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A spatial correlation prediction model of urban PM2.5 concentration based on deconvolution and
LSTM
Bo Zhang,Yuan Liu,RuiHan Yong,Guojian Zou,Ru Yang,Jianguo Pan,Maozhen Li

• The use of deconvolution neural network resolves the problem of excessive information loss incurred in traditional
CNNs.

• The input data of the model takes into account the concentration of atmospheric pollutants, meteorological factors and
environmental factors in the adjacent areas in predicting future PM2.5.

• The presented Dev-LSTM model outperforms the classic models in mining the spatial temporal correlation of pollutants
and subsequent predictions.
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A B S T R A C T
Precise prediction of air pollutants can effectively reducre the occurrence of heavy pollution incidents.
With the current surge of massive data, deep learning appears to be a promising technique to achieve
dynamic prediction of air pollutant concentration from both the spatial and temporal dimensions. This
paper presents Dev-LSTM, a prediction model building on deconvolution and LSTM. The novelty
of Dev-LSTM lies in its capability to fully extract the spatial feature correlation of air pollutant
concentration data, preventing the excessive loss of information caused by traditional convolution. At
the same time, the feature associations in the time dimension are mined to produce accurate prediction
results. Experimental results show that Dev-LSTM outperforms traditional prediction models on a
variety of indicators.

1. Introduction
Under the current circumstances, air pollution is becom-

ing increasingly prominent, and the frequency of severely
polluted weather has been increasing. When the concen-
tration of air pollutants exceeds a certain standard, it can
cause heavily polluted weather, and even have a significant
impact on people’s daily lives [1]. For example, under heavy
smoggy weather, the visibility of the surrounding environ-
ment is reduced, which brings inconvenience to people’s
travel posing potential risks to traffic accidents. Air pollu-
tants, i.e., substances that are present in the air can cause
great harm to people’s health and have been receiving a lot
of attention [2–4]. It has become an imperative to predict the
concentration of air pollutants to reduce the occurrence of
heavy pollution incidents and carry out effective air quality
control.

Air pollutant concentration prediction has been a re-
search hotspot in academia [5, 6]. However, the change of
air pollutant concentration is dynamic, and the production
of air pollutants is complicated. The analysis and prediction
work involves multiple departments, regions, and fields [7].
It needs to process a large amount of air pollutant concen-
tration data and related meteorological information. At the
same time, it is necessary to dig out the laws of dynamic
changes of air pollutant concentration. So far, academia has
done a lot of research work in the field of air pollutant con-
centration prediction, most of which are based on traditional
air pollutant concentration and prediction methods with non-
deep learning techniques [8, 9]. In face of the increasing
sensor monitoring data, and the increasingly complex air
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pollutants’ causes and their diffusion methods, researchers
have encountered different forms of bottlenecks that need
to be broken through [10]. For example, it is difficult to
probe complex high-dimensional relationships from massive
datasets.

The prediction of PM2.5 concentration can be regarded
as a time series processing problem, which can be predicted
according to historical data, such as meteorological factors
such as humidity and temperature, and other pollutant factors
such as SO2 and CO [11]. It has been proved by many works
that there are complex interactions among these factors [11–
14].

On the one hand, traditional air pollutant concentration
prediction just performs shallow learning on the data, and
thus cannot effectively utilize and integrate massive histori-
cal monitoring data, extract the deep connections between
data features and conduct in-depth mining of the hidden
features of historical data [15]. On the other hand, traditional
air pollutant concentration prediction methods rely too much
on the laws summarized from historical data, and fail to take
into account the complexity and variability of air pollutant
concentration changes [10, 16]. Air pollutant concentration
varies in time and space. In terms of dimensions, they are
all dependent. Specifically, air pollutant concentration that
happened in the past affects current and future air pollutant
concentration [17]. In addition, air pollution is a regional
diffusion problem, which needs to consider the spatial di-
mension. Air pollution concentration in the vicinity of a
target city also affects the air pollutant concentration in a
target city [18]. This means that there is a spatial correlation
between the air pollution effects of neighboring cities.

In recent years, a new generation of data analytical ap-
proaches represented by deep learning [19] is being adopted
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in many areas [20–30]. At the same time, some models in
deep learning, because of their unique structure, can conduct
linkage analysis on the temporal and spatial correlation of air
pollutant distribution and diffusion [31], and then dynam-
ically predict urban air pollutant concentrations. However,
research in deep learning is far from sufficient on spatial-
temporal correlation analysis. Convolutional Neural Net-
works (CNN) [14, 32–34] have been shown to be powerful
in spatial data processing. However, the data dimension is
compressed after the convolution operation, which would
lose some useful information degrading the performance on
accuracy.

This paper presents Dev-LSTM, a regional air pollutant
concentration prediction model based on deconvolution neu-
ral network and LSTM network. Dev-LSTM is trained on
air pollutant data and meteorological data of a target city
and the neighboring cities. Dev-LSTM fully integrates air
pollutant data and meteorological data, uses deconvolution
network to extract the spatial feature correlation of the air
pollutant concentration, and then uses LSTM to extract the
time dimension feature correlation. Dev-LSTM dynamically
analyzes the spatial and temporal dimension dependence of
atmospheric pollutant concentrations.

The main contributions of the paper are as follows:
1) The use of deconvolutional neural networks retains the

advantage that CNN extracts the correlation between
features from the spatial dimension. More importantly,
it resolves the problem that a traditional CNN over-
compresses the data dimension resulting in excessive loss
of information.

2) The input data set of the model includes air pollution
and meteorological data, and also considers the influence
of air pollutants and meteorological factors on future
PM2.5 concentrations. Considering that a air pollutants
in a target city are affected by neighboring areas, the data
from the surrounding cities are also utilized.

3) Experiments show that Dev-LSTM performs better on
multi-dimensional indicators in terms of mining the tem-
poral and spatial correlations of pollutants and achieving
accurate prediction compared with traditional models.
The remainder of this paper is organized as follows.

Section 2 reviews the related work. Section 3 details the
design of Dev-LSTM. Section 4 evaluates the performance
of Dev-LSTM and analyzes the experimental results, and
Section 5 concludes the paper.

