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Highlights 
 

 We add diffusion MRI to Bayesian thalamic nuclei segmentation with structural MRI. 

 

 Adding fiber tracts to probabilistic atlases enables orientation modelling. 
 

 Thalamus segmentation from joint structural and diffusion MRI improves accuracy. 
 

 Atlas and companion segmentation code are freely distributed with FreeSurfer. 
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ABSTRACT
The human thalamus is a highly connected brain structure, which is key for the control of numerous
functions and is involved in several neurological disorders. Recently, neuroimaging studies have in-
creasingly focused on the volume and connectivity of the specific nuclei comprising this structure,
rather than looking at the thalamus as a whole. However, accurate identification of cytoarchitectoni-
cally designed histological nuclei on standard in vivo structural MRI is hampered by the lack of image
contrast that can be used to distinguish nuclei from each other and from surrounding white matter
tracts. While diffusion MRI may offer such contrast, it has lower resolution and lacks some bound-
aries visible in structural imaging. In this work, we present a Bayesian segmentation algorithm for
the thalamus. This algorithm combines prior information from a probabilistic atlas with likelihood
models for both structural and diffusion MRI, allowing segmentation of 25 thalamic labels per hemi-
sphere informed by both modalities. We present an improved probabilistic atlas, incorporating thala-
mic nuclei identified from histology and 45 white matter tracts surrounding the thalamus identified in
ultra-high gradient strength diffusion imaging. We present a family of likelihood models for diffusion
tensor imaging, ensuring compatibility with the vast majority of neuroimaging datasets that include
diffusion MRI data. The use of these diffusion likelihood models greatly improves identification of
nuclear groups versus segmentation based solely on structural MRI. Dice comparison of 5 manually
identifiable groups of nuclei to ground truth segmentations show improvements of up to 10 percent-
age points. Additionally, our chosen model shows a high degree of reliability, with median test-retest
Dice scores above 0.85 for four out of five nuclei groups, whilst also offering improved detection of
differential thalamic involvement in Alzheimer’s disease (AUROC 81.98%). The probabilistic atlas
and segmentation tool will be made publicly available as part of the neuroimaging package FreeSurfer.

1. Introduction
The thalamus has traditionally been considered a relay

station for information in the brain, with extensive connec-
tions to both cortical and subcortical structures (Schmah-
mann, 2003; Behrens et al., 2003). As such, it integrates
information processing between cortical regions (Sherman,
2007, 2016; Hwang et al., 2017) and is associated with a

h.tregidgo@ucl.ac.uk (H.F.J. Tregidgo)
ORCID(s): 0000-0002-3509-8154 (H.F.J. Tregidgo);

0000-0003-1814-5024 (M. Bocchetta); 0000-0002-6155-8417 (J.D. Rohrer)
1Data used in this article are partly from the Alzheimer’s Disease

Neuroimaging Initiative database (http://adni.loni.usc.edu). Investigators
in the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis of this report. A
complete listing of investigators can be found at: adni.loni.usc.edu/wp-
content/ADNI_Acknowledgement_List.pdf

wide range of functions including cognition, memory, sen-
sory and motor functions, regulation of consciousness and
spoken language among others (Sherman andGuillery, 2001;
Schmahmann, 2003; Fama and Sullivan, 2015). Addition-
ally, neurodegenerative pathological processes in the tha-
lamus have been associated with Alzheimer’s disease (AD)
(de Jong et al., 2008; Zarei et al., 2010), frontotemporal de-
mentia (Bocchetta et al., 2018; McKenna et al., 2022), Hunt-
ington’s disease (Aron et al., 2003; Kassubek et al., 2005)
and multiple sclerosis (Minagar et al., 2013; Planche et al.,
2019).

With such wide established connections and functions,
the thalamus is a frequent target in MRI-based neuroimag-
ing studies and a focus for research in relation to both healthy
and disordered brain function. This creates a need for reli-
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able identification of thalamic borders. Therefore, the tha-
lamus is defined by several structural MRI (sMRI) segmen-
tation methods, including multi-atlas segmentation (Heck-
emann et al., 2006), Bayesian segmentation (Puonti et al.,
2016) and convolutional neural networks (CNNs) (Wachinger
et al., 2018; Billot et al., 2020; Henschel et al., 2020). Ad-
ditionally, the thalamus has been included in popular image
processing packages, including FreeSurfer’s (Fischl, 2012)
recon-all stream, which uses a probabilistic atlas of anatomy
andMRI intensity (Fischl et al., 2002), and the FMRIB Soft-
ware Library (FSL) (Smith et al., 2004), which includes a
model of shape and appearance in its implementation (FIRST)
(Patenaude et al., 2011).

