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THEBIGGERPICTURE During theCOVID-19 pandemic,medical imaging (CT, X-ray, ultrasound) has played a
key role in addressing the magnified need for speed, low cost, ubiquity, and precision in patient care. The
contemporary digitization of medicine and rise of artificial intelligence (AI) induce a quantum leap in medical
imaging: AI has proven equipollent to healthcare professionals across a diverse range of tasks, and hopes are
high that AI can save time and cost and increase coverage by advancing rapid patient stratification and em-
powering clinicians.
This review bridges medical imaging and AI in the context of COVID-19 and conducts the largest systematic
review of the literature in the field. We identify several gaps and evidence significant disparities between cli-
nicians and AI experts and foresee a need for improved, interdisciplinary collaboration to develop robust AI
solutions that can be deployed in clinical practice.
The key challenges on that roadmap are discussed alongside recommended solutions.
SUMMARY

Although a plethora of research articles on AI methods on COVID-19 medical imaging are published, their
clinical value remains unclear. We conducted the largest systematic review of the literature addressing
the utility of AI in imaging for COVID-19 patient care. By keyword searches on PubMed and preprint
servers throughout 2020, we identified 463 manuscripts and performed a systematic meta-analysis to
assess their technical merit and clinical relevance. Our analysis evidences a significant disparity between
clinical and AI communities, in the focus on both imaging modalities (AI experts neglected CT and ultra-
sound, favoring X-ray) and performed tasks (71.9% of AI papers centered on diagnosis). The vast majority
of manuscripts were found to be deficient regarding potential use in clinical practice, but 2.7% (n = 12)
publications were assigned a high maturity level and are summarized in greater detail. We provide an
itemized discussion of the challenges in developing clinically relevant AI solutions with recommendations
and remedies.
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INTRODUCTION

The COVID-19 pandemic has created a desperate need for fast,

ubiquitous, accurate, and low-cost tests, and lung imaging is a

key complementary tool in the diagnosis and management of

COVID-19.1,2 According to the American College of Radiology

(ACR) and the Fleischner Society Consensus Statement, imag-

ing of COVID-19 is indicated in case of worsening respiratory

symptoms, and, in a resource-constrained environment, for

triage of patients with moderate to severe clinical features and

a high probability of disease.3,4 This involves two main tasks.

The first is diagnosis, including incidental diagnosis and

providing support evidence in clinical situations in which a

false-negative RT-PCR test is suspected. The second task is

to help evaluate treatment outcomes, disease progression, and

anticipated prognosis. The field of artificial intelligence (AI) in

medical imaging (MI) is growing in the context of COVID-19,5–7

and hopes are high that AI can support clinicians and radiologists

on these tasks. In this paper, we review the current progress in

the development of AI technologies for MI to assist in addressing

the COVID-19 pandemic, discuss how AI meets the identified

gaps, and share observations regarding the maturity and clinical

relevancy of these developments.

State of artificial intelligence in radiology
Radiologists play a crucial role in interpreting medical images for

the diagnosis and prognosis of disease. Although AI technolo-

gies have recently demonstrated performance that matches ra-

diologists’ accuracy in a number of specific tasks, it remains un-

clear whether radiologists who adopt AI assistance will replace

those who do not. As Celi et al. put it in 2019, ‘‘the question is

not whether computers can outperform human in specific tasks,

but how humanity will embrace and adopt these capabilities into

the practice of medicine.’’8 A stepping stone toward this long-

term vision, however, is the development of AI models that can

compete with humans on specific tasks, and a pioneer in that

progress is the tremendous success in using AI for detection of

breast cancer in screening mammography9–12—a success re-

ported by multiple research groups, achieved after 10 years of

effort and crowned by OPTIMAM, a database with a total cohort

of >150,000 clients.13

Similarly, up to 2020, significant progress has been made in

diagnosing lung conditions using chest X-ray (CXR) and

computed tomography (CT), driven by access to publicized an-

notated datasets. For example, deep learning (DL)-based ap-

proaches outperform radiologists in detecting several pulmonary

conditions from CXR14 and malignancy of lung nodules in low-

dose CT.15 Recently, technologies aiming to assist radiologists

in such tasks have beenmade available on themarket.16 Howev-

er, several key challenges limit the feasibility of adopting these

solutions in practice, namely: (1) poor model generalization due

to systemic biases; (2) lack of model interpretability; and (3)

non-scalable image annotation processes. Interestingly, similar

observations were revealed in the study at hand.

Motivation and contributions
The recent acceleration of publications intersecting AI and imag-

ing for COVID-19 brings a need for rigorous comparative evalu-

ation of papers to summarize and highlight trends to a broad clin-
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ical audience. Previous review papers on COVID-19 either

focused on a technical assessment of AI in imaging6 or elabo-

rated on the role of imaging.1 Related systematic reviews were

either not devoted specifically to imaging17,18 or used extremely

small sample sizes (N = 11).19 In contrast, this paper attempts to

bridge clinical and technical perspectives by providing a

comprehensive overview to guide researchers toward working

on the most pressing problems in automating lung image anal-

ysis for COVID-19. Most related to our work, Roberts et al.20

very recently conducted a systematic review of 62 studies and

claim that none of the models are of potential clinical use. While

the objective of our work is similar and we also find that the vast

majority of manuscripts suffer from methodological flaws, we

identify 12 publications that meet substantially higher standards

than the remaining manuscripts. Moreover, this work is less

focused on assessing individual contributions and more on ex-

tracting current trends in the field in a rigorous and comprehen-

sive manner.

Overall, we herein provide the largest systematic meta-anal-

ysis of AI inMI of COVID-19 to date. Manually analyzing 463 pub-

lications throughout all of 2020 (Figure 1), we attempt to draw a

cohesive picture on the current efforts in the field and highlight

future challenges, especially related to the cooperation of clini-

cians and AI experts. While we focus on the lung as the primary

organ of SARS-CoV-2 infection, we note the significance of ex-

trapulmonary manifestations.21

RESULTS

Progress in AI for medical imaging
In recent years, AI solutions have shown to be capable of assist-

ing radiologists and clinicians in detecting diseases, assessing

severity, automatically localizing and quantifying disease fea-

tures, or providing an automated assessment of disease prog-

nosis. AI for MI has received extraordinary attention in 2020, as

attested by a multitude of interdisciplinary projects attempting

to blend AI technologies with knowledge from MI in order to

combat COVID-19. A keyword search combining AI and MI re-

vealed 2,563 papers in 2019, while 2020 has seen more than

twice the number of such papers (5,401, cf. Figure 2). Of these

publications, 827 are related to COVID-19, indicating that

COVID-19 has accelerated the development of AI in MI.