2. Related Work
In the past, academic research on air pollutant concen-

tration prediction can generally be divided into two types:
air pollutant concentration prediction based on non-deep
learning and air pollutant concentration prediction based
on deep learning. Prediction methods based on non-deep
learning can also be called traditional prediction methods,
which can be divided into predictions based on empirical
models, predictions based on probability models, predictions

based on comprehensive methods, and predictions based on
traditional machine learning.
2.1. Empirical Model

The atmospheric pollutant concentration prediction meth-
ods based on empirical models focus on summarizing the
law based on historical meteorological and atmospheric
pollutant concentration data, establishing a linear regression
equation, then solving the coefficients of the regression
equation, and finally predicting a certain time in the future
according to the solved regression equation. air pollu-
tant concentrations. Moisan et al. [35] proposed a method
based on dynamic multi-linear equations, which combines
hourly, daily and annual air pollutant concentration seasonal
changes to predict hourly PM2.5 concentration in Santiago,
Chile. Experimental results showed that the proposed model
has the potential to surpass other linear prediction models
in terms of the accuracy of air pollutant concentration
prediction; Abdullah et al. [36] established a linear regres-
sion model (linear mixed model multiple linear regression),
which used meteorological parameters and historical con-
centrations of air pollutants as input data to predict future
air quality.
2.2. Probabilistic Model

Probabilistic model-based predictions are based on prob-
abilistic methods in mathematics, combined with historical
data to produce predictions of future atmospheric pollu-
tant concentrations. Wu et al. [37] proposed a variational
Bayesian approach for the adaptive air pollution prediction
problem. They formulated the adaptive prediction task based
on recent support data as a conditional inference problem
on a parametric graphical model, and further proposed an
end-to-end learning objective with two-step variational ap-
proximation to estimate intractable conditional likelihoods;
Alyousifi et al.[38] used the maximum a posteriori method
to determine the transition probability matrix of the discrete-
time Markov chain model. based on the API hourly data
collected from Peninsular Malaysia, a maximum a posteriori
(MAP) method was proposed to estimate the Markov chain
transition probability matrix for chain model under three
different priors (Dirichlet, Jeffreys and Uniform).

Since the prediction of pollutants is only a summary
of changes in pollutants based on historical experience, it
is insufficient to represent the complex effects of volatile
atmospheric environments.
2.3. Comprehensive Model

The air pollutant concentration prediction based on the
integrated method is a method that integrates at least two
technologies to produce the final deterministic prediction
result. First, it analyzes the massive air pollutant data and
meteorological data monitored by the sensors, eliminates
redundant data or fills in missing data, and then obtains
the change law of the data in the time dimension. And
according to this law, the final prediction of the air pollutant
concentration in the future is made. For example, the Land
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Use Regression method [39] is combined with other meth-
ods to predict the air pollutant concentration. Specifically,
regression kriging extended linear LUR models in [40] to
improve the explanatory power and predictive performance
of the models. Shi T et al. used the LUR model to predict
the spatial concentration distribution of NO2 and PM10 in
the central urban agglomeration of Liaoning, and combined
with the multiple linear regression method to establish an
equation to obtain the spatial concentration distribution map
of the target pollutants based on the significant variables in
the heating season and non-heating season.

However, the influence conditions of air pollutants are
too complex to be judged as a simple continuation of a
certain law. Moreover, the large amount of background data
and the daily accumulation of air pollution-related data
are not independent, they are time-dependent and spatially
correlated which shall be considered in prediction models.
2.4. Traditional Machine Learning Models

Air pollutant concentration prediction methods based on
traditional machine learning mainly use machine learning to
imitate and realize human behavior, learn new capabilities
through known input from the outside world, and iterate the
characteristics of their own capabilities based on existing
experience [41]. For example, Li et al. [42] used Random
Forest to establish a real-time prediction model of PM2.5concentration based on monitoring data and meteorological
data. Zhao et al. [43] developed an enhanced geographically
weighted regression (GWR) model to analyze the spatial dis-
tribution of PM2.5 concentrations by combining Geodetector
analysis and principal component analysis (PCA). Alterna-
tively, Park et al. [44] used ANN (Artificial Neural Network)
with a hidden layer to study the PM10 concentration inside
and outside the subway station in Seoul.

Traditional prediction methods are mainly targeting at
small sample data sets, and the learning of pollutant char-
acteristics is still at a shallow level, and it is impossible to
perform dynamic analysis of pollutants in time and space.
2.5. Deep Learning Models

As one of the hot topics in academic research in recent
years, deep learning has been used to predict the concen-
tration of air pollutants and can achieve better results than
existing methods. Ch et al. [45] developed a dynamic statis-
tical mixture model for the next two-day forecast of PM2.5concentrations in the Seoul Metropolitan Area in South
Korea by combining the CMAQ- based prediction with the
RNN algorithm [12]; Zhang B et al. utilized a combina-
tion of autoencoder and bidirectional LSTM model (AE-Bi-
LSTM) [11] to extract feature concentrations between me-
teorological variables and PM2.5, and then predicted PM2.5values over time series; Rui et al. [13] used a multilayer
perceptron (MLP) to analyze and predict ambient PM2.5 in
eight regional core cities in China; While Ragab et al. [14]
used 1D Deep Convolutional Neural Network (1D-CNN)
and Exponential Adaptive Gradient (EAG) optimization to
predict the API of selected locations in Klang, Malaysia.
Their proposed method performed an average absolute better

prediction accuracy values than the baseline model in terms
of error (MAE), root mean square error (RMSE), mean ab-
solute percentage error (MAPE), and correlation coefficient
(R-Squared); Combining the advantages of convolutional
neural network (CNN) and long short-term memory (LSTM)
models, Ding et al. [32] proposed a hybrid CNN-LSTM
model based on spatiotemporal correlation to predict daily
PM2.5 concentration in Beijing. CNN model is used to
learn spatial features, while LSTM model is used to extract
temporal information, which outperforms the same model
without spatiotemporal correlation.

However, CNN-LSTM has two key problems. First of
all, CNN loses information in extracting the hidden spatial
features of pollutants and meteorological data, which can
easily lead to the loss of feature information and the degra-
dation of the model.