The methods above segment the thalamus as a single la-
bel, however in reality it is a complex and heterogeneous
structure. It is composed of 14 major nuclei, which may be
split further into 50 subnuclei depending on the level of de-
tail in the classification and agreement on neuroanatomical
definition. There are multiple such definitions with vary-
ing numbers of subnuclei (Morel, 2007; Jones, 2012; Mai
and Majtanik, 2019). These nuclei have distinct patterns
of connections with other brain regions and subserve dif-
ferent functions, including associative, sensory, motor, cog-
nitive and limbic (Schmahmann, 2003). For example, the
ventral lateral posterior nucleus is involved in motor func-
tion through connections with the cerebellum and the mo-
tor cortex, while the mediodorsal nucleus has connections
with the prefrontal cortex and plays a role in cognitive and
emotional processes (Mai and Forutan, 2012; Schmahmann,
2003). In addition, neuropathological studies have demon-
strated preferential involvement of certain thalamic nuclei
in several conditions, such as the caudal intralaminar nuclei
in Parkinson’s disease (Henderson et al., 2000), the anterior
nuclei in AD (Braak and Braak, 1991a,b), and the pulvinar
in the C9orf72 genetic subtype of frontotemporal dementia
(Vatsavayai et al., 2016). These studies provide strong moti-
vation for the design of automated segmentation algorithms
that accurately define thalamic nuclei in vivo, enabling iden-
tification of reliable and precise biomarkers.

Different approaches have been used to segment thala-
mic nuclei. There are segmentation strategies that attempt
to directly register histology derived labels to MRI. For in-
stance, manually labelled histology can be used to gener-
ate a reference space atlas that may then be applied to in
vivo MRI through registration-based segmentation (Krauth
et al., 2010; Jakab et al., 2012; Sadikot et al., 2011). How-
ever, such approaches are limited by the difficulty in reg-
istering MR images with different contrasts. Other tech-
niques define their label scheme based on information de-
rived from the imaging data to be segmented. For example,
diffusion MRI (dMRI) has been used to define thalamic re-
gions by clustering voxels based on diffusion tensor imag-
ing (DTI) indices (Mang et al., 2012) and orientation dis-
tribution functions (Battistella et al., 2017; Semedo et al.,
2018). Other studies have divided the thalamus into regions
based on their cortical connectivity, either through resting-
state functional MRI time course correlations (Zhang et al.,

Figure 1: Thalamic segmentation of a T1-weighted structural
MRI overlaid on the co-registered T1-weighted image (left) and
a co-registered directionally encoded colour FA image (right).
High contrast between medial and lateral thalamic regions on
structural imaging improves the accuracy of these boundaries
(white arrows). However, low contrast between the lateral
thalamus and white matter causes over-segmentation into the
internal capsule, which can easily be discerned in the colour
FA image (red arrows).

2008) or dMRI tractography (Behrens et al., 2003; Johansen-
Berg et al., 2005). However, exactly how thalamic regions
defined by functional MRI relate to neurobiology is not fully
understood (Eickhoff et al., 2015) and there is some indica-
tion that tractography-based segmentations are insensitive to
the internal structure of the thalamus (Clayden et al., 2019).

The development of advanced MRI acquisitions has also
allowed for atlases to be defined from manual segmentation
of in vivo imaging directly, due to improved resolution and
contrast. For example, guided by histological atlases, it has
been possible to manually identify nuclei on advanced sMRI
acquired at 7T (Tourdias et al., 2014; Liu et al., 2020) and
on dMRI through short-track track density imaging (Basile
et al., 2021). In particular, segmentations of 7Twhite-matter-
nulled imaging have been used to generate both multi-atlas
segmentation ("THOMAS" Su et al. 2019) and CNN (Uma-
pathy et al., 2021) segmentation algorithms. However, these
segmentations do not have the full level of detail present in
histological atlases and performance is impacted by changes
in acquired contrast, due to domain gap effects for CNNs and
poorer registration in multi-atlas segmentation.