Lung and breast imaging comparison

To enable a perspective on the emergence of AI for MI of COVID-

19, we have compiled a comparison of the progress of automatic

analysis in breast and lung imaging, as defined in the literature

above, from between 2017 and 2020. Figure 3 (left) shows a sta-

ble growth of papers in AI on both lung and breast imaging over

the years 2017–2019. In 2020, the rise of lung-related papers has

been accelerated by COVID-19 with a doubling in the first half of

2020 compared with the second half of 2019 as well as a

doubling of 2020 compared with 2019, whereas the trend on AI

on mammography imaging remained unaltered compared with

previous years.

Lung imaging modality comparison

To compare the impact of individual modalities, Figure 3 (right)

shows that 2019 witnessed a stable trend of �100–120 papers

per quarter on AI whereas with the COVID-19 outbreak in

2020, numbers soared to 164, 352, 372, and 405 papers for
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Figure 1. Overview of systematic review and meta-analysis
(A) PRISMA flowchart illustrating the study selection used in the systematic review. Publication keyword searches on PubMed, arXiv, biorXiv, and medRxiv for all
of 2020 were performed using two parallel streams. After duplicate matches were removed, titles were screened manually and a selection of 463 relevant
manuscripts was chosen for manual review.
(B) Flowchart for quality/maturity assessment of papers. Eachmanuscript received a score of between 0 and 1 for five categories. Based on the total grade, a low,
medium, or high maturity level was assigned. Details on the scoring system and scores for individual papers can be found in supplemental information.
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quarter 1 (Q1) to Q4 in 2020, respectively. This rise was sponta-

neously evoked by COVID-19, as excluding papers mentioning

COVID-19 would have resulted in a continuation of the stable

trend (see lightly shaded bars) of a hypothetical �120–160 pub-

lications. Notably, the relative contributions of the modalities

changed toward CXR from 2019 to 2020 (shares of 71% versus

63% for CT, 27%–35% for CXR, and 2% for ultrasound, respec-

tively). Moreover, for non-COVID-19 papers, the ratio between

preprints and PubMed indexed papers for AI in breast and chest

is 29% and 37% from 2017 to 2019, respectively; for COVID-19

related papers, this ratio rose to 58%.

Broad insights from meta-analysis
By focusing on CT, CXR, and ultrasound, we quantified the pub-

lication efforts of AI for MI of COVID-19 and identified 463 pa-

pers, which were included in a manual meta-analysis to review

the maturity of the AI technologies and the trends in the rapidly

evolving field. The full spreadsheet with individual scores for

each publication is available in supplemental information.

Disparity between clinical and AI communities

Of the 4,977 papers about MI and COVID-19 (see Figure 2, right),

2,496 are specific to modalities as shown in Figure 4 (left), indi-

cating a dominance of CT in clinical papers (84%), followed by

CXR (10%) and lung ultrasound (LUS) (6%). By using publication

counts as an indirect indicator of scientific response, we observe

a mismatch in the focus of the AI community in comparison with

the clinical community, as illustrated by the distribution of papers

per modality in Figure 4 (right) that shows a clear dominance of

CXR (50%) across AI papers.

In addition, the vast majority (72%) of papers focused on diag-

nosis of COVID-19 over tasks such as severity and prognosis

(Figure 5, left). This trend is in contrast to the ACR guidelines

appraising imaging as an inconclusive test for COVID-19 detec-

tion due to uncertainties in accuracy and risk of cross-contami-

nation. Revealing was the unanimous use of CXR data (50%, see

Figure 4, right) that was commonly utilized without any further

clinical or radiomic features. The tendency for diagnosis was

especially prominent for CXR versus CT where 87% and 58%

diagnosis papers were found, respectively (cf. the sunburst

plot showing task and maturity as distributed bymodality in sup-
plemental information, Figure A1). While 6% of papers (27 of all

437 non-review papers) exploited multimodal imaging data to-

ward building their AI models, studies on multimodal imaging

data of the same patient cohort are lacking with few exceptions.

In one example manual disease airspace segmentation from CT

was used as ground truth for volumetric quantification from

CXR.22 Another study demonstrated the diagnostic accuracy

of AI on CT to be clearly superior to CXR.23

Most AI solutions for COVID-19 have low maturity

Thematurity of the papers was assessed following the scheme in

Figure 1 (right) by co-authors who have developed or worked

with DL algorithms (see Figure 5, middle). Almost 70% of papers

were assigned a low maturity level and only 12 (2.7%) highly

mature studies were identified. A detailed spreadsheet with the

evaluations of each paper is included in supplemental infor-

mation.

CT papers had a higher maturity score than CXR papers (2.1 ±

1.3 versus 1.3 ± 1.1, p < 1 3 10�11, Mann-Whitney U test) and

57% of CT versus 43% of CXR papers were peer-reviewed. As

the pandemic continues the preprint ratio is declining steadily

(from 69% in Q1 to 45% in Q4) but not (yet) significantly (r =

�0.93, p = 0.07). The maturity score also heavily varies across

performed task and was significantly higher for COVID-19

severity assessment and prognosis (2.4 and 2.5) compared

with diagnosis/detection (1.5) and segmentation (1.6) as as-

sessed by Tukey’s post hoc HSD multiple comparison tests

(Figure 6).

A posteriori, we observed that the monthly citation rate was

significantly greater for (1) high compared with medium maturity

papers (6.9 versus 2.3, p < 0.01, U test) and (2) medium

compared with low maturity (2.3 versus 1.9, p < 0.05, U test).

The continuous maturity score was found to be significantly

correlated (r = 0.12, p < 0.05) with themonthly citation rate. Inter-

estingly however, a major factor accounting for a high citation

rate is not the maturity but the months elapsed since publication

(r = 0.35, p < 1 3 10�14). This suggests that absolute citations

and relative citation rates are insufficient quality measures, and

we instead observe a tendency toward continuous citation of

publications that appeared early in the pandemic (irrespective

of their quality).
Patterns 2, June 11, 2021 3
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Figure 2. Venn diagrams for AI in MI
MI received growing attention in 2020, at least
partially due to the COVID-19 pandemic. Automatic
keyword searches on PubMed and preprint servers
revealed that AI has been amajorly growing subfield
of MI and that 827 publications in 2020 mentioned
the terms MI, AI, and COVID-19.
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Overuse of small incomprehensive public datasets

We observed that only 30%of papers used proprietary or clinical

data (Figure 5, right) while almost 70% analyzed publicly avail-

able databases. Such databases exist for CT,24 CXR,25 and

LUS26 and are usually assembled by AI researchers, contain

data fetched from publications, and comprise no more than a

few hundred patients from heterogeneous sources/devices

without detailed patient information. Accordingly, the geograph-

ical diversity of data sources was not extremely high (26 coun-

tries), and by a wide margin the three most important data dona-

tors were countries hit early by the pandemic, namely, China

(48%) and, to a lesser extent, the United States (12%) and Italy

(11%). Interestingly, a global collaborative spirit toward

combating COVID-19 was revealed as first-authors from 53

countries and 6 continents contributed to the research, with

the most active countries being China (21%), the United States

(13%), and India (11%).
Uncovering trends in AI solutions from the mature
papers
Twelve (2.7%) of the assessed papers were assigned high matu-

rity.23,27–37 The list of papers together with details about their

task, key findings, implementation, and results appear in Table

1 and are further discussed in this section.