Recently, methods based on attention mechanism have
been widely used in many research methods[46, 47]. In
the research of pollutant concentration prediction in recent
years, the temporal and spatial features of multi-site pollu-
tant data are extracted by attention-based method. In the task
of pollutant concentration prediction, the prediction model
based on Att-ConvLSTM uses spatio-temporal attention and
ConvLSTM method to weight the input data and extract
spatio-temporal features, and the accuracy of the final pre-
diction results has been greatly improved [48]. However, the
current pollutant concentration prediction model based on
Att-ConvLSTM has encountered the following challenges:
First, it is difficult to deeply extract the hidden distribution
features of pollutants and meteorological data. Second, the
influence of various pollutants and meteorological factors on
the prediction results is not considered. Thirdly, ConvLSTM
method combines the advantages of CNN and LSTM model,
and mainly extracts the spatio-temporal correlation charac-
teristics of long-time series data. However, the single Con-
vLSTM network model has a major disadvantage [48]. On
the one hand, the extraction of temporal and spatial features
of pollutants and meteorological data lacks consideration
of the influence of urban location on prediction. On the
other hand, with the increasing number of ConvLSTM lay-
ers, more network degradation problems will appear in the
model, and the training cost will increase rapidly. Therefore,
it is difficult for Att-ConvLSTM to overcome the above two
problems.

The current air pollutant prediction based on deep learn-
ing can solve the bottleneck problem of traditional predic-
tion. However, there is not enough research work on the
use of deep learning to predict the concentration of air
pollutants, and to analyze time-space correlation problems.
Research on the integration of different neural networks
is still not mature enough to mine the correlation of spa-
tial dimensions. Meanwhile, although the traditional CNN
network can be used to mine spatial information, the data
dimension is compressed after the convolution operation,
which will lose useful information. Aiming at the spatial
correlation and temporal correlation of air pollutant con-
centrations, the Dev-LSTM model presented in this paper
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Fig. 1: Dev-LSTM prediction model architecture.

integrates deconvolutional neural network with LSTM net-
work to provide spatiotemporal dynamic predictions of air
pollutant concentrations.

3. Dev-LSTM
This section presents the design of the Dev-LSTM

model. The architecture of Dev-LSTM is shown in Fig. 1.

3.1. Deconvolutional Neural Network
A traditional CNN is able to extract the correlation be-

tween features from the spatial dimension, but suffers from
an excessive loss of information due to over compression of
data dimensions. The deconvolutional neural network does
not perform the learning and extraction of features from the
perspective of continuously compressing the feature dimen-
sions. Instead, by expanding the feature dimensions before
passing the data features through the convolutional layer,
it can still maintain a rich amount of information and fully
learn the data characteristics after the convolution operation
of lossy compression, which is not possible with traditional
CNN.

Fig. 2 shows the network structure of the deconvolutional
neural network (MP matrix represents the characteristic

matrix of meteorological factors and air pollutant concen-
tration).

In Fig. 2, the deconvolutional neural network first per-
forms a reconstruction operation for the air pollutant concen-
tration and meteorological feature matrix input in time series
(

𝑇1, 𝑇2,… 𝑇𝑛
) ( represented as the MP matrix in the figure ),

i.e., all low-dimensional feature matrices are reconstructed
into high-dimensionality feature matrix. In order to keep
the original information of the matrix, it is appropriate to
use zero padding. The reconstructed MP matrix shown in
Fig. 2 centered on the original MP matrix, around which
expansion operations are performed. The feature matrix
after the convolution operation is in the principle of the
same dimension as the original input MP matrix, which is
equivalent to another feature expression method of the input
MP matrix. The corresponding input and output matrices are
used to calculate the reconstruction error, and update the
parameters of the deconvolution network according to the
reconstruction error.

The traditional convolution network is subsampling, and
the corresponding output size will be reduced. The decon-
volution network is upsampling. The significance of upsam-
pling is to restore the small-sized high-dimensional feature
map, so as to do pixelwise prediction and obtain the classi-
fication information of data points.
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Fig. 3: Reconstruction and multiple convolution of the input
matrix.

As shown in Fig. 3, compared with traditional CNN, each
region of the input matrix is only be convolved once, and
the deconvolution network performs multiple convolution
operations on the same region, thereby realizing the full
extraction of spatial dimension features.
3.2. Dev-LSTM Model Training

Fig. 4 is the architecture diagram of the entire Dev-
LSTM air pollutant prediction model. The multi-city and
multi-site historical data is used as the input of the Dev-
LSTM model. The bottom layer of the model is a decon-
volution neural network, which is used to extract the spatial
correlation of the input data. The high layer of the model is
an LSTM neural network, which is used for deconvolution.
The output after the network extracts spatial features is
extracted again, and the hidden connections of air pollutants
are mined from the time dimension. This Dev- LSTM air
pollutant prediction model is repeatedly trained and tuned
until the model’s performance reaches the desired result.

The training weight of the previous stage of the deconvo-
lution network is the initial weight of the entire model during
training. The output result of the spatial correlation extracted
by the deconvolution network is the input of LSTM. The
prediction of LSTM is to reduce the air pollutants in D hours
(

𝑇1, 𝑇2,… , 𝑇𝑛
) before Time t. The concentration value is

used as the input of LSTM, and the predicted target is the

concentration value of air pollutants in the target city hour
after the time ( D and N are both set time windows). Let
x denote input, which is a dynamic time series, W denote
weight matrix, h denote hidden layer information, and b
denote bias. The training process of LSTM is shown below:
(1) LSTM selectively forgets the air pollutant concentration

data and some meteorological factor data in the histori-
cal time with the Eq. (1),

𝑓𝑡 = 𝜎
(

𝑊𝑓
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑓
) (1)

where 𝑓𝑡 represents the information that needs to be
forgotten at the current moment.

(2) After selectively forgetting some information, it is needed
to determine the updated storage information in the
cell, which comes from two parts, one is the input
information determined by the Sigmoid function at the
current moment, and the other is absolute and hide
status information by the tanh function at the previous
moment. These two parts are represented by the Eq. (2),

𝑖𝑡 = 𝜎
(

𝑊𝑖
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑖
)

𝐶 ′
𝑡 = tanh

(

𝑊𝑐 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑡
) (2)

where 𝐶 ′
𝑡 is the updated storage information in the

determined cell.
(3) Based on the hidden state information at the last moment

and the updated storage information in the determined
cell, the old state is updated using the Eq. (3),

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶 ′
𝑡 (3)

where 𝐶𝑡 is the final storage information in the deter-
mined cell at the current time.

