model approach and the neural encoder decoder have certain

similarities. Both approaches use neural networks as part of the translation from

natural language to structured query language. The idea behind the use of the

Page: 36

simplified learning model is to use a smaller dataset and reduce the amount of time

required to train the model. In contrast, neural encoder decoder are like sequence to

sequence models more concerned about modelling the relationship between the

natural language input and the resulting query language output.

Though this chapter categorised the research topics into six distinct groupings the

equation that summaries the work of Zhong et al is:

x = [<col>; x c1; xc
2; ...; xc

N ; <sql>; xs; <question>; xq]

The equation denotes X as a token from the input statement as a relation to the

columns in the underlying database and an attribute of the SQL statement. X is then

passed through a bi-directional long short-term memory network. The key to the work

proposed by Zhong et al (2017) is the tagging of the large corpus of training data that

facilities the accuracy of the proposed solution and also provides the research

community with a large corpus of tagged data know as the ‘WikiSQL’ dataset. There is

a blurring of the lines between the topics as a certain amount of cross over exists

across each topic. The topics that have been identified in the multistep architecture

highlight the interconnectivity between the project, as in the case of Lukovnikov et al

2018 which use both augmented pointer and sequence to sequence models.

Of all the papers reviewed only Shah et al (2020), Agarwal et al (2019), Chen et al

(2019), Guo et al (2019), Liang et al (2018), Polosukhin et al (2018) and Xiong et al

(2019) discuss the possibility of using or creating a Domain Specific Language as part

of the solution. With Shah et al the domain specific language they propose is

SpeakQL, which takes spoken text and converts to SQL and Guo et al (2019) have

devised the DSL SemQL which is proposed as an intermediary between natural

language and SQL. Polosukhin et al (2018) mention the possibility of creating rich

domain specific language but provide no details as to how nor mentions that one has

been developed. The rest of the papers reviewed for this project provide no detail

about how to interact with the changes to the algorithm being proposed. All the

research reviewed by this chapter could have been incorporated into a domain specific

language, yet they do not mention nor propose how.

The concepts that the papers in this review have concentrated on are to provide

alternative methods in converting a natural language statement into a language

capable of querying a repository. Details as to how each of these projects improves the

Page: 37

speed and accuracy of that conversion process are light on detail in many papers. Also

from this review it appears that there is a gap in the research which could channel all of

these projects into an extensible domain specific language used to convert natural

language into a language capable of querying a repository. It is possible that the

complexity of creating a DSL was outside the scope of these projects, which was

focused purely on refining the conversion from natural language to a language capable

of querying a database. This project will look at the use of a DSL as an interface to the

conversion process, as well as trying to improve the performance of conversion.

Page: 38

3. Architectural Overview

3.1. Introduction

With the increasingly pervasive nature of data and its ever expanding use to answer

questions within business science, medicine extracting data is becoming more important.

The idea behind this project is to make data more democratised by allowing access to it

without the need for specialist languages.

This thesis proposes a solution to solve both the language nuance highlighted by Florin et al

(2017) and Kiev et at (2011) as well as the performance issues with the use of shallow

parsing as discussed by Joshi and Akerkar (2008). The use of shallow parsing, also referred

to as part of speech, negates the requirement for an understanding of language nuances, as

key words are extracted from the input statement and used within the conversion process.

The shallow parsing approach being proposed by this chapter is the use of keywords. This

approach first proposed by the Ratnaparkhi (1996) is used to identify characteristics of the

input statement that are important for the search. In contrast to Ratnaparki’s approach this

project not only identifies the keywords that would be useful in the translation process, but

maps the keywords to tables and columns within the tables. This high level overview of the

proposed solution hopes to provide an approach that can improve the accuracy and speed

of conversion.

This chapter will introduce the use of an index file containing keywords extracted from the

underlying database that identify the tables and associated columns. It is this approach that

helps build the performance in translation from natural language to SQL. This builds on the

work of Jwalapuram & Mamidi (2017) who are among a number of authors who have carried

out research into using keywords to enable NLIDB based systems to perform searches.

Unlike that used by Jwalapuram and Mamidi (2017) this project uses Part of Speech (POS)

processing in conjunction with an index file which allows for individual words to be extracted

from the natural language query. The individually extracted words can then be used to

create the query for the NLIDB solution. Details of the architecture for the proposed solution

can be found in section 4.4.

Having defined that accuracy of conversion and performance of conversion from natural

language to a language capable of querying a database. The problem that this project is

Page: 39

aiming to solve is to improve the speed and accuracy of that conversion process. Having

also highlighted the work that is currently being undertaken within this arena. The next step

is to introduce the solution being proposed by this project.

The work being carried out by this project looks at taking a new approach to the problem of

converting natural language into language capable of querying a repository. It introduces the

concept of a domain specific language as an entry or interface between the user and the

algorithm. It may seem counterintuitive to replace the domain specific language SQL with

another. Introducing the new DSL which is based on the Bloom Knowledge Taxonomy

makes the interface for the user far simpler than using SQL. Bloom’s taxonomy is taught in

school and is used extensively outside the computer industry.

This project also proposes a novel approach around the use of shallow parsing as part of the

conversion process. The idea being argued by this project is that trying to understand

language nuance does not aid the accuracy of the conversion process.

Finally, this project introduces the concept of sequence to sequence models which are

usually reserved for chatbots or converting one natural language into another. This novel

implementation of sequence-to-sequence models to convert natural language into a

computer based language. An internal DSL is also discussed potentially working with the

sequence-to-sequence model to improve the speed and performance of the conversion

process but is not implemented. It is however discussed as a future enhancement to the

project.

3.2. Research Challenges

In the course of this project a number of challenges were identified within the key

components. The key challenges to the solution of converting a natural language statement

into a language that is capable of querying a database have frequently been described as

accuracy of conversion and speed of conversion. For the accuracy of the conversion the aim

is to return results from the database query that are expected. The question is how can this

expected value be determined and how to measure the returned result against the expected

result in that the results returned from the process match the request for information from

the input statement. This measure of accuracy is examined in chapter 5 and chapter 6.

For the second key component, which is the speed of conversion. The problem was to

return results from the underlying database without increasing the latency within the overall

Page: 40

solution when compared to extracting data directly out of a database. In the age of search

engines users have become accustomed to expecting data returned within a 5 second

window.

• Domain Specific Language: Using the DSL provides a common interface into the

use of a parsing algorithm. Existing research concentrates on the mechanism of how

a solution works rather than on how to implement a solution. The use of a DSL to

solve this problem has been hinted at the most notably from the work of Polosukhinet

et al (2018) which uses a domain specific language (DSL) as part of the conversion

process. Yet there is no detail on how the DSL is implemented. The paper by Skeggs

and Lauria also mention in passing the use of a DSL but again there is no detail on

the implementation nor the use of the DSL. An additional problem exists with the

introduction of the domain specific language. That is how to measure the

performance of using the DSL against not using it.

• Shallow Parsing: The use of shallow parsing is not unique to this project.

Ratnaparki’s and Jwalapuram & Mamidi (2017) also propose using a shallow parsing

approach. The difference between the approach proposed by this project and the

work carried out by Jwalapuram and Mamidi (2017) is that the keywords extracted

are mapped directly onto the underlying target database. The challenge here is to try

and correctly identify words from the input statement and correlate them with tables

and columns from the target database.

• Sequence to Sequence Models: Sequence to sequence models area currently

used for converting one natural language to another, such as Spainish to English.

They are also used within online chat engines. The problem this project faces to turn

a natural langugae statement into a language capable of querying a database. Work

by Lin et al (2018) takes a natural language statement and then transfers it to a bash

command. These commands are not full-fledged bash programs. Understanding

language nuance will not translate into a SQL command.

3.3. Solution Overview

The overall high level solution architecture is shown in the diagram Figure 3.1. This diagram
shows all the components and the process flow used within the framework for converting

natural language into a language capable of querying a database. The diagram also shows

the flow of data through the system and the steps required to get from the input natural

language query to a language capable of querying a repository.

Page: 41

Figure 3-.1: The overall solution diagram shows the components that make up the complete solution.

The output from this system is a SQL query capable of querying a database. The simplified

diagram in figure 3.1 highlights each step through the process of converting the natural

language input into a language that is capable of querying a repository. Each step through

the process is highlighted and an overview of the conversion process is highlighted.

Individual steps in the process are highlighted below with more details of each step

described in the following chapters.

● Natural Language Query. The natural language query is the input into the system,

entered by the user and the starting point for the conversion process.

● Domain Specific Language. A DSL is being proposed by this project as an interface

between the natural language query and the algorithm that converts the natural

language into a structured query language. This project proposes using a DSL based

on Bloom’s taxonomy for knowledge. The approach will define a set of guidelines that

can simplify the conversion process as the structure of the natural language is of a

defined structure. This structure is also not too restrictive ensuring users do not need

specialist knowledge to use the language.

● Parse Input Statement, takes the incoming statement and basically chunks the

statement into word tokens. For this project python NLTK taggers were used to

identify words and produce the tags. This project chained a name tagger to identify

names and a specially built parser to identify elements of the input string with known

database attributes. Details of this process can be found in section 5.4. The output

from this process is a list of names and words that can then be tagged.

● Parse token and tag, this tagging process works in concert with the parsers to

identify real names as well as keywords from the tokens so that the correct NLP tag

can be applied to the tokens. The tagging process takes the output from the parsing

process and applies tags, which can identify names and elements from the underlying

Seq2Seq
Config

Natural
language
grammar
file

Taggers

Apply
DSL

Run
through
seq2seq
model

Remove
stop
words

Parse
token
and
tag

Domain
Specific
Language

Parse
input
statement
into

Natural
Language
Query

Page: 42

process. The output from this process is a JSON string with the chunked words from

the input statement and the associated tags. The details of this step are highlighted in

section 5.4.

● Remove stop words, stop words such as ‘the’, ‘a’, ‘is’ which have no assigned NLP

tag are removed from the original query as they have no use in the conversion

process. Removal of stop words is performed at this stage as identified stop words

may have some meaning within the conversion process. The output from this step is

the JSON string with the remaining tokenised words from the input statement and the

tags associated with those words. Details of this process are shown in section 5.4.

● Sequence to sequence model takes the remaining word tokens from the input

statement and proposes using a sequence-to-sequence model to convert the words

into database elements such as table names and column names.

● Apply DSL, takes the output from the sequence-to-sequence model. The returned

data is then mapped onto a template for an SQL query. Using an internal DSL within

this step may provide more flexibility and allow the target language to be a language

other than SQL.

The framework describes the steps that a natural language statement goes through to be

processed into a query capable of querying a database. The entire process was refined over

several iterations. Details of the model used by this project can be found detailed in chapters

5,6 and 7.

3.4. Conclusion

This project having highlighted gaps in the conversion of natural language to query

language this section provides a high level overview of the potential solution that is

being proposed by this project. This thesis contributes to three areas in the field of

natural language interface into a database.

● Domain Specific Language: This project introduces domain specific languages to

the problem of converting a natural language into a language capable of querying a

data repository. The Domain Specific Language within this project is used to provide

an interface between the user, someone creating the natural language query and the

data repository to be queried. Current projects provide no clear interface between the

user and the repository but concentrate purely on the conversion from natural

Page: 43

language to a structured query language.

● Simplified Algorithm: This project also shows how simplifying the approach used to

perform the conversion can elicit performance within both the speed and accuracy of

conversion. This project shows that using shallow parsing can provide an accurate

conversion.

● Sequence to Sequence Model: It also highlights the use of a sequence-to-

sequence model can be useful for not just converting one natural language to

another but also be used to convert from a natural language to a machine language

capable of querying a database. Research is centred on using sequence to

sequence models to translate one natural language to another such as Spanish into

English. There is no detailed research on using sequence to sequence models to

translate a natural language statement into a computer language such as SQL. A

SQL statement is after all another language, like natural languages it has syntax,

grammar and vocabulary. This project makes the proposal that sequence to

sequence models can be used to translate a natural language into a computer

language like SQL.

The next chapter will look at the use of domain specific languages in the field of NLIDB.

Currently there is not a great deal of work in this field so the number of references are light.

The discussions starts with a review of what is currently available.

Page: 44

4. Using a Domain Specific Language Within an NLIDB
Solution

4.1. Introduction

Domain Specific Languages (DSL) are created to perform a very specific task within a
narrow operating field and often to perform very specific tasks. Examples of DSL's are

Structured Query Language for querying a database, and HTML used to display a web

page in a browser. This chapter is going to introduce the concept of using a domain

specific language to query a database based on a natural language query. The

ultimate aim of this work is to create a DSL that is extensible thereby allowing the

language to develop and expand thereby developing with user expectations. Currently

the work being carried out in the field of natural language to database query looks to

enhance a specific algorithm rather than providing a vessel that can be expanded

encompassing these new thoughts, algorithmic and improvements to existing

techniques.

The idea behind using the DSL is to provide an interface between the natural language

query and the process to transform that query into a query capable of extracting data

from a repository or database. Most papers in this field concentrate on an algorithm

that can be applied to improve the conversion from a natural language into a language

capable of querying a repository. There is little on how to implement the algorithm

being proposed. The DSL provides the entry point to algorithms that perform the heavy

lifting when transforming natural language queries to a language capable of querying a

database. There is also a gap in the research field of NLIDB that the DSL can fill. The

work carried out in the previous chapter looked at about 50 projects within this field and

yet only Skeggs and Lauria (2018) as well as Polosukhinet et al (2018) mentions the

use of a DSL. The paper from Skeggs and Lauria (2018) specifically suggests using

the DSL as providing an interface between algorithms being proposed by the project

and the end user. This thesis takes the DSL proposal and provides details on how to

create and use it within a NLIDB solution.

Here we introduce an external natural query language that is capable of being used as part

of a solution for a natural language interface to a database (NLIDB) solution. As shown in

chapter 4 this approach has not been covered in detail by other research projects, and

appears to be mentioned in passing by Skeggs and Lauria (2018) as well as Polosukhinet et

Page: 45

al (2018). The advantage of using an external DSL is that the language becomes accessible

to the user whereas an internal DSL would only be available to the conversion process. This

project does recommend that an internal DSL is used in the final stages of the conversion

process but it has not been implemented at this stage.

Attempts have been made in the past to create a natural query language such as the work

by Sibuya et al (1978) when they created a query processing system called Yachimata.

Their system concentrated on the Japanese language to create a query capable of querying

a database. Their system uses a noun-phrase model to create a framework for creating

queries. In contrast this project proposes to use strict language grammar to create a

framework which will be used to transform the natural language query into a language

capable of querying a database. Using the Bloom taxonomy for knowledge will provide the

framework against which the rules for the DSL can be developed. The approach being

proposed by this chapter will follow the recommendation of Rabiser et al (2018) and make

the language extensible. The advantages being that the language is capable of developing

as new algorithms and approaches develop.

Having designed and created the domain specific language the next step is to highlight the

implementation of the language. This section will also look at how to implement algorithms

into the language giving the language flexibility to adjust to changes in the research of

creating a natural language interface to a database. The DSL adds a level of abstraction and

provides a predefined structure based on the work of Bloom and the resulting taxonomy of

knowledge. The use of this taxonomy will simplify the structure of the questions being asked

by reducing the level of variation in the question and thereby simplifying the parsing of the

incoming natural language query. The abstraction layer provided by the DSL enables

algorithms to be injected into the DSL providing a constant interface between the user and

the SQL statement as well as the flexibility to choose the underlying algorithm to perform the

parsing task as well as the conversion to the resulting SQL statement used for querying the

target data repository.

4.2. Related Work

Domain specific languages (DSL), as highlighted by the work of Klint et al (2009) and

Starynkevitch (2011) can be used to simplify a specific task. In the case of

Starynkevitch (2011), the work proposes using MELT a domain specific language in

the GCC compiler to create plugins for the GCC Compiler. Starynkevitch (2011) argues

that using the DSL reduces the complexity of creating plugins for the GCC compiler.

Page: 46

Like the work proposed by Starynkevitch (2011), Klint et al (2009) uses RASCAL, a

domain specific language to simplify the process of analysing source code. The review

of DSL's carried out by Rodrigues et al (2017) also reiterates the idea that DSL's by

stating that one of the aims of a DSL is to ease the role of developers.

Langlois et al (2007) highlight the importance of design patterns in the development of a

DSL, but also recognise that the number of design patterns in use were few. Their work

describes a number features that a DSL should have

● Language features are formalised by abstract and concrete syntaxes. According to

Langlois et al (2007) the concrete syntax describes language structure in human

usable form. The abstract syntax characterises elements of the domain.

● Transformation features describe the flow of information through the DSL from the

problem to the solution.

● Tool features highlight the tools that are used to develop the DSL.

● Process features define how the DSL is used within projects.

The work of Lui et al (2010) highlights the lack of interoperable capabilities of DSL's along

with the limited support from the available tools. In contrast to Langlois et al (2007) their

approach to overcome these obstacles is to propose a service-oriented architecture

approach. Their work proposes using WSDL to analyse web services to define the

semantics of the DSL. Mernik et al (2005) also supports the concept that building a DSL is

challenging and the tools for development are few. But from their work they do propose a

design pattern that could ease the burden of developing a DSL. Again Barisic et al (2017)

lament the lack of tools and techniques in designing a building DSL's. Their approach is to

create their own DSL to specify the requirements of a DSL based system, their tool USE-ME

supports the development of a DSL. In contrast the work by Vissel (2007) highlights a range

of design patterns and guidelines to create reusable DSL templates.

The work of Thanhofer-Pilisch (2017) highlights the growing significance of DSL's in the

ability to solve problems, but they do not look at how language DSL's have evolved. This

importance of DSL in providing solutions has led to the development of a number tools to

help create them. In 2016 Microsoft introduced a domain specific language toolset into their

development tool visual studio. The open source project XText has been around since 2006

and is now part of the Eclipse Modelling Project. In 2009 JetBrains produced the first

Page: 47

commercial IDE based on the MPS platform used to design DSL's. This product is an open

source project under the Apache License So the tools exist to create the DSL and this

project uses the XText framework to create the DSL.

Work by Kapferer (2019) shows how model transformation can be applied to DSL

processing. The work also highlights that model-to-model transformation can also be applied

to model to code as well as the reverse code to model transformations. This approach is

also backed up by the work of Mens et al (2006). Work by the likes of Azuma et al (2003)

and Goksu (2016) have highlighted the possible use of the Bloom taxonomy in the field of

computer science. With Azuma et al (2003) the work not only shows how the Bloom can be

applied to the field of computer science but also proposes a new taxonomy that could also

be more applicable to software engineering problems. This chapter relies on the knowledge

taxonomy proposed by Bloom to provide a strong foundation. In the case of Goksu the work

concentrates on the use of the Bloom taxonomy in web-based expert systems to support

learning within an educational group and proved to be more effective than just using

traditional methods.

The work by Czarnecki et al (2003) highlights two alternative techniques to the embedding

of a DSL in an independent application or language. The techniques described in the paper

staged interpreters and templates according to Czarnecki et al (2003) can overcome the

limitations of embedding. In their research the team looked at using MetOCaml, Template

Haskell and C++. In their findings Czarnecki et al (2003) did express surprise at the number

of DSL's that were implemented using the C++ programming language but also highlighted

the flexible nature of the language and the subsequent flexibility that a language developed

in C++ provided.

Zhao et al (2018) created DeepDSL for encoding deep learning networks and generating

Java source code. At the core of DeepDSL are tensor functions and both tensor and scalar

expressions. According to Hao et al (2018) there are a number of layers of processing to

refine the Java code to ensure that it is optimised. The project highlights the processes and

core components of the language as well as how it was created. This is in contrast to

Czarnecki et al (2003) which just takes a high level view of the creation of a DSL.

Like Zhao et al (2018) the work carried out by Sujeeth et al (2013) provides a detailed view

on the creation of the Forge DSL. Unlike DeepDSL, Forge is an embedded language based

on the Scala programming language and uses the Delite framework.The work by Zhao et al

(2013) provides some detail of the creation of the Forge DSL through the use of simplified

Page: 48

code extracts. This chapter will follow the same path set down by both Zhao et al (2018) and

Czarnecki et al (2003) by showing simplified code extracts as to how the language can be

implemented.

Domain specific languages (DSL), as highlighted by the work of Klint et al (2009) and

Starynkevitch (2011) can be used to simplify a specific task. In the case of

Starynkevitch (2011), the work proposes using MELT a domain specific language in

the GCC compiler to create plugins for the GCC Compiler. Starynkevitch (2011) argues

that using the DSL reduces the complexity of creating plugins for the GCC compiler.

Like the work proposed by Starynkevitch (2011), Klint et al (2009) uses RASCAL, a

domain specific language to simplify the process of analysing source code. The review

of DSL's carried out by Rodrigues et al (2017) also reiterates the idea that DSL's by

stating that one of the aims of a DSL is to ease the role of developers.

The work by Klint et al (2009), Starynkevitch (2011), Starynkevitch (2011) and

Rodrigues et al (2017) highlights the benefits of using DSL but their work is more

generic than that required for this project. This project is looking solely at the use of a

DSL for performing the translation from a natural language to a language capable of

querying a database.

The Elasticsearch search engine has also been proposed as part of an interface

between natural language and SQL. From the work carried out by Badhya et al (2019)

they propose using the Elasticsearch as the training corpus for the conversion. The

idea is that the keywords from natural language input statements are passed through

Elasticsearch and compared to descriptive columns in the underlying database. The

application uses an internal DSL called multi-match as part of the translation process.

Again the work by Badhya et al (2019) provides a limited subset of the use of a DSL by

this project. Badhya et al (2019) propose using an internal DSL to assist with the

translation of natural language but the details on the implementation are not central to

their proposal and as a result are scant on details.

When looking at the use of a DSL in the domain of a Natural Language Interface to

Database (NLIDB) the work by Polosukhin et al (2018) introduces a DSL based on a

Seq2Tree model. Their work also shows that this approach outperforms a sequence-

to-sequence model in the conversion of a natural language into a language capable of

searching a repository. However, the narrow approach taken by Polosukhin et al

(2018) does not allow for the growth of the language by embracing other technologies

Page: 49

or methodologies in the pursuit of converting natural language to SQL. The project also

uses the DSL as an internal DSL which provides a solution as an alternative to a

sequence-to-sequence model. The proposed use of the DSL within this project is to

provide an interface between the end user and the underlying database. This interface

provides a simpler interface with the aim of making data more accessible to users who

now no longer need a high level of technical expertise to query and access data. More

details of the DSL can be found in Chapter 5.

Few other projects in the field of NLIDB reference the use of a DSL. Most work

consists of a solution based on either the use of augmented memory as in the work by

McCann et al (2016), or that of Lin et al (2018) with their research into the use of

semantic parsing. This work is in isolation essential to push the boundaries in

improving the translation from natural language to a repository based query language.

However, these approaches do not appear to provide an overall framework for building

an inclusive approach, for this it appears that a domain specific language may provide

a holistic framework.