We summarize the trends observed in the identified list of

mature papers with a deeper focus on aspects such as (1) choice

of AI model architecture, (2) diversity in data sources, (3) choice

of evaluation metrics, (4) model generalization, and (5) reproduc-

ibility. Furthermore, we highlight common limitations reported in

these papers.

1. AI modeling. Most of the presented AI solutions have

high complexity comprising of multiple modeling stages

with at least two models and at most an ensemble of

20 models35 being trained. Solutions for segmentation

tasks tend to model three-dimensional (3D) data, while

classification tasks used two-dimensional (2D) data.

Almost all of the solutions used transfer learning with pre-

training on ImageNet or other open-source clinical data-

sets (e.g., CheXpert, COPDGene). Popular neural

network architectures used included UNet, ResNet, Den-

seNet, and InceptionNet.
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2. Data sources. The majority of mature

publications utilized data obtained

from multiple hospitals containing im-

aging data from about 500–5,000 pa-

tients. The datasets were typically

labeled using manual annotations from

radiologists, RT-PCR tests, and results

from radiology reports. Note that only
three studies utilized clinical metadata in addition to images

to develop their AI system.27–29

3. Evaluation metrics. The publications addressing diagnosis

tasks commonly used metrics such as accuracy, AUC,

sensitivity, and specificity to evaluate the model perfor-

mance, while using Dice and intersection over union

scores to quantify performance on segmentation tasks.

The Pearson correlation coefficient was routinely used to

compare model and human reader performances and un-

derstand the influence of learned features on the overall

system performance.

4. Experimental rigor andmodel generalization. We observed

that while most publications reported confidence intervals

and performed statistical tests, they evaluated their algo-

rithm typically only on a single random split of the dataset.

Most mature publications reported model performance on

external test datasets, as well as presented heatmaps to

illustrate regions of image the model focused on. Howev-

er, few conducted cross-validation and ablation studies to

understand the generalization capabilities of their models.

Furthermore, a couple of solutions were deployed in clin-

ical practice31,36 while another was also thoroughly tested

in multiple countries.27

5. Reproducibility. All of the mature publications used a hu-

man-in-the-loop (about 1–8 experienced radiologists) to

compare and evaluate their proposed AI solutions, thus

making such an evaluation scheme a standard practice.

Moreover, a majority of the studies released the code for

their algorithm publicly, while the data usually remained

proprietary, but was at least partly released in four mature

papers.27,29,30,32

6. Limitations. All publications acknowledge limitations in

their studies owing to inherent biases that are modeled

into in the datasets through limited size, lack of diversity,

and imbalance in disease conditions. In many situations,

the datasets represented population of patients with

higher prevalence of COVID-19 at the time of imaging,

which does not reflect true disease prevalence. Further-

more, the models were deemed sensitive to motion arti-

facts and other subtypes of lesions or comorbidities that

cause data distribution shifts. Most studies also utilized

datasets from limited geographical locations, thereby



Figure 3. Number of papers per keyword and platform
Left: paper counts using AI on breast or lung imaging. At half-year resolution, the trends persisted; a >100% growth rate for lung was visible in the first half (H1) of
2020 whereas H2 brought about an additional growth of approximately one-third (not shown). The lightly shaded bars exclude COVID-19-related papers, which
show the continuity of publicationswithout COVID-19. Right: paper counts comparing the usage of AI on lung imagingmodalities. COVID-19 is accompanied by a
shift toward more CXR compared with CT papers. For each keyword, multiple synonyms were used (for details see appendix Table A1).
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restricting generalization performance of the models in

other geographies.
Task-specific review of publications
In this section, we discuss the four categories of tasks ad-

dressed by the 463 papers chosen for meta-analysis, namely

diagnosis, severity, prognosis, and segmentation. We also high-

light key results from the 12 mature publications and provide an

overview of the findings specific to COVID-19.

Diagnosis

We find that 72% of the papers centered on COVID-19 diag-

nosis with 8 out of the 12 mature papers (75%) also addressing

this task. As the most prominent COVID-19 test relies on the

identification of viral RNA using RT-PCR,38 imaging is not

routinely performed/recommended for diagnosis and, given

its reliance on pulmonary pathologies, it is especially inappro-

priate for detection of early or asymptomatic infections.39 How-

ever, compared with nucleic acid tests, CT may be more sen-

sitive at a single time point for the diagnosis of COVID-19.40

A key diagnostic challenge is the non-specificity of COVID-19

patterns and their differentiation from non-COVID-19 viral

pneumonia.41 Here, non-imaging assessments such as anam-

nesis can contribute to the diagnosis. Second, asymptomatic

patients with unaffected lungs are notoriously challenging to

be detected. In both cases, however, the lack of visibly distin-

guishing features for COVID-19 might not directly imply a

limited ability of DL-based approaches, which might still be

able to automatically identify (segment) distinguishing features,

given the appropriate data for training.42

As has been demonstrated, if DL approaches combine CT and

clinical features, the performance of radiologists in the detection

of symptomatic COVID-19 patients can be matched28 (or sur-

passed33), and even asymptomatic patients with normal CT

scans can be identified in 68% of the cases.28

Moreover, multiple studies validated that radiologists’ perfor-

mance improves upon consultation of AI: Junior radiologists

along with AI can perform as well as mid-senior radiologists,27

and radiologists’ sensitivity and specificity can improve by nearly

10% through AI.43

In another study, AI recovered full-dose CT from ultra-low-

dose CTs with a satisfying acceptance score of 4.4 out of 5 by
radiologists (compared with 4.7 and 2.8 for full- and ultra-low-

dose, respectively) and thus helped to reduce the CT radiation

dose by up to 89% while still facilitating downstream diag-

nosis.44 One highly mature diagnostic study using CXR included

almost 6,000 scans from>2,000COVID-19 patients, and their DL

model exceeded the diagnostic performance of thoracic radiol-

ogists as found by significantly higher AUC of 0.94 (versus

0.85) and sensitivities when matching specificity to radiologists’