(4) Finally, output 𝑜𝑡, which is the predicted concentration
of air pollutants in the target city is decided, and the
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Fig. 4: The training process of the Dev-LSTM model.

hidden layer status information at the current moment
is updated by using the Eq. (4),

𝑜𝑡 = 𝜎′
(

𝑊𝑜
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑜
)

ℎ𝑡 = 𝑜𝑡 ∗ tanh
(

𝐶𝑡
) (4)

For the prediction result output by LSTM, this paper
defines a loss function to measure the error between
the predicted value and the true value, and adjusts the
network repeatedly according to this error:

𝐸(𝜑) = 1
𝑁

𝑁
∑

𝑖=1

(

𝑋𝑖 − 𝑌𝑖
)2+ 𝜆

2
(

(1 − 𝜁 )|𝜑| + 𝜁𝜑𝑇𝜑
)

(5)
In Eq. (5), N is the predicted length of time in the future,
𝑋𝑖 represents the predicted value of the air pollutant

concentration in the target city generated by Dev-LSTM,
𝑌𝑖 represents the true value of the corresponding air pol-
lutant concentration; 𝜆 is a non-negative hyperparameter
𝜑 represents the set of weights of 𝑢,𝑤, 𝑑, 𝜉 in section
3.2 of this article, namely 𝜑 = {𝑢,𝑤, 𝑑, 𝜉}, and 𝜁 is the
parameter that controls the proportion of penalty terms
used in L1 and L2, 𝜁 ∈ (0, 1).
The process of training and fine-tuning is repeated, and

the performance of the Dev-LSTM prediction model is con-
tinuously optimized, so that it can accurately organize the
input of historical data from multiple cities and multiple
sites, extract the spatial correlation between features during
the training process and realize the full use of data and
produce more accurate prediction results.
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Fig. 5: Spatial effect on target city.

3.3. Spatial correlation between cities
In the experiment carried out in this study, because

the concentration of pollutants is affected by the spatial
relationship, we chose the neighboring cities close to the
target city. The e1,e2 is the spatial influence of surrounding
cities on the target city Fig. 5. Tensors of multiple stations
in surrounding cities are input into the model in time series.

4. Performance Evaluation
4.1. Data description

In this work we selected Shanghai, China as the target
city and Suzhou and Hangzhou as the surrounding cities of
Shanghai to measure the impact on the air pollutant concen-
tration of the target city, and incorporates the correlation of
the spatial dimensions of air pollutant concentration changes
into the prediction system. The training set spans 2 years, and
the test set spans 1 year. The input hourly air pollutants and
meteorological factors are shown in Table 1.

Table 1
Air pollutants and meteorological factors.

Air pollutants Meteorological factors

AQI Temperature
*PM2.5 Dew point
PM10 Wind speed
SO2 Sky condition
NO2 Precipitation
O3
CO

The air quality data selected in this paper come from the
national urban air quality real-time publishing platform of
China National Environmental Monitoring Center, and the

meteorological data come from the National Climate Data
Center (NCDC).

Historical pollutant concentrations and meteorological
data was collected from 7 cities from January 1, 2018 to
January 1, 2020. This work selected 7 cities near the Yangtze
River Delta (Shanghai, Hangzhou, Suzhou, Nantong, Wuxi,
Shaoxing, Jiaxing). We selected 12 pollutants and meteoro-
logical factors: Air Quality Index (AQI), PM2.5, PM10, SO2,
NO2, O3, CO, temperature, dew point, wind speed, sky con-
dition(the code that denotes the fraction of the total celestial
dome covered by clouds or other obscuring phenomena.),
precipitation.

Among air pollutants in Table 1, PM2.5 was selected as
the target air pollutant, i.e., the forecast target of this work
was the PM2.5 concentration of Shanghai.

For the missing values of air pollutant concentration and
meteorological data sets, if the data of a single day was
missing, it was filled with the data of the previous day; if
the data of multiple days was missing continuously, it was
assumed that the data changes evenly during this period, that
is, filled in according to the arithmetic sequence data.

Fig. 6 shows the annual value change of each pollutant
concentration, including AQI. By observing the changes in
the concentrations of pollutants such as PM2.5, it can be
found that the trend of changes in pollutant concentrations
is generally consistent, which also reflects that there may be
hidden relationships between pollutants.

Fig. 7 shows the annual change of meteorological fac-
tors. From Fig. 7, we can observe that the temperature and
dew point have the same change. In addition, the numerical
types and intervals of meteorological elements are quite
different, but the changing trends are highly similar, which
means that there may be mutual influences among meteo-
rological elements. Thirdly, the meteorological factors are
consistent with the change of PM2.5 concentration, which
implies the implicit relationship between air pollutants and
meteorological factors. For example, between 4000-5000
hours, PM2.5 reaches its maximum value, and the temper-
ature and precipitation are also the maximum at this time.
Therefore, combined with the existing research results [31],
in the study of PM2.5 concentration prediction, we take
meteorological factors as part of the model input, and extract
the hidden features between pollutants and meteorological
factors.
4.2. Experimental setup

Based on a number of experiments, an optimal hyper-
parameter set was selected in this study. The validation set
used in this study was closely related to the training stage.
After each epoch, RMSE, MAE and Corr of the prediction
model on the validation set were calculated. Therefore, we
can choose the optimal model according to the model error
calculated on the validation set. Specific parameters are
shown in Table 2.

Fig. 8 depicts the prediction effect of Dev-LSTM model
on test set. The x-axis represents the observed value of
PM2.5, and the y-axis represents the predicted value of
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Fig. 6: Time series plot of air pollutant concentration data.

Table 2
Dev-LSTM model parameter settings.

Symbol Description Value

Kernel_size Convolution kernel size 5*5
Batch_size Batch size for each training 32
Stride Convolution slidingś window step size 1
LNode_num Number of LSTM nodes 128
Learning_rate Learning rate 0.0005
Epochs Number of iterations 150

Input_shape0 Input matrix dimensions
9*12(SH)
11*12(HZ)
7*12(SZ)

Dropout Rate of dropout 0.2
D-N Time in the past to predict the concentration of the future time 1-1

PM2.5. The black line indicates the function, and the red dot
indicates the deviation between the observed value and the
predicted value. Figure 8 shows that the predicted data are
basically consistent with the observed data. By calculating
the correlation, the correlation coefficient between the pre-
dicted value and the observed value is 0.988, MAE is 2.982,
and RMSE is 3.789.