4.3. Using Domain Specific Languages

Natural Language Interface to a Database solution has been around for a while, yet a review
by Radu et al (2020) highlights only one project that uses a DSL and that was the SemQL

from Guo et al 2019. Though work carried out by Skeggs and Lauria (2018) as well as

Polosukhin et al (2018) have hinted at the use of a DSL as part of a solution to the problem

of NLIDB.

Landauber et al (2016) proposed using an API as part of their solution. Their proposal uses

a natural language command interpreter that models an API which acts as the interface for

the translation. The SemQL domain specific language is a proposed DSL that is used as part

of the decoder which was also part of the solution proposed by Skeggs and Lauria (2019).

Yet the main focus on the Guo et al (2019) paper is the neural approach IRNet that sits

behind the SemQL. The model proposed by Hanane et al (2020) appears to be a DSL light

solution to converting the Arabic language into a language capable of querying a database.

Though the hint of a DSL has been mentioned there appears to be no move to develop a

language that can encompass the array of algorithms and approaches that have been

developed over the years.

Page: 50

The review of domain specific languages carried out by Mengerink et al (2018) highlights

how DSL's have been used to model systems. The conversion of natural language to a

language which can query a repository is just another system. The paper by Namavari

(2017) also highlights how a DSL can be used as part of a transformation process which is

exactly what a NLIDB solution is, as it transforms one language into another. Namavari

(2017) proposed using DAWPL (Digital Audio Workstation Programming Language) to

generate, sequence and process sounds by using an API.

Domain specific languages are created to perform very specific tasks and as the work

of Starynkevitch (2011) highlights they can be used to simplify what could otherwise be

a difficult and time consuming process. DSL's are divided into two categories and are

either internal or external, both variants of DSL have their own specific use. Internal
DSL can also be referred to as an embedded DSL that is often embedded within

another programming language or platform. The internal DSL LINQ as an example is

used within the Microsoft .NET framework and the work by Boronat (2018) in creating

YAMTL as a model transformation internal DSL of Xtend. External DSL in contrast are

standalone languages that are implemented via an independent compiler or interpreter.

HTML is a good example of an external DSL as its sole role is to render a web page.

The use of DSL's in the domain of natural language interface to a database refers

often to the fact that SQL (Structured Query Language) is a domain specific language

that is designed to manipulate a database. The use of a DSL in this scenario is that of

the target as highlighted by Desai et al (2016). A target repository does not have to be

a relational database but can also be a NoSQL or document based repository not

supporting a standard RDBMS (Relational Database Management System) using SQL.

4.3.1. Internal Domain Specific Languages

As stated by Hinkel et al (2014) models can be transformed into other artefacts through

code. Though according to Wimmer et al (2012) in their review of model-to-model

transformations they highlighted that most transformations happen without the concept

of a reuse mechanism making each transformation almost unique. Any similarity

between transformations is there accidental rather than by design. Since this review

was carried out work has been undertaken to simplify the process of model

transformation and the use of DSL has been explored to allow for some reuse. Table

4.1 shows some of the most commonly used DSL’s.

Page: 51

Language Usage
React A language for building front ends to

applications hosted by JavaScript
JQuery JavaScript library designed to simplify HTML

DOM tree traversal and manipulation of
data.

Hyper Text Mark-Up Language
(HTML)

Used within the internet to present page
content through a browser.

Structured Query Language (SQL) Used to query a database.
Table 4-.1: A list of commonly used internal Domain Specific Languages.

The work carried out by Boronat (2018) in developing the YAMTL DSL shows that it is

possible for a DSL to be used as part of a transformation process as it is used to transform

large models. This chapter is introducing the concept of a DSL as part of a transformation

from natural language to a query language capable of querying a data repository. The work

by Tisi et al (2018) also shows how a DSL can be used as part of a transformation process

for large complex models, such as graph and rules-based models. The result of the work by

Tisi et al (2018) was the introduction of the domain specific language CoqTL. The project

highlights the transformative nature of CoqTL by transforming a Moore Machine into a Mealy

Machine.

In addition the approach taken by Krikava (2015) is to propose an internal DSL as part of a

solution to apply structural constraints to modelling languages. The team highlighted the

difficulty of using general programming languages as well as using an external DSL. For this

project their solution was to implement an internal DSL. Gulwani et al (2014) created an

internal DSL that works within the bounds of Microsoft Excel. The aim of this project is to use

natural language to help with the expressive algebra, map, reduce, join and formatting within

a spreadsheet.

4.3.2. External Domain Specific Languages

External DSL's according to Riti (2018) are far more complex than internal DSL's to create.

Part of the reason for this is that an interpreter or compiler needs to be created as part of the

language structure that allows the DSL to run independently of any other structure. A

number of external DSL's exist to perform a range of tasks, Table 4.2 lists some of the

common external DSL's in common use with a brief description of the task each performs.

Page: 52

Language Usage
HTML A XML like language for displaying data within a web browser
SQL A language to insert modify or extract data from a relational database
XML A text human readable format for storing and transmitting data
NoSQL An SQL like language for querying non relational databases

Table 4-.2: This above table lists some of the most common external DSL that are in use.

Both Sobernig (2020) and Storl et al (2015) have shown how Object Relational Mappers can

be used to access NoSQL data stores just as well as dedicated Object-NoSQL Mappers.

This work highlights the possibility of using object mappers to map data from a natural

language onto the structure of potentially a relation and NoSQL database. Using the object

mapper within a DSL could be the key to creating an interface between a natural language

and a data repository.

4.3.3. Internal v External DSL's

Both internal and external DSL's have their place. According to Barringer et al (2011) DSL's

can be difficult to extend which can prove limiting for a DSL as having initially created a DSL

users will always want more features. The general argument for an internal DSL is to provide

a quick easy interface making it easier to add functionality to the host application or

language. The creation of the internal DSL is constrained by the host application. Internal

DSL are more simplistic to write but knowledge of the host application can make access to

the DSL difficult.

In contrast external DSL's can be harder to develop as they have no host and are required to

work as a standalone application. The interface into the language can make external DSL's

more user friendly. Cuadrado et al (2013) states that the DSL's have been created to

improve efficiency in performing a specific task. The creation of Structured Query Language

(SQL) is a prime example of this role in DSL's. SQL was designed to extract data from a

database by providing an interface to the database which was easier to understand. DSL's in

general are easier to learn than non-DSL's like C or Java.

4.3.4. Extensible Domain Specific languages

Barringer et al (2011) makes the argument that domain specific languages are difficult to

extend but without the ability to change and adapt a DSL will have a limited life span. The

aim is therefore to create a DSL that can change and adapt to users requirements over time.

Since the Barringer et al (2011) paper a number of extensible DSL have been produced, a

number of approaches have been used to achieve extensibility. Hinkel et al propose that a

DSL should inherit tool support from the host language to allow for extensibility, though this

Page: 53

is suitable for internal DSL's obviously for an external DSL this approach is not, therefore

another approach needs to be used. According to Sutii et al (2018) designing a language to

be modular is one of the key components of making the language extensible. The SteelCore

extensible DSL came out of the work by Swamy et al and as Sutii et al (2018) proposed the

use of a modular design. The PENROSE system from Ni et al (2017) uses yet another

extensible DSL called Substance that renders mathematical notation. Heeren et al (2017)

also created an extensible domain specific language, again by making it modular in design.

4.4. Designing the DSL

In this section we look at how to design the language structure grammar and syntax.

Understanding design patterns in the creation of the DSL can focus the development

process shortening the time and effort required in the creation of the DSL. This approach is

backed up by the work carried out by Spinellis (2001). Their work identifies eight design

patterns that should be used when creating a DSL.

● Piggyback looks for a host language or application to provide the foundation of the

DSL around. The support from the host could potentially include expression handling

and linguistic support.

● Pipeline describes how the DSL process marshals data through a process as

described by Bentley (1986).

● Lexical processing looks at the language elements of the DSL which can be

overcome by piggybacking on another language or application.

● Language extension shows how a DSL can be used as an extension of an exiting

language introducing new features, components or core functionality.

● Language specification identifying which elements of the host language will not be

implemented as part of the final solution.

● Source to source transformation looks at the compilation or interpretation of the

language.

● Data structure representation looks at how data will be handled by the DSL.

● System front end looks at how the DSL can be integrated with other systems or

programmed.

Page: 54

Most of the design patterns identified by Spinellis (2001) revolve around the grammar,

syntax and general language structure of the DSL. These design patterns could be fulfilled

by piggybacking off another language or application. The question of the language

constructs would then be defined by the host language or application.

In contrast to Spinellis (2001), Zdun et al (2010) states that when implementing a reusable

architectural design for a DSL states that there are three main decisions that need to be

made for a DSL to be successful. According to Zdun et al (2010) these are, development

process, language syntax of the DSL and whether the DSL is internal or external. For the

purposes of this chapter the DSL is going to be external which just leaves the syntax and the

development process which will be covered in this section.

4.4.1. Development Process

According to Zdun et al (2010) the DSL development process has three design patterns:

Language Model Driven, Mockup Language Driven, piggybacking. For a language model

driven design pattern the approach is to model the language features understanding the

limitations of the language. With the Mockup Language Driven model the idea is to start with

a concrete idea of the language structure and to then refine and build the model from that

design. The piggybacking design model takes a host language or application as a starting

point for the DSL. The idea is to identify existing elements within the host language or syntax

and provide an interface to those features.

Each approach has upsides and liabilities which are set out in the Zdun et al (2010) paper.

The approach taken by this chapter is the Mockup Language Design. The mock up for the

language starts with understanding the Bloom taxonomy for Knowledge. Having an

understanding of this taxonomy then enables the creation of a language mockup which is

expanded in the next section.

4.4.2. Language Syntax of the DSL

The proposal for the language syntax is based on the concept of a question. After all, the

purpose of a question is to elicit an answer. The language construct will follow the Bloom

taxonomy for Knowledge as set down by Benjamin Bloom an American educational

psychologist. The knowledge taxonomy is based around the standard questions who, what ,
when, where, why and how which are sometimes referred to as wh questions or the 5 W's
(and 1 H). Bloom's taxonomy has been used in education for a number of years as a way of

Page: 55

getting students to understand the subject matter, it has also been used by both journalists

and law enforcement to try and understand the timelines of how and why events, stories or

crimes unfolded.

The proposed language will concentrate on the first four questions: who, what , when and

where . The remaining two questions why and how could be argued are too subjective.

Further work would need to be undertaken to bring these two questions into the project.

There is a standard construct for a who, what , when and where based questions. In

normal speech the wh word is the first article followed by an auxiliary verb (be, do or have),

then the subject then finally the main verb. An alternative would be the wh word as the first

article followed by model verb then subject and main verb. This chapter proposes to use

these established language constructs as the foundation for the DSL, which establishes the

ground rules for the language grammar.

This grammar can allow for the easy transformation from a knowledge based natural

language question to a simple query capable of searching a repository. Using the grammar

rules of the DSL the simple natural language query could be what time is lunch served. From

this simple natural language question, Table 4.3 shows how the question is parsed into the

salient elements of a knowledge based question.as well as the potential for how those

mapping could be applied to a database.

Word Word description Database Mapping

what the 'wh' article N/A

time an auxiliary noun Database table

is the auxiliary verb N/A

Lunch the subject of the question Database table column

served the main verb from the question Database table column

Table 4-.3: The construct of a simple knowledge-based question.

The first column in Table 4.3 shows the words separated out. The second column shows the

type of word (whether it is a noun or verb). The third column then maps the word to a

construct in a database. The underlying table meal_times holds the times meals are served

at a given restaurant is shown in Table 4.4. So by simply parsing the natural language

question into the constituent parts and mapping those to a database construct such as a

Page: 56

table or column it is possible to convert the input statement into the structured query select

time from meal_times where meal = 'Lunch'.

Time Meal

6:00 Breakfast

7:00 Breakfast

8:00 Breakfast

9:00 Breakfast

10:00 Mid Morning Coffee

11:00 Mid Morning Coffee

12:00 Lunch

13:00 Lunch

14:00 Lunch

15:00 Afternoon Tea

16:00 Afternoon Tea
Table 4-.4: A possible table structure that contains the meal times of a restaurant during the course of a day.

Not all knowledge based questions are so simple or can be converted to an SQL statement

so easily. In the example above there would also need to be a mapping for the word or term

time to the database table meal_time. Yet the algorithm that performs the conversion for a

more complex conversion can be abstracted behind the use of a domain specific language.

4.5. The Language

Having chosen the approach that this chapter will follow in the creation of the DSL the next

step is to select the toolset. A number of tools and frameworks exist to simplify the process

of creating a DSL. Tools like the eclipse Xtext framework, Visual Studio from Microsoft MPS

from JetBrains and the python based textX which is based on the Xtext framework. These

tools simplify the process of creating a DSL by providing language parsing, linking, type

checking and compiling covering most of the design patterns highlighted by Spinellis (2001).

Bunder (2017) describes an approach to convert UML (Unified Modelling Language) models

to a DSL using Xtext. Though the description in Bunder (2017) is brief the idea is to use the

Xtext DSL tool in parallel with the Java Eclipse IDE to provide the heavy weight lifting.

Figure 4.1 provides a high level view of the process used to take the proposed DSL

statement, validate the statement and tag the tokenised word elements of the statement with

Page: 57

labels to identify how the words can be extracted into another language capable of querying

a repository.

● The diagram shows that the parser uses the Xtext grammar file shown in code

sample 4.1 to identify elements of the underlying database that have been identified

as useful for the validation of the input statement.

● The input statement can then be validated to ensure that it meets the requirements of

the prescribed language syntax.

● If successful the word elements or tokens from the input statement are tagged with

standard OpenNLP tags to produce an output.

● If the input validation process is not successful the question becomes does the

process raise an error. As it currently stands with this project the option is not to raise

an error. As will be described chapter 6 and 7, the parsing statement can take a

natural language statement and parse it into a language capable of querying a

repository.

Figure 4-.1: Provides an overview of the processing required by the proposed DSL.

The concept behind creating the DSL is to provide some common structure to the natural

language input statement. This structure can be used to reduce the complexity of the input

statement making the parsing easier and quicker to perform. More details on the parsing of

the input statement can be found in chapters 5 and 6.

Input
Statement

Grammar
File

Parse

Tagged
output

Tag data

Error

Tagger

Validate

No

Yes

Page: 58

4.5.1. Creating The Language

The language can be created using a tool such as Xtext and for the purposes of this chapter

is to show how the language is prototyped using Xtext. Codes sample 4.1 shows an extract

from an Xtext grammar file which is used to establish the feasibility of the language. From an

example grammar file it is possible to see how a simple natural language query ‘what time is

lunch served’ can be parsed. The grammar file shows how the word tokens from the natural

language question can be mapped to attributes within the underlying database, in an

approach that is similar to a sequence-to-sequence model.

1. Model:
2. declarations += Declaration*;
3. Declaration:
4. Rule;
5. Table:
6. name=ID;
7. Meal:
8. name=ID;
9. Rule:
10. ‘what’ description=STRING'

11. ‘time’ time=[Table|QualifiedName] 'is'

12. ‘lunch’ lunch=[Meal|QualifiedName];

13.QualifiedName:

14. ID('.'ID)*

Code Sample 4-.1: A simplified grammar file for the DSL showing how the file can be constructed to handle a
natural language statement.

The grammar file has to know and understand the structure of the database it is expected to

query. Therefore the grammar file needs to be created from the underlying database. The

structure of the grammar file contains the elements used to extract the salient points from

the underlying database.

The first rule in this grammar file is a ‘Model’. This model is made up of a single or multiple

‘Declarations’. In the case of the grammar file in code sample 4.1 the model contains a

single declaration which is a ‘Rule’. The Rule has three elements the first is a string which

from the example is the string ‘what’. In a more complete grammar file this should include

Page: 59

the other ‘wh’ words as defined in Bloom's knowledge taxonomy (see section 4.4). The

second rule seen in line 11 is the word ‘time’ which should also be present in the input

string , and should be qualified by the trailing word ‘is’ . The word ‘time’ has also been

identified as having a rule named ‘Table’ associated with it. The text ‘lunch’ also has a rule

associated with it, called ‘Meal’. The rule is shown in line 5 and 6. attribute of the underlying

database. The grammar file should contain elements of all the keywords that should be in

the corpus of questions that can be asked of the database.

The more complex the grammar rules used to define the DSL the more complex the

grammar file. For the simple example that is highlights in codes sample 4.1 the content of

the grammar file can become unwieldy and prone to errors.

The idea behind the language is to provide a framework on which algorithms from other

research projects can be implemented. This section looks at how algorithms can be

implemented within the DSL. The algorithms to be implemented will be for the parsing of the

natural language statement, the thesis will then look at how to implement a sequence-to-

sequence model.

4.6. Parsing the Natural Language Statement

There are two stages of parsing required for creation of the DSL, the first is to ensure that

the input natural language statement meets the language constructs or grammar defined

within the language specification. The second parse required takes the elements of the

natural language input statement and identifies the database elements that are associated

with those input elements. This becomes the foundation for the creation of the resulting SQL

statement. This section of the thesis splits out the two parses and shows how they are to be

treated.

4.6.1. Initial Parse

The first step when creating the domain specific language is to parse the incoming

statement to ensure that the incoming statement meets the requirements of the DSL. This

would include the use of reserved words, the grammar involved with the DSL and any

potential mark to identify the extent of the input statement along with any special characters

to define comments. Chapter 6 details how the design of the DSL can simplify the process of

parsing the input statement, for a simplified version looking at who, what, where and when

questions the standard grammar is the wh word as the first article followed by an auxiliary

Page: 60

verb (be, do or have), then the subject then finally the main verb. An alternative could be the

wh word as the first article followed by model verb then subject and main verb.

With these simplified ground rules in place we can start to build the parser. Using the

Stanford CoreNLP parser to parse an incoming request using the simplified natural language

questions What time is lunch served? and When is lunch served? The output from the

tagger is shown in Table 4.5 and the definition of the assigned tags are shown in Table 4.6.

Word Token Part of Speech Tag
What WDT
Time NN
When WDT
Is VBZ
Lunch NN
Served VBZ

Table 4-.5: Shows the output from parsing both the simple questions. The output contains the word tokens and
the part of speech tags associated with each word.

Part of Speech Tag Tag Definition

WDT Wh determiner

NN Noun

VBZ Verb, 3rd person
singular present

NN Noun, singular or mass

VBN Verb, past participle

VBZ Verb, 3rd person
singular present

WRB Wh adverb

Table 4-.6: Shows the definition for the associated tags assigned to the natural language statement.

Both questions are valid in English and both are valid in the context of the context of the

DSL. Both statements start with the wh article. In the first statement the next word is time

which can be either a verb or a noun. The tagger has incorrectly defined the word as a noun,

but it still meets the requirements of the language. This is then followed by a verb is then the

noun lunch which is the subject lastly by the main verb served. Refining the parsing of the

incoming natural language statement to ensure that the word time can be parsed correctly

as a verb instead of a noun is a requirement.

Page: 61

4.6.2. Secondary Parse

Having identified that the input natural language statement is valid the next step is to

reparse the statement ensuring that the database elements can be identified from the input

statement which can then be used to create the resulting structured query language

statement.

This section will show how to implement the shallow parsing model created by Skeggs and

Lauria (2019) which is also Chapter 6 of this project. The approach proposed was to take a

shallow parsing approach to querying the natural language statement. The idea behind

shallow parsing as described by Li and Roth (2001) is to chunk a sentence into base

components whether that is phrases or words. The work by Li and Roth (2001) goes on to

show the effectiveness of shallow parsing as an approach for extracting meaning from a

natural language statement.

The proposal is a four step process, from parsing the incoming natural language statement

to creation of the structured query language statement.

● The first step is the tagging of the input statement with the appropriate tag. For

example the statement What time is lunch served? the tagging would look like

What_IRR time_AP is_IRR lunch_NP served_IRR ?_IRR . The tagging process uses

a slightly modified part of speech tagger from the OpenNLP project. The standard

OpenNLP tags are used to identify which elements in the incoming statement are

identifiable. There is also an additional custom tag ‘_IRR’ which is used to identify

which word tokens in the incoming natural language statement can be ignored by the

conversion process.

● The next step would be to take the identified key words time and lunch and try to map

them to elements within the database to identify the select part of the SQL query and

come with the result *select * from time*.

● The next step is to try and create the conditional part of the SQL statement with the

result where meal = lunch.

● The final step is to create the full statement *select * from time where meal = lunch*.

Page: 62

● The functions used to create the SQL statement are hidden within the domain

specific language but it allows for the shallow parsing approach with keyword

identification to be implemented.

4.7. Implementing the DSL

The next step is to show how the DSL is to be implemented using the parser defined in the

previous section. The advantage of using the DSL is that the structure of the incoming

natural language statement is set to a predefined language construct. This language

construct reduces the complexity of parsing and processing free-formed natural language

text.

4.7.1. Validating the DSL Statement

Having defined that the DSL is conforming to Bloom's taxonomy of knowledge parsing the

incoming natural language question to ensure the correct language structure is met as set

out in Section 4.4. The code to parse and validate the incoming natural language statement

is shown in the code extract below.

from nltk import pos_tag

from nltk import RegexpParser

input_text = ‘What time is lunch served’

print(pos_tag(input_text))
Code Sample 4-.2: The code extract shows the first pass at parsing the incoming natural language statement. It
is this piece of code that determines whether the input statement is in the correct format.

The output from the code above is

[(‘What’, ‘WDT’), (‘time’, ‘NN’), (‘is’, ‘VBZ’), (‘lunch’, ‘NN’), (‘served’, ‘VBN’)]

A simple pattern match to the target structure will determine that the natural language

statement meets the desired input. Having validated that the incoming natural language

statement is in the correct format the next step is to parse the incoming statement into a

language capable of querying a data repository. The details of how this chapter proposes to

parse the incoming natural language statement can be found in chapters 5 & 6.

Page: 63

The concept of the DSL is to simplify the translation process from natural language to a

language capable of querying a repository. Structuring the input language into a predictable

format reduces the complexity of parsing the natural language input statement.The question

then becomes what happens when the input statement does not match the expected format.

The two possible approaches are:

1. Ignore the error and parse the statement as if the input statement does match the

expected input.

2. Display an error to the user stating that the format is not of the expected type.

The approach being taken by this project is to ignore the error and continue parsing. Even

though the DSL is part of the project the language is currently designed not to be strongly

typed and the format as well as the structure of the language are not strongly enforced. The

idea being that the language syntax should not become onerous to learn enabling the

democratisation of the language. As can be seen in Chapter 5 and 6 is that the parsing

algorithm that has been developed as part of this project can parse natural language

statements.

4.8. Conclusion

The idea within this chapter was to initially create a simple prototype of the DSL by using a

simplistic parsing approach with a sequence-to-sequence model to map the word tokens

from a natural language input statement onto the comparable database assets. This

simplistic sequence to sequence model has limitations as work by the likes of Guo and Gao

(2018) and Su et al (2018) has highlighted. A solution based on parsing a natural language

text would need to be incorporated into the model to fulfil the purpose of the DSL being

extensible.