performance.35

Severity assessment

Imaging findings of COVID-19 patients correlate with disease

severity,45 and CT scanning can assess the severity of COVID-

19 and helpmonitor disease transformation among different clin-

ical conditions.46 A retrospective comparison of imaging findings

on chest CTs with disease severity revealed an increased occur-

rence of consolidation, linear opacities, crazy-paving pattern,

and bronchial wall thickening in severe patients at a higher fre-

quency than in non-severe COVID-19 patients. The CT findings

correlated with several worse symptoms, including a respiratory

rate greater than 30 breaths per minute and oxygen saturation of

93%or less in a resting state, among other phenotypes.47 In clin-

ical practice, often progress assessments as well as patient

management is performed based on CXR and not chest CT. AI

that provides assessment of severity could be useful if it was

quantifiable and accurate, but only one publication was found

to be mature in performing this task.36 The authors developed

a clinically useful AI tool consisting of a UNet backbone for

lung segmentation and quantification of pulmonary opacity

within 10 days and achieved human-level performance when

training on less than 200 CT scans.36 Another work utilized a da-

taset of multiple CT scans per patients and introduced a ‘‘CT

scan simulator’’ that modeled the temporal evolution of the CT

through disease progression and was evaluated onmultinational

and multimachine data.48 Their work proposed to decompose

the task of CT segmentation from one 3D into three 2D problems,

thus achieving remarkable performance. Notably, despite the

overall overhead of CXR compared with CT in the analyzed pub-

lications, only 3% (n = 6) of the CXR publications in the meta-

analysis focused on severity assessment (cf. 14% for CT). One

of them trained DL models on lung segmentation and opacity

detection of 48 COVID-19 patients and achieved an agreement

measure (Cohen’s kappa) of 0.51 for alveolar opacities and
Patterns 2, June 11, 2021 5



Figure 4. Imaging modality comparison
during the COVID-19 pandemic
CT takes the lion’s share of clinical papers about
lung imaging of COVID-19 (left). The AI community
(right) instead published disproportionately more
papers on CXR compared with clinicians, whereas
CT and ultrasound are under-represented. Multi-
modal papers used more than one imaging mo-
dality.
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0.71 for interstitial opacities.49 In one publication withmultimodal

imaging data for one patient cohort, manual airspace disease

segmentation of CTs in 86 COVID-19 patients was used as

ground truth to train a super-resolution convolutional neural

network on volumetric quantification from CXR. The obtained

correlation percentage of opacity (PO) volume (CT) and PO

area (CXR) was around 0.8 for both AI and averaged human ex-

perts. A recent study on LUS first inferred a patient-level repre-

sentation from the region-level LUS videos using attention-

based multiple-instance learning and then performed semi-su-

pervised contrastive learning to integrate imaging with clinical

data.50 The method achieved 75% and 88% accuracy in a 4-

level/2-level patient severity assessment, respectively, and

even identified infected regions in LUS (B-lines) en passant.

Prognosis

Very few of the papers (26, i.e., 6%) focused on prognostic as-

sessments of COVID-19 such as treatment outcome prediction,

risk assessment (e.g., requirement for intensive care unit admis-

sion or mechanical ventilation), or time elapsed to negative PCR.

However, two of them were assessed as mature,27,29 and the

averagematurity score was the highest for this task (cf. Figure 6).

However, in contrast to diagnosis, these tasks are clinically

more relevant as they cannot be performed routinely and reliably

with standard care. While this can be attributed to an overall gap

in knowledge of the long-term effects of COVID-19 and a lack of

historical data to enable training on large-scale prognosis data, it

is constructive toward the alignment of future research in the

field. On the other hand, in the past fewmonths the hyper-inflam-

matory response induced by COVID-19 has been identified as a

major cause of disease severity and death.51 Thus, studies have

focused on the identification of predictive biomarkers of patho-

genic inflammation. Lung imaging is not expected to reflect

these biomarkers’ expression, leading to limited prognosis accu-

racy based on imaging. One study assessed as highly mature

seamlessly integrated a diagnostic module (based on a CT

lung-lesion segmentation) with a prognostic module that com-

bined clinical metadata and quantification of lung-lesion fea-

tures.27 The system demonstrated diagnostic performance

comparable with a senior radiologist, and the prognostic module

predicted progression to critical illness and could evaluate drug

treatment efficacy by three drugs. Notably, the multicenter data-
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set of 3,777 patients as well as the source

code is available to the public to support

the development of a better system and

to validate their study.

Segmentation

The main abnormalities observed in com-

mon and severe COVID-19 cases are

ground-glass opacities (GGOs) and
patchy consolidation surrounded by GGOs. COVID-19 pneu-

monia manifests with chest CT imaging abnormalities, even in

asymptomatic patients, with rapid evolution from focal unilat-

eral to diffuse bilateral GGOs that progress to or co-exist with

consolidations within 1–3 weeks.52 The visual features of

GGOs and consolidation lend themselves to image analysis

by DL networks, and with 27 publications (8%) segmentation

became the second-most-performed task after diagnosis. In

our analysis, many of the papers performed segmentation to

enable other clinical tasks as discussed above, but one mature

study focused on providing pulmonary lobe segmentation with

relational modeling.30 Using topological modeling techniques

that explore structural relationships between vessels, airways,

and the pleural wall, and break up with the common strategy

of utilizing fully local modules such as convolutions, they

achieved human-level performance. In most cases (82%), seg-

mentation publications utilized external data sources with little

or no clinical collaboration. Some segmentation-based models

output pixelwise-labeled tissue maps of GGO or consolidation

regions, providing quantitative localization of findings and iden-

tification of disease features, which can be especially informa-

tive in clinical tasks such as grading disease severity or tracking

progression over time. Chaganti et al. achieved this by seg-

menting anatomical landmarks with reinforcement learning

and computing the PO and lung severity score as complemen-

tary severity measures.53

In an exhaustive empirical evaluation of DLmodels on a clinical

dataset of almost 100 COVID-19 patients, distinguishing lesion

types was found more difficult than lung segmentation or binary

lesion segmentation while model ensembles demonstrated best

performance.54 The manual delineation from radiologists, valu-

able for segmentation tasks, inherently introduces some inter-

rater variability, which underlines the need for segmentation

techniques that can deal with uncertainty in annotations.55

DISCUSSION

In summary, the number of papers on AI in MI for COVID-19 has

grown exponentially in 2020, and the quality of the manuscripts

varies significantly. In our manual review, only 12 (2.7%) highly

mature studieswere identified. A key characteristic that underpins
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Figure 5. Distribution of manually reviewed papers on AI and MI during the COVID-19 pandemic
Relative proportions for primary performed task (A), quality (B), and data origin (C) are given. N is smaller for (B) and (C), since review papers were excluded from
that analysis.
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highlymature studies is an interdisciplinary and oftenmultinational

collaboration of medical professionals and computer vision re-

searchers.

Challenges and possible solutions
Given the observed disparities between the AI andmedical com-

munities, we discuss several challenges that are currently

encountered in such interdisciplinary collaborations and provide

potential approaches to remedy the same.