Aiming to provide detailed segmentations of thalamic
nuclei that is robust to changes in MRI acquisition and con-
trast, we previously constructed a probabilistic atlas of the
thalamus and surrounding tissue frommanually labelled his-
tology (Iglesias et al., 2018). We then combined this atlas
with Bayesian inferencemethods (Wells et al., 1996; Van Leem-
put et al., 1999; Ashburner and Friston, 2005; Pohl et al.,
2006) to allow segmentation of 25 bilateral histological la-
bels from sMRI. This approach had the advantage that the
intensity model of each label was learned from the target
image, reducing dependence of the resulting segmentations
on the type of sMRI acquisition contrast. However, sMRI
acquisitions can show poor contrast in some areas, leading
to errors in segmentation that become apparent when over-
laid on dMRI. For example, Fig. 1 shows that our previous
method can accurately follow the boundary between groups
of medial and lateral nuclei, but the lack of contrast between
lateral nuclei and white matter can lead to oversegmentation
into the internal capsule.
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The availability of complementary information from dMRI
sequences provides a possible avenue for minimising such
segmentation errors. An increasing number of large multi-
site neuroimaging studies, including theHumanConnectome
Project (HCP) (Van Essen et al., 2013), the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) (Jack Jr. et al., 2008),
and theGENetic Frontotemporal dementia Initiative (GENFI)
(Rohrer et al., 2015) are acquiring both structural and diffu-
sionMRI. Additionally, use ofDTI combinedwith registration-
based segmentation has been proposed for segmentation of
thewhole thalamus in subjects where T1-weightedMRI con-
trast is very low (Al-Saady et al., 2022). As can be seen
in Fig. 1, dMRI shows good contrast between the thalamus
and the adjacent white matter, while structural MRI pro-
vides better contrast between the medial nuclei and cere-
brospinal fluid (CSF) as well as higher resolution. There-
fore, we look towards creating joint models of structural and
diffusion MRI, incorporating likelihood models of DTI such
as those used in the modelling of white matter fibres (Jian
and Vemuri, 2007).

We present an extension of our structural Bayesian in-
ference segmentation algorithm to incorporate dMRI. We
focus on DTI due to the ease of fitting tensors to diffusion-
weighted images, even from legacy data or in studies with
short acquisitions. We explore our recently proposed diffu-
sion likelihoodmodel, combining the Dimroth-Scheidegger-
Watson (DSW) and Beta distributions (Iglesias et al., 2019).
We compare thismodel to both theWishart distribution, from
fibre modelling literature (Jian and Vemuri, 2007), and the
log-Gaussian distribution, influenced by tensor interpolation
methods (Arsigny et al., 2006). Additionally, we build on
our previous histological atlas of the thalamus by adding 45
labels for white matter tracts passing adjacent to the tha-
lamus, allowing the DTI likelihood models to capture the
varying directionality of fibers in white matter without be-
coming sensitive to non-white-matter tissue. The resulting
segmentation method allows constraints to be imposed inde-
pendently on both the structural and diffusion modelling by
including separate shared parameter models, enforcing re-
flective symmetry, incorporating prior distributions on like-
lihood parameters, and re-weighting likelihood terms to ac-
count for the lower resolution of DTI.

This paper is structured as follows. In Section 2 we out-
line our joint segmentation method. This includes explana-
tions of: the general Bayesian inference model; the model
fitting and segmentation process; the three likelihood mod-
els; the atlas and its construction; and general implementa-
tion details. In Section 3 we evaluate our joint segmentation
method on both high and low resolution data. This evalua-
tion includes: model optimisation and evaluation on a pop-
ulation template constructed from both T1-weighted MP-
RAGE and DTI images; evaluation of the optimised mod-
els on subjects from HCP, providing comparison to man-
ual ground truth and test-retest reliability; and test-retest and
indirect evaluation on conventional quality data. Section 4
concludes the paper.