This chapter uses Xtext to quickly create and prototype a functional DSL. Advantages of

using a tool like Xtext is that the tool creates and manages an environment in which the DSL

can be developed and accessed. The downside to this approach is that the grammar file and

parsing tools within Xtext are limited. It soon became apparent that these limitations would

not allow the flexibility required to create an extensible DSL. Therefore a new approach is

required which requires that the parser, grammar and development environment would need

to be created explicitly for the new DSL.

Page: 64

The section 4.5 highlighted the limitation of using a tool like XText to create the DSL. The

complexity of the Xtext grammar can make creating and managing the file when the

grammar rules become more complex extremely difficult. This increased complexity inherent

in the Xtext grammar file goes against one of the underlying principles of this project in that

the DSL should be extendable. The project has already shown how the natural language

statement can be parsed into a language that can be used to extract data from a repository.

The next two chapters show how the incoming natural language statement can be parsed

meaning extracted and ultimately converted into a language capable of querying a data

repository. This leaves the Xtext component just the task of validating the incoming natural

language statement to ensure that it is compliant with the desired DSL language structure.

The simplicity of the Bloom Knowledge Taxonomy on which the DSL is based makes

parsing the incoming natural language statement simple. The objective of this parse is

primarily to ensure that the input statement matches the approved grammar. The more

detailed parse for converting the natural language statement into a language capable of

querying a database is covered in both Chapter 5 and Chapter 6.

Having seen the uses of Domain Specific Languages and how they can be used within a

transformation, the next step is to create a DSL that can be used not just as a language to

convert natural language to SQL but also as a wrapper to host the algorithms currently in

research projects. The work by Gulwani et al (2014) comes close to the aim of this project by

showing how an internal domain specific language NLyze, can be used to manipulate a

spreadsheet. But this project has failed to show how this approach can be used to extract

data within a large data repository and is also tightly bound to Microsoft Excel which makes

the solution non interoperable. With work such as the AskMe NLIDB system from Llopis and

Ferrandez (2016) which provided a framework for the other research projects the team did

not create a domain specific language but more of an application.

The work of Gulwani et al (2014) and Badhya et al (2019) show that domain specific

languages have a place in the translation of a natural language to a language capable of

querying a database. But their work also highlights the fact that to fully create an extensible

DSL capable of working with a range of repositories is to create an external DSL. Both

solutions proposed by Gulwani et al (2014) and Badhya et al (2019) are internal DSL's which

bind them inextricably to their host, therefore, to make an interoperable DSL it has to be

external.

Page: 65

This project looks at providing a domain specific language as an interface to a natural

language interface to a database. From the literature review carried out as part of this

project there appears to be no mention that this approach has been taken by another

project. Most of the projects reviewed for this thesis have provided no details as to how the

proposed algorithm could be implemented. This project is proposing developing a DSL that

can act as the interface between the user and the underlying data. Using the DSL

streamlines the translation process as the inbound natural language text comes into the

system in an understood and predefined manner thereby streamlining the translation

process. Using the DSL also has the capability to reduce the complexity of setting up the

system as parsing the incoming statement will be in a predefined structure with a high

degree of known words. The following chapters highlight how the data parsing is part of the

translation process.

Page: 66

5. A Shallow Parsing Approach to Natural Language Queries
of a Database

5.1. Introduction

Two of the key goals of this thesis are to improve the speed of converting natural language
into a language capable of querying a repository, and to also improve the returned search

results. This chapter looks at the use of shallow parsing or as it is sometimes referred to as

part of speech as an approach to solving these issues. The concept behind shallow parsing

is to extract the important key words from the incoming natural language query and map

those keywords to attributes within the underlying database. This approach ignores the

natural language concept of nuance.

The performance and reliability of converting natural language into structured query

language can be problematic in handling nuances that are prevalent in natural language.

Relational databases are not designed to understand language nuance. The natural

language query ‘who are my 10 worst customers’ can cause problems with translation to an

SQL query and what does the word worst mean. Does it mean the customers who buy the

least amount of goods from me or the customers who return the highest percentage of the

goods bought, or the ones whose products cost more to produce. It could even mean

something completely different. The structure of a SQL query when retrieving data is to

select a value from a column within a database table. There is no room for language nuance

in the query ‘select name from customer order by qty asc limit 10’. This query will order my

customers by the quantity of goods sold. It will not necessarily highlight my worst customers

as new customers are likely to have bought less goods.

Therefore the question is must we try and handle language nuance when converting from

natural language to a language that can be used to query a database. Within this thesis what

is being proposed is that language nuance should not be considered when converting

natural language to a language capable of querying a database. There is no language

nuance within the target language of SQL and the risk of misinterpreting language nuance is

too high. The idea is to therefore create a DSL which can reduce the need and reliance on

language nuance. By formally structuring the format of the language and grammar of the

incoming statement it can become easier to perform the parsing of the input statement and

convert the statement more accurately to a language that is capable of querying a data

repository.

Page: 67

This chapter is based on the Skeggs and Lauria (2019) paper published in the Journal of

Software Engineering and Applications. The Skeggs, Lauria (2019) paper proposes an

alternative solution to that proposed by the likes of Bais et al (2018) and Jwalapuram &

Mamidi (2017) for the conversion of a Natural Language Query into a Structured Query

Language (SQL) capable of being used to search a relational database. The proposed

process uses the natural language concept, Part of Speech, to extract keywords from the

input natural language statement that can be used to identify database tables and table

columns. Taking this approach removes the ability of the system to handle language nuance

but does identify the key elements of the natural language statement that can be used in the

conversion to an SQL statement. As an example of this the query ‘which customers have

bought the most goods this month’, using Part of Speech the sales table is required for the

search and the columns used within the query would be the quantity customer number and

data fields.

The solution being proposed in this chapter uses the Apache OpenNLP application to enable

the NLP parsing. The OpenNLP standard configuration is enhanced with additional

configuration files to assist in the translation from natural language to query language.

Having used part of speech processing within OpenNLP to identify which tables and which

columns contain the pertinent data the next step is to create the SQL statement. A more

detailed description of the architecture being proposed by this project is discussed in section

5.3.

5.2. Related Work

With the quantity of real-time data and the speed of data increases the need to search and

extract data from multiple sources is becoming more important. Natural Language

Processing can be useful for converting natural language text into a formal structure that can

be processed by a computer program.

The growth in size and importance of data within society has led to the development of a

new range of tools to query, examine and analyse data. Even the increasing use of tools like

Siri, Bixby, Alexa and Google Assistant to perform searches is changing the way users look

for information. Amazon is one of the largest retailers, AirBnB is one of the largest hotel

groups but neither company owns a single store or hotel. Both organisations class

themselves as data companies. The rise of the importance of data is driving a need for new

tools and techniques for managing the storage and retrieval of information from data

repositories. With large quantities of data stored within databases or database backed

Page: 68

repositories providing an interface between a non-technical user and data is becoming

increasingly important.

The use of a natural language interface to a database enables non-technical users to search

a database using natural language statements, whether that is the spoken or written word.

The Natural Language Interface to Database (NLIDB) provides the interface between a

natural query and a structured data query language like SQL. This allows for data retrieval

without the need for technical knowledge or a detailed understanding of the Structured

Query Language (SQL) or even knowledge of the underlying database.

A number of systems described by Reshma and Remya (2017) such as LADDER, CHAT-80,

NaLIX and WASP have all been developed to become the interface between natural

language and the database but none of them have come into mainstream use. The issues

these tools have struggled with revolve around natural language complexity. The most

common one of these complexities has been understanding the language nuance of the

natural language statement as described by Bais et al (2018), Florin et al (2017) and Deuter

(2015). Other issues have revolved around the performance of the interface in converting the

natural language query not only in a timely fashion but also with the accuracy of the returned

results which was initially highlighted by Gallant (1990) but has also been raised by Joshi

and Akerkar (2008).

This chapter is proposing a solution to solve both the language nuance highlighted by Florin

et al (2017) and Kiev et at (2011) as well as the performance issues with the use of shallow

parsing as discussed by Joshi and Akerkar (2008). The use of shallow parsing, also referred

to as part of speech, negates the requirement for an understanding of language nuances, as

key words are extracted from the input statement and used within the conversion process.

The shallow parsing approach being proposed by this chapter is the use of keywords. This

approach first proposed by the Ratnaparkhi (1996) is used to identify characteristics of the

input statement that are important for the search. In contrast to Ratnaparki’s approach this

project not only identifies the keywords that would be useful in the translation process, but

maps the keywords to tables and columns within the tables. This chapter will introduce the

use of an index file containing keywords extracted from the underlying database that identify

the tables and associated columns. It is this approach that helps build the performance in

translation from natural language to SQL. This builds on the work of Jwalapuram & Mamidi

(2017) who are among a number of authors who have carried out research into using

keywords to enable NLIDB based systems to perform searches. Unlike that used by

Jwalapuram and Mamidi (2017) this project uses Part of Speech (POS) processing in

Page: 69

conjunction with an index file which allows for individual words to be extracted from the

natural language query. The individually extracted words can then be used to create the

query for the NLIDB solution. Details of the architecture for the proposed solution can be

found in section 5.4.

5.3. Football Events Data

To test the performance of the NLIDB application an open data set was selected for testing

and benchmarking. The website Kaggle.com has several openly available large datasets

that can be used freely. The Football Events dataset was chosen and is available via the

following link (https://www.kaggle.com/secareanualin/football-events). This dataset was

chosen as it contains two tables which ensure that the feature to join the two tables together

can also be tested. The concept of being able to join two or more tables together is important

as this feature is often useful when searching data repositories as data can be held across

multiple tables.

The dataset comes in the form of two comma separated value (CSV) files which are labelled

EVENTS and GINF. The events recorded in the tables cover 9074 football games from

across Europe. The two tables are in CSV format which makes it easier to load into a

database whether that is a no-SQL or RDBMS version. The two tables within the data set

are:

● The EVENTS table as shown in Table 5.1 contains details about

each game. The data has been scrapped from bbc.com, espn.com

and onefootball.com and has 941009 recorded items.

● The GINF table, details are shown in Table 5.2 contains metadata

and market betting odds for each game and contains 10112 entries.

The odds for the dataset were supplied by oddsportal.com.

The two tables can be joined using the common key ID_ODSP, which is the unique

identifier for the game.

Page: 70

Column Name Description

ID_ODSP Unique id of the game
ID_EVENT Unique identifier of event (ID_ODSP + SORT_ORDER)
SORT_ORDER Chronological sequence of events in a game
Time Minutes into the match

Text Description of event
EVENT_TYPE Primary event. 11 unique events (1-attempt (shot), 2-corner, 3-

foul, 4-yellow card, 5second yellow card, 6-(straight) red card, 7-
substitution, 8-free kick won, 9-offside, 10-hand ball, 11-penalty
conceded)

EVENT_TYPE_2 Secondary event. 4 unique events (12-key Pass, 13-failed
through ball, 14-sending off, 15-own goal)

Side Home or away team (1-home, 2-away)
EVENT_TEAM Team that produced the event (In case of Own goals, event team

is the team that beneficiated from the own goal)
Opponent Opposing team
Player Player involved
Player 2 Player involved
PLAYER_IN Player that came in (only applies to substitutions)
PLAYER_OUT Player substituted (only applies to substitutions)
SHOT_PLACE Placement of the shot (13 possible placement locations,

available in the dictionary, only applies to shots)
SHOT_OUTCOME 4 possible outcomes (1-on target, 2-off target, 3-blocked, 4-hit

the post)
IS_GOAL binary variable if the shot resulted in a goal (own goals included)
Location Location on the pitch where the event happened (19 possible

locations, available in the dictionary)
Body Part Body part ball touches (1-right foot, 2-left foot, 3-head)
ASSIST_METHOD In case of an assisted shot, 5 possible assist methods (details in

the dictionary)
Situation In case of an assisted shot, 5 possible assist methods (details in

the dictionary)
FAST_BREAK Did a fast break occur

Table 5-.1: The EVENTS table describes the structure of the events database. This table is joined to table 5.2 on
the unique identifier for the game, ID_ODSP

Page: 71

Column Name Data Type Description
ID_ODSP String Unique ID of the game
LINK_ODSP String Link to odd sportal page
ADV_STATS Boolean Availability of advanced statistics
Date Date Date of event
League String The league the match was played
Season Number The year the season finished
Country Number The country the match was played in
Ht String Home team
At String Away team
Fthg Number Full time home goals
Ftag Number Full time away goals
ODD_H Number Highest home wim market odds
ODD_A Number Highest away market odds
ODD_OVER String Highest over 2.5 market odds
ODD_UNDER String Highest under 2.5 market odds
ODD_BTS String Highest both teams to score market odds
ODD_BTS_N String Highest both teams not to score market

odds
Table 5-.2: The GINF table describes the features of the GINF table. This table is joined to table 4.1 on the
unique identifier for the game, ID_ODSP

5.4. Proposed Configuration

This chapter is proposing to use three index files to aid the conversion from natural language

query to SQL. The files being proposed are the Grammar file, Join file and Index file. The

use of these files ultimately describes the structure of the underlying database which will

become the target for searching, while providing an index-like data structure that can be

used to identify the database table(s) and table columns relevant for the database search.

The files described in this section can be created either manually or through scripting. The

grammar file should be created through the collection of queries that have been used to

query the underlying database. With a historic record of prior questions, the grammar file can

be enhanced.

Figure 5.1 shows an overview of the proposed architecture for the NLIDB solution being

discussed in this chapter. The details of which will be expanded in this section but the steps

are highlighted:

● Parse the input statement into tokens: The natural language query is broken into

word tokens using the appropriate tagger. This chapter proposes the use of two

taggers OpenNLP Part of Speech tagger and the OpenNLP Names Tagger. Both

taggers can be used in parallel each to perform the task of identifying key words that

Page: 72

are useful to the conversion process and to identify names that are within the input

statement.

● Parse Tokens and tag. The next step is to take the word tokens which is the output

from the previous step and apply a tag. The grammar file contains the details of the

tags to be applied to each token.

● Remove stop words. The next step is to remove the stop words from the process as

these words add nothing to the conversion process.

● Parse Process. The parse process uses a template for the standard SQL statement

and creates the final SQL statement using the join file for searching multiple tables.

Figure 5-.1: Shows an overview of the proposed system. The processes that will be applied to the natural
language statement as it is converted into a language capable of querying a repository. Here the taggers are
separated into name and part of speech.

This section will look in depth at the process used to convert the natural language statement

into a language capable of querying a data repository. As part of that process the

configuration of the configuration files will also be explained.

5.4.1. Parse Input Statement

The simplistic approach to parsing the natural language statement into tokens is to remove

punctuation from the statement and split each word into an array of tokens. A simple

approach is shown in Code Sample 5.1:

Join
File

Natural
language
grammar file

POS
Tagger

Apply
DSL

Remove
stop words

Parse
token &
tag

Domain
Specific
Language

Parse input
statement
into tokens

Natural
Languag
e Query

Name
Tagger

Page: 73

#Simply split the string on the space character

def tokenizer(query):

 tmp= re.sub('[^A-Za-z0-9]+', '', query)

 return tmp.split()

Code Sample 5-.1: A sample Python script that can be used to parse an incoming natural language statement
into tokens. In effect the script splits the incoming string into an array of words.

5.4.2. Parse Tokens and tag

The database extraction process which provides data for the three configuration files

manually extracts data from the target database. Though the process is manual there is

nothing about the structure of the configuration files nor the data used by the files which stop

their creation from being automatic. The process was completed manually as the dataset

was small enough for this task to be completed.

The first of these is the Apache OpenNLP grammar file which is used to identify words in the

natural language query. The content from the database is used to create the grammar file,

column names from the database tables are tagged with N and the database tables are

tagged with AP within the grammar file, an example of a grammar file can be seen in Figure

5.2. Separate tags are assigned to each word which identifies words of importance that can

be labelled as either a table name or column name. The convention for tags is that VB

identifies a verb, N for noun and ADJ for adjective, a full list of tags can be found in Appendix

A. The list of tags is used by convention rather than being statically defined, therefore

custom tags can be created to fulfil a specific task. This chapter uses a custom tag IRR to

identify words that are irrelevant in the conversion from natural language to query language.

In the example used for this chapter, the grammar file is constructed from entries from both

the GINF and EVENTS tables. Questions posed to the application are also used as part of

the grammar file. Table 5.3 lists the column names from both source files that are used

within the grammar file. Sample code that can be used to achieve the tagging required by

this process is shown in Code Sample 5.2

def tagger (tokens, patterns, names):

 name_tagger = nltk.RegexpTagger(names)

 regexp_tagger = nltk.RegexpTagger(patterns, backoff=name_tagger)

 tagged=regexp_tagger.tag(tokens)

 for x in range(len(tagged)):

Page: 74

 if (tagged[x][1] == 'out' and tagged[x+1][1] == 'in'):

 tagged.append((tagged[x][0] + " " + tagged[x+1][0], 'PC'))

 return tagged

Code Sample 5-.2: Shows how the tags can be applied to two taggers. In this example a Name Tagger is being
applied as well as the tagger library which is highlighted in Figure 5.2.

The index data extracted from the GINF table contain 10,643 entries which are made up of

the original entries with some additional data. Entries from the Events table create an index

file with 1201 unique entries in the data. The structure of the table is made up of potential

questions that could be posed to the NLIDB application. Each word is assigned a tag

representing how that word should be treated. The tags follow the appropriate word and are

separated from it by an underscore.

The grammar file (an extract of which is Figure 5.2) for this chapter uses a couple of tags,

IRR which stands for irrelevant and ensures that the word will be ignored in the conversion

from natural language to structure query language. The IRR tag is defined as being words or

values not found within the underlying database as either table names, columns or values.

NP, which signifies that the word is important in the conversion process and states that is a

value of significance and will be used within the search as this is the search criteria. Words

tagged with AP signify the table that must be searched.

Events GINF
ID_ODSP ID_ODSP
Side Date
EVENT_TEAM League
Opponent Season
Player Country
Player 2 Ht
SHOT_PLACE At
SHOT_OUTCOME Fthg,±Ftag, ODD_H, ODD_D

Table 5-.3: Lists the entries extracted from the database for inclusion into the index file. The table also highlights
the structure of both data tables. It can be seen that the column ID_ODSP is common between both tables and
can be used to join them.

Page: 75

Which_IRR event_AP has_IRR

Which_IRR opponent_AP has_IRR ustaritz_NP faced_IRR
What_IRR are_IRR the_IRR odds_N on_IRR a_IRR game_IRR with_IRR an_IRR event_AP

involving_IRR caro_NP

What_IRR are_IRR the_IRR odds_N on_IRR an_IRR event_AP that_IRR caro_NP is_IRR
involved_IRR with_IRR

Figure 5-.2: This shows an extract from the grammar file showing the data structure. Finally, the tag N defines
which column could potentially be used to extract data.

The grammar file highlighted in figure 5.2 was created manually having been built up from a

list of historically asked questions and the content of the underlying database. The tagging

used replicates the process used by the OpenNLP tagger. The figure shows that each word

in the natural language statement has an associated tag. The tag ’_IRR’ indicates that the

word has no associated tag whereas the word odds has been identified as being a noun by

the tagger if it has the tag ‘_N’. The full list of tags can be found in Appendix A. The idea

behind creating the file manually was so the tags could be tested to ensure that the tagging

process could be optimised and tested.

t_IRR are_IRR the_IRR odds_N on_IRR a_IRR game_IRR with_IRR an_IRR event_AP

In this project the grammar file is currently created manually but there is nothing within the

file that prevents its creation through automated scripts. The reasoning behind creating this

file manually was to allow for testing and refining of the grammar file to optimise the

conversion process. The file contains elements from the database being searched; an

extract from the index file is shown in Figure 5.3. The data is made up of three columns; the

first column shows the relationship between the table, the table column and the database

value. The index file uses the same tags as the grammar file to identify elements that are

within the database such as the tables, columns and values. Figure 5.3 shows that the AP

tag is assigned to the value event, this represents the table. The second value is player

which is assigned the tag N, which represents the column in the table. The third column

shows a value in this case the name of a player (Abdoulaye Diaby) which has been assigned

the tag NP.

From this, information the query is beginning to be built and simplistically the query is “select

* from event”. The second column describes which variable from the table to use as part of

the condition. In the example below, the word player is identified as a noun which can in this

example identify the columns from the table event.

Page: 76

Event_AP player_N Abdoulaye#Diaby_NP

Event_AP player_N Abdoulaye#Faye_NP

Event_AP player_N Aboubkra#Kamara_NP

Event_AP player_N Adam#Federici_NP

Event_AP player_N Alberto#Garcia_NP

Event_AP player_N Aleksandr#Iakovenka_AP

Event_AP player_N Alemde_NP

Figure 5-.3: Extract from the grammar file.

This now means that the query is “select * from event where player =”. The only element

missing is the value to search on or in this case the player’s name. This information comes

from the third column labelled NP. From the extract in Figure 5.3, there is an extract of

abdoulaye#diaby_NP, so the final query is now “select * from event where player =

‘abdoulaye diaby’’’. The use of the # symbol between the first and last name of the player

makes it easier for this simple application to identify names. It is also possible to use a name

tagger to identify the names of the players.

5.4.3. Join File

The above example shows the first step into parsing a natural language query into a simple

SQL statement. Not all queries are that simplistic as some will require that tables are joined

to extract the required data. A key aspect is how the joins between tables can be identified

not just from the natural language query but also from the table structure. One possible

solution is from the configuration within the grammar files.

This chapter suggests using a join file which lists the table and the primary key for the table.

This table (see Figure 5.4) allows two tables to be joined. The table contains two entries

which are the table name and the primary key of the table. In the example below, both the

Event table and the GINF table can be joined and both share the same primary key

(ID_ODSP).

load the join file into a dictionary

join = {}

with open("file.txt") as f:

 for line in f:

Page: 77

 (key, val) = line.split()

 d[int(key)] = val

extract the join key for a given table

join[table_name]

#extract the table from a given join key

for key, value in join.items():

 if value == join_key:

 return(key)

Code Sample 5-.3: This python code shows that the table name or the join key can be used to extract the
attributes used in joining multiple tables together.

The join details from code sample 5.3 are loaded into a python dictionary called join. The

look up becomes a simple function join[table_name] to return the join key. From a join key

the look up becomes a simple loop. The process for creating the join file is manual but as

discussed above in the section titled Proposed Configuration there is the possibility of

automating this process. The caveat when creating an automatic script is to identify which

tables have an identifiable relationship as well as what contrives to make that relationship. In

the simple case discussed within this chapter, the relationship is easy to identify and easy to

create as only two tables exist. In larger more complicated database environments

identifying these relationships may be harder to identify. Using deep learning techniques to

identify which tables are related and how that relationship exists may be required for an

automated script.