In order to more intuitively show the performance differ-
ence of several prediction models on the test set, this paper
compares multiple prediction models for RMSE, MAE and

Corr values. As can be seen from Table 3, the Dev-LSTM
prediction model has the lowest RMSE and MAE values
and the highest correlation (Corr) between the true and the
predicted value on the test set. Therefore, the performance
of Dev-LSTM is better than these classic models.
4.3. Experimental comparison

As can be seen from Table 3, compared with the tradi-
tional methods, the LSTM and Bi-LSTM have better predic-
tion results compared to the traditional methods because they
can better extract the temporal dependence of pollutants.
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Fig. 7: Time series plots of meteorological data.

Fig. 8: The fitting degree between the observed value and the
predicted value.

Att-ConvLSTM, 3D-CNN-GRU and Dev-LSTM have better
prediction results. Because these five methods can better
deal with the long-term sequence dependence problem with
spatial characteristics. The RMSE, MAE and Corr reached
the optimal values of 3.789, 2.982 and 0.988 respectively.
Next, comparing the prediction results of 3D-CNN-GRU
and Dev-LSTM in Table 3, the prediction accuracy of Dev-
LSTM is higher than that of 3D-CNN-GRU, which proves
that deep FDN-Learning has better spatio-temporal fea-
ture ability than integrating CNN and LSTM methods in
extracting pollutants and meteorological data. In order to
verify the effect of each module, we designed corresponding
experiments. As shown in Table 4, CNN model is superior
to LSTM model, and better results can be obtained if the two
models are combined. If the deconvolution network is taken

Table 3
Model performance comparison.

model RMSE MAE Corr

DME [35] 7.88 4.97 -
CAMx [49] 34.454 - 0.712
CMAQ [50] 34.087 - 0.708
Variational Bayesian [37] - 10.275 -
XGBoost [51] 6.07 3.94 -
ANN [44] 13.26 - -
LSTM [52] 10.93 5.05 -
Bi-LSTM [53] 13.245 9.654 0.969
Att-ConvLSTM [48] 11.476 8.321 0.974
3D-CNN-GRU [54] 7.15 4.64 -
Dev-LSTM 3.789 2.982 0.988

Table 4
The impacts of each module.

model RMSE MAE Corr

LSTM 4.634 3.673 0.985
CNN 4.140 3.331 0.985
CNN-LSTM 4.127 3.394 0.985
BP 4.001 3.193 0.986
Deconvolution 3.970 3.233 0.986
Dev-LSTM 3.789 2.982 0.988

into account, the deconvolution network is superior to CNN
and CNN-LSTM in this task. Therefore, we propose Dev-
LSTM, a deep learning model that integrates deconvolution
network and LSTM. This experiment is also an ablation
experiment of our proposed model, which proves that every
module in the model structure is indispensable.
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Fig. 9: The fitting degree between the observed value and the predicted value.

Fig. 9 shows the fitting trends of Dev-LSTM, CNN-
LSTM, CNN, Deconvolution, LSTM and BP models respec-
tively. Compared with CNN-LSTM, CNN, Deconvolution,
LSTM and BP models, they are trained in the same training
set and tested in the same test set. Table 4 is almost consistent
with the predicted and observed results of the Dev-LSTM
model described in Fig. 9, and has a good fitting effect on
the sudden change of PM2.5 concentration (e.g. 40-60 hours,
80-100 hours). The results show that Dev-LSTM is able to
extract the temporal and spatial correlation characteristics
of complex pollutant concentrations and meteorological data
in many cities in the region, solve the long-term dependence
problem in pollutant prediction, and effectively deal with the
sudden change of pollutant concentrations.

In this work we also varied some of the hyperparameters
of the Dev-LSTM prediction model to show the performance
of the prediction model. Table 5 lists the results of Dev-
LSTM on the test set when the convolution kernel of the
deconvolution network and the LSTM network take different
numbers of nodes. It can be concluded that in the Dev-
LSTM prediction model, by setting the convolution kernel of
the deconvolution network to 3*3, and the number of nodes
of the LSTM network to 256, the integration of two neural
networks, results in smaller values on RMSE and MAE,
and a larger value on Corr. The model performance in this

configuration is better than other convolution kernel-node
number combinations.

In order to verify the prediction effect of the Dev-LSTM
prediction model under different time periods, we also con-
sidered different time slots. That is, different time periods
in the past were used to predict the concentration of air
pollutants in different time periods of the future. Then vari-
ous index values of the Dev-LSTM prediction model under
different are listed in Table 6. As can be seen from this table,
the optimal prediction duration of the Dev-LSTM prediction
model is 1-1. As the prediction duration increases, various
performance indicators gradually deteriorate. The increase
in time series leads to more redundant information, which is
a problem faced by all forecasting models. Therefore, under
the configuration of 1-1, the Dev-LSTM prediction model
has been able to surpass the performance of other models.
4.3.1. Spatial weighted prediction performance

In order to measure the spatial influence of several sur-
rounding cities selected in this work on the concentration of
air pollutants in the target city and the spatial correlation of
air pollutant concentrations, this paper conducted compar-
ative experiments for analysis. The experimental results are
shown in the Table 7, where NC1 and NC2 represent Suzhou
and Hangzhou, respectively, and TC represents Shanghai.
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Table 5
A performance change of Dev-LSTM with varied parameters.

convolution kernel - number of LSTM nodes RMSE MAE Corr

2*2-128 5.549 4.369 0.985
2*2-256 3.981 3.125 0.987
3*3-128 4.032 3.195 0.986
3*3-256 4.038 3.243 0.986
4*4-128 4.776 3.884 0.986
4*4-256 3.896 3.106 0.987
5*5-128 3.789 2.982 0.988
5*5-256 3.916 3.013 0.986
6*6-128 3.914 3.106 0.986

Table 6
Performance changes of Dev-LSTM under different time
lengths.

D N RMSE MAE Corr

1h 1h 3.789 2.982 0.988
3h 1h 6.746 4.627 0.989
6h 1h 6.768 4.676 0.988
6h 2h 9.878 6.764 0.967
12h 1h 7.227 5.029 0.977
18h 1h 6.161 4.797 0.979
24h 12h 21.277 15.227 0.686
24h 24h 26.788 19.569 0.413

Table 7
Influence comparison in spatial dimension.