2. Bayesian segmentation of brain MRI
2.1. Probabilistic model and Bayesian inference

Here we outline the theory and implementation of our
Bayesian segmentation algorithm. As in existing Bayesian
segmentation literature (Van Leemput et al., 1999; Zhang
et al., 2001; Ashburner and Friston, 2005; Iglesias et al.,
2015; Puonti et al., 2016), our strategy relies on modelling
the voxel-wise data as observable random variables. These
follow a different distribution for each label class in a sup-
plied deformable probabilistic atlas of the volume encom-
passing the thalamus (Van Leemput, 2009; Iglesias et al.,
2018). Both the voxel-data distributions and deformation
of the atlas are parameterised by hidden random variables
dependent on the subject and image acquisition. Estimating
these hidden random variables allows us to generate a voxel-
wise probability ofmembership in each label class (Van Leem-
put et al., 1999; Ashburner and Friston, 2005). In the Bayesian
approach, this is used to construct the posterior probabil-
ity of a labelling (or segmentation) given paired sMRI and
dMRI data.

For the purposes of this method we assume that both the
sMRI and dMRI have been registered and resampled to the
same grid comprised of voxels indexed by v ∈ {1,… , V }.
We denote the labelling of these voxels by L = [l1,… , lV ],with lv ∈ {1,… , C} –whereC is the number of label classes
in ourmodel. Similarly, we construct amatrixS = [s1,… , sV ]holding vectors of sMRI voxel data, sv, and matrix D =
[d1,… ,dV ] to hold the dMRI voxel data, dv. We explore
different representations of dv in later sections.

Using this notation and applying Bayes’ rule, the poste-
rior probability of a specific labelling for a pair of sMRI and
dMRI scans of a subject is:
p(L|S,D) ∝ p(S,D|L)p(L), (1)
and the labelling thatmaximises Eq. (1) is known as themax-
imum a posteriori (MAP) estimate for the segmentation. To
obtain this MAP estimate we need both the likelihood dis-
tribution, p(S,D|L), of our imaging data given a segmen-
tation, and a prior distribution, p(L), generated from prior
anatomical knowledge of the thalamus and its surroundings.
As these can be used to generate random scans by sampling
first from the prior then from the likelihood, segmentation
can be thought of as fitting a generative probabilistic forward
model to our data and “inverting” it to obtain the labelling.

To make the problem in Eq. (1) tractable, we assume:
i) that both the likelihood and prior factorise over voxels and
ii) that the sMRI and dMRI are independent of each other
given the labels. The exact graphical model of our frame-
work is shown in Fig. 2. At the top of this model we define
the prior distribution on the labels, beginning with a proba-
bilistic atlas A. This atlas is constructed within a reference
brain space, meaning it is likely to match the topology of any
segmentation subject, but will require deformation to match
accurately. The atlasA provides, at each spatial location, the
prior probability of observing each neuroanatomical label
class. We define A on a deformable tetrahedral mesh, where
each vertex has an associated vector of class probabilities,
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Figure 2: Graphical model of the proposed framework. Larger
circles represent random variables with open circles for the hid-
den variables (�, l), and shaded circles for the observed vari-
ables (s,d). Smaller solid circles are deterministic parameters
such as the atlas (A) and encoded prior information (
). Rect-
angles indicate replication across voxels (V ) or classes (C).

and barycentric interpolation can be used to obtain proba-
bilities at non-vertex locations (Van Leemput, 2009). We
define a set of parameters, �a, that move the mesh nodes to
deform the atlas into the space of the target MRI voxel grid,
accommodating the anatomical variability across subjects.
These parameters are themselves a sample from a distribu-
tion that is regularised by setting the stiffness 
a, preventing
folding of the atlas mesh and preserving topology. We then
assume that our labelling L is sampled from the categorical
distribution over classes defined by the deformed atlas, with
each voxel location sampled independently allowing factori-
sation.