5.5. Parse Process Conversion Steps

Having highlighted the components of the conversion process, the next step is to show how
the whole process works. The solution proposed by this chapter allows for the example

natural language query “What are the odds on a game involving Caro?” to be converted into

an SQL statement. The starting point for the conversion process is a simple SQL template

that defines the basis of a select query. The template is:

SELECT <parameters> FROM <table name> JOIN <table name> ON <field name> =

<value> WHERE <field name> = <value> AND <field name = value>

Page: 78

Using the following steps, the parse process takes the SQL template, extracts relevant data

from the natural language statement and transposes values where appropriate onto the

template. The steps to perform this process are highlighted below.

event=ID_ODSP

ginf=ID_ODSP

Figure 5-.4: The join properties file lists the table name with the primary key which allows multiple tables to be
joined.

● Tag the natural language statement. The OpenNLP tagger

process takes the original statement and labels each word

component with a natural language tag. An example output from

the tagging process will look like.

what_IRR are_IRR the_IRR odds_NP on_IRR a_IRR game_IRR event_AP

involving_IRR caro_NP.

The code used to produce the output would use NLTK library (such as the

Python Natural Language Toolkit or the OpenNLP library).

import nlp_library

query_text = ‘<somestring>’

nlp = new nlp_library

processed_string = nlp.word_tokenizer(query_text)

print(processed_string)

● Looking at Figure 5.1 the grammar file identifies that the word

event has the tag “AP”. The conversion process identifies AP as a

table. Using this information, the first part of the query is “select *

from event”.

● The next step taken by the proposed system is to identify that the

query should join the events and the GINF table together as the

query is asking for odds from the GINF table and player (Caro)

from the events table. The join table specifies that the tables’

Page: 79

event and ginf are joined by the column ID_ODSP. This creates

the where clause “where event.id_odsp = ginf.id_odsp”.

● The final step is to identify that the player being searched for is

“caro” (see above). This gives the final part of the query where

player = “caro’’.

● The query can now be joined into select * from events where

event.id_odsp= ginf.id_odsp and player = “Caro”.

● Currently, the select statement just uses “select * from”. The next

step is to retrieve just the requested data or columns from the

database. Through the use and application of machine learning

techniques it is anticipated that select everything could be

reduced to selecting only relevant columns from the query. The

following statement shows the structure of the target SQL

statement where P is the parameter to be ‘select from the target

table T select <P1>,<P2>, <Pn> from <T>’.

5.6. Training the Model

Having created the model the next step is training the model. The OpenNLP toolkit model

uses machine learning algorithms at its core. Having created the configuration files to be

used as a model, the next step is training the Apache OpenNLP model. Training the model is

an important aspect of the Apache OpenNLP process. The mathematical models used by

the OpenNLP application require that the model is trained. As the model being used by this

project is a bespoke model, training allows the model to perform the word tagging using the

grammar file more accurately than would have been otherwise achieved. The machine

learning models used by OpenNLP for training include maximum entropy and perceptron-

based machine learning.

The use of a maximum entropy model as described by Ratnaparkhi (1996), ensures that the

model best represents the current state of knowledge. The current state of knowledge in the

case of the model proposed by this chapter is the training set of questions being asked by

users querying the underlying data repository.

The solution allows for more questions to be added as the process evolves. The additional

questions can be added as part of an automated process or manually. Each question added

Page: 80

would need to be tagged and the process retrained. This allows for the continued evolution

of the system.

The tagging model used for this solution is the Part of Speech (POS) tagger which converts

every word into a token. Each token has an associated tag. OpenNLP will use a probability

model to predict the correct tag for each word in the sentence. The fewer the tags used the

quicker the performance, this can be seen from testing and appears to be supported by

Taghipour and Ng (2015) but more thorough performance testing is required. The tests that

were carried out were performed on whole sentences, which included tags that can be

identified as having a database related value. An example of this would be where the name

of a database table or table column appears in the natural language query. In the case of the

natural language query “Which event has Abdoulaye Diaby played in.”, “event” is an

identifiable database table. The sentence can then be processed, and relevant tags will be

applied to the parts of the query (see Table 5.1), irrelevant tags will be ignored.

The OpenNLP model training task process output: The output from training the model

against the grammar file, which contains the list of potential asked questions that is shown in

Figure 5.5. Due to the fact that this model is only proof of concept, not much training and

comparative analysis was performed on the parameters used. In fact the parameters used

for training came from a previous model that had been used for a totally unrelated task. The

results from which can be seen in section 5.7 shows that without fine tuning the model can

perform well.

Indexing events cutoff 5

 Computing event counts... done. 36432 events.

 Indexing… done.

Sorting and merging events... done. Reduce 36432 to 11666 events.

done indexing.

Incorporating index data for training…

done.

 Number of Event Tokens: 11666.

 Number of Outcomes: 3

 Number of Predicates: 2241

done.

Computing model parameters ...

Figure 5-.5: The output from the model training process.

Page: 81

As can be seen from the training output, the test was run against a training file with

approximately 36,000 entries that were processed and indexed. From the 36,432 source

entries, 11,666 were identified as either significant or unique. The number of outcomes in

Figure 4.5 refers to the number of possible outcomes from the model. For the shallow

parsing approach proposed by this chapter, the number is not significant. Though not

significant for this chapter the number of predicates could indicate the number of sentences

in the data frame. The predicate identifies what is happening with the subject of a sentence.

Though this might be helpful when trying to understand the content or meaning of the

sentence for the shallow parse approach being taken by this chapter the number of

predicates is inconsequential.

5.7. Evaluation

During the evaluation phase of the proposed system, the idea was to measure the
performance of the natural language conversion to SQL. For this chapter the evaluation

looks at the speed of conversion from natural language query to SQL and highlights the fact

that commodity hardware can be used for the conversion process. Measuring the accuracy

of conversion will be tested in the next chapter. The Java Virtual Machine (JVM) usage was

monitored, and the code profiled. The details of the proposed system performance are

discussed in this section.

5.7.1. Computer System

The computer used for the development and testing of the application is of a standard

desktop configuration. The very utilitarian nature of the computer used for developing and

testing this solution supports the concept that the conversion process does not require a

large, expensive dedicated server. The specifications of the test machine for the natural

language to SQL conversion are shown in Table 4.4.

 Variable Value

Operating System Windows 7 Enterprise

Service pack SP1

Processor Intel Core i5-4570 CPU “3.2GHz

Installed Memory 8 GB

System Type 64-bit operating system
Table 5-.4: Server specifications used for testing. The server specifications shown highlights the fact that
commodity hardware is suitable for supporting the proposed conversion process.

Page: 82

5.7.2. Java Virtual Machine

The Java Machine used for the development and testing of the application is again a

standard build. The application does run on a single JVM instance, the settings for which are

shown in Figure 5.6.

The profiling of software allows for some tangible method to measure software excellence as

proposed by both Ratnaparkhi (1996) and Siewiorek et al (1993). The tests performed on the

software show the resources used for converting a natural language query into a SQL based

query. A number of tools have been employed to monitor the performance of the application

which includes Java Visual VM from Oracle, YourKit Java Profiler, and the Coverage tool

from JetBrains IntelliJ Java IDE. These tools highlight the computer resources used by the

code in terms of virtual memory allocation and call time per function. The concept of

benchmarking software performance provides a tangible metric to evidence the performance

of a software solution as supported by Sims et al. (2003) .

The benchmarking work carried out by Siewiorek et al. (1993) highlights the fact that

monitoring memory is key to understanding the performance of a software solution. The

techniques proposed by Siewiorek et al. (1993) and the project findings have been updated

by the work of Gama et al. (2011) and Whaley (2000) which also proposed that application

memory could also have an important role to play in the performance of an application. In

the case of the solution proposed in this chapter the Java Virtual Machine (JVM) is a key

component and the memory associated with the JVM is just as important.

JVM: OpenJDK 64-Bit Server VM (25.152-b8, mixed mode)

Java: version 1.8.0_152-release, vendor JetBrains

Java Home: c:\Program Files\JetBrains\IntelliJ IDEA Community Edition 2017.3.1\jre64

JVM Flags: <none>

-Xxs24m

-Xxx256m

-Dsun.jvmstst.perdata.syncWaitMs=10000

-Dsun.java2d.noddraw=true

-Dsun.java2d.d3d=false

Page: 83

-Dnetbeans.keyring.no.master=true

-Djdk.home=C:\Program Files\Java\jdk1.8.0_25

-Dnetbeans.home=C:\Program Files\Java\jdl1.8.0_25\lib\visualvm\platform

-Dnetbeans.user=C:\Users\rskeggs\AppData\Roaming\VisualVM\8u20

-Dnetbeans.default_userdir_root=C:\Users\rskeggs\AppData\Roaming\VisualVM

-XX:+HeapDumpOnOutOfMemoryError

-XX:HeapDumpPath=C:\Users\rskeggs\AppData\Roaming\VisualVM\8u20\var\log\heapdump.hprof

-Dsun.awt.keepWorkingSetOnMinimize=true

-Dnetbeans.dirs=C:\Program Files\Java\jdk1.8.0_25\lib\visualvm\visualvm;C:\Program

Files\Java\jdk1.8.0_25\lib\visualvm\

Figure 5-.6: This shows the setting for the Java Virtual Machine on the test server.

The YourKit Java profiler was used to measure the CPU of a conversion from a natural

query to SQL. The profile modelled the application through the required classes as part of

the execution cycle. Figure 5.6 shows the performance in milliseconds that each class takes

to complete a task.

Table 5.6 shows just how much of the code gets executed when converting a simple natural

language query to an SQL statement. For the simple example used as part of the test the

execution time to convert the natural language query to SQL took a total of 665 milliseconds.

The Java Visual VM tool provides detailed information about Java applications while being

executed on a Java Virtual Machine. The performance figures highlight the fact that no

specialist hardware is required to run the process, which could be hosted on commodity

hardware. To substantiate this table 5.6 shows the results from the Visual Machine usage,

that the largest resource allocation during testing was 42 Mb which accounted for 51% of all

memory allocations by the virtual machine. Running tests against larger data will use more

resources but the need to move to specialist hardware may not be a requirement, though

further testing will need to be conducted to determine more accurately resource

requirements. Tuning for performance in high throughput environments can also be

managed by distributing resources across a platform when bottlenecks are identified. More

in depth testing will need to be carried out to understand where and when these limits are

reached. Figure 5.8 shows the memory usage of the conversion process used when

Page: 84

converting a simple string like “What are the odds on a game involving abdoulaye diaby?”

into the SQL statement “select * from event where player = ‘abdoulaye diaby’’.

Having completed a conversion and extraction of data from the dataset the next step was to

compare performance of the system discussed in this chapter with other comparable

systems. For this, the paper by Joshi and Akerkar (2008) proposed a similar approach using

a Part of Speech based algorithm for converting natural language into an extraction-based

query. The researchers compared the performance for two systems and the results are

summarised in Table 5.5.

Type of Data No of
words

Time Required by
QTAG (Used in
Enlight)

Time Required by
Minipar (Used in
Sapere)

Times of India 202 1.71 secs 2.88 secs

Reply START QASystem

(251Words) University

Information

251 3.11 secs

NMU Broadcaster 226 1.55 secs 2.86 secs

Wikipedia 226 1.67 secs 3.13 secs

Average 1.705 secs 2.9925 secs
Table 5-.5: Shows the performance figures from the Joshi and Akerkar (2007) paper.

Call Tree Time (ms) %
All threads 665 100
nlidbPOSNLIDB.main 509 77
POSNLIDB.java nlidb.POSNLIDB.translate 156 23
POSNLIDB.java nlidb.POSNLIDB.tokenizer 156 23
NLTokenizer.java opennlp.tools.tokenizer.TokenizerModel 124 19
NLTokenizer.java 31 5

Table 5-.6: Shows the execution time the conversion process takes through the components of the conversion
code. The data comes from YourKit Java Profiler. The screenshot is in Appendix D.

The main figures to take away from table 5.6 is that the whole processing time was

665 milliseconds, and the nlidb.POSNLIDB library used 509 milliseconds.

Allocated Object Bytes Allocated Objects Allocated
int[] 42355328 501458
char[] 13223970 243009
java.lang.String 3141200 130887

Page: 85

java.util.HashMap 2043264 63852
java.nio.HeapCharBuffer 1691904 35241
java.langLong 1626240 67750
jazva.lang.Object[] 1238920 22331

Table 5-.7: Shows the memory allocation for the conversion process. Original screenshot is shown in Appendix E

Tables 5.7 and 5.6 highlight the fact that the compute resources required to run a conversion

process to translate a natural language statement to a language capable of querying a

database does not require a large amount of resources, either in terms of memory or CPU.

main figure to take away from the screenshot in figure 5.8 is that the bulk of the resourcing

required memory for an int array (42355320 bytes) and char array (13223976 bytes)

The paper by Joshi and Akerkar (2008) did not specify the specification of the computer used

to carry out the benchmark. The questions used by the Joshi and Akerkar (2008) paper were

taken from the TREC-2005 Question Database but there was some ambiguity in identifying

the actual datasets used for the benchmarking. In comparison, this chapter has taken a much

larger dataset and has added the additional complexity of creating a join between two tables.

The natural language questions used by this chapter were of a similar complexity to the

questions used in testing carried out by Joshi, Akerkar (2008) and are listed in Figure 5.8.

The use of an older computer configuration as can be seen from Table 5.4 should be more

comparable to the server used by Joshi and Akerkar (2008) in their paper. This makes the

comparison between the two papers more about the performance of the software than the

hardware. The average conversion time using the solution proposed by Joshi et al (2008).

was 1.7 seconds with the fastest being 1.5 seconds.

Testing the solution proposed by this chapter the conversion time from natural language to

structured query language took consistently under 700 milliseconds. The datasets from this

chapter consists of two files one containing over 36,000 events and the other over 11,000

(see Figure 5.5). Were also larger than the datasets used by Joshi et al (2008). as these

datasets contained approximately 220 records (see Table 5.5). Table 5.5 also shows the

completion of time for the solution proposed by Joshi et al. (2008) and Table 4.7 also

contains the times of each process to complete by the solution discussed in this chapter. In

summary, the tables highlight the improvements in performance the approach being taken

by the thesis as compared to other existing solutions.

● Who killed militants?

● Who did Forman defeat for his first heavyweight championship?

Page: 86

● What do frogs eat?

● Who visited Bill Clinton?

● Who did France beat for the World Cup?

● What is the largest volcano in the solar system?

● What is the longest river in the world?

Figure 5-.7: Sample questions used for performance comparison by Joshi, AkerKer (2007).

Collection Number of
Words

SQL Conversion Data
Extraction

ginf.csv 19531 0.665 secs 0.9 secs
Table 5-.8: Performance from the proposed system which includes the conversion from natural language to SQL.

5.8. Conclusions

There are a number of limitations to the system being proposed in this chapter. The storage

space required for the grammar file and index file might make this solution unworkable. More

testing against larger datasets is also required to understand the limitations and performance

of the proposed solution. This chapter has suggested a solution for joining tables together.

Further testing would also be required to validate the performance of joining more than two

tables.

The biggest issue that has not been addressed by this chapter is around the selection of

data points being retrieved from the underlying database. Currently, the solution relies on the

statement SELECT * which retrieves all data points from the tables being searched.

Retrieving data from all columns in the target database could prove to be costly in terms of

memory and processing resources. Refining the SELECT statement could possibly be

achieved through the use of deep learning techniques. It may be possible to identify columns

in tables that have a higher probability of being selected.

Regardless of the identifiable shortcomings from the proposed system, the thesis has

reinforced the benefits of using part of speech within a framework that translates natural

language into a query language for searching a database. Performance of NLIDB solutions

has been an issue that researchers are continually trying to improve upon the performance

of NLIDB based solutions. According to the likes of Florin et al. (2017), Gallant (2019), Joshi

et al (2008), Voorhees (2001) the common performance issues are speed and accuracy of

conversion. As can be seen from this chapter the performance of the proposed system is an

improvement in speed when compared against the performance recorded by Joshi and

Akerkar (2008) as recorded in Table 5.6.

Page: 87

The question posed at the beginning of this chapter revolved around the requirement to

understand nuance when converting natural language to a language capable of querying a

database. This chapter shows that the shallow nature of the parsing through the use of the

natural language part of speech also reduces the need to understand the complexity

underpinning language nuance. This has been highlighted by the steps required to take a

natural language statement and produce a query capable of querying a database. The

results from the speed of conversion as shown in Section 5.7 shows the improvement in

performance without understanding language nuance. The next chapter continues the use of

shallow parsing that highlights not only the increase in the speed of conversion but also

highlights an improvement to accuracy. The improvement in performance stems from the

use of machine learning techniques within a sequence-to-sequence model.

Page: 88

6. Improving The Shallow Parsing Approach

6.1. Introduction

The ideas in this chapter expand on papers presented at the EFiC and IDA conferences in

2017. Converting natural language into a structured query language (SQL) should be as

straightforward as translating text from one natural language to another such as French or

Spanish. SQL is just another language with its own syntax and grammar. The fact that work

has been ongoing in this field since the LADDER project of the 1960's shows that the

conversion from Natural Language to SQL is not simplistic. This chapter expands on the

concepts from the previous chapter and introduces a novel approach to solving this problem.

The idea proposed in this chapter combines the use of sequence-to-sequence models in

conjunction with the natural language part of speech technologies and domain specific

languages to convert natural language queries into SQL. The approach being proposed by

this chapter is to use natural language processing to perform an initial shallow pass of the

incoming query and then use Google's Tensor Flow to refine the query with the use of a

sequence-to-sequence model. The thesis is also proposing to use a Domain Specific

Language (DSL) as part of the conversion process. The use of the DSL has the potential to

allow the natural language query to be translated into more than just an SQL statement, but

any query language such as NoSQL or XQuery.

Natural Language into Database (NLIDB) has been within the research lexicon for a number

of years. Early systems such as LADDER, PRECISE, NaLIX and WASP emerged from the

research community but failed to make any major impression within industry. A recent

literature review by Ahkouk et al (2019) has highlighted the lack of uptake by the commercial

software vendors was based on the poor performance of the translation from natural to SQL.

The performance issues can be categorised into two broad based areas. The first of these is

how to handle the nuance of language in the conversion from natural language to SQL. This

point has been identified by the likes of Voorhees et al (2001) and Bais et al (2018). The

second of these issues is based on the accuracy of the conversion from natural language to

SQL through lack of understanding the underlying database. This has previously been

highlighted by the work of both Joshi et al (2008) and Skeggs et al (2019).

This chapter proposes a solution to solve both the language nuance that was highlighted by

both Voorhees et al (2001) and Bais et al (2018) and performance issues with accuracy of

Page: 89

converting natural language to SQL as shown by Joshi et al (2008). The approach being

proposed is to use shallow parsing as this does not require an under-standing of language

nuances, it identifies keywords in the input text as discussed in the paper of Ratnaparkhi and

Adwait (1996). These keywords are used to identify characteristics in the input statement

that are important for the search. Jwalapuram and Mamidi (2007) are among a number of

authors who have carried out research into using keywords to enable NLIDB based systems

to perform searches. The keyword searching proposed in this chapter is built from the

underlying database unlike that proposed by Jwalapuram & Mamidi (2007). Both

Jwalapuram & Mamidi (2007) and this chapter propose using a Part of Speech (POS) tagger

but this chapter is also proposing to use a sequence to sequence model to refine the

translation to SQL.

To support the testing and validation of the work being discussed in this chapter, the

process is tested against an AirBnB dataset. The rational for using this dataset is that it is

used by the WikiSQL project and has a process for marking the output for the text to SQL

conversion process. There are few datasets available that allow for the same type of

validation as the datasets found in the WikiSQL project.

6.2. Related Work

Most of the work related to this project have either taken an approach that has relied on
semantic parsing or on the use of sequence-to-sequence models. Some projects like the

approach being proposed by this chapter have taken a multi-step approach. The sections

below discuss the work within semantic parsing and sequence to sequence that relate to this

chapter along with the use of combining multiple steps and technologies to convert natural

language to structured query language.

6.2.1. Semantic Parsing

The concept of semantic parsing in its simplest form is taking a natural language statement

and converting it to a logical form that is machine understandable. Lin et al (2017) take this

concept in its purest form to convert natural language to bash. This chapter also highlights

that it is not just SQL being used as a target for converting natural language to machine

capable language. This chapter concentrates on the use of SQL as a target language. The

research by Shah et al (2020) is based on speech to SQL and as part of their solution they

propose a new language SpeakQL. They also create a dataset specifically for speech-based

SQL conversions. The approach used by Shah et al (2020) relies on semantic parsing for

Page: 90

the creation of the SQL statement. Research into the use of semantic parsing can be

classified under the following headings: executed guidance, tree structures, underlying

database structured, descriptive language and user interactions.

6.2.2. Executed Guidance

The first of these executed guidance uses statistical analysis to select the best output from a

number of possible solutions. This approach originates from the work carried out by Wang et

al (2018). Their concept looks at statements in various stages during the conversion process

and discards those statements that cannot complete the conversion to SQL. Yin, Neubig

(2019) take a similar approach to Wang by ranking the predicted output from the conversion

model selecting those with the highest score. Talmor and Berent (2018) take this one step

further by using the internet as their model for training.

6.2.3. Tree Structures

Use of tree structures for solving the problem with semantic parsing has been used by both

Cheng et al (2018) and Yin et al (2018). In the case of Cheng their work uses the tree

structure with a domain grammar to ensure that the conversion is accurate. In contrast Yin et

al use tree structures to hold the training data which can be labelled or unlabelled.

6.2.4. Underlying Database Structure

Karki et al (2019) and Bogin et al (2019) both rely on the underlying database structure as

part of the process in parsing the natural language statement. Bogin et al (2019) model the

database structure within a graph schema as a method of understanding the relationships

between tables. In contrast Karki et al (2019) construct a row and column based grid from

the database features.

6.2.5. Descriptive Language

The use of a descriptive language can also be used with the semantic parser. In the case of

Yin and Neubig (2018) they propose using abstract syntax description language for parsing

the natural language onto an SQL template. Lin et al (2019) use a schema dependent

grammar to map the natural language onto a SQL syntax. Campagna et al (2019) look at

using a Virtual Assistant Programming Language (VAPL) to formalise the natural language

statement. Cheng et al (2019) take a similar approach to Campagna et al (2019) as they use

templates that can map the text from the natural language onto an SQL structured template.

Page: 91

6.2.6. Sequence to Sequence Models

In contrast to semantic parsing the concept of a sequence-to-sequence model is to train a

model to take a sequence from one domain or language and convert to another domain or

language. These models have been used to convert text from one natural language to

another and have now been introduced to convert from a natural language to a programming

language such as bash in the case of Lin et al (2018) or SQL as proposed by Shi et al 2018.