City RMSE MAE Corr

TC 3.853 2.913 0.987
NC1+TC 3.906 3.087 0.987
NC2+TC 4.058 3.345 0.985
NC1+NC2+TC 3.789 2.982 0.988

As shown in Table 7, the model has the worst perfor-
mance with only the target city TC. The reason is that the
prediction model does not extract the correlation of multi-
city and multi-site in the spatial dimension, and thus there
are relatively large errors. NC1 represents Suzhou City,
which is a little closer to Shanghai. Compared with NC2,
i.e. Hangzhou, NC1 is a little farther away from Shanghai,
and the prediction error of the model is smaller. This shows
that the distance in the spatial dimension can have different
degrees of impact on the concentration of pollutants in
the target city. When the monitoring data of surrounding
cities are incorporated into the prediction system as much
as possible, the prediction error generated by the model is
the smallest. Therefore, the comprehensive consideration
of the impact of the surrounding cities on the pollutant
concentration of the target city plays a very important role
in improving the accuracy of the model prediction.

4.3.2. Predictive model generalization ability
To verify the generalization ability and effectiveness of

the Dev-LSTM model, we applied Dev-LSTM to the pre-
diction of pollutant concentrations in other cities in China.
We use monitoring data from multiple cities to train the
predictive model and test the generalization ability of the
model in seven cities in Yangtze River Delta region and
Beijing-tianjin-hebei region. The experimental results are
shown in Table 8.
Table 8
Dev-LSTM’s generalization ability.

City RMSE MAE Corr

Shanghai 3.789 2.982 0.988
Suzhou 4.513 3.436 0.988
Hangzhou 5.818 4.277 0.951
Wuxi 4.262 3.397 0.988
Nantong 6.233 4.460 0.981
Jiaxing 6.116 5.036 0.974
Shaoxing 4.867 3.456 0.969

(a) The Yangtze River Delta region
City RMSE MAE Corr

Beijing 6.870 5.125 0.977
Tianjin 11.286 7.992 0.985
Langfang 9.211 6.367 0.972
Zhangjiakou 5.930 4.758 0.930
Tangshan 17.122 13.240 0.892
Chengde 6.222 4.863 0.955
Baoding 16.850 12.411 0.959

(b) The Beijing-tianjin-hebei region

4.3.3. Other experiments
In addition, we conducted some experiments on the task

of predicting PM2.5 in the air in several cities in the future.
The relevant experimental results are shown in Fig. 10 and
Fig. 11.

In this paper, the surrounding cities of the target city are
sorted according to the distance, and the influence of the
number of surrounding cities introduced into the Dev-LSTM
on the prediction results is verified. The abscissa of Fig. 10
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Fig. 10: The MAE of Dev-LSTM With a varied numbers of surrounding cities.

shows the number of data from surrounding cities, and the
ordinate shows the MAE of the Dev-LSTM on the test set.
As can be seen from Fig. 10, in the task of predicting the
PM2.5 content in the air in the next hour, the Dev-LSTM can
achieve the best effect in almost all cities (except Wuxi) after
introducing the data of 1-2 surrounding cities.

We also conducted some experiments on the impact of
time lengths of target cities on the prediction results. The
experiments on Dev-LSTM prediction in the next 1- 24 hours
were conducted, and the performance of the Dev-LSTM is
reflected by the similarity between the observed value and
the predicted value. From Fig. 11, we can see that the model
obtains the best results in predicting the PM2.5 content in
the air in the next 1-12 hours through the meteorological
and pollutant data in the past 1-3 hours; However, if the
forecast span is more than 12 hours, it should be considered
to increase the length of the input past time with input data
of 3-5 hours being a good choice.

5. Conclusion
In this paper we have presented Dev-LSTM, a prediction

model that combines deconvolution neural network with
LSTM to extract the spatial dimensional characteristics of
pollutants, resolving the problem of excessive loss of in-
formation caused by traditional CNN. Dev-LSTM achieves
an accurate prediction of air pollutant concentration in both
spatial and temporal dimensions. Compared with traditional
predictive models, Dev-LSTM shows superior predictive
capabilities on multi-dimensional indicators.

Currently Dev-LSTM does not consider the geographic
and geomorphic conditions contained in the spatial informa-
tion. A future research will be to introduce more types of
data to the Dev-LSTM prediction model to further enhance
its performance in association extraction in the spatial di-
mension.

Acknowledgement
This work is funded by National Natural Science Foun-

dation of China (61802258, 615723263), Natural Science

Bo Zhang et al.: Preprint submitted to Elsevier Page 12 of 15



Neurocomputing

Fig. 11: The Corr of Dev-LSTM with a varied input time length.

Foundation of Shanghai (18ZR1428300, 20ZR1455600)
and National Key Research and Development Program of
China under Grant No.2022YFB4501704.

References
[1] Stephan Gabet, Clémentine Lemarchand, Pascal Guénel, and Rémy

Slama. Breast cancer risk in association with atmospheric pollution
exposure: a meta-analysis of effect estimates followed by a health im-
pact assessment. Environmental health perspectives, 129(5):057012,
2021.

[2] Fengping Hu and Yongming Guo. Health impacts of air pollution in
china. Frontiers of Environmental Science & Engineering, 15(4):1–
18, 2021.

[3] Marco Travaglio, Yizhou Yu, Rebeka Popovic, Liza Selley, Nuno San-
tos Leal, and Luis Miguel Martins. Links between air pollution and
covid-19 in england. Environmental pollution, 268:115859, 2021.

[4] Nicolas Huneeus, Hugo Denier van der Gon, Paula Castesana, Camilo
Menares, Claire Granier, Louise Granier, Marcelo Alonso, Maria
de Fatima Andrade, Laura Dawidowski, Laura Gallardo, et al. Eval-
uation of anthropogenic air pollutant emission inventories for south
america at national and city scale. Atmospheric Environment,
235:117606, 2020.

[5] Cole Brokamp, Eric B Brandt, and Patrick H Ryan. Assessing
exposure to outdoor air pollution for epidemiological studies: Model-
based and personal sampling strategies. Journal of Allergy and
Clinical Immunology, 143(6):2002–2006, 2019.