Given L we can define the likelihood model for our ob-
served data. We assume that the sMRI and dMRI are condi-
tionally independent from each other and across voxels given
the labelling, with sv and dv modelled as samples from sep-
arate distributions parameterised by �sc and �dc respectively.
These hidden parameters are dependent on the correspond-
ing label lv = c. Any prior knowledge on these parameters
is encoded in prior distributions controlled by hyperparam-
eters 
sc and 
dc .Under these assumptionswe can define the full joint prob-
ability density function (PDF) for Fig. 2 as
p(S,D,L,�|A, 
)
= p(S|L,�s)p(D|L,�d)p(L|A,�a)p(�|
)

=

(
V∏
v=1

p(sv|�slv )p(dv|�dlv )p(lv|A,�a)
)

(
C∏
c=1

p(�sc|
sc )p(�dc |
dc )
)
p(�a|
a), (2)

where � = {�sc ,�dc ,�ac} and 
 = {
sc , 
dc , 
ac }.With the model described by Fig. 2 and Eq. (2) we can
formulate the MAP estimate for our segmentation as
LMAP = argmax

L
p(S,D|L, A, 
)p(L|A, 
)

= argmax
L ∫ p(S,D|L,�, A)p(L|�, A)p(�|S,D, A, 
)d�. (3)

However, integrating the joint PDF over the full space of
possible parameters � is intractable. For this reasonwemake
the standard assumption that the posterior distribution of the
hidden parameters is heavily peaked around themode, p(�|S,D) ≃
�(� − �̂). In this way, we can segment our images by apply-
ing Bayes’ rule to Eq. (2) and marginalising over the hidden
labelling L to obtain these optimal hidden parameters (so
called "point estimates"):

�̂ = argmax
{�a ,�s ,�d}

[
p(�a|
a)p(�s|
s)p(�d|
d)

∑
L
p(S,D|L,�s,�d)p(L|�a, A)

]
, (4)

and then optimising L to obtain the MAP estimate
LMAP = argmax

L
p(S,D|L, �̂, A)p(L|�̂, A). (5)

2.2. Parameter estimation and segmentation
The first step is to estimate the optimal hidden parame-

ters �̂ from Eq. (4). We begin by formulating the likelihood
PDFs for both sMRI and dMRI as mixture models. Each la-
bel class in the atlas is described by its own mixture model
constructed using a selection from G structural and W dif-
fusion component distributions. The likelihoods of sv and
dv given membership of voxel v in class c are then
p(sv|�sc) =

∑
i
gc,ip(sv|�si ), p(dv|�dc ) =

∑
j
wc,jp(dv|�dj ). (6)

Here, gc,i ≥ 0 andwc,j ≥ 0 are mixture weights in the model
of label class c indicating the contribution of the i-th sMRI
and j-th dMRI components to the appearance of the class
in the respective modality. These distributions are param-
eterised by �si and �dj , respectively, with i ∈ 1,… , G and
j ∈ 1,… ,W . In both cases the sum over the component
weights for a given class must be equal to one, ∑i gc,i = 1
and ∑

j wc,j = 1, ensuring all white- and grey-matter class
boundaries are informed by both structural and diffusion con-
trast. This formulation provides a high degree of flexibility,
allowing us to specify a priori combinations of classes that
may be modelled using the same parameters.

Combining Eq. (6) with Eqs. (2) and (4) and taking log-
arithms we can then obtain an objective function to be opti-
mised with respect to the distribution parameters,
O(�|S,D, A, 
)

= log p(�a|
a) +
G∑
i
log p(�si |
si ) +

W∑
j
log p(�dj |
dj )

+
V∑
v
log

C∑
c
p(lcv|A,�a)

[
G∑
i
gc,ip(sv|�si )

][
W∑
j
wc,jp(dv|�dj )

]
.

(7)
To optimise Eq. (7) we adapt the approach proposed by Puonti
et al. (2016). In this approach the atlas deformation parame-
ters and likelihood parameters are optimised iteratively in a
coordinate ascent scheme, with each being optimised while
the other is fixed. The optimisation of the �a is performed
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using a standard conjugate gradient operator with the defor-
mation prior p(�a|
a) taking the form of the penalty term de-
fined by Ashburner et al. (2000). The likelihood parameters
�s and �d are then optimised using a Generalised Expecta-
tion Maximisation (GEM) algorithm (Dempster et al., 1977;
Van Leemput et al., 1999), iterating between expectation (E)
and Maximisation (M) steps.
E step: In the E step, we build a lower bound Q(�) for the
objective function in Eq. (7) using Jensen’s inequality:

Q(�) = log p(�a|
a) +
G∑
i
log p(�si |
si ) +

W∑
j
log p(�dj |
dj )

+
∑
v,c,i,j

qc,i,jv log
[
p(lcv|A,�a)p(sv|�si )p(dv|�dj )

]