Recent research using sequence to sequence models has extended the approach typically

used by Lin et al (2018) which takes a natural language statement and then compares it to a

bash command. In short a sequence to sequence model is a type of Encoder-Decoder

model using recurrent neural networks (RNN). From the research undertaken in this field a

Sequence-to-sequence research project can be categorised into two streams.

● Models that have begun using the content from the database rather than the

database structure to understand the structure of the data,

● Models that are chunking the natural language statement into smaller more discrete

blocks to create multiple seq2seq models.

In the model proposed by Shi et al 2018 their work uses a sequence to action model. The

solution uses a SQL template with place holders to contain the name of the table, columns

and variables. Sequence to action models are then used to parse the appropriate values into

the template. With this project the underlying database structure is central to the conversion

process.

There are also extensions to the traditional sequence to sequence model such as the work

carried out by Xu et al (2018) which uses a graph based neural network to create a graph to

sequence model. The work carried out by Yu et al (2018) uses a tree network to create what

they refer to as a text-to-SQL model. Wang , Tian et al (2018) also take a similar approach

with their text to SQL model. Wang instead proposes separating the data from the schema

within the sequence model. Guo et al (2019) also propose a text-to-SQL model by creating a

multiple step approach to the problem of converting natural language to SQL. As part of the

process the solution creates a synthetic query language from the natural language

statement and database structure. The final query is inferred from the synthetic query.

In parallel to the extension of the sequence-to-sequence model the more traditional

sequence to sequence model is being refined by the likes of Soru et al (2018) which like Xu

Page: 92

et al (2018) uses graph patterns to learn the sequence make up of relationships between

elements. The work by Soru though is more of a traditional sequence to sequence approach.

In comparison Su et al (2018) propose using multiple sequence to sequence models at each

step along the process of conversion. They also support the use of user interaction to

correct errors in the process of converting natural language to SQL.

Part of a sequence-to-sequence solution relies on the decoding or the translation from the

input to the output. Bello et al (2018) assigns an item score as part of the decoding process.

The score is based on historical data, and according to Bello allows for higher-order

interactions. In contrast Zavershynskyi et al 2018 use a multiplicative attention mechanism

as part of the RNN within the decoder.

The work performed by Guo and Gao (2018) like Su et al (2018) chunked the natural

language statement into smaller elements thereby creating a chain of sequence-to-

sequence models. Within the WHERE clause the team ranked possible solutions based on

historic data to choose the option with the highest ranking score.

Other approaches for handling sequence to sequence models like Petrovski et al (2018).

The team proposes removing the database structure completely from the sequence-to-

sequence model and relying solely on the content of the tables to describe the content of the

database table. Then Sabour et al (2019) were more concerned with the method of training

the sequence-to-sequence model. The approach they propose was to create an Optimal

Completion Distillation (OCD). This required statistically sampling the data used for training

based on predefined characteristics.

The Python TensorFlow library provides a sequence-to-sequence library which is employed

by this project to build the model. The sequence-to-sequence model was not and does not

need to be a highly refined custom model. This project, even though it is a proof-of-concept

project, wants to show that sequence to sequence models could be used in the context of a

natural language to structured query language domain capable of successfully searching a

database.

6.2.7. Multi Step Architecture

Sequence to sequence models and semantic parsing are two approaches that concentrate

on a single part of the process required to convert natural language to a structured query

language. Few like the approach being proposed in this chapter have taken a multi step

approach to refining the process of converting natural language to SQL. Polosukhinet et al

Page: 93

(2018) use a multi step approach within their work which takes a similar approach to that

being proposed by this chapter. Both this chapter and the work by Polosukhinet et al (2018)

use a domain specific language (DSL) as part of the conversion process. In contrast the

work carried out by Polosukhinet et al (2018) use an extension to the sequence-to-sequence

model that they refer to as Seq2Tree whereas the solution being proposed by this chapter

uses a more standard version of the sequence to sequence model as proposed by Soru et al

(2018).

Likewise Lukovnikov et al 2018 use a combination of augmented pointer along with LSTM

column encoders, and a sequence to sequence model in conjunction with semantic parsing

to translate the natural language statement into a query language. Taking a similar approach

is Choi et al (2020) again using sketching like the work carried out by Zhang et al (2020) to

extract the pertinent data from the natural language input statement which can then be

transposed on the SQL template. Unlike the work being proposed by this chapter they also

propose recursively predicting nested statements.

In Joshi et al (2020) take a hybrid approach to the conversion of text to SQL. Their work

uses a series of sequence-to-sequence models to create the SQL statement they also

propose user interaction. Unlike Gur et al 2018 who propose user interaction to refine the

process, Joshi et al (2020) are after restricting the inputs from users to avoid linguistic

variations and ambiguities in the statement.

6.3. The Model

The model being proposed by this chapter uses a multi architectural approach similar to
Polosukhinet et al (2018) encompassing a number of technologies in the pursuit of

converting a natural language query into an SQL statement. The approach uses not just

sequence to sequence models but also domain specific languages and shallow syntactic

parsing. Natural Language Parsing is used to identify important features in the input

statement. Having identified the features, the detail is wrapped into a JSON object for

storage and ultimate transformation to SQL. Figure 6.1 shows the flow of data through the

proposed system highlighting the steps that the input natural query statement undergoes as

part of the translation to structured query language. This process differ slightly from the

previous section in that a sequence to sequence model has now been introduced into the

flow and the parse process that finally creates the SQL statement has been refined into an

internal light DSL. This section discusses the process in detail.

Page: 94

Figure 6-.1: The diagram shows the flow of data through the proposed system. The sequence to sequence model
is introduced to the conversion process. The input is now the DSL proposed by this chapter.

The processing steps through the system are:

• The input into the process is the proposed DSL. Taking this approached reduces the

amount of configuration required for the parsing and tagging steps. It may also be

possible to remove the step that takes out the stop words, though more testing is

required.

● Parse the input statement into tokens: The natural language query is broken into

word tokens using the appropriate tagger. This chapter proposes the use of two

taggers OpenNLP Part of Speech tagger and the OpenNLP Names Tagger. Both

taggers can be used in parallel each to perform the task of identifying key words that

are useful to the conversion process and to identify names that are within the input

statement.

● Parse Tokens and tag. The next step is to take the word tokens which is the output

from the previous step and apply a tag. The grammar file contains the details of the

tags to be applied to each token.

● Remove stop words. The next step is to remove the stop words from the process as

these words add nothing to the conversion process. This step potentially redundant

with the use of the DSL as an input.

● Run untagged words through sequence to sequence. Then any words that remain

untagged can be run through the TensorFlow sequence to sequence model and

appropriate tags can be applied to those word tokens.

● Apply DSL. The proposal is to use an internal light DSL which will take the data

structure that contains all the tagged data and create the SQL statement. The idea

Seq2Se
q Config

Natural
language
grammar
file

Taggers

Apply
DSL

Run
through
seq2seq
model

Remove
stop
words

Parse
token
and tag

Natural
Language
Input
statement

Parse
input
stateme
nt into

Page: 95

for the internal DSL is that the output from this step could in fact be any query

language not necessarily SQL.

6.3.1. Natural Language Processing

The Natural Language toolkit used by this chapter is the NLTK Python based NLP toolkit

developed by Bird et al (2008). The advantage of using this library with Python was the

speed at which a proof of concept application could be developed. The idea behind the use

of natural language processing in this chapter is for the identification of important

components within the natural language input to facilitate the conversion to structured query

language. This chapter uses part of speech and name tagging to extract pertinent data from

the input query. Having first specified elements which are important for the processing step

as shown in code sample 6.1 and code sample 6.2. The structure used stores the keywords

and associated tag as a Python list. The first element in the list is the keyword or identifying

regular expression followed by the tag.

As part of the NLP process the input statement is tokenised with each word being extracted

using the space character as identifying when a word ends. Known elements are extracted

from the input query and tagged before being stored as a JSON object. Code sample 6.1

shows how a regular expression can be used as part of the tagging process. The regular

expression statement shown in code sample 6.1 identifies postcodes within the input query.

patterns= [

(r’([A-Za-z] [A-Za-z] ? [0-9] [0-9] ? [\s] ? [A-Za-z] ? [0-9] [0-9] ? [A-Za-z]

[A-Za -z])

(r’([A-Za-z] [A-Za-z] ? [0-9] [0-9] ?)’,’out’),

(r’([A-Za-z] ? [0-9] [0-9] ? [A-Za-z] [A-Za-z]),’in’))

Code Sample 6-.1: This code extract shows a potential solution to how postcodes could be handled with the use
of regular expressions. It also shows how a regular expression can be used within the NLP tagging process.

The code extract shown in code sample 6.2 shows a more conventional approach to setting

up a NLP tagger within an NLP process. A value extracted from the underlying database is

tagged with the column name from where it came. The tag is later used within the SQL

statement as part of the select statement.

names =[

(‘Chris’ , ‘firstname’)

]

Code Sample 6-.2: NLP tagger grammar construct for use in extracting names.

Page: 96

The grammar construct is used by the tagger function shown in code sample 6.3 to identify

each individual word in the input statement. The tagger function takes three parameters:

● tokens: This is each word from the input query as a list of tokens. The tokens are created

from the tokeniser function by splitting the input statement on the space character.

● patterns: This is the list of predetermined keywords with associated tags. This is the first

of the taggers

● names: This is the list of predetermined keywords with associated tags. This is the

second of the taggers and in the example, it is used as the back-off tagger. A back-off tagger

comes into its own when the primary tagger fails to identify a word for tagging.

def Tagger (tokens, patterns, names):

 name_tagger = nltk.RegexpNameTagger(names)

 regexp_tagger = nltk.RegexpTagger(patterns, backoff=name_tagger)

 tagged = regexp_tagger.tag(tokens)

 for x in range(len(tagged)):

 if tagged[x][1] ==’out’ and tagged[1+x][1] = ‘in’:

 tagged.append (tagged[x][1] + ‘ ‘ + tagged[1+x][1],

‘postcode’)

 return tagged

Code Sample 6-.3: A simple Python function that will tag an input statement and create a JSON construct to
contain each word token with the appropriate NLP tag. The function takes 2 taggers.

Code Sample 6.3: A simple Python function that will tag an input statement and create a

JSON construct to contain each word token with the appropriate NLP tag. The function takes

2 taggers.

The returned value from the function shown in Table 5.3 is the chunked input statement

tagged with the appropriate NLP tag stored as a JSON object. From the following example a

simple natural language input query ‘which Chris lives in the area EC2A 5AP. The output

from the tagging function is shown in Table 5.4.

[(‘which’, ‘None’), (‘Chris’, ‘firstname’), (‘lives’, ‘None’), (‘in’,

‘None’), (‘the’, ‘None’), (‘area’, ‘None’), (‘EC2A 5AP’, ‘postcode’)]

Code Sample 6-.4: JSON output from the simple input query.

Page: 97

Words from the input query that cannot be identified by the tagging processes are tagged

with None. The untagged words can still be useful for the transformation to SQL. Next, stop

words are removed from the list of untagged words. The final step is then used by the

Sequence-to-Sequence Model (section 6.3) to identify which words can be identified and

tagged as having a relevance to the underlying database and should be part of the query.

6.3.2. Internal Domain Specific Language

Having identified which words within the input statement are pertinent to the conversion from

natural language query to SQL statement. Expanding on the parse process in the previous

chapter the process has been refined and now resembles a domain specific language.

Dursen et al define a Domain Specific Language as a "small declarative language that offers

expressive power focused on a particular problem domain". The particular domain that this

chapter is concerned with is converting JSON (JavaScript Object Notation) to SQL. The

current process will need to be refined further for it to be a pure domain specific language

implementation.

During the development phase of the internal domain specific language, it was noticed that

the target output could potentially be another language such as Xquery or NoSQL. More

work will be required to complete the internal DSL with further work required to target other

languages.

6.3.3. Sequence to Sequence Models

Sequence to sequence models are currently being used in speech recognition systems as

shown by the work carried by Chui (2018) as well as in language translation scenarios using

neural networks which as proposed by Weiss et al (2017). The paper by Weiss et al (2017)

highlights their use in language translation as it proposes a solution for translating Spanish

text to English. The same principles can be applied in the translation from English to

Spanish as English to SQL. Structured Query Language is after all just another language but

one that is designed to work with databases as described in ISO/IEC 9075-2:2016.

This chapter proposes taking these already defined use cases for sequence-to-sequence

modelling and applying them to translate a natural language into an SQL statement capable

of querying a database. In this chapter the first sequence of words is the natural language

input and the second sequence is the equivalent SQL translation.

Page: 98

We propose using the machine learning components within TensorFlow to create the

Sequence-to-Sequence model. Both Chung-Cheng Chui et al (2018) and Yaser et al (2019)

propose using sequence to sequence models for translating one natural language into

another natural language, proposing that the approach improves accuracy of translation.

The researchers have not considered the application of this approach for use with a query

language like SQL, and the improvement in accuracy it gives. In this section we look at the

implementation of the following approach.

The sequence-to-sequence model first takes the words that were not successfully tagged as

part of the natural language process defined in section 3.1 and were not identified as stop

words. These words are then compared to the translation file, an extract of which is shown in

code sample 6.5. Associated with each input statement is a corresponding sequence which

is used to build up the final SQL statement. From code sample 6.5 the first column shows

the words from the input statement which are to be translated (area, name, address). The

second column contains the appropriate translation to be used. In the case of the word area

the translation is tbl_customer, address.

area tbl_customer, address

name tbl_customer, firstname surname

address tbl_customer, house_name_number first_line town city postcode

Code Sample 6-.5: The table shows the content of the tab separated sequence to sequence translation file.

The entries in the second column (tbl_customer, address) are database components. Within

this chapter the first element tbl_customer is the name of the database table, the second

element address is the column within the table that could be applied as part of the

translation for area.

The sequence-to-sequence model requires a data definition file that takes the expected

input and the corresponding output file. Sequence to Sequence (seq2seq) models typically

use Recurrent Neural Network (RNN) architectures to solve language problems like machine

translation and chatbots. The sequence-to-sequence model being used in this thesis falls

into the machine translation grouping as it takes a natural language input and converts to a

machine language output. The approach being used in this thesis differs from the normal

approach which is to convert from one natural language to another. Like most sequence-to-

sequence models the approach being used in this thesis is to use an encoder-decoder

model.

Page: 99

The sequence-to-sequence model requires a dictionary of terms, this is an expected input

and a corresponding expected output. In the case of this project the input is a series of

natural language words and the expected output is a series of database objects that can be

extracted from the underlying database. These database objects are database table names

and table attributes (column names).

Model Input Model output
['area',
 'room',
 'accomodation',
 'address',
 'district',
 'city',
 'country',
 'organisation',
 'person',
 'school',
 'club',
 'team']

['ab_nyc_2019, neighbourhood_group',
 'ab_nyc_2019, room_type',
 'ab_nyc_2019, room_type',
 'ab_nyc_2019, neighbourhood_group',
 'ab_nyc_2019, neighbourhood_group',
 'organisations, city ',
 'organisations, country ',
 'organisations, org_name ',
 'contacts, lastname',
 'sports_clubs, school_name',
 'sports_clubs, club_name',
 'sports_club, team_name']

Table 6-.1: An extract from a data dictionary used in this thesis to highlight the use of a sequence to sequence
model. This is based on the data from code sample 6.5 but represented as two lists of data.

The content of code sample 6.5 cannot be generated initially through an automated script.

Identifying the database table and the associated database column can be automated.

Matching the keyword with the appropriate database table and column is not currently

possible to automate. The process for building up the file in this chapter was a manual

process. The design and testing of the model should allow for keywords to be identified and

matched with the underlying database table and table attributes. Using production queries to

identify and match keywords with database components should be encouraged.

The sequence-to-sequence model used for this chapter was a small sequence model

published in a python reference book State of-the-Art Speech Recognition with Sequence-to-

Sequence Models. Part of the logic for choosing this particular algorithm was to emphasise

that a simplistic sequence to sequence model could be used as part of an architecture for

translating natural language into SQL. The sequence-to-sequence algorithm was originally

designed and used to demonstrate how it could act as a chat-bot. With the addition of the

natural language tagger from section 3.1 and the domain specific language described in

section 3.2 this chapter shows how the same algorithm can be applied to the translation of a

natural language statement to SQL.

The model used in this project was created using Google’s TensorFlow. The Figure 6.2 is a

pseudo code representation of the actual python model. Within the pseudo code example

Page: 100

the data to be modelled is split between the input which is extracted from the incoming

natural language statement and the output which is the data from the dictionary or in the

case of Table the model output.

Seq2SeqModel

 #intialise a number of terraform placeholders that will contain the

data for the sequence to sequence model.

 X = placeholder

 Y = placeholder

 X_len = placeholder

 Y_len = placeholder

 # for the encoder

 Create a randomised tensor

 create a look-up for the tensor

 Add an index to the data

 # for the decoder

 Create a randomised tensor

 create a look-up for the tensor

 Add an index to the data

 # for the encoder

 Create the RNN cell

 # for the decoder

 Create the RNN cell

 create logits for the softmax function

 Use the Adam optimizer for training.

Code Sample 6-.6: A pseudo representation of the sequence to sequence model used in his project.

Tensors are created for both the encoder which is the input data to the model and the

decoder which is the output from the model. A tensor lookup and an index are also created

for both the encoder and the decoder. Multi RNN cells are created for both the encoder and

the decoder. A logits is also used before using the Adam optimizer.

The Sequence-to-Sequence model within this chapter uses a long short-term memory

(LSTM) recurrent neural network (RNN). The internal memory of the LSTM network is

particularly useful for the processing of sequence data. Prabhavalkar1 et al (2017) and

Page: 101

Chung et al (2014) both support the concept of using RNN within a Sequence-to-Sequence

model, for the performance benefit over other neural network models. Prabhavalkar1 et al

(2017) also states that increasing the numbers of layers in the decoder increases the

performance of the model by up to 7%. Their paper does not identify a recommendation of

the optimal number of layers nor does it recommend what the upper limit on number of

layers should be. The number of layers that are being used by this chapter are two which is

highlighted in Table 6.6. Setting the number of layers to two ensured that this proof of

concept model was not optimally tuned and would also reduce the amount of time required

to run the model.

The python code for testing the model is a simple script that follows the following steps.

● Reset the tensor flow DAG.

● Create a tensorflow interactive session.

● Pass the parameters into the tensorflow model.

● Bookmark and save model.

The actual code used for testing is shown in code sample 6.7.

tf.reset_default_graph()

sess = tf.InteractiveSession()

model = seq2seq(size_layer, num_layers, embedded_size,

vocabulary_size_from + 4,

 vocabulary_size_to + 4, learning_rate, batch_size)

sess.run(tf.global_variables_initializer())

saver = tf.train.Saver(tf.global_variables(), max_to_keep=2)

checkpoint_dir = os.path.abspath(os.path.join('./',

"checkpoints_chatbot"))

checkpoint_prefix = os.path.join(checkpoint_dir, "model")

Code Sample 6-.7: The simple python code used to train the model.

Page: 102

The code sample 6.8 shows a simple testing script written in Python to test the accuracy of

the model.

for i in range(epoch):

 total_loss, total_accuracy = 0, 0

 for k in range(0, (len(text_from) // batch_size) * batch_size,

batch_size):

 batch_x, seq_x = pad_sentence_batch(X[k: k+batch_size], PAD)

 batch_y, seq_y = pad_sentence_batch(Y[k: k+batch_size], PAD)

 predicted, loss, _ = sess.run([tf.argmax(model.logits,2),

model.cost, model.optimizer],

 feed_dict={model.X:batch_x,

 model.Y:batch_y,

 model.X_seq_len:seq_x,

 model.Y_seq_len:seq_y})

 total_loss += loss

 total_accuracy += check_accuracy(predicted,batch_y)

 total_loss = (len(text_from) / batch_size)

 total_accuracy = (len(text_from) / batch_size)

 print('epoch: %d, avg loss: %f, avg accuracy: %f'%(i+1, total_loss,

total_accuracy))

 path = saver.save(sess, checkpoint_prefix, global_step=i+1)

 total_loss = (len(text_from) / batch_size)

 total_accuracy = (len(text_from) / batch_size)

Code Sample 6-.8: A simple python script to test the accuracy of the model.

The output from the test script is.

epoch: 1, avg loss: 0.156250, avg accuracy: 0.156250

The value for the epoch is a parameter that is passed into the model as can be seen from

Table 6.2. The average loss value at 0.15 and an accuracy of 0.15 has little meaning from

the sample set used as the sample set is too small to produce accurate values.

The sample python script in code sample 6.9 shows how the word passed into the function

calls the model to produce an output. Taking the word ‘area’ from the dictionary in Table 6.1,

the return value from the model is ‘neighbourhood_group’.

Page: 103

def predict(sentence, rev_dictionary_to):

 X_in = []

 for word in sentence.split():

 try:

 X_in.append(dictionary_from[word])

 except:

 X_in.append(PAD)

 pass

 test, seq_x = pad_sentence_batch([X_in], 1)#PAD

 input_batch = np.zeros([batch_size,seq_x[0]])

 input_batch[0] =test[0]

 log = sess.run(tf.argmax(model.logits,2),

 feed_dict={

 model.X:input_batch,

 model.X_seq_len:seq_x,

 model.Y_seq_len:seq_x

 }

)

 result=' '.join(rev_dictionary_to[i] for i in log[0])

 return result

Code Sample 6-.9: A simple function that is used as an entry point to the sequence to sequence function.

The parameter values used for this model are shown in code sample 6.8. There was no

performance tuning carried out to optimise the performance of this model. The values were

chosen based on experience working with other similar models.

Page: 104

VARIABLE VALUES DESCRIPTION

SIZE_LAYER 128 Long short-term memory unit (LSTM) recurrent network cell. The

number of units in the LSTM cell.

NUM_LAYERS 2 RNN cell composed sequentially of a number of multiple simple

cells.

EMBEDDED_SIZ E 128 The generated values follow a uniform distribution in the given

range

LEANING_RATE 0.001 The default value of is 0.001 is a highly recommended default

value [27]

BATCH_SIZE 32 defines the number of samples to work through before updating
the internal model parameters

EPOCH 1 The number of times the algorithm is going to run

Table 6-.2: Shows the value of the neural network parameters used by this chapter. The parameter values have
not been changed from the original model.

The parameter values used for the model were selected based on the parameters used by

another model that had previously been developed to identify certain words in a streamed

dataset. From previous experience working with sequence-to-sequence models it was

believed that the parameters chosen would provide a satisfactory response for a proof of

concept scenario. Further refinement of the parameter values may provide improved

performance in both speed and accuracy of conversion. This model refinement was not part

of the original project scope. The idea behind these settings was to deliberately use

parameter values that were not optimised.

For the model used in this chapter the epoch was set deliberately low and not just to

improve the speed at which the model is trained but to also show that the model was

effective with minimal training. With the epoch being set to 1 the training time was only 0.001

seconds. A side effect of having such a low epoch is to highlight in the simple example of

this chapter the accuracy of the sequence-to-sequence translation is still high which is

discussed in section 6.4.