Choosing the right task for AI models

The AI literature primarily addresses diagnostic tasks as

opposed to other tasks with higher clinical relevance, such as

monitoring/severity estimation (which tracks with clinical out-

comes) and management tasks such as ventilation equipment

and bed allocation. Currently even the best AI solutions have

minimal performance gains on well-defined tasks (such as diag-

nosis) and are thus unlikely to be adopted clinically.8

Conclusions from our meta-analysis are that (1) the choice of

task is critically driven by the availability of annotated data and

(2) the speed of execution in AI propels blind response to in-

crease short-term rewards instead of finding solutions to high-

priority problems. This partly explains the overattention to diag-

nostic tasks. Moreover, classification is the canonical machine-

learning (ML) formulation and, while regression techniques can

estimate non-binary severity scores, they are less frequently

used. Severity estimation can be reduced to summing a classifi-

cation problem on the pixel level, but this requires very expensive

pixelwise annotated training data. Another common misalign-

ment between communities is the disparate objective functions

in diagnostic classification of COVID-19 from imaging data. Irre-

spective of the availability of direct tests for SARS-CoV-2, radiol-

ogists around the globe are steered by the objective to avoid

false negatives; their decisions are less factious and dichoto-

mous and more granular than a categorical classification of an

ML model. On the other hand, the utility of an AI model, trained

on a ground truth assigned by radiologists’ interpretation, is

limited and mostly restricted toward saving time and resources

rather than getting better decisions.

To remedy and develop better clinical prediction models, the

seven steps for development and four steps for validation pro-

posed by Steyerberg et al.56 should be followed and comple-

mented by an increased motivation among AI experts to focus

on the correct questions and leverage-suitable and radiologist-
friendly inductive biases such as soft labeling.57 Since AI tech-

niques are data driven, the best way to steer AI practice toward

more COVID-19 clinical relevance is to collect CT data with an-

notations for severity as well as demographics data and out-

comes data. Recent collaborative, multi-institution data-collec-

tion efforts such as the NHS NCCID and RSNA’s RICORD

datasets precisely have CT data combined with outcomes and

severity, and they are sure to lead to AI approaches with more

clinical impact. AI challenge competitions are a related route

for channeling AI toward CT and severity estimation. MICCAI’s

COVID-19 lung CT lesion segmentation challenge collected a

CT dataset with detailed, radiologist-labeled lesions on the pixel

level. AI-based lesion segmentation can then estimate severity

by counting lesion voxels. In general, the hope is that this can

be applied to longitudinal studies to track COVID-19 progression

and eventually be combined with demographics and hospitaliza-

tion data. Two other promising and clinically relevant endeavors

are (1) usage of DL for generating standardized assessment of

pulmonary involvement of COVID-19 by leveraging the newly

introduced COVID-19 Reporting and Data System (CO-

RADS)34 and (2) using DL to help evaluate treatment outcomes,

e.g., by assessing changes in lesion size and volume changes.27

Transparency and reproducibility

While most authors of highly mature studies released their code

(indeed three papers did not release code29,31,37), only one-third

of them released at least part of their data. This raises concerns

about reproducibility and transparency of their studies, as

recently argued against a Nature study on breast cancer

screening11 in a ‘‘matters arising.’’58 Similarly, a COVID-19 mor-

tality prediction study59 was found to be irreproducible by three

independent research groups from different countries.60–62

Given the global, unprecedented public health challenge caused

by COVID-19, we strongly encourage medical researchers to

follow the trends toward open-source development in the field

of ML (which was proclaimed by various luminaries 14 years

ago63 and successfully implemented in important venues). We

encourage researchers to expedite a transformation toward a

common practice of validating the proposed methodology and

results by publishing both code and, whenever possible, anony-

mized medical data, especially in academic, non-commercial

settings. To help foster this transformation, conference orga-

nizers and journal editors should encourage the open sharing

of code and anonymized data in their call for papers and add
Patterns 2, June 11, 2021 7



Figure 6. Maturity score as function of task (N = 437)
Publications focusing on COVID-19 diagnosis/detection or pure segmentation
achieved a significantly lower maturity score than publications addressing/
severity assessment/monitoring or prognostic tasks (asterisks indicate sig-
nificance levels 0.05, 0.01, and 0.001, respectively).

ll
OPEN ACCESS Review
this as a criterion to the review procedure. For example, NeurIPS

and ICML, premier ML conferences, expect that submissions

include code and anonymized data and take this into account

during the decision-making process. Similarly, the imaging con-

ferences CVPR and MICCAI both strongly encourage the inclu-

sion of code and data. Better guidelines from official sources

such as governments are needed, especially since data-sharing

regulations are less stringent during a pandemic and medical fa-

cilities are often not aware of the numerous advantages of data

sharing. Privacy-preserving data science techniques have

advanced64 and should help to build more trust toward data

sharing.

Federated learning (FL) is an emerging realm of ML concerned

with distributed, decentralized training that stores privacy-sensi-

tive data only locally (for details see Yang et al., Qiang and

Zhang, and Vaid et al.65–67). FL allows multiple parties to collab-

oratively train the same model without data sharing and could

thus become key to fostering collaborations between clinical

and AI communities and overcoming privacy concerns. Our

meta-analysis included three preprints exploring FL using CT68

or CXR69 data. A recent FL study on electronic health records

from five hospitals was found to improve COVID-19 mortality

prediction.70 These efforts will hopefully increase reproducibility

and make comparative studies more feasible, which will help the

research community focus on the highest-performing methods.

Imaging modality rivalry

An ideal imaging modality should be safe, ubiquitous, accurate,

fast, and preferably provide high-quality reproducible results via

portable devices. The three different imaging modalities ad-

dressed in this study differ in their clinical use, availability, porta-

bility, safety, and reproducibility, and none of them is ideal for
8 Patterns 2, June 11, 2021
addressing all aspects of the pandemic (for a comparison see

Table 2). For a geographic map showing the regional market

sizes of the modalities, see Figure A2. Herein we have unraveled

a mismatch in the number of publications per modality between

clinical and AI communities: the AI literature has focused mostly

on CXR whereas CT and LUS have received comparably little

attention (cf. Figure 4). CT is deemed the gold standard, domi-

nates in clinical publications, and is more sensitive than CXR

for detecting diseases of the chest, but is restricted to modern

medical facilities.71 CXR is notoriously less sensitive than CT,72

yet it is the most abundantly used modality across the globe

when managing COVID-19 patients. While CXR can underesti-

mate disease, CT can narrow down a differential diagnosis that

appears broad on CXR. For AI, large datasets are needed for

ML approaches, and there are much larger datasets for CXR

than for CT.

As the use of imaging is less regulated compared with PCR/

antigen testing, an official recognition of all imaging modalities

by leading institutions and stakeholders is needed. In conjunc-

tion with clear guidelines for clinicians on when to use which mo-

dality, trust in imaging can be increased and workflows can be

streamlined. For example, the practical advantages of LUS

include non-invasiveness and portability and its consequent

role in triage.73 However, LUS is operator dependent and re-

quires close patient contact for a relatively longer time.74 It

was described as a preferred modality in Italy75 during spring

2020, but it is not used as extensively in other geographic re-

gions, being mainly applied for patients with CT/CXR contraindi-

cations and predestined to study solid organs unlike the lung.