−
∑
v,c,i,j

qc,i,jv

[
log qc,i,jv − log gc,i − logwc,j

]
. (8)

Here lcv indicates the event that the voxel label lv = c and
qc,i,jv is a soft segmentation at the current parameter estimates
indicating the combination of class c, sMRI distribution i
and dMRI distribution j:

qc,i,jv =
gc,iwc,jp(lcv|A,�a)p(sv|�si )p(dv|�dj )∑

{c,i,j} gc,iwc,jp(lcv|A,�a)p(sv|�si )p(dv|�dj )
. (9)

M step: In the generalised M step we attempt to increase
the boundQ(�) in Eq. (8). We note that the two sets of distri-
bution parameters �si and �dj can be optimised individually,
as they make independent contributions to the bound:

Qs(�si ) = log p(�
s
i |
si ) +

V∑
v

[∑
c,j
qc,i,jv

]
log p(sv|�si ), (10)

Qd(�dj ) = log p(�
d
j |
dj ) +

V∑
v

[∑
c,i
qc,i,jv

]
log p(dv|�dj ). (11)

These contributions can then be optimised using either closed
form solutions or numerical methods, depending on the dis-
tribution used as we will describe in Section 2.3. Finally we
can calculate the new optimal weightings as

gc,i =
∑
{v,j} qc,i,jv∑
{v,i,j} q

c,i,j
v

wc,j =
∑
{v,i} qc,i,jv∑
{v,i,j} q

c,i,j
v

(12)

Segmentation: The mesh deformation and likelihood pa-
rameter optimisation steps are repeated alternately until the
objective function in Eq. (7) has converged. At this point, we
note that the formulation of the posterior factorises over vox-
els and the posterior probability of each class may be found
by summing over the soft segmentations qc,i,jv . Hence the fi-
nal MAP estimate segmentation is given by

l̂v = argmax
c

G∑
i=1

W∑
j=1

qc,i,jv . (13)

2.3. Likelihoods
So far, we have outlined the Bayesian framework and

segmentation processwithout specifying the likelihoodmod-
els used for both sets of MRI data. The steps outlined above

are not affected by the choice of distributions used. Here
we provide an overview of the distributions used to model
the sMRI and dMRI data, including the likelihood term and,
where applicable, the prior over its parameters. Detailed
equations for the calculation of PDF values as well as the
optimisation of model parameters, �, may be found in Sec-
tion S.1 of the supplement.
2.3.1. Structural MRI model

To model the sMRI intensities, we follow the Bayesian
brainMR segmentation literature and use a mixture of Gaus-
sian intensity distributions (Ashburner and Friston, 2005;
Zhang et al., 2001; Van Leemput et al., 1999). In this model
the intensity values for each structural modality are held in
the vector sv and the model parameters �si are the mean and
covariance, {�i,Σi}, of the structural mixture component i.
We choose to use the natural conjugate prior, the Normal-
Inverse-Wishart distribution, on these Gaussian parameters.
The likelihood and prior distributions are therefore
p(sv|�si ) ∼ (�i,Σi), p(�i,Σi|
si ) ∼(M s

i , n
s
i ,Ψ

s
i , �

s
i ),(14)

where Ms
i , n

s
i ,Ψ

s
i and �si encode any prior knowledge we

may have on the structural distribution. Formulations for
the structural PDFs and closed form solutions to the param-
eter M step parameter optimisations can be found in Sec-
tion S.1.1 of the supplement.
2.3.2. Diffusion MRI models

To model the dMRI data, we consider distributions over
tensors estimated with DTI. Even though higher-order mod-
els can be used with modern dMRI acquisitions, using DTI
models ensures that our method is compatible with virtually
every dMRI dataset, including huge amounts of legacy data.
In this work, we compare two competing models, based on
the Wishart and Gaussian distributions, to our previously-
proposed DSW-beta distribution (Iglesias et al., 2019).
Wishart: Following existing white matter fibre modelling
literature, we look to the Wishart distribution (Jian and Ve-
muri, 2007). DTI produces at each voxel a covariance ma-
trix describing the displacements of water molecules in the
voxel. Therefore, the natural conjugate prior for these ten-
sors is an Inverse-Wishart distribution. We use this in combi-
nation with a Gamma distribution on the degrees of freedom
parameter (Görür and Rasmussen, 2010), with the effect of
lowering the degrees of freedom and increasing the breadth
of the resulting Wishart distributions. In this model, we de-
fine dv as the inverse of the diffusion tensor Tv. We then use
the Wishart and Gamma distributions to model dv and �dj :
dv ∼(ndj , V