The training values from the algorithm are epoch 1, average loss 0.093750 and average

accuracy of 0.093750. With an epoch of 1 and a batch size of 32 reading too much into the

values of loss and accuracy should be discouraged. Parsing name and area into the Tensor

Page: 105

Flow sequence to sequence model the output is as expected, area returns the table

tbl_customer and the attribute address. The input of name returns the table tbl_customer

with the attributes firstname and surname.

Putting all the pieces together, the algorithm takes the natural language input statement of

‘Chris lives in the area EC2E 5BR?’. The input statement is passed to the model and the

parameters from the input query make up the requested parameters from the select

statement. Then using the details from the sequence-to-sequence model details of the table

to be queried and conditions of the query are constructed. The returned SQL statement from

the model is,

select address, house_name_no, first_line, town, city, country,

postcode, firstname, surname where firstname like ‘Chris’ or out

like ‘EC2E’ or in like ’5BR’ or postcode like ‘EC2E 5BR’

The entire process from input statement to SQL query took 7 seconds which also includes

the training time for the model on a laptop running OS Name Microsoft Windows 10 Pro

Version 10.0.18362 Build 18362. The processor is Intel(R) Core(TM) i57200U CPU @

2.50GHz, 2712 Mhz, 2 Core(s), 4 Logical Processor(s) running 8Gb RAM.

6.4. Validating the Model

Having developed the approach against a small dataset the next step was to validate the
model against a larger dataset. To test the approach being proposed by this chapter we

used the New York City Airbnb data available from Kaggle

(https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data/data) as the underlying

dataset. The data set has 49000 entries and 16 columns in a single CSV file, the meta data

for the dataset is shown in Appendix B. Using the same preparation as discussed in section

3 the first step is to build a tagging model for the data. A sample configuration for tagging the

words is shown in code sample 6.10, the values are taken from the underlying dataset which

in the case of the New York City AirBnB dataset is the column names, therefore we have

tags such as firstname, neighbourhood_group and room_type.

names =[

(‘Chris’,’firstname’),

(‘Brooklyn’,‘neighbourhood_group’),

(‘Manhattan’, ‘neighbourhood_group’),

Page: 106

(‘Queens’, ‘neighbourhood_group’),

(‘Staten Island’, ‘neighbourhood_group’),

(‘Bronx’, ‘neighbourhood_group’),

(‘Private Room’, ‘room_type’),

(‘Entire Home/Apt’, ‘room_type’),

(‘Shared Room’, ‘room_type’),

]

Code Sample 6-.10: The content of the NLP tagger.

With the NLP tagging configuration shown in code sample 6.10 the natural language query

looking for a room in Brooklyn can be tagged, the output of which is shown in code sample
6.11. The tagging phase only picks up the name Brooklyn the rest of the words are labelled

as None.

[(looking, ‘None’), (‘for’, ‘None’), (‘a’, ‘None’), (‘room’, ‘None’)

(‘in’, ‘None) , (‘Brooklyn’, ‘neighbourhood_group’)]

Code Sample 6-.11: Shows the output from the NLP tagger.

The content of the JSON object is just {"neighbourhood_group":"Brooklyn"}. Next step is to

drop stop words from the input state statement which just leaves the word room. From the

sequence-to-sequence model an extract of which is shown in figure 6.2. it can be

determined that the word room will be mapped to room_type which is a column in table

AB_NYC_2019.

area AB_NYC_2019, neighbourhood_group

room AB_NYC_2019, room_type

accommodation AB_NYC_2019, room_type

address AB_NYC_2019, neighbourhood_group

district AB_NYC_2019, neighbourhood_group

Figure 6-.2: The content of the Sequence to sequence file used as part of the configuration used with the Airbnb
dataset.

The last step of the natural language to SQL process is building the SQL statement. The

model generates the statement select neighbourhood_group,room_type from ab_nyc_2019

where neighbourhood_group like 'Brooklyn' from the natural language query looking for a

room in Brooklyn. Part of the reasoning behind using the Airbnb dataset was not just the size

of the dataset but also all the data was stored in a single table. More work will need to be

completed to show how the process would work with a query searching multiple tables.

Page: 107

6.4.1. SQL Validation

Having created the SQL statements the next step is to validate the accuracy of the

conversion. The thesis is proposing to use two metrics to perform the marking process. The

first of these metrics is the Jaro Winkler distance metric (1999) and the second is the

Damerau Levenshtein distance. The work carried out by Cahyono (2019) and Zhao (2019)

highlight a use case for using these algorithms. The advantage of using Damerau

Levenshtein is the algorithm takes into consideration character insertion, deletion and

transposition as described by Damerau (1964). The approach taken by Jaro Winkler (1999)

uses a prefix scale p which gives a more favourable rating to strings that match from the

beginning for a set prefix length l.

Both the Levenshtein Damerau and the Jaro Winkler distance measure the similarity

between two strings. The two strings in question are firstly the SQL statement that the

algorithm created by this chapter and the second is the SQL statement that is expected from

the translation process. Pitchaimalai et al (2008) proposed using the Euclidean distance for

evaluating the performance of SQL queries. The Levenshtein Damerau distance allows

insertion, deletion, substitution, and the transposition of two adjacent characters. The Jaro

Winkler metric compares the commonality between characters. The Euclidean distance

treats the string as two vectors and compares the distance between them. It is arguable but

when comparing SQL statements for this chapter the Euclidean distance did not prove to be

as useful as Levenshtein Damerau and Jaro Winkler metrics. More research into this area is

required as the current level of research appears to be lacking.

Appendix C shows a table extract of expected SQL statements compared with calculated

statements. The calculated statements have been designed with the ‘UNION’ directive as it

was found to be easier to compare two types of SQL statements using this clause. For

comparison the compound calculated statement is separated into individual select

statements separated by the ‘UNION’. The first five columns from both table 6.3 and 6.13

are for queries that have configuration within sequence-to-sequence configuration file.

These queries have been tuned so keywords in the natural language input statement have

been mapped to database objects such as table or column names. The remaining entries

have no such configuration within the sequence to sequence model and as such can be

classed as untuned.

Page: 108

Table 6-.3: This table shows the results from measuring the SQL statements created by the algorithm proposed
by this chapter and the expected output using the Levenshtein Damerau Distance. The underlying data for this
table is shown in Appendix C.

From Table 6.3, each column represents an output from the algorithm which is made up of a

number of SQL statements combined together using the SQL JOIN directive. Each row

represents a SQL query separated by the JOIN directive. It should be noted that the

resulting output from query 4 only has only three SQL statements as compared to the other

queries having five SQL statements being joined.

Table 6-.4: This table shows the results from measuring the SQL statements created by the algorithm proposed
by this chapter and the expected output using the Jaro Winkler Distance. The underlying data for this table is
shown in Appendix C.

Page: 109

In Table 6.4 each column represents an output from the algorithm which is made up of a

number of SQL statements combined together using the SQL JOIN directive. Each row

represents a SQL query separated by the JOIN directive. It should be noted that the

resulting output from query 4 only has only three SQL statements as compared to the other

queries having five SQL statements being joined.

Using the Jaro Winkler distance the scores for the SQL statements range from 0.5 to 0.8

with an overall average of 0.6. The average score for the tuned SQL statements is 0.65

while the score for the untuned statements is 0.67. The closer the score is to 1 the more

accurate the calculated output is to the expected output. Looking at the average scores

sample test carried out within this chapter shows that the results are inconclusive but for

query 5 the average score is a more respectable 0.7 and a maximum value of 0.84 is even

closer to 1. The small sample from this chapter shows that the untuned data can be just as

accurate as the tuned queries. With the Levenshtein Damerau Distance the closer the score

is to 100 the more accurate the translation. The average score for the tuned SQL statements

is 50, while the average score for the untuned statements is 56. Again while the score of 50

is inconclusive query 9 shows that an untrained query can obtain an average of 80.

The approach being proposed by this chapter does require further refinement and more data

to test against. The results highlight the problem that marking an SQL statement, against an

arbitrary idealised statement, could bias the results as the score is calculated by comparing

two arbitrary strings. Further research will need to be carried out on comparing SQL

produced by this chapter against an optimised SQL statement.

6.4.1.1. WikiSQL

Having tested the proposed approach with the Kaggle New York AirBnB dataset and using

Levenshtein Damerau Distance as well as the Jaro Winkler Distance to measure the

accuracy of the resulting SQL statements. The next step in validating the usefulness of the

proposed approach is to test the model against the Victor Zhong et al (2017) WikiSQL

dataset and show how it compares against other approaches. The WikiSQL corpus is a

record of over 80,000 natural language questions that can be asked against a database, this

corpus has been hand annotated, which this chapter uses for building up a grammar file.

Along with the corpus the WikiSQL team provides the corresponding SQL statements and

associated database tables for marking and testing any NLIDB solution.

Table 6.5 is an extract of the test dataset supplied as part of the WikiSQL project. It shows

the natural language questions as well as some of the annotation that is supplied with the

Page: 110

dataset. In testing the accuracy of the model proposed by this chapter the supplied

annotation was used to build up the configuration required to run the model.

sel Operator
Index

Question Condition condsWord
s

Column

Index

agg table_id

2 0 What is

terrence ross'

nationality

Terrence

Ross

NaN 0 0 1-

10015132-

16

5 0 What club was

in toronto

1995-96

1995-96 NaN 4 0 1-

10015132-

16

5 0 which club was

in toronto

2003-06

2003-06 NaN 4 0 1-

10015132-

16

5 0 how many

schools or

teams had

jalen rose

Jalen

Rose

NaN 0 3 1-

10015132-

16

2 0 Where was

Assen held?

Assen NaN 3 0 1-

10083598-

1
Table 6-.5: The table contains an extract of the WikiSQL dataset used to validate the model proposed by this
chapter.

6.4.1.2. Tokenise

Using a sample input natural language query from the above data extract 'What is terrence

ross' nationality'. Along with the supplied annotation the first step is to tokenise the input

string. From the annotation supplied by the dataset it is known that the string Terrence Ross

is a conditional word or by using a name tagger the string can be identified as a name. Using

the hand annotated WikiSQK corpus the extract the extract from the name tagger that

identifies Terrence Ross as a player is

names=[(‘terrence ross’, ‘player’)]

Page: 111

6.4.1.3. Stop words

The next step is to remove the stop words from the string which will leave just the word

nationality. The list of columns from the WikiSQL dataset table labelled as ‘1-10015132-16’

are “Player”, “No”, “Nationality” “Position”, “Years in Toronto”, “School / Club Team”. As can

be seen from the column list there is a column called ‘nationality’. This then gives us a key

word for the SQL statement

6.4.1.4. Sequence to Sequence

The last piece of configuration required to complete the transformation from natural

language to SQL is the sequence to sequence file. From the original input statement of

'What is terrence ross nationality' the only word left to deal with is nationality. It is already

known that it is a column in the table so the next step is to configure this in the sequence to

sequence file.

nationality 1-10015132-16, nationality

player 1-10015132-16, player

name 1-10015132-16, player

Figure 6-.3: Shows an extract of the sequence to sequence file used by this chapter. The data used to populate
this table comes from the hand annotated WikiSQL dataset.

Using the sequence to sequence file shown in figure 6.3 it is possible to identify that the

word nationality is a column from the table ‘1-10015132-16’.

6.4.1.5. Convert to SQL

This chapter proposes using a DSL to convert the JSON conditional construct [('terrence

ross','player')] along with the output from the sequence to sequence model into the following

SQL statement select nationality from 1-10015132-16 where player = 'terrence

ross' . The flexibility provided by the DSL also enables the same conditional construct to be

converted into other languages such as XQuery or in the case of WikiSQL into a format that

could be marked by the python evaluate script.

Page: 112

6.4.1.6. Validation

When running the WikiSQL data through the system proposed by this chapter and using the

WikiSQL utility to compare the results from the proposed process with the WikiSQL desired

result, the WikiSQL marking gives a result of 92%. This can be compared to the best of the

published results from the WikiSQL project which shows that Lyu (2020) scored 92.2% and

He (2019) 91.8%. What is not discussed with these papers is their ability to generate queries

that can be used against non relational databases. The use of an internal DSL which is

proposed by this project can potentially add the flexibility to convert a natural language

statement potential into a no sql query.

Model Execution
Accuracy

Exact
Match

Accuracy

Paper Year

NL2SQL-
RULE

89.2 83.7 Content Enhanced BERT-based Text-to-SQL
Generation

2019

TypeSQl
+TC

82.6 TypeSQL: Knowledge-based Type-Aware Neural
Text-to-SQL Generation

2018

Tranx 78.6 68.8 TRANX: A Transition-based Neural Abstract Syntax
Parser for Semantic Parsing and Code Generation

2018

STAMP+
RL

74.6 61 Semantic Parsing with Syntax- and Table-Aware
SQL Generation

2018

STAMP+
RL

74.4 60.7
Semantic Parsing with Syntax- and Table-Aware
SQL Generation

2018

TypeSQl
+TC

73.5
TypeSQL: Knowledge-based Type-Aware Neural
Text-to-SQL Generation

2018

PT-
MAML

68 62.8 Natural Language to Structured Query Generation
via Meta-Learning

2018

Seq2SQ
L

59.4 48.3 Seq2SQL: Generating Structured Queries from
Natural Language using Reinforcement Learning

2017

Seq2Seq 35.9 23.4 Seq2SQL: Generating Structured Queries from
Natural Language using Reinforcement Learning

2017

Table 6.6: This table shows the top performing projects that have tested against the

WikiSQL dataset (https://paperswithcode.com/sota/code-generation-on-wikisql)

The 92% that the WikiSQL marking system gave for the results generated for the Exact

Match by this project can be compared to the published results of other projects listed in

Table 6.6. Though the code used for this project is a proof of concept rather than a robust

performance-oriented production ready application the results are favourable.

Page: 113

6.5. Conclusion

This chapter shows that a sequence-to-sequence model can translate a natural language

statement into more than just another natural language such as Spanish. Most research is

centred on translating one natural language to another, this chapter shows that sequence to

sequence models can be used to translate a natural language statement into a computer

language such as SQL. A SQL statement is after all another language, like natural

languages it has syntax, grammar and vocabulary. The thesis also highlights how sequence

to sequence models can be used to improve the overall accuracy as part of the conversion.

The use of Levenshtein Damerau and Jaro Winkler metrics to measure the accuracy of the

conversion from natural language to SQL give some metric of success but the accuracy

usefulness of such metrics needs to be examined further. For the purpose of this chapter

using Jaro Winkler the results range from 55% to over 80% accuracy of all the conversions

and Levenshtein Damerau marks the SQL conversion in an even greater range with values

from 30% to over 90%.

The approach proposed in this chapter has been tested against two large datasets firstly

against the Kaggle dataset and then against the dataset supplied by the WikiSQL project.

Comparing the resulting SQL statement against an expected statement can be subjective.

The results have been encouraging as the test datasets are unrelated yet the accuracy of

the conversation for the WikiSQL data was 92% by their own marking. Though more work

needs to be carried out the results show some potential for improving the accuracy of

converting natural language to SQL. Having defined the core as a potential solution to the

problem of converting a natural language statement into a language capable of querying a

database, the next step is to provide an interface using the approach proposed by this

research. For that the project is proposing to design an overarching external DSL.

Page: 114

7. Conclusion

The idea behind this project was to provide the viability and the performance improvements

to convert a natural language to a structured query language capable of querying a

database. As has been discussed by this project the current solutions lack a commercial

viability which manifests itself in the lack of solutions providing an application that can

extract data from a repository based on a natural language query.

Part of this problem has been highlighted by several researchers which shows the

performance of such systems are lacking in both speed and accuracy. During the research

phase of this project, it became apparent that there was also a gap in how to implement the

solutions that research teams were proposing. Research projects were refining the

algorithms used to convert natural language into another language capable of searching a

repository. However, there was little to no consideration on implementing the refined

algorithms. Researchers such as Polosukhin as well as Skeggs & Lauria has briefly

highlighted the issue but had not proposed a solution. As a result this thesis proposes an

algorithm using shallow parsing that could be used to convert a natural language statement

into a language capable of extracting data from a database repository. The second aim was

to provide a common interface to enable retrieval to take place. To this extent the project

has proposed creating a domain specific language (DSL) that can be used as an interface

into the natural language shallow parsing algorithm.

7.1. Contribution

The original contribution being proposed by this project is made up of two elements. The first

is a new algorithm based on a shallow parsing of the natural language statement as part of

the conversion to a language capable of querying a repository. The aim being to improve the

time to conversion and the accuracy of the SQL output from the conversion process. The

second element is the development of a domain specific language (DSL) that can reduce the

need for relying on language nuance and help with the conversion process.

7.1.1. Shallow Parsing

The first element of originality being proposed by this project is the shallow parsed algorithm

from chapter 5. The algorithm is unique in a number of ways, first it proposes to combine a

number of differing techniques to convert natural language into SQL. The project also

Page: 115

demonstrates the advantage in speed of performance of the conversion process against

similar solutions.

In Chapter 6, the project goes even further in the use of shallow parsing to refine the

process converting natural language to a structured query language. Through the

combination of shallow parsing and the use of RNN within sequence to sequence modelling

the conversion process can be improved in terms of both accuracy and speed when

compared to existing approaches. Most research projects had concentrated on refining a

single approach to converting natural language to SQL. This project proposes combining

techniques as well as proposing to use domain specific languages to solve the interface

problem as well as assisting within the conversion process.

The performance enhancements of the approach proposed by this project have been

addressed in both chapters 5 and 6. Chapter 5 highlighted the improvements in speed when

using shallow parsing to perform the conversion from a natural language to a language

capable of querying a data repository.

There are no performance metrics when it comes to the duration of the conversion process.

Table 7.1 provides one of the few speed-based metrics when it comes to measuring the time

a conversion process takes. Because there is no direct comparison with the datasets from

Table 7.1 speed comparisons may be regarded as being speculative.

Type of Data No of
words

Time Required by
QTAG (Used in
Enlight)

Time Required by
Minipar (Used in Sapere)

Times of India 202 1.71 secs 2.88 secs

Reply START QASystem
(251Words) University

Information

251 3.11 secs

NMU Broadcaster 226 1.55 secs 2.86 secs

Wikipedia 226 1.67 secs 3.13 secs

Average 1.705 secs 2.9925 secs
Table 7-.1: is actually table 5.5 and is used to highlight the speed of conversion when using the approach being
proposed by the project.

However, when looking at the speed comparisons between the datasets being referenced in

Table 7.1 and the dataset used in Chapter 5 for converting natural language to a languga

capable of querying a database (table 7.2). It should be noted that the dataset referenced in

table 7.2 contains more data than those referenced in table 7.1. The speed of conversion

Page: 116

and extraction is faster using the approach being proposed by this project in Chapter 5 even

though the data used in this test has far more data than the datasets in table 7.1.

Collection Number of Words SQL Conversion Data
Extraction

ginf.csv 19531 0.665 secs 0.9 secs
Table 7-.2: is actually table 5.6. Performance from the proposed system which includes the conversion from
natural language to SQL..

The same can also be true when it comes to the accuracy of the conversion process being

proposed by this thesis. The details of the accuracy can be seen in section 6.4. The use of

Levenshtein Damerau and Jaro Winkler metrics to measure the accuracy of the conversion

from natural language to SQL give some metric of success but the accuracy usefulness of

such metrics needs to be examined further. For the purpose of this project using Jaro

Winkler the results range from 55% to over 80% accuracy of all the conversions and

Levenshtein Damerau marks the SQL conversion in an even greater range with values from

30% to over 90%.

The approach proposed in this project has been tested against two large datasets firstly

against the Kaggle dataset and then against the dataset supplied by the WikiSQL project.

Comparing the resulting SQL statement against an expected statement can be subjective.

The results have been encouraging as the test datasets are unrelated yet the accuracy of

the conversation for the WikiSQL data was 92% by their own marking. The results of the

marking process can then be compared to the published results from the WikiSQL project

which are shown in Table 6.6. The 92% compares against the next highest mark of 89%.

Though more work needs to be carried out the results show some potential for improving the

accuracy of converting natural language to SQL. Having defined that shallow parsing is a

potential solution to the problem of converting a natural language statement into a language

capable of querying a database, the next step is to provide an interface using the approach

proposed by this research. For that the project is proposed the design of an overarching

external DSL.

7.1.2. Domain Specific Language

The second contribution this project adds to the field of natural language interface to a

database is the introduction of a domain specific language (DSL). Creating and using a DSL

might sound counterintuitive to the NLIDB problem. Using Bloom's knowledge taxonomy as

the construct of the DSL still allows for the proposal in this project to be classed as an

NLIDB solution. The DSL also provides a common interface into using algorithms to convert

Page: 117

natural language to SQL. Initially the Xtext application was proposed to create a framework

for building the DSL. Xtext proved to be useful for creating a quick mock-up of a suitable

grammar file for validating a proof of concept for the language. However, with more testing

and expanding the grammar of the DSL using the Xtext grammar files the process began to

become difficult to modify and extend the DSL grammar file. The final idea was to use Xtext

to just validate the structure of the input query based on the Bloom taxonomy.

There are two advantages to using the DSL and these advantages are:

1. The advantage of using a DSL provides for a simplified process. The grammar file

used to parse the incoming natural language statement can be simplified as the

structure of the DSL is known. With more development it may even be possible to

rewrite the entire translation process, streamlining how the conversion is performed.

2. Currently within this project XText is only being used to validate the incoming query.

The algorithms used and discussed within chapters 5 & 6 could also be refined to

work more closely with the DSL. This tighter binding between the parsing algorithm

and the DSL would negate the need for XText.

7.2. Limitations

The full implementation of this project has only been tested against sample datasets, which

is designed to show that the solution proposed by this project works. A full implementation

within a commercial setting has yet to be completed. During testing the project it became

apparent that there is the potential for some limitations on the system when deployed into a

commercial environment. These limitations are listed below.

● The grammar file used by Xtext for creating a grammar from chapter 4 is used for

defining the DSL and has the potential to become unwieldy. The size of this file may

make extending the grammar rules for the DSL too complicated and prone to errors.

The size of the file may also ensure that there are size requirements for storing such

a large file. The size and complexity of the grammar file may also have a negative

impact on the performance of the DSL parse in terms of speed and accuracy.

● The grammar files used by the OpenNLP described in chapter 5 library also have the

potential to keep the configuration up to date cumbersome and prone to error. These

files could also have an impact on storage requirements as well as the speed of

conversion if they became too large.

Page: 118

● The sequence-to-sequence model described in chapter 6 uses text files to define

how words can be translated from one domain into another. These text files again

have the potential to become exceedingly large and difficult to manage. Along with

the difficulty this could potentially pose with maintaining the files to ensure the

content is kept up to date. The size could also have a negative impact on the speed

of conversion as well as the potential for special storage requirements.