Notably, LUS sensitivity was found to be higher than that of

CXR for COVID-19 diagnosis,76 and some even found compara-

ble diagnostic accuracy to CT.77,78 However, the role of LUS for

the COVID-19 pandemic is still actively debated79–81 and,

regarding AI, with only one publicly available dataset,26 more

research is needed to narrow down the practical role of AI on

LUS.26,50,82,83 Additionally, studies usingML onmultiple imaging

modalities from the same cohort are certainly needed to shed

light on comparative questions between modalities from the

perspective of ML. The performance of AI-assisted radiologists

in detecting COVID-19 might or might not confirm the current

radiologic findings, for example that CXR is less sensitive than

CT84 and LUS (when compared with RT-PCR76 or CT85) or that

B-lines are the most reliable pathological pattern across CT,

CXR, and LUS.86 From the AI perspective, LUS is presumably

the modality with the highest improvement potential in MI anal-

ysis in the near future. Ultimately, AI technology focusing on plain

CXR/LUS data may enable wider leverage in developing coun-

tries with limited medical resources.

ML interpretability

The combined lack of robustness and interpretability poses

steep challenges for the adoption of AI models in clinical prac-

tice.87 Models trained without optimizing for reliability typically

make overconfident wrong predictions or underconfident cor-

rect predictions, especially when extrapolating data. To ensure

that models make decisions for the right reasons, they must be

trained to recognize out-of-distribution samples and handle dis-

tribution shifts, thereby allowing models to abstain from making

predictions when it is unsure and deferring such samples to the

experts. A human-interpretable access to the model’s decision



Table 1. Detailed information on the 12 best papers found in our systematic meta-review of 463 papers (maturity score of high)

Paper title

Primary

task;

modality Key findings Limitations

Patients

(train/

val/test)

No. of

data

sites Labels

Architecture,

dimensionality Pretraining Metrics Results

Reproducibility

(code/data

open source)

Artificial

intelligence-

enabled rapid

diagnosis of

patients with

COVID-1927

diagnosis,

CT

system

identified 68%

of RT-PCR-

positive

patients with

normal CT

(asymptomatic).

Clinical

information is

important for

diagnosis and

model is equally

sensitive than

a senior

radiologist

small data

size, mild

cases have

few abnormal

findings on

chest CT,

severity of

pathological

findings

variable in CT

534/92/

279

18 RT-PCR

tests

Inception-

ResNet-v2

(pretrained

ImageNet),

3-layer

MLP, 2D

transfer

learning

(pulmonary

tuberculosis

model)

AUROC,

sensitivity,

specificity

0.92 AUC,

84.3%

sens, 82.8%

spec

code—yes,

data—no

Artificial

intelligence

augmentation

of radiologist

performance in

distinguishing

COVID-19 from

pneumonia of

other origin at

chest CT32

Diagnosis,

CT

AI assistance

improved

radiologists’

performance in

diagnosing

COVID-19.

AI alone

outperformed

radiologists on

sensitivity and

specificity

bias in

radiologist-

annotation,

heterogeneous

data, bias in

location of

COVID (China)

versus non-

COVID

pneumonia

patients (USA)

830/237/

119

13 RT-PCR

tests, slice-

level by

radiologist

EfficientNet-

B4, 2D

transfer

learning

(ImageNet)

AUROC,

sensitivity,

specificity,

accuracy,

AUPRC

0.95 AUC,

95% sens,

96% spec,

96% acc,

0.9 AUPRC

code—yes,

data—no

Automated

assessment of

CO-RADS and

chest CT

severity scores

in patients with

suspected

COVID-19

using artificial

intelligence33

diagnosis,

CT

a freely

accessible

algorithm that

assigns CO-

RADS and CT

severity scores

to non-contrast

CT scans of

patients

suspected of

COVID-19 with

high diagnostic

performance

only one data

center, high

COVID

prevalence,

low prevalence

for other

diseases

476/105 1 RT-PCR,

radiology

report

lobe

segmentation

3D UNet,

CO-RADS

scoring,

3D Inception

Net

transfer

learning

(ImageNet

and kinetics)

AUC,

sensitivity,

specificity

internal:

0.95 AUC,

external:

0.88 AUC

code—yes,

data—no

(Continued on next page)

ll
O
P
E
N

A
C
C
E
S
S

P
a
tte

rn
s
2
,
J
u
n
e
1
1
,
2
0
2
1

9

R
e
v
ie
w



Table 1. Continued

Paper title

Primary

task;

modality Key findings Limitations

Patients

(train/

val/test)

No. of

data

sites Labels

Architecture,

dimensionality Pretraining Metrics Results

Reproducibility

(code/data

open source)

Diagnosis of

Covid-19

pneumonia

using chest

radiography:

value of

artificial

intelligence35

diagnosis,

X-ray

AI surpassed

senior

radiologists in

COVID-19

differential

diagnosis

high COVID

prevalence,

human ROC-

AUC were

averaged from

3 readers

5,208/

2,193

5 hospitals,

30 clinics

RT-PCR,

natural

language

processing

on radiology

report

CV19-Net 3-stage

transfer

learning

(ImageNet)

AUC,

sensitivity,

specificity

0.92 AUC,

88.0%

sens, 79.0%

spec

code—yes,

data—no

Development

and evaluation

of an artificial

intelligence

system for

COVID-19

diagnosis23

diagnosis,

multimodal

paired cohort

of chest X-ray

(CXR)/CT data:

CT is superior

to CXR for

diagnosis by

wide margin.

AI system

outperforms all

radiologists in

4-class

classification

more data

on more

pneumonia

subtypes

needed, no

clinical

information

used (could

enable

severity

assessment)

2,688/

2,688/

3,649

7 – lung seg 2D

UNet, slice

diagnosis 2D

ResNet152

transfer

learning

(pretrained

ImageNet)

AUC,

sensitivity,

specificity

AUC 0.978 code—yes,

data—no

AI-assisted

CT imaging

analysis for

COVID-19

screening:

building and

deploying a

medical AI

system31

diagnosis,

CT

system was

deployed in

4 weeks in

16 hospitals; AI

outperformed

radiologists in

sensitivity by

wide margin

model fails

when multiple

lesions, metal

or motion

artifacts are

present,

system

depends

on fully

annotated

CT data

1,136 5 Nucleic acid test, 6

annotators

(lesions,

lung)

3D UNet++,

ResNet50

full training sensitivity,

specificity

sens 97.4%,

spec 92.2%

code—no,

data—no
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Table 1. Continued

Paper title

Primary

task;

modality Key findings Limitations

Patients

(train/

val/test)

No. of

data

sites Labels

Architecture,

dimensionality Pretraining Metrics Results

Reproducibility

(code/data

open source)

Automated

assessment

and tracking

of COVID-19

pulmonary

disease

severity

on chest

radiographs

using

convolutional

Siamese neural

networks32

severity,

X-ray

continuous

severity score

used for

longitudinal

evaluation

and risk

stratification

(admission

CXR score

predicts

intubation

and death,

AUC = 0.8).