d
j ), (ndj − 2)∕2 ∼ Γ(�, �), (15)

where � and � are set to 0.5 and 1.5 respectively to provide
a non-informative prior. Formulations for the Wishart PDFs
and the optimisation problem in the M step can be found in
Section S.1.2 of the supplement.
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Log-Gaussian: This model is motivated by literature on
the interpolation of DTI volumes. Direct interpolation of
DTI can lead to swelling of the ellipsoids representing the
diffusion tensors, but interpolating in the log domain reduces
this effect (Arsigny et al., 2006; Dryden et al., 2009). For this
reason, and noting that the DTI tensors, Tv, are symmetric
with only six independent variables, we define dv as a vector
dv = P vec(log Tv), vec(log Tv) = P ⊤dv, (16)
where P is a constant 6 × 9 matrix (values listed in supple-
ment) designed with the constraint that
‖ log(T1) − log(T2)‖2 = ‖d1 − d2‖22, (17)
and therefore interpolation of the vectors dv is equivalent tointerpolation of the tensors in the log domain. In this formu-
lation the natural distribution to choose based on the distance
metric in Eq. (17) is a Gaussian distribution with a scalar
variance
dv ∼ (md

j , �
d
j ). (18)

We then define uniform priors on both mdj and �dj due to
the difficulty in informing these parameters a priori. For-
mulations for the log-Gaussian PDFs and the optimisation
problem in the M step can be found in Section S.1.3 of the
supplement.
DSW-beta: This model is a custom combination of two
distributions proposed in our prior work (Iglesias et al., 2019).
This was motivated by a desire to lower the dimensionality
of dv, leading to a reduction in extreme values of the likeli-
hood that may overwhelm the prior. Here only the fractional
anisotropy (FA), fv, and the principal eigenvector, �v, ofthe tensor Tv are modelled so that dv = {fv,�v}. In this ap-proach, we use the two parameter Beta distribution to model
the FA as it is able to model both the location and dispersion
of signals in the range [0, 1]. We then use the DSW distri-
bution to model �v.The DSW distribution is defined on the unit sphere and
parameterised by a mean direction  and a concentration �,
giving a PDF of the form
p(�| , �) = [Z(�)]−1 exp

{
�
(
( )⊤�

)2} , (19)
where Z(�) is a normalising constant given by the Kummer
function in 3D (Mardia et al., 2000). As the DSW distri-
bution is antipodally symmetric, it accommodates the direc-
tional invariance of dMRI (Zhang et al., 2012). It is also
rotationally symmetric around a mean direction and its op-
posite { ,− ∶ ‖ ‖ = 1}, with a dispersion around the
mean parameterised by the concentration �. This � allows
us to incorporate the higher directional dispersion in voxels
with lower FA by multiplying the component specific con-
centration by the voxel FA to give an effective concentration
for each voxel. The likelihood distribution in this formula-
tion of the dMRI is therefore a joint DSW-beta distribution
fv ∼ (�dj , �dj ), �v ∼ ( d

j |f�dj ). (20)
Formulations for the DSW-beta PDFs and M step can be
found in Section S.1.4 of the supplement.

(a)

(d)

(b) (c)

(e)

Figure 3: (a-c) Types of segmentations used to build the at-
las. (a) Coronal histological section of the thalamus, with
manual delineations of the nuclei. (b) Coronal slice of an
in vivo T1-weighted MRI scan, with manual delineations for
whole brain structures. (c) Similar coronal slice of one of the
new 16 cases, with the white matter subdivided into tracts.
(d-e) Corresponding axial slices of the previous and updated
probabilistic atlases; colours are linear combinations of look
up table colours weighted by their corresponding probability in
each version of the atlas. The original atlas (d) was trained
with segmentations like the ones in (a-b), while the new atlas
used (a-c).