More testing is required against large and more complex environments to fully understand

the limitations of the solution being proposed by this thesis.

7.3. Future Work

The algorithms used to create both the domain specific language and the shallow passed

algorithm have been written as proof of concept code. The code will need to be enhanced

and parts rewritten to make the code production ready. When the code rewrite is complete it

will become available via a Git repository. It must also be added that currently the framework

proposed by this project has been implemented in a number of various guises in four

projects that I have worked on. A complete implementation of all the points proposed by this

project has yet to be implemented.

There is also an argument for pursuing ISO accreditation for the domain specific language

that would then lead to a wider audience. Before ISO accreditation can be achieved a tighter

definition and promotion of the language grammar syntax would need to be completed.

Future refinements of the DSL are also actively encouraged and a platform supporting the

development and refinement of the language will need to be developed.

Currently this project concentrates on converting natural language statements to SQL.

Chapter 4 and 6 introduce the concept of an internal DSL which can be used as part of the

conversion process. The internal DSL has not been implemented within this thesis, but the

concept of the internal DSL can be used to convert the natural language to a query language

other than SQL.

Page: 119

Appendix A – NLP Tags

The list of NLP tags that are used by this project to determine which how to deal with the

input word tokens. The tags are based the tags that are used within the OpenNLP project.

Parts of Speech Meaning of parts of speech

NN Noun, singular or mass

DT Determiner

VB Verb, base form

VBD Verb, past tense

VBZ Verb, third person singular present

IN Preposition or subordinating conjunction

NNP Proper noun, singular

TO to

JJ Adjective

IRR Irrelevant and can be ignored.

Page: 120

Appendix B – AirBnB metadata

The table describes the meta data of the Airbnb dataset used in Chapter 6.

Variable Name Data Type

Id Numeric
Name String
Host_id Numeric
Host_name Sting
neighbourhood_group String
neighbourhood String
latitude Numeric
longitude Numeric
room_type String
price Numeric
minimum_nights Numeric
number_of_reviews Numeric
last_review Date
reviews_per_month numeric
calculated_host_listings_count Numeric
availability_365 Numeric

Page: 121

Appendix C - WikiSQL

The table below shows the output from the algorithm used in Chapter 6, when the approach
is used against the WikiSQL dataset. This table shows the algorithm generated SQL
statements against the expect SQL as devised by the WikiSQL project along withe the
markings calculated using the Damerau and the Jaro algorithms. The data in the table is the
source of data for the tables 6.12 and 6.13.

NLP Question: The WikiSQL input statement

Calculated SQL: The SQL output from the proposed model.

Expected SQL: The SQL expected from the output.

Damerau: The Demerau similarity between the expected output and the Calculated output.
The Calculated output uses multiple queries and uses union to join them. The marking takes
the individual statement and marks them. The results are the individual scores.

Jaro: The Jaro similarity between the expected output and the Calculated output. The
Calculated output uses multiple queries and uses union to join them. The marking takes the
individual statement and marks them. The results are the individual scores.

Page: 122

NLP Question Calculated SQL Expected
SQL

Damerau Jaro

What is the local name
given to the city of
Canberra?

select 'neighbourhood_group',
'room_type' from ab_nyc_2019
where 'city'= 'Canberra' union

select
org_name from
organisations
where
ORGANIZATION
like 'Canberra'

36 0.65069347

 select 'city', 'country', 'org_name'
from organisations where 'city'=
'Canberra' union

50 0.633942221

select 'lastname' from contacts
where or 'city'= 'Canberra'

36 0.65069347

select 'school_name', 'club_name'
from sports_clubs where 'city'=
'Canberra' union

41 0.656749381

select 'team_name' from sports_club
where 'city'= 'Canberra'

58 0.62615075

Which teams won when
Bobby Rahal was their
winning driver?

select 'neighbourhood_group',
'room_type' from ab_nyc_2019 where
'person'= 'Bobby' or 'person'= 'Rahal'
union

select contacts,
lastname from
person where
lastname like
Rahal

51 0.660164879

select 'city', 'country', 'org_name' from
organisations where 'person'= 'Bobby'
or 'person'= 'Rahal' union

56 0.651948052

select 'lastname' from contacts where
'person'= 'Bobby' or 'person'= 'Rahal'
union

50 0.680152601

select 'school_name', 'club_name' from
sports_clubs where 'person'= 'Bobby' or
'person'= 'Rahal' union

61 0.639483913

select 'team_name' from sports_club
where 'person'= 'Bobby' or 'person'=
'Rahal'

71 0.61468254

What school or club team
is Amir Johnson on?

select 'neighbourhood_group',
'room_type' from ab_nyc_2019 where
'person'= 'Amir' or 'person'= 'Johnson'
union

select
org_name from
organisation
where
ORGANIZATION
like 'Johnson'

45 0.649559432

select 'city', 'country', 'org_name' from
organisations where 'person'= 'Amir' or
'person'= 'Johnson' union

60 0.595422886

select 'lastname' from contacts where
'person'= 'Amir' or 'person'= 'Johnson'
union

44 0.638423952

select 'school_name', 'club_name' from
sports_clubs where 'person'= 'Amir' or
'person'= 'Johnson' union

51 0.614573146

select 'team_name' from sports_club
where 'person'= 'Amir' or 'person'=
'Johnson'

68 0.616723081

looking for a room in
Brooklyn

select 'neighbourhood_group',
'room_type' from ab_nyc_2019
where 'city'= 'Brooklyn' union

select
AB_NYC_2019,
room_type
from
ab_nyc_2019
where
ORGANIZATION
like 'Brooklyn'

49 0.588821991

select 'city', 'country', 'org_name' from
organisations where 'city'= 'Brooklyn'
union

56 0.559475622

select 'lastname' from contacts where
'city'= 'Brooklyn'

41 0.651079769

Page: 123

What is the team located
at philips arena 18?

select 'neighbourhood_group',
'room_type' from ab_nyc_2019 where
'ORGANIZATION'= 'Philips' or
'ORGANIZATION'= 'Arena' union

select
'school_name',
'club_name'
from
sports_clubs
where
'ORGANIZATION
'= 'Philips'

46 0.70198273

select 'city', 'country', 'org_name' from
organisations where 'ORGANIZATION'=
'Philips' or 'ORGANIZATION'= 'Arena'
union

29 0.771597134

select 'lastname' from contacts where
'ORGANIZATION'= 'Philips' or
'ORGANIZATION'= 'Arena' union

55 0.675170614

select 'school_name', 'club_name' from
sports_clubs where 'ORGANIZATION'=
'Philips' or 'ORGANIZATION'= 'Arena'
union

58 0.686731787

select 'team_name' from sports_club
where 'ORGANIZATION'= 'Philips' or
'ORGANIZATION'= 'Arena'

61 0.841704079

What season features
writer Michael Poryes?

select 'neighbourhood_group',
'room_type' from ab_nyc_2019 where
'ORGANIZATION'= 'Michael' or
'ORGANIZATION'= 'Poryes' union

select
'school_name',
'club_name'
from
sports_clubs
where
'lastname'=
'Michael' or
lastname='Pory
es' "

48 0.658642724

select 'city', 'country', 'org_name' from
organisations where 'ORGANIZATION'=
'Michael' or 'ORGANIZATION'= 'Poryes'
union

30 0.714551084

select 'lastname' from contacts where
'ORGANIZATION'= 'Michael' or
'ORGANIZATION'= 'Poryes' union

56 0.630672254

select 'school_name', 'club_name' from
sports_clubs where 'ORGANIZATION'=
'Michael' or 'ORGANIZATION'= 'Poryes'
union

59 0.643629113

select 'team_name' from sports_club
where 'ORGANIZATION'= 'Michael' or
'ORGANIZATION'= 'Poryes'

61 0.641079315

Which visitors have a
leading scorer of Roy

select 'neighbourhood_group',
'room_type' from ab_nyc_2019 where
'ORGANIZATION'= 'Roy' union

select
'school_name',
'club_name'
from
sports_clubs
where
'lastname'=
'Roy'

31 0.664444444

select 'city', 'country', 'org_name' from
organisations where 'ORGANIZATION'=
'Roy' union

15 0.754215103

select 'lastname' from contacts where
'ORGANIZATION'= 'Roy' union

41 0.645974224

select 'school_name', 'club_name' from
sports_clubs where 'ORGANIZATION'=
'Roy' union

44 0.639440921

select 'team_name' from sports_club
where 'ORGANIZATION'= 'Roy'

46 0.657438672

Page: 124

What is the location of the
Carousel toll plaza?

select 'neighbourhood_group',
'room_type' from ab_nyc_2019 where
'ORGANIZATION'= 'What' or
'ORGANIZATION'= 'Carousel' union

"select 'city',
'country',
'org_name'
from
organisations
where
'ORGANIZATION
'= 'Carousel'"

55 0.749606258

select 'city', 'country', 'org_name' from
organisations where 'ORGANIZATION'=
'What' or 'ORGANIZATION'= 'Carousel'
union

58 0.733595608

select 'lastname' from contacts where
'ORGANIZATION'= 'What' or
'ORGANIZATION'= 'Carousel' union

53 0.752954035

select 'school_name', 'club_name' from
sports_clubs where 'ORGANIZATION'=
'What' or 'ORGANIZATION'= 'Carousel'
union

29 0.871049924

select 'team_name' from sports_club
where 'ORGANIZATION'= 'What' or
'ORGANIZATION'= 'Carousel'

63 0.704758632

What is the rank of
manager Rob Mcdonald?

select 'neighbourhood_group',
'room_type' from ab_nyc_2019 where
'ORGANIZATION'= 'What' or
'ORGANIZATION'= 'Rob' or
'ORGANIZATION'= 'Mcdonald' union

Select rank from
organisations
where person =
'Rob' or person
= 'Mcdonald'

76 0.643498242

select 'city', 'country', 'org_name' from
organisations where 'ORGANIZATION'=
'What' or 'ORGANIZATION'= 'Rob' or
'ORGANIZATION'= 'Mcdonald' union

90 0.647154778

select 'lastname' from contacts where
'ORGANIZATION'= 'What' or
'ORGANIZATION'= 'Rob' or
'ORGANIZATION'= 'Mcdonald' union

73 0.629231785

select 'school_name', 'club_name' from
sports_clubs where 'ORGANIZATION'=
'What' or 'ORGANIZATION'= 'Rob' or
'ORGANIZATION'= 'Mcdonald' union

82 0.672111457

select 'team_name' from sports_club
where 'ORGANIZATION'= 'What' or
'ORGANIZATION'= 'Rob' or
'ORGANIZATION'= 'Mcdonald'

98 0.629215485

What were the results for
incumbent Jim McCrery?

select 'neighbourhood_group',
'room_type' from ab_nyc_2019 where
'ORGANIZATION'= 'Jim' or
'ORGANIZATION'= 'McCrery' union

select votes
from
organisations
where person =
'Jim or person =
'McCrery'

52 0.640116407

select 'city', 'country', 'org_name' from
organisations where 'ORGANIZATION'=
'Jim' or 'ORGANIZATION'= 'McCrery'
union

67 0.621724813

 select 'lastname' from contacts where
'ORGANIZATION'= 'Jim' or
'ORGANIZATION'= 'McCrery' union

50 0.637406188

Page: 125

select 'school_name', 'club_name' from
sports_clubs where 'ORGANIZATION'=
'Jim' or 'ORGANIZATION'= 'McCrery'
union

58 0.660036356

select 'team_name' from sports_club
where 'ORGANIZATION'= 'Jim' or
'ORGANIZATION'= 'McCrery'

73 0.665442741

Page: 126

Bibliography
'X-SQL: reinforce schema representation with context', (2019) .

MPS: The Domain-Specific Language Creator by JetBrains. Available
at: https://www.jetbrains.com/mps/ (Accessed: .

Xtext - Language Engineering Made Easy! Available at: https://www.eclipse.org/Xtext/ (Accessed:
.

14:00-17:00 ISO/IEC CD 9075-2. Available
at: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/65/76584.
html (Accessed: .

Agarwal, R., Liang, C., Schuurmans, D. and Norouzi, M. (2019) 'Learning to Generalize from
Sparse and Underspecified Rewards', arXiv:1902.07198 cs, stat], .

Ahkouk, K., Machkour, M., Ennaji, M., Erraha, B. and Antari, J. (2019) Comparative study of existing
approaches on the Task of Natural Language to Database Language. . 07. pp. 1.

Allamanis, M., Barr, E.T., Devanbu, P. and Sutton, C. (2019) 'A Survey of Machine Learning for Big
Code and Naturalness', ACM Computing Surveys, 51(4), pp. 1-37. doi: 10.1145/3212695.

Anderson, L.W., Krathwohl, D.r. and Bloom, B.S. (2001) A taxonomy for learning, teaching, and
assessing : a revision of Bloom's taxonomy of educational objectives /. Longman.

Androutsopoulos, I., Ritchie, G.D. and Thanisch, P. (1995) 'Natural language interfaces to
databases – an introduction', Natural Language Engineering, 1(1), pp. 29-81. doi:
10.1017/S135132490000005X.

Azuma, M., Coallier, F. and Garbajosa, J. (2003) How to apply the Bloom taxonomy to software
engineering. . 09. pp. 117.

Badhya, S.S., Prasad, A., Rohan, S., Yashwanth, Y.S., Deepamala, N. and Shobha, G. (2019) Natural
Language to Structured Query Language using Elasticsearch for descriptive columns. . 12. pp. 1.

Baik, C., Jagadish, H.V. and Li, Y. (2019) 'Bridging the Semantic Gap with SQL Query Logs in
Natural Language Interfaces to Databases', 2019 IEEE 35th International Conference on Data
Engineering (ICDE), , pp. 374-385. doi: 10.1109/ICDE.2019.00041.

Barišić, A., Amaral, V. and Goulão, M. (2018) 'Usability driven DSL development with USE-
ME', Computer Languages, Systems & Structures, 51, pp. 118-157. doi: 10.1016/j.cl.2017.06.005.

Barišić, A., Blouin, D., Amaral, V. and Goulão, M. (2017) A requirements engineering approach for
usability-driven DSL development. . 10/23; 2021/01/06. Association for Computing Machinery, pp.
115.

Barringer, H. and Havelund, K. (2012) Internal versus External DSLs for Trace Analysis. Springer
Berlin Heidelberg, pp. 1.

Béchet, F., Nasr, A. and Genet, F. (2000) Tagging Unknown Proper Names Using Decision Trees. .
10; 2021/09/12. Association for Computational Linguistics, pp. 77.

Bello, I., Kulkarni, S., Jain, S., Boutilier, C., Chi, E., Eban, E., Luo, X., Mackey, A. and Meshi, O. (2019)
'Seq2Slate: Re-ranking and Slate Optimization with RNNs', arXiv:1810.02019 cs, stat], .

Benajiba, Y., Sun, J., Zhang, Y., Jiang, L., Weng, Z. and Biran, O. (2018) 'Siamese Networks for
Semantic Pattern Similarity', arXiv:1812.06604 cs], .

Page: 127

Bentley, J. (1986) 'Programming pearls: little languages', Communications of the ACM, 29(8), pp.
711-721. doi: 10.1145/6424.315691.

Bird, S., Klein, E., Loper, E. and Baldridge, J. (2008) Multidisciplinary instruction with the Natural
Language Toolkit. . 06/19; 2021/09/12. Association for Computational Linguistics, pp. 62.

Bogin, B., Gardner, M. and Berant, J. (2019) 'Representing Schema Structure with Graph Neural
Networks for Text-to-SQL Parsing', arXiv:1905.06241 cs], .

Boronat, A. 'Expressive and Efficient Model Transformation with an Internal DSL of Xtend', .

Brad, F., Iacob, R., Hosu, I. and Rebedea, T. (2017) 'Dataset for a Neural Natural Language
Interface for Databases (NNLIDB)', arXiv:1707.03172 cs], .

Brad, F., Iacob, R., Hosu, I., Ruseti, S. and Rebedea, T. (2018) A Syntax-Guided Neural Model for
Natural Language Interfaces to Databases. . 11. pp. 229.

Bunder, H. 'A UML-Agnostic Migration Approach From UML to DSL', , pp. 2.

Cahyono, S.C. (2019) 'Comparison of document similarity measurements in scientific writing
using Jaro-Winkler Distance method and Paragraph Vector method', IOP Conference Series:
Materials Science and Engineering, 662(5), pp. 052016. doi: 10.1088/1757-899X/662/5/052016.

Campagna, G., Xu, S., Moradshahi, M., Socher, R. and Lam, M.S. (2019) Genie: a generator of
natural language semantic parsers for virtual assistant commands. . 06/08; 2022/02/15.
Association for Computing Machinery, pp. 394.

Chen, X., Liu, C. and Song, D. (2019) 'EXECUTION-GUIDED NEURAL PROGRAM SYNTHESIS', , pp.
15.

Cheng, J., Reddy, S. and Lapata, M. (2018) 'Building a Neural Semantic Parser from a Domain
Ontology', arXiv:1812.10037 cs], .

Cheng, J., Reddy, S., Saraswat, V. and Lapata, M. (2019) 'Learning an Executable Neural Semantic
Parser', Computational Linguistics, 45(1), pp. 59-94. doi: 10.1162/coli_a_00342.

Chiu, C., Sainath, T.N., Wu, Y., Prabhavalkar, R., Nguyen, P., Chen, Z., Kannan, A., Weiss, R.J., Rao,
K., Gonina, E., Jaitly, N., Li, B., Chorowski, J. and Bacchiani, M. (2018) State-of-the-Art Speech
Recognition with Sequence-to-Sequence Models. . 04. pp. 4774.

Cho, M., Amplayo, R.K., Hwang, S. and Park, J. (2018) 'Adversarial TableQA: Attention Supervision
for Question Answering on Tables', arXiv:1810.08113 cs], .

Choi, D., Shin, M.C., Kim, E. and Shin, D.R. (2020) 'RYANSQL: Recursively Applying Sketch-based
Slot Fillings for Complex Text-to-SQL in Cross-Domain Databases', arXiv:2004.03125 cs], .

Chuan, L., Ozcan, F., Quamar, A., Mittal, A., Sen, J., Saha, D. and Sankaranarayanan, K. (2018)
'Ontology-Based Natural Language Query Interfaces for Data Exploration', 41(3).

Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. (2014) 'Empirical Evaluation of Gated Recurrent
Neural Networks on Sequence Modeling', arXiv:1412.3555 cs], .

Cleenewerck, T. (2003) Component-based DSL Development. Springer-Verlag, pp. 245.

Cuadrado, J.S., Izquierdo, J.L.C. and Molina, J.G. (2013) Comparison Between Internal and
External DSLs via RubyTL and Gra2MoL. Available at: (Accessed: .

Czarnecki, K., O'Donnell, J., Striegnitz, J.ö and Taha, W. (2003) DSL implementation in MetaOCaml,
template Haskell, and C++.

Page: 128

Dadashkarimi, J. and Tatikonda, S. (2018) 'Sequence to Logic with Copy and
Cache', arXiv:1807.07333 cs, stat], .

Damerau, F.J. (1964) 'A technique for computer detection and correction of spelling
errors', Communications of the ACM, 7(3), pp. 171-176. doi: 10.1145/363958.363994.

Desai, A., Gulwani, S., Hingorani, V., Jain, N., Karkare, A., Marron, M., R, S. and Roy, S.
(2016) Program synthesis using natural language. . 05/14; 2020/12/30. ACM, pp. 345.

Deuter, A. and Koch, H. (2015) Applying Manufacturing Performance Figures to Measure Software
Development Excellence. Springer International Publishing, pp. 62.

Ellis, K., Ritchie, D., Solar-Lezama, A. and Tenenbaum, J. (2018) Learning to Infer Graphics
Programs from Hand-Drawn Images. . 2022/02/15. Curran Associates, Inc, .

Finegan-Dollak, C., Kummerfeld, J.K., Zhang, L., Ramanathan, K., Sadasivam, S., Zhang, R. and
Radev, D. (2018) 'Improving Text-to-SQL Evaluation Methodology', Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), , pp. 351-360.
doi: 10.18653/v1/P18-1033.

Gallant, S.I. (1990) 'Perceptron-based learning algorithms', IEEE Transactions on Neural
Networks, 1(2), pp. 179-191. doi: 10.1109/72.80230.

Gama, K., Pedraza, G., Lévêque, T. and Donsez, D. (2011) Application management plug-ins
through dynamically pluggable probes. . 05/28; 2021/04/28. Association for Computing
Machinery, pp. 32.

Gómez-Rodríguez, C., Alonso-Alonso, I. and Vilares, D. (2019) 'How important is syntactic parsing
accuracy? An empirical evaluation on rule-based sentiment analysis', Artificial Intelligence
Review, 52(3), pp. 2081-2097. doi: 10.1007/s10462-017-9584-0.

Gulcu, A. (2016) 'The Evaluation of the Cognitive Learning Process of the Renewed Bloom
Taxonomy Using a Web Based Expert System', The Turkish Online Journal of Educational
Technology, 15(4), pp. 17.

Gulwani, S. and Marron, M. (2014) NLyze: interactive programming by natural language for
spreadsheet data analysis and manipulation. . 06/18; 2020/12/30. Association for Computing
Machinery, pp. 803.

Guo, J., Zhan, Z., Gao, Y., Xiao, Y., Lou, J., Liu, T. and Zhang, D. (2019) 'Towards Complex Text-to-
SQL in Cross-Domain Database with Intermediate Representation', arXiv:1905.08205 cs], .

Guo, T. and Gao, H. (2018) 'Bidirectional Attention for SQL Generation', arXiv:1801.00076 cs], .

Gur, I., Yavuz, S., Su, Y. and Yan, X. (2018) DialSQL: Dialogue Based Structured Query Generation. .
07; 2022/02/15. Association for Computational Linguistics, pp. 1339.

Han, X., Hu, L., Sen, J., Dang, Y., Gao, B., Isahagian, V., Lei, C., Efthymiou, V., Özcan, F., Quamar, A.,
Huang, Z. and Muthusamy, V. (2020) Bootstrapping Natural Language Querying on Process
Automation Data. . 11. pp. 170.

Hanane, B., Machkour, M. and Koutti, L. (2020) 'A model of a generic Arabic language interface
for multimodel database', International Journal of Speech Technology, 23(3), pp. 669-681. doi:
10.1007/s10772-020-09740-9.

Heeren, B. and Jeuring, J. (2017) An Extensible Domain-Specific Language for Describing Problem-
Solving Procedures. Springer International Publishing, pp. 77.

Page: 129

Hendrix, G.G., Sacerdoti, E.D., Sagalowicz, D. and Slocum, J. (1978) 'Developing a natural
language interface to complex data', ACM Transactions on Database Systems, 3(2), pp. 105-147.
doi: 10.1145/320251.320253.

Hinkel, G., Goldschmidt, T., Burger, E. and Reussner, R. (2019) 'Using internal domain-specific
languages to inherit tool support and modularity for model transformations', Software & Systems
Modeling, 18(1), pp. 129-155. doi: 10.1007/s10270-017-0578-9.