Follow-up CXR

score by AI is

concordant

with radiologist

(r = 0.74)

patients only

from urban

areas in USA, no

generalization to

posteroanterior

radiographs

160,000/

267

(images)

2 RT-PCR

tests, 2–5

annotators,

mRALE

Siamese

DenseNet-

121

DenseNet-

121

(ImageNet,

fine-tuned

on

CheXpert)

PXS score,

Pearson,

AUC

r = 0.86,

AUC = 0.8

code—yes,

data—partial

(COVID CXR

not released)

Development

and clinical

implementation

of tailored

image analysis

tools for

COVID-19 in

the midst of

the pandemic36

severity,

CT

developed

algorithms for

quantification

of pulmonary

opacity in

10 days.

Human-level

performance

with <200 CT

scans. Model

integrated into

clinical workflow

data: no careful

acquisition, not

complete,

consecutively

acquired or fully

random sample;

empirical HU-

thresholds for

quantification

146/66 1 RT-PCR, 3

radiologist

annotators

3D UNet full training Dice

coefficient,

Hausdoff

distance

Dice = 0.97 code—yes,

data—no
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Table . Continued

Paper e

Primary

task;

modality Key findings Limitations

Patients

(train/

val/test)

No. of

data

sites Labels

Architecture,

dimensionality Pretraining Metrics Results

Reproducibility

(code/data

open source)

Clinic

applic le AI

syste r

accur

diagn ,

quant ive

meas ments,

and p nosis

of CO -19

pneum ia

using puted

tomog hy27

prognosis,

CT

AI with

diagnostic

performance

comparable

with senior

radiologist. AI

lifts junior

radiologists to

senior level.

AI predicts

drug efficacy

and clinical

prognosis.

Identifies

biomarkers

for novel

coronavirus

pneumonia

lesion. Data

available

3,777 4 pixel-level

annotation (5

radiologists)

lung-lesion

seg

DeepLabV3,

diagnosis

analysis 3D

ResNet-18,

gradient

boosting

decision tree

full

training

Dice

coefficient,

AUC,

accuracy,

sensitivity,

specificity

AUC 0.9797,

acc 92.49%,

sens 94.93%,

spec 91.13%

code—yes,

data—yes

Relati l

mode for

robus d

efficie

pulmo ry lobe

segm ation

in CT ns30

segmentation,

CT

leverages

structured

relationships

with non-

local module.

Can enlarge

receptive field

of convolution

features.

Robustly

segments

COVID-19

infections

errors on

border of

segmentations,

gross

pathological

changes not

represented

in data

4,370/

1,100

2

(pretraining:

21 centers)

radiology

report

RTSU-Net

(2-stage

3D UNet)

pretraining

on

COPDGene

intersection

over union,

average

asymmetric

surface

distance

IOU 0.953,

AASD 0.541

code—yes,

data—

no/partial

(Continued on next page)
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Table 1. Continued

Paper title

Primary

task;

modality Key findings Limitations

Patients

(train/

val/test)

No. of

data

sites Labels

Architecture,

dimensionality Pretraining Metrics Results

Reproducibility

(code/data

open source)

Dual-branch

combination

network (DCN):

toward

accurate

diagnosis

and lesion

segmentation

of COVID-19

using CT

images37

diagnosis,

CT

DCN for

combined

segmentation

and

classification.

Lesion

attention

(LA) module

improves

sensitivity to

CT images

with small

lesions and

facilitates early

screening.

Interpretability:

LA provides

meaningful

attention maps

diagnosis

depends on

accuracy of

segmentation

module, no

slice-level

annotation

1,202 10 RT-PCR,

pixel-level

annotation

by 6

radiologists

UNet,

ResNet-50

full training accuracy,

Dice,

sensitivity,

specificity,

AUC,

average

accuracy

acc 92.87%,

Dice 99.11%,

sens 92.86%,

spec

92.91%,

AUC 0.977,

average acc

92.89%

code—no,

data—no

AI-driven

quantification,

staging and

outcome

prediction of

COVID-19

pneumonia29

prognosis,

CT

2D/3D COVID-

19

quantification,

roughly on par

with radiologists.

Facilitates

prognosis/

staging which

outperforms

radiologists.

Rich set of

model

ensembles,

uses clinical

features

test dataset

partly split

by centers

693

(321,000

slices)/

513 for

test

8 RT-PCR AtlasNet, 2D full training Dice

coefficient,

correlation,

accuracy

Dice 0.7,

balanced

accuracy 0.7

code—no,

data—yes

(without

images)
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Table 2. Differences between the imaging modalities

CT CXR LUS

Benefit d high sensi-

tivity

d high speci-

ficity

d fast

d broadly

available

d portable

d radiation-

free

d broadly

available

Drawback d patient

transpor-

tation

d low avail-

ability

d radiation

dose

d increased

workload for

disinfection

d low sensi-

tivity

d non-specific

d large volume

of radio-

graphs leads

to increased

workload

d user-

dependent

d non-specific

d long acquisi-

tion time

d requires pa-

tient inter-

action

Clinical

role

d diagnose

additional

compli-

cations

d rule out

additional

etiologies of

symptoms

(effusions,

bacterial

pneumonia)

d initial

diagnosis

d monitoring

clinical pro-

gression

d detection of

compli-

cations

d triage

d point-of-care

monitoring

for spe-

cific tasks
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OPEN ACCESS Review
process is crucial to hone trust in AI, especially in medical appli-

cations where reasoning is inductive, sensitive decisions are

made, and patients expect plausible hypotheses from physi-

cians. In MI, heatmap techniques (such as GradCAM88 or

guided-backpropagation89) and uncertainty estimation of

individual predictions (e.g., with MC Dropout90,91 or test-time-

augmentation92) are the most widely adopted approaches.

However, most current interpretability tools focus on generating

explanations that highlight patterns learned from the data but do

not translate model decisions in human-understandable forms.

Counterfactual reasoning has found its way into ML explainabil-

ity93 and has opened doors toward contrastive explanations (by

ascribing how changing the input would affect predictions), and

can readily be combined with uncertainty quantification princi-

ples to build models integrating reliability into the optimization

process.94 This will enable model introspection and facilitate

human-in-the-loop analysis while also considering the perfor-

mance distribution among human evaluators.