[6] Ling Han, Zhaobin Sun, Juan He, Yu Hao, Qiaoling Tang, Xiaoling
Zhang, Canjun Zheng, and Shiguang Miao. Seasonal variation in
health impacts associated with visibility in beijing, china. Science
of the Total Environment, 730:139149, 2020.

[7] Akhilesh Kumar Yadav, Saba Shirin, Christina Emmanouil, and Aarif
Jamal. Effect of seasonal and meteorological variability of air
pollution in singrauli coalfield. Aerosol Science and Engineering,

Bo Zhang et al.: Preprint submitted to Elsevier Page 13 of 15



Neurocomputing

6(1):61–70, 2022.
[8] WC Leong, RO Kelani, and Z Ahmad. Prediction of air pollution

index (api) using support vector machine (svm). Journal of Environ-
mental Chemical Engineering, 8(3):103208, 2020.

[9] KS Harishkumar, KM Yogesh, Ibrahim Gad, et al. Forecasting air pol-
lution particulate matter (pm2. 5) using machine learning regression
models. Procedia Computer Science, 171:2057–2066, 2020.

[10] Qi Liao, Mingming Zhu, Lin Wu, Xiaole Pan, Xiao Tang, and Zifa
Wang. Deep learning for air quality forecasts: a review. Current
Pollution Reports, 6(4):399–409, 2020.

[11] Bo Zhang, Hanwen Zhang, Gengming Zhao, and Jie Lian. Con-
structing a pm2. 5 concentration prediction model by combining auto-
encoder with bi-lstm neural networks. Environmental Modelling &
Software, 124:104600, 2020.

[12] Chen Zhang, Liping Di, Ziheng Sun, Li Lin, G Yu Eugene, and Juozas
Gaigalas. Exploring cloud-based web processing service: A case
study on the implementation of cmaq as a service. Environmental
Modelling & Software, 113:29–41, 2019.

[13] Rui Feng, Han Gao, Kun Luo, and Jian-ren Fan. Analysis and accurate
prediction of ambient pm2. 5 in china using multi-layer perceptron.
Atmospheric environment, 232:117534, 2020.

[14] Mohammed G Ragab, Said J Abdulkadir, Norshakirah Aziz, Qasem
Al-Tashi, Yousif Alyousifi, Hitham Alhussian, and Alawi Alqushaibi.
A novel one-dimensional cnn with exponential adaptive gradients for
air pollution index prediction. Sustainability, 12(23):10090, 2020.

[15] Zhongang Qi, Tianchun Wang, Guojie Song, Weisong Hu, Xi Li, and
Zhongfei Zhang. Deep air learning: Interpolation, prediction, and
feature analysis of fine-grained air quality. IEEE Transactions on
Knowledge and Data Engineering, 30(12):2285–2297, 2018.

[16] Tongwen Li, Huanfeng Shen, Qiangqiang Yuan, Xuechen Zhang, and
Liangpei Zhang. Estimating ground-level pm2. 5 by fusing satellite
and station observations: a geo-intelligent deep learning approach.
Geophysical Research Letters, 44(23):11–985, 2017.

[17] Xiang Li, Ling Peng, Xiaojing Yao, Shaolong Cui, Yuan Hu,
Chengzeng You, and Tianhe Chi. Long short-term memory neural
network for air pollutant concentration predictions: Method develop-
ment and evaluation. Environmental pollution, 231:997–1004, 2017.

[18] Chiou-Jye Huang and Ping-Huan Kuo. A deep cnn-lstm model for
particulate matter (pm2. 5) forecasting in smart cities. Sensors,
18(7):2220, 2018.

[19] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553):436–444, 2015.

[20] Jian Wang, Hengde Zhu, Shui-Hua Wang, and Yu-Dong Zhang. A
review of deep learning on medical image analysis. Mobile Networks
and Applications, 26(1):351–380, 2021.

[21] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael
Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates,
Augustin Žídek, Anna Potapenko, et al. Highly accurate protein
structure prediction with alphafold. Nature, 596(7873):583–589,
2021.

[22] Fatemeh Mohammadi Shakiba, Milad Shojaee, S Mohsen Azizi,
and Mengchu Zhou. Real-time sensing and fault diagnosis for
transmission lines. International Journal of Network Dynamics and
Intelligence, pages 36–47, 2022.

[23] Maciej Szankin and Alicja Kwasniewska. Can ai see bias in x-ray
images? International Journal of Network Dynamics and Intelligence,
pages 48–64, 2022.

[24] From emotion ai to cognitive ai. International Journal of Network
Dynamics and Intelligence, 1:65–72, 2022.

[25] Deep common spatial pattern based motor imagery classification
with improved objective function. International Journal of Network
Dynamics and Intelligence, pages 73–84, 2022.

[26] Chang-Mei Liang, Yan-Wen Li, Yan-Hong Liu, Peng-Fei Wen, and
Hua Yang. Segmentation and weight prediction of grape ear based on
sfnet-resnet18. Systems Science & Control Engineering, 10(1):722–
732, 2022.

[27] Shuqiao Geng, Changan Zhu, Yi Jin, Lichao Wang, and Hailong Tan.
Gaze control system for tracking quasi-1d high-speed moving object

in complex background. Systems Science & Control Engineering,
10(1):367–376, 2022.

[28] Peng Lu, Baoye Song, and Lin Xu. Human face recognition based on
convolutional neural network and augmented dataset. Systems Science
& Control Engineering, 9(sup2):29–37, 2021.

[29] Han Li, Peishu Wu, Nianyin Zeng, Yurong Liu, and Fuad E Alsaadi. A
survey on parameter identification, state estimation and data analytics
for lateral flow immunoassay: from systems science perspective.
International Journal of Systems Science, 53(16):3556–3576, 2022.

[30] Ye Zhao, Xiao He, Lifeng Ma, and Hongjian Liu. Unbiasedness-
constrained least squares state estimation for time-varying systems
with missing measurements under round-robin protocol. Interna-
tional Journal of Systems Science, 53(9):1925–1941, 2022.

[31] Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin,
Christopher J Anders, and Klaus-Robert Müller. Explaining deep
neural networks and beyond: A review of methods and applications.
Proceedings of the IEEE, 109(3):247–278, 2021.

[32] Chen Ding, Guizhi Wang, Xinyue Zhang, Qi Liu, and Xiaodong Liu.
A hybrid cnn-lstm model for predicting pm2. 5 in beijing based on
spatiotemporal correlation. Environmental and Ecological Statistics,
28(3):503–522, 2021.