Hinkel, G. and Happe, L. 'Using component frameworks for model transformations by an internal
DSL', . doi: 10.13140/2.1.4629.7289.

Huang, P., Wang, C., Singh, R., Yih, W. and He, X. (2018) 'Natural Language to Structured Query
Generation via Meta-Learning', arXiv:1803.02400 cs], .

Iacob, R.C.A., Brad, F., Apostol, E., Truică, C., Hosu, I.A. and Rebedea, T. (2020) Neural Approaches
for Natural Language Interfaces to Databases: A Survey. . 12; 2020/12/30. International
Committee on Computational Linguistics, pp. 381.

Jia, R. and Liang, P. (2016) Data Recombination for Neural Semantic Parsing. . 08; 2022/02/15.
Association for Computational Linguistics, pp. 12.

Joshi, S.R., Venkatesh, B., Thomas, D., Jiao, Y. and Roy, S. (2020) A Natural Language and
Interactive End-to-End Querying and Reporting System. . 01/05; 2022/02/15. Association for
Computing Machinery, pp. 261.

Joshi and Akerkar (2008) 'ALGORITHMS TO IMPROVE PERFORMANCE OF NATURAL LANGUAGE
INTERFACE', International Journal of Computer Science & Applications, 5(2), pp. 52-68.

JoshuaPartlow Getting Started with Domain-Specific Languages - Visual Studio. Available
at: https://docs.microsoft.com/en-us/visualstudio/modeling/getting-started-with-domain-
specific-languages (Accessed: .

Jwalapuram, P. and Mamidi, R. (2017) Domain independent keyword identification for question
answering. . 12. pp. 95.

Kalajdjieski, J., Toshevska, M. and Stojanovska, F. (2020) 'Recent Advances in SQL Query
Generation: A Survey', arXiv:2005.07667 cs], .

Kamath, A. and Das, R. (2019) 'A Survey on Semantic Parsing', arXiv:1812.00978 cs], .

Kapferer, S. (2019) Model Transformations for DSL Processing. Available
at: https://eprints.hsr.ch/819/ (Accessed: .

Karki, B., Hu, F., Haridas, N., Barot, S., Liu, Z., Callebert, L., Grabmair, M. and Tomasic, A.
(2019) Question answering via web extracted tables. . 07/05; 2022/02/15. Association for
Computing Machinery, pp. 1.

Keneshloo, Y., Shi, T., Ramakrishnan, N. and Reddy, C.K. (2019) 'Deep Reinforcement Learning
For Sequence to Sequence Models', arXiv:1805.09461 cs, stat], .

Kim, M. and Kim, H. (2018) Dialogue Act Classification Model Based on Deep Neural Networks for
a Natural Language Interface to Databases in Korean. . 01. pp. 537.

Kingma, D.P. and Ba, J. (2017) 'Adam: A Method for Stochastic Optimization', arXiv:1412.6980
cs], .

Klint, P., van der Storm, T. and Vinju, J. (2009) RASCAL: A Domain Specific Language for Source
Code Analysis and Manipulation. . 09; 2020/12/27. IEEE, pp. 168.

Page: 130

Koutti, L., Machkour, M. and Bais, H. (2018) 'An Arabic natural language interface for querying
relational databases based on natural language processing and graph theory
methods', International Journal of Reasoning-based Intelligent Systems, 10, pp. 155. doi:
10.1504/IJRIS.2018.10013299.

Křikava, F. and Collet, P. (2012) On the use of an internal DSL for enriching EMF models. . 09/30;
2020/12/27. Association for Computing Machinery, pp. 25.

Landhäußer, M., Weigelt, S. and Tichy, W.F. (2017) 'NLCI: a natural language command
interpreter', Automated Software Engineering, 24(4), pp. 839-861. doi: 10.1007/s10515-016-0202-
1.

Langlois, B., Jitia, C. and Jouenne, E. 'DSL Classification', , pp. 11.

Li, X. and Roth, D. (2001) Exploring evidence for shallow parsing. . 2021/03/07.

Li, Y., Feng, A., Li, J., Mumick, S., Halevy, A., Li, V. and Tan, W. (2019) 'Subjective
databases', Proceedings of the VLDB Endowment, 12(11), pp. 1330-1343. doi:
10.14778/3342263.3342271.

Li, Y. and Rafiei, D. (2017) Natural Language Data Management and Interfaces: Recent
Development and Open Challenges. . 05/09; 2021/09/12. Association for Computing Machinery,
pp. 1765.

Liang, C., Norouzi, M., Berant, J., Le, Q.V. and Lao, N. (2018) Memory Augmented Policy
Optimization for Program Synthesis and Semantic Parsing. . 2022/02/15. Curran Associates, Inc, .

Lin, K., Bogin, B., Neumann, M., Berant, J. and Gardner, M. (2019) 'Grammar-based Neural Text-to-
SQL Generation', arXiv:1905.13326 cs], .

Lin, X.V., Wang, C., Zettlemoyer, L. and Ernst, M.D. (2018a) 'NL2Bash: A Corpus and Semantic
Parser for Natural Language Interface to the Linux Operating System', arXiv:1802.08979 cs], .

Lin, X.V., Wang, C., Zettlemoyer, L. and Ernst, M.D. (2018b) 'NL2Bash: A Corpus and Semantic
Parser for Natural Language Interface to the Linux Operating System', arXiv:1802.08979 cs], .

Liu, S., Cardenas, A., Xiong, X., Mernik, M., Bryant, B. and Gray, J. (2010) 'A SOA Approach for
Domain-Specific Language Implementation', 2010 6th World Congress on Services, . doi:
10.1109/SERVICES.2010.119.

Llopis, M. and Ferrández, A. (2013) 'How to make a natural language interface to query
databases accessible to everyone: An example', Computer Standards & Interfaces, 35(5), pp. 470-
481. doi: 10.1016/j.csi.2012.09.005.

Lukovnikov, D., Chakraborty, N., Lehmann, J. and Fischer, A. (2018) 'Translating Natural
Language to SQL using Pointer-Generator Networks and How Decoding Order
Matters', arXiv:1811.05303 cs], .

Lyu, Q., Chakrabarti, K., Hathi, S., Kundu, S., Zhang, J. and Chen, Z. (2020) 'Hybrid Ranking
Network for Text-to-SQL', .

McCann, B., Keskar, N.S., Xiong, C. and Socher, R. (2018) 'The Natural Language Decathlon:
Multitask Learning as Question Answering', arXiv:1806.08730 cs, stat], .

Méndez-Acuña, D., Galindo, J.A., Degueule, T., Combemale, B. and Baudry, B. (2016) 'Leveraging
Software Product Lines Engineering in the development of external DSLs: A systematic literature
review', Computer Languages, Systems & Structures, 46, pp. 206-235. doi:
10.1016/j.cl.2016.09.004.

Page: 131

Mengerink, J.G.M., van der Sanden, B., Cappers, B.C.M., Serebrenik, A., Schiffelers, R.R.H. and van
den Brand, Mark G. J. (2018) Exploring DSL Evolutionary Patterns in Practice - A Study of DSL
Evolution in a Large-scale Industrial DSL Repository: . 2020/12/29. SCITEPRESS - Science and
Technology Publications, pp. 446.

Mens, T. and Van Gorp, P. (2006) 'A Taxonomy of Model Transformation', Electronic Notes in
Theoretical Computer Science, 152, pp. 125-142. doi: 10.1016/j.entcs.2005.10.021.

Mernik, M., Heering, J. and Sloane, A. (2005) 'When and how to develop domain-specific
languages', CSUR, . doi: 10.1145/1118890.1118892.

Moffat, A. and Zobel, J. (1996) 'Self-indexing inverted files for fast text retrieval', ACM
Transactions on Information Systems, 14(4), pp. 349-379. doi: 10.1145/237496.237497.

Namavari, A. 'DAWPL: A Simple Rust Based DSL For Algorithmic Composition and Music
Production', 1(1), pp. 11.

Ni, W., Ye, K., Sunshine, J., Aldrich, J. and Crane, K. 'SUBSTANCE and STYLE: domain-specific
languages for mathematical diagrams', , pp. 2.

Patki, N., Wedge, R. and Veeramachaneni, K. (2016) The Synthetic Data Vault. . 10. pp. 399.

Petrovski, B., Aguado, I., Hossmann, A., Baeriswyl, M. and Musat, C. (2018) 'Embedding Individual
Table Columns for Resilient SQL Chatbots', arXiv:1811.00633 cs], .

Pitchaimalai, S.K., Ordonez, C. and Garcia-Alvarado, C. (2008) Efficient Distance Computation
Using SQL Queries and UDFs. . 12. pp. 533.

Polosukhin, I. and Skidanov, A. (2018a) 'Neural Program Search: Solving Programming Tasks
from Description and Examples', arXiv:1802.04335 cs], .

Polosukhin, I. and Skidanov, A. (2018b) 'Neural Program Search: Solving Programming Tasks
from Description and Examples', arXiv:1802.04335 cs], .

Prabhavalkar, R., Rao, K., Sainath, T., Li, B., Johnson, L. and Jaitly, N. (2017) A Comparison of
Sequence-to-Sequence Models for Speech Recognition. . 2021/09/12.

Rabiser, R., Thanhofer-Pilisch, J., Vierhauser, M., Grünbacher, P. and Egyed, A. (2018) 'Developing
and evolving a DSL-based approach for runtime monitoring of systems of systems', Automated
Software Engineering, 25(4), pp. 875-915. doi: 10.1007/s10515-018-0241-x.

Ratnaparkhi, A. (1996) A Maximum Entropy Model for Part-Of-Speech Tagging. . 2021/04/29.

Reshma, E.U. and Remya, P.C. (2017) A review of different approaches in natural language
interfaces to databases. . 12. pp. 801.

Riti, P. (2018) 'External DSL', in Riti, P. (ed.) Practical Scala DSLs: Real-World Applications Using
Domain Specific Languages Berkeley, CA: Apress, pp. 59-69.

Rodrigues, I., Zorzo, A., Da Silveira, M. and de Borba Campos, M. (2018) Usa-DSL: Usability
Evaluation Framework for Domain-Specific Languages.

Sabour, S., Chan, W. and Norouzi, M. (2019) 'Optimal Completion Distillation for Sequence
Learning', arXiv:1810.01398 cs, stat], .

Shah, P., Hakkani-Tür, D., Tür, G., Rastogi, A., Bapna, A., Nayak, N. and Heck, L. (2018) 'Building a
Conversational Agent Overnight with Dialogue Self-Play', arXiv:1801.04871 cs], .

Page: 132

Shah, V., Li, S., Kumar, A. and Saul, L. (2020a) SpeakQL: Towards Speech-driven Multimodal
Querying of Structured Data. . 06/11; 2021/09/12. Association for Computing Machinery, pp.
2363.

Shah, V., Li, S., Kumar, A. and Saul, L. (2020b) SpeakQL: Towards Speech-driven Multimodal
Querying of Structured Data. . 06/11; 2022/02/15. ACM, pp. 2363.

Shi, T., Tatwawadi, K., Chakrabarti, K., Mao, Y., Polozov, O. and Chen, W. (2018) 'IncSQL: Training
Incremental Text-to-SQL Parsers with Non-Deterministic Oracles', arXiv:1809.05054 cs], .

Shin, R. (2019) 'Encoding Database Schemas with Relation-Aware Self-Attention for Text-to-SQL
Parsers', arXiv:1906.11790 cs, stat], .

Sibuya, M., Fujisaki, T. and Takao, Y. (1978) 'Noun-Phrase Model and Natural Query
Language', IBM Journal of Research and Development, 22(5), pp. 533-540. doi:
10.1147/rd.225.0533.

Siewiorek, D.P., Hudak, J.J., Suh, B.-. and Segal, Z. (1993) Development of a benchmark to
measure system robustness. . 06. pp. 88.

Sim, S.E., Easterbrook, S. and Holt, R.C. (2003) Using benchmarking to advance research: a
challenge to software engineering. . 05. pp. 74.

Simpkins, C., Rugaber, S. and Isbell, C. 'DSL Design for Reinforcement Learning Agents', , pp. 2.

Skeggs, R. and Lauria, S. (2019) 'A Shallow Parsing Approach to Natural Language Queries of a
Database', Journal of Software Engineering and Applications, 12, pp. 365-382. doi:
10.4236/jsea.2019.129022.

Sobernig, S. (2020) 'A Story of a DSL Family', in Sobernig, S. (ed.) Variable Domain-specific
Software Languages with DjDSL: Design and Implementation Cham: Springer International
Publishing, pp. 261-283.

Soru, T., Marx, E., Valdestilhas, A., Esteves, D., Moussallem, D. and Publio, G. (2018) 'Neural
Machine Translation for Query Construction and Composition', arXiv:1806.10478 cs], .

Spinellis, D. (2001) 'Notable design patterns for domain-speci®c languages', , pp. 9.

Sriram, A., Jun, H., Satheesh, S. and Coates, A. (2017) 'Cold Fusion: Training Seq2Seq Models
Together with Language Models', arXiv:1708.06426 cs], .

Starynkevitch, B. (2011) 'MELT - a Translated Domain Specific Language Embedded in the GCC
Compiler', Electronic Proceedings in Theoretical Computer Science, 66. doi: 10.4204/EPTCS.66.6.

Störl, U., Hauf, T., Klettke, M. and Scherzinger, S. (2015) Schemaless nosql data stores - object-
nosql mappers to the rescue? Gesellschaft für Informatik e.V.

Su, Y., Hassan Awadallah, A., Wang, M. and White, R.W. (2018) Natural Language Interfaces with
Fine-Grained User Interaction: A Case Study on Web APIs. . 06/27; 2022/02/15. Association for
Computing Machinery, pp. 855.

Suhr, A., Iyer, S. and Artzi, Y. (2018) 'Learning to Map Context-Dependent Sentences to
Executable Formal Queries', arXiv:1804.06868 cs], .

Sujeeth, A.K., Gibbons, A., Brown, K.J., Lee, H., Rompf, T., Odersky, M. and Olukotun, K. Forge:
Generating a High Performance DSL Implementation from a Declarative Specification.

Şutîi, A.M., Brand, M.v.d. and Verhoeff, T. (2018) 'Exploration of modularity and reusability of
domain-specific languages: an expression DSL in MetaMod', Computer Languages, Systems &
Structures, 51, pp. 48-70. doi: 10.1016/j.cl.2017.07.004.

Page: 133

Swamy, N., Rastogi, A., Fromherz, A., Merigoux, D., Ahman, D. and Martínez, G. (2020) 'SteelCore:
an extensible concurrent separation logic for effectful dependently typed programs', Proceedings
of the ACM on Programming Languages, 4, pp. 1-30. doi: 10.1145/3409003.

Taghipour, K. and Ng, H.T. (2015) One Million Sense-Tagged Instances for Word Sense
Disambiguation and Induction. . 07; 2021/04/29. Association for Computational Linguistics, pp.
338.

Talmor, A. and Berant, J. (2018a) 'The Web as a Knowledge-base for Answering Complex
Questions', arXiv:1803.06643 cs], .

Talmor, A. and Berant, J. (2018b) 'The Web as a Knowledge-base for Answering Complex
Questions', arXiv:1803.06643 cs], .

Thanhofer-Pilisch, J., Lang, A., Vierhauser, M. and Rabiser, R. (2017) A Systematic Mapping Study
on DSL Evolution. . 08. pp. 149.

Tisi, M. and Cheng, Z. (2018) CoqTL: an Internal DSL for Model Transformation in Coq. . 06/25;
2020/12/27. Springer, pp. 142.

Tratt, L. (2008) 'Evolving a DSL Implementation', in Lämmel, R., Visser, J. and Saraiva, J.
(eds.) Generative and Transformational Techniques in Software Engineering II Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 425-441.

Utama, P., Weir, N., Basik, F., Binnig, C., Cetintemel, U., Hättasch, B., Ilkhechi, A., Ramaswamy, S.
and Usta, A. (2018) 'An End-to-end Neural Natural Language Interface for
Databases', arXiv:1804.00401 cs], .

Vinyals, O., Bengio, S. and Kudlur, M. (2016) 'Order Matters: Sequence to sequence for
sets', arXiv:1511.06391 cs, stat], .

Vinyals, O., Fortunato, M. and Jaitly, N. (2017) 'Pointer Networks', arXiv:1506.03134 cs, stat], .

Vinyals, O., Fortunato, M. and Jaitly, N. (2015) Pointer Networks. . 2022/02/15. Curran
Associates, Inc, .

Visser, E. (2007) WebDSL: A Case Study in Domain-Specific Language Engineering.

Voorhees, E.M. (2002) The Philosophy of Information Retrieval Evaluation. Springer, pp. 355.

Voorhees, E.M. (2001a) 'The TREC question answering track', Natural Language Engineering, 7(4),
pp. 361-378. doi: 10.1017/S1351324901002789.

Voorhees, E.M. (2001b) 'The TREC question answering track', Natural Language Engineering, 7(4),
pp. 361-378. doi: 10.1017/S1351324901002789.

Wang, C., Tatwawadi, K., Brockschmidt, M., Huang, P., Mao, Y., Polozov, O. and Singh, R. (2018)
'Robust Text-to-SQL Generation with Execution-Guided Decoding', arXiv:1807.03100 cs], .

Wang, C., Brockschmidt, M. and Singh, R. (2018) 'Pointing out SQL queries from text', ICLR 2018
Conference, .

Wang, W., Zhang, M., Chen, G., Jagadish, H.V., Ooi, B.C. and Tan, K. (2016) 'Database Meets Deep
Learning: Challenges and Opportunities', ACM SIGMOD Record, 45(2), pp. 17-22. doi:
10.1145/3003665.3003669.

Wang, W., Tian, Y., Wang, H. and Ku, W. (2020) A Natural Language Interface for Database:
Achieving Transfer-learnability Using Adversarial Method for Question Understanding. . 04. pp. 97.

Page: 134

Wang, W., Tian, Y., Xiong, H., Wang, H. and Ku, W. (2018) 'A Transfer-Learnable Natural Language
Interface for Databases', arXiv:1809.02649 cs], .

Weir, N., Utama, P., Galakatos, A., Crotty, A., Ilkhechi, A., Ramaswamy, S., Bhushan, R., Geisler, N.,
Hättasch, B., Eger, S., Cetintemel, U. and Binnig, C. (2020) DBPal: A Fully Pluggable NL2SQL
Training Pipeline. . 06/11; 2022/02/15. Association for Computing Machinery, pp. 2347.

Weiss, R.J., Chorowski, J., Jaitly, N., Wu, Y. and Chen, Z. (2017) Sequence-to-Sequence Models
Can Directly Translate Foreign Speech. Available
at: https://ui.adsabs.harvard.edu/abs/2017arXiv170308581W (Accessed: .

Whaley, J. (2000) A portable sampling-based profiler for Java virtual machines. . 06/03;
2021/04/29. Association for Computing Machinery, pp. 78.

Wider, A. (2014) Implementing a Bidirectional Model Transformation Language as an Internal DSL
in Scala. pp. 63.

Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J. and Schwinger, W.
(2012) Fact or Fiction – Reuse in Rule-Based Model-to-Model Transformation Languages. Springer
Berlin Heidelberg, pp. 280.

Winkler, W.E. (1999) The State of Record Linkage and Current Research Problems. Statistical
Research Division, U.S. Census Bureau. Available at:(Accessed: .

Xu, K., Wu, L., Wang, Z., Feng, Y., Witbrock, M. and Sheinin, V. (2018) 'Graph2Seq: Graph to
Sequence Learning with Attention-based Neural Networks', arXiv:1804.00823 cs, stat], .

Yao, Z., Li, X., Gao, J., Sadler, B. and Sun, H. (2019) 'Interactive Semantic Parsing for If-Then
Recipes via Hierarchical Reinforcement Learning', Proceedings of the AAAI Conference on
Artificial Intelligence, 33(01), pp. 2547-2554. doi: 10.1609/aaai.v33i01.33012547.

Yavuz, S., Gur, I., Su, Y. and Yan, X. (2018) What It Takes to Achieve 100% Condition Accuracy on
WikiSQL. . 10; 2022/02/15. Association for Computational Linguistics, pp. 1702.

Ye, H., Li, W. and Wang, L. (2019) 'Jointly Learning Semantic Parser and Natural Language
Generator via Dual Information Maximization', arXiv:1906.00575 cs], .

Yin, P. and Neubig, G. (2019) Reranking for Neural Semantic Parsing. . 07; 2021/09/12.
Association for Computational Linguistics, pp. 4553.

Yin, P. and Neubig, G. (2018) 'TRANX: A Transition-based Neural Abstract Syntax Parser for
Semantic Parsing and Code Generation', arXiv:1810.02720 cs], .

Yin, P., Zhou, C., He, J. and Neubig, G. (2018) 'StructVAE: Tree-structured Latent Variable Models
for Semi-supervised Semantic Parsing', arXiv:1806.07832 cs], .

Yu, T., Li, Z., Zhang, Z., Zhang, R. and Radev, D. (2018) 'TypeSQL: Knowledge-based Type-Aware
Neural Text-to-SQL Generation', arXiv:1804.09769 cs], .

Yu, T., Yasunaga, M., Yang, K., Zhang, R., Wang, D., Li, Z. and Radev, D. (2018) 'SyntaxSQLNet:
Syntax Tree Networks for Complex and Cross-DomainText-to-SQL Task', arXiv:1810.05237 cs], .

Zavershynskyi, M., Skidanov, A. and Polosukhin, I. (2018) 'NAPS: Natural Program Synthesis
Dataset', arXiv:1807.03168 cs, stat], .

Zdun, U. and Strembeck, M. 'Reusable Architectural Decisions for DSL Design', , pp. 37.

Zhang, X., Yin, F., Ma, G., Ge, B. and Xiao, W. (2020) 'M-SQL: Multi-Task Representation Learning
for Single-Table Text2sql Generation', IEEE Access, 8, pp. 43156-43167. doi:
10.1109/ACCESS.2020.2977613.

Page: 135

Zhao, C. and Sahni, S. (2019) 'String correction using the Damerau-Levenshtein distance', BMC
Bioinformatics, 20(11), pp. 277. doi: 10.1186/s12859-019-2819-0.

Zhao, T. and Huang, X. (2018) 'Design and implementation of DeepDSL: A DSL for deep
learning', Computer Languages, Systems & Structures, 54, pp. 39-70. doi:
10.1016/j.cl.2018.04.004.

Zhong, V., Xiong, C. and Socher, R. (2017a) 'Seq2SQL: Generating Structured Queries from
Natural Language using Reinforcement Learning', arXiv:1709.00103 cs], .

Zhong, V., Xiong, C. and Socher, R. (2017b) 'Seq2SQL: Generating Structured Queries from
Natural Language using Reinforcement Learning', arXiv:1709.00103 cs], .

Page: 136