Collaboration between AI and clinical communities

A standard healthcare AI project workflow involves defining a

use-case, curating data and annotations, identifying problem

constraints, choosing relevant metrics, designing and building

the AI system, and lastly evaluating the model performance

(Figure 7, top). However, any problem involves many stake-

holders: patients, ethics committees, regulatory bodies, hospital

administrators, clinicians, and AI experts.95 In general, data-

driven constraints identified by the AI experts tend to transform

the clinical task into an evolved task. In combination with the

disconnect of other parties (e.g., clinicians, patients) in the build

life cycle, this causes potential gaps in the overall outcomes of

the collaboration. Awareness and understanding of the differ-
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ence in needs, motivations, and solution interpretations across

agents is imperative. For example, for clinicians the generation

of data and metadata are cumbersome, time demanding, and

tedious. What drives and motivates clinicians are improved clin-

ical workflows and the knowledge and better understanding the

analysis can bring, so that they can provide improved patient

care. Moreover, AI models may hide inherent risks such as the

codification of biases, the weak accountability, and the bare

transparency of their decision-making process. Therefore, the

way AI models are evaluated can have multiple implications on

their applicability, generalization, and translation to clinical prac-

tice.96,96 To this end, both the definition of the task to be imple-

mented and evaluated, but also the types of metrics to be lever-

aged to evaluate the results’ outcomes, can be different across

collaborators and hence must be collectively defined.

We illustrate such an improved workflow that incorporates

other stakeholders in the build process, robust metrics, and iter-

ative usability studies in Figure 7 (bottom).We believe that such a

workflow could critically improve the quality of collaboration be-

tween AI and clinicians.

To enable agile and transparent development with continuous

feedback and evaluation loops, new conducive environments

are necessary. A collaboration environment that enables sharing

of data, code, and results, but also immediate feedback and dis-

cussion platforms across collaborators, is essential. Commu-

nities of discovery such as the digital mammography DREAM

challenge97 that bring together experts across domains under

a unified cloud-based platform can enable data privacy and

compliance through distributed learning and FL. Data and

code sharing through open-source and open-access initiatives,

and comprehensive, multidisciplinary validation could pave the

way toward closing the gap between technology development

and translation to clinical practice.

To summarize, the challenges toward improved collaboration

include (1) aligning goals of diverse stakeholders (e.g., clinicians,

AI experts, patients, funding and regulatory agencies) and (2)

mapping a medical need into a well-defined task with a measur-

able and applicable outcome. Possible solutions include (1) in-

clusive execution and transparency (e.g., keep clinicians and/

or patients involved throughout the build process), (2) robust

evaluation of systems (e.g., going beyond accuracy metrics to

incorporate reliability metrics), and (3) creation of common

work environments.

Despite the scientometric research which revealed that during

COVID-19 global research investments and publication efforts

have grown dramatically,98 research team sizes, number of

involved countries, and ratio of international collaborations

shrank.99 We therefore hope to encourage more international

collaborations between the AI community and medical experts,

as this could lead to more mature and conducive technologies

and potentially assist clinicians and radiologists in addressing

pressing clinical decision support needs during the pandemic.
EXPERIMENTAL PROCEDURES
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Figure 7. Workflow of collaboration between
AI and clinical experts
Top: typical process of developing healthcare AI
technology including task definition, data curation,
building ML systems, and human-in-the-loop eval-
uation. Bottom: our proposedworkflow, highlighting
key components that need to be incorporated into
the process to improve collaboration between AI
and clinical experts. Note the disparity in value
interpretation of the developed solutions by the two
communities.
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Data and code availability
The source code used for the publication keyword search is available via
https://pypi.org/project/paperscraper/. A spreadsheet with the detailed re-
sults of the publication meta-analysis is enclosed as supplemental information
(online only).

Methods
Todiscover trends fromtheoverwhelming researchactivities inCOVID-19,AIand
MI, we performed a systematic review and meta-analysis according to the
PRISMAguidelines.100 Literature, indexed inPubMedand three preprint servers,
namely arXiv, bioRxiv, and medRxiv, were queried. The process is illustrated in
Figure 1 (left) and shows two main streams of queries: a broad one using ‘‘AI’’
AND ‘‘COVID-19’’ AND ‘‘Medical Imaging’’ and a modality-specific one with
‘‘AI’’ AND ‘‘COVID-19’’ AND ‘‘Lung’’ AND (‘‘CT’’ OR ‘‘CXR’’ OR ‘‘US’’). Following
PRISMA guidelines, we combined the results of both queries across all data-
bases leading to the identification of 463 papers about AI on lung imaging for
COVID-19. These papers were included in a manual meta-analysis to review
the maturity of the AI technologies and the trends in the rapidly evolving field
(for the detailed procedure and a list of synonyms used, see appendix Table
A1). The publications about AI technology typically tend to report a proof of
concept, an illustration of a success in a non-clinical setting, or a report of clini-
cally successful experiments. Additionally, many of the papers identified were
not published in peer-reviewed journals. To evaluate the maturity of papers, we
included five criteria that were assessed rigorously (Figure 1, right).

1. Peer review: Whether or not the paper appeared in a peer-reviewed
journal or conference.

2. Modeling quality: The complexity and the performance of the devel-
oped AI framework.

3. Data quality/scale: Number of patients in the data used for training and
evaluation. Internal, clinical data is preferred over public datasets, and
multihospital/multimodal data are valued.

4. Experimental rigor: Stringency in the evaluation and comparison of the
methodology.

5. Clinical deployment: The deployment and adoption of the solution in
hospitals. Comparison studies of AI and radiologists or deployment of
web services were also rewarded.

The peer-review score was binary and all other categories were scored ter-
narily (0, 0.5, 1). Details of the scheme with examples can be found in the sup-
plemental information. The decision function for maturity level (Figure 1, right)
guarantees that publications which received a ‘‘0’’ in one of the five categories
cannot obtain a high maturity score (implying that, e.g., preprints are never
highly mature).
Moreover, wemanually inferred themost common tasks addressed in the AI

papers, such as detection, segmentation, characterization, and outcome pre-
diction, andmapped them into three main clinically relevant categories—diag-
nosis, severity assessment, and prognosis—and one technical task, segmen-
tation. The segmentation papers discuss localization of lung tissue or other
disease features without direct applications to any clinically relevant down-
stream tasks.
For publications that focused on several categories, we consider the primary

task only. For example, a number of publications classified as ‘‘diagnosis’’ or
‘‘severity assessment’’ utilized segmentation methods on the fly. Papers that
provided a review of ML for MI on COVID-19 and did not introduce original
new technology were labeled as ‘‘review’’ papers and excluded from thematu-
rity assessment, leading to 437 reviewed papers. The remaining evaluation
criteria per publication were imaging modality, country of authors, and country
of data source. For each paper, we also recorded the total number of citations
indicated on Google Scholar as of February 28, .2021 and converted it to the
monthly citation rate. Note that the meta-analysis was blindfolded to the num-
ber of citations.
The publication keyword search was performed using our toolbox paper-

scraper that was developed during this project and is open-sourced (https://
pypi.org/project/paperscraper/).

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
patter.2021.100269.
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