[33] Nianyin Zeng, Peishu Wu, Zidong Wang, Han Li, Weibo Liu, and
Xiaohui Liu. A small-sized object detection oriented multi-scale
feature fusion approach with application to defect detection. IEEE
Transactions on Instrumentation and Measurement, 71:1–14, 2022.

[34] Han Li, Peishu Wu, Zidong Wang, Jingfeng Mao, Fuad E Alsaadi,
and Nianyin Zeng. A generalized framework of feature learning
enhanced convolutional neural network for pathology-image-oriented
cancer diagnosis. Computers in Biology and Medicine, 151:106265,
2022.

[35] Stella Moisan, Rodrigo Herrera, and Adam Clements. A dynamic
multiple equation approach for forecasting pm2. 5 pollution in san-
tiago, chile. International Journal of Forecasting, 34(4):566–581,
2018.

[36] Samsuri Abdullah, Marzuki Ismail, Ali Najah Ahmed, and Ah-
mad Makmom Abdullah. Forecasting particulate matter concentra-
tion using linear and non-linear approaches for air quality decision
support. Atmosphere, 10(11):667, 2019.

[37] Zhiyuan Wu, Ning Liu, Guodong Li, Xinyu Liu, Yue Wang, and Lin
Zhang. A variational bayesian approach for fast adaptive air pollution
prediction. In 2021 IEEE International Conference on Big Data (Big
Data), pages 1748–1756. IEEE, 2021.

[38] Yousif Alyousifi, Kamarulzaman Ibrahim, Wei Kang, and Wan Zaw-
iah Wan Zin. Markov chain modeling for air pollution index based on
maximum a posteriori method. Air Quality, Atmosphere & Health,
12(12):1521–1531, 2019.

[39] Hehua Zhang and Yuhong Zhao. Land use regression for spatial
distribution of urban particulate matter (pm10) and sulfur dioxide
(so2) in a heavily polluted city in northeast china. Environmental
monitoring and assessment, 191(12):1–14, 2019.

[40] Tuo Shi, Yuanman Hu, Miao Liu, Chunlin Li, Chuyi Zhang, and
Chong Liu. Land use regression modelling of pm2. 5 spatial vari-
ations in different seasons in urban areas. Science of the Total
Environment, 743:140744, 2020.

[41] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT
press, 2012.

[42] Xintong Li and Xiaodong Zhang. Predicting ground-level pm2. 5
concentrations in the beijing-tianjin-hebei region: a hybrid remote
sensing and machine learning approach. Environmental pollution,
249:735–749, 2019.

[43] Rui Zhao, Liping Zhan, Mingxing Yao, and Linchuan Yang. A
geographically weighted regression model augmented by geodetector
analysis and principal component analysis for the spatial distribution
of pm2. 5. Sustainable Cities and Society, 56:102106, 2020.

[44] Sechan Park, Minjeong Kim, Minhae Kim, Hyeong-Gyu Namgung,
Ki-Tae Kim, Kyung Hwa Cho, and Soon-Bark Kwon. Predicting

Bo Zhang et al.: Preprint submitted to Elsevier Page 14 of 15



Neurocomputing

pm10 concentration in seoul metropolitan subway stations using arti-
ficial neural network (ann). Journal of hazardous materials, 341:75–
82, 2018.

[45] Ho Chang-Hoi, Ingyu Park, Hye-Ryun Oh, Hyeon-Ju Gim, Sun-
Kyong Hur, Jinwon Kim, and Dae-Ryun Choi. Development of a pm2.
5 prediction model using a recurrent neural network algorithm for the
seoul metropolitan area, republic of korea. Atmospheric Environment,
245:118021, 2021.

[46] Peishu Wu, Zidong Wang, Baixun Zheng, Han Li, Fuad E Alsaadi, and
Nianyin Zeng. Aggn: Attention-based glioma grading network with
multi-scale feature extraction and multi-modal information fusion.
Computers in Biology and Medicine, 152:106457, 2023.

[47] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, et al. Language models are few-
shot learners. Advances in neural information processing systems,
33:1877–1901, 2020.

[48] Zhe Xu and Yi Lv. Att-convlstm: Pm 2.5 prediction model and
application. In Advances in Natural Computation, Fuzzy Systems and
Knowledge Discovery: Volume 1, pages 30–40. Springer, 2020.

[49] Yuan-Yuan Zhu, Yu-Xiao Gao, Bing Liu, Xiao-Yan Wang, Li-Li Zhu,
Rong Xu, Wei Wang, Jun-Nan Ding, Jian-Jun Li, and Xiao-Li Duan.
Concentration characteristics and assessment of model-predicted re-
sults of pm 2.5 in the beijing-tianjin-hebei region in autumn and
winter. Huan Jing ke Xue= Huanjing Kexue, 40(12):5191–5201,
2019.

[50] Jianjun Chen, Jin Lu, Jeremy C Avise, John A DaMassa, Michael J
Kleeman, and Ajith P Kaduwela. Seasonal modeling of pm2. 5 in
california’s san joaquin valley. Atmospheric environment, 92:182–
190, 2014.

[51] Hongbin Dai, Guangqiu Huang, Huibin Zeng, and Fangyu Zhou.
Pm2. 5 volatility prediction by xgboost-mlp based on garch models.
Journal of Cleaner Production, 356:131898, 2022.

[52] Billy Peralta, Tomás Sepúlveda, Orietta Nicolis, and Luis Caro.
Space-time prediction of pm2. 5 concentrations in santiago de chile
using lstm networks. Applied Sciences, 12(22):11317, 2022.

[53] Zhe Xu and Yi Lv. Att-convlstm: Pm 2.5 prediction model and
application. In Advances in Natural Computation, Fuzzy Systems and
Knowledge Discovery: Volume 1, pages 30–40. Springer, 2020.

[54] Marjan Faraji, Saeed Nadi, Omid Ghaffarpasand, Saeid Homayoni,
and Kay Downey. An integrated 3d cnn-gru deep learning method for
short-term prediction of pm2. 5 concentration in urban environment.
Science of The Total Environment, 834:155324, 2022.

Bo Zhang et al.: Preprint submitted to Elsevier Page 15 of 15