2.4. Prior distribution: an improved probabilistic
atlas of the thalamus

In Iglesias et al. (2018), we presented a highly detailed
probabilistic atlas of the human thalamus built from a com-
bination of in vivo MRI and histology. The spatial distri-
bution of the thalamic nuclei was learnt from manual de-
lineations drawn on 3D reconstructed histological sections
from 12 specimens (Fig. 3a), whereas 39 MRI scans with
manual delineations (Fischl et al., 2002) were used to learn
the distribution of surrounding tissue (Fig. 3b). Direct use of
this atlas (Fig. 3d) in our new framework is not ideal, as the
cerebral white matter was modelled using only two classes –
one per hemisphere. While such a parsimonious model with
a single component is adequate for modelling the unimodal
distribution of white mater intensities in sMRI, it is largely
insufficient to model the dMRI orientations. The distribu-
tion over white matter voxels is highly multimodal due to
the variety of fibre tracts that traverse this tissue in different
orientations.

In principle we could model such a complex distribution
using a mixture model with many components. However,
such an approach is likely to fail, as some of these compo-
nents may end up modelling non-white-matter tissue. In-
stead, we have refined our atlas by subdividing the white
matter surrounding the thalamus into 45 tracts. To achieve
this, we complemented the training data in Iglesias et al.
(2018) (12 ex vivo thalami and 39 in vivo whole brains) with
in vivo sMRI/dMRI data from 16 additional subjects, that
were labelled manually as part of an update (Maffei et al.,
2021) to the TRACULA (TRacts Constrained by UnderLy-
ing Anatomy) package distributed with FreeSurfer (Yendiki
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et al., 2011).
The TRACULA training set (16 healthy adults from the

publicly available MGH-USC HCP; Fan et al. 2016) con-
sisted of dMRI data, acquired using 512 directions at a max-
imum b-value of 10,000 s∕mm2 with 1.5 mm isotropic spa-
tial resolution, and sMRI T1-weighted data, acquired with
an MPRAGE sequence at 1 mm isotropic resolution. Cor-
tical parcellations and subcortical segmentations, including
the whole thalami and cerebral white matter (left and right),
were obtained through FreeSurfer (Dale et al., 1999; Fischl
et al., 1999, 2002, 2004). Whole-brain probabilistic trac-
tograms were generated for each subject using constrained
spherical deconvolution approaches (Tax et al., 2014; Jeuris-
sen et al., 2014) and streamlines used to manually label 42
white matter tracts through a combination of inclusion and
exclusion criteria (Maffei et al., 2021). Resulting tractograms
were transformed to the sMRI of the subject using a boundary-
based, affine registration method (Greve and Fischl, 2009)
and converted into visitation maps. These soft segmenta-
tions were spatially smoothed with a Gaussian kernel (� =
2mm). For each white matter voxel in the FreeSurfer sub-
cortical segmentation, we replaced its label by the tract with
the highest probability (unless such probability was below
5%), dividing the white matter into 42 tracts and a generic
white matter class (Fig. 3c).

The three types of segmentations (Fig. 3a-c) were used
to rebuild the atlas, using a technique that enables combin-
ing labellings with different levels of detail (Iglesias et al.,
2015). As a last adjustment, wemanually excluded tracts not
passing adjacent to the thalamus and subdivided labels cor-
responding to regions with identified heterogeneity of dMRI
contrast. This subdivision principally affected the anterior
commissure and the tracts comprising the corpus callosum,
which were split into their left and right hemisphere compo-
nents to account for reflective symmetry. The resulting atlas
therefore contains 45 final labels for the white matter tracts.
Each of these subclasses can be modelled either with uni-
modal distributions or mixtures with very few components,
effectively preventing themodelling of non-white-matter tis-
sue. Additionally, the medial pulvinar nuclei (PuM) were
also split into lateral and medial classes to account for the
typically more left-right directionality of their lateral por-
tion. This is consistent with known connectivity differences
between the medial and lateral portions of the PuM (Benar-
roch, 2015). As this split in our atlas was not derived directly
from histological labels, we model these two PuM classes
separately during optimisation and merge them for output.

Figure 3 shows a comparison of the new (Fig. 3e) and
old (Fig. 3d) atlases. The voxel colours in Fig. 3(d-e) are
a linear combination of the label colours, weighted by their
corresponding probability in each version of the atlas, pro-
viding a visual representation of smooth changes in the atlas
for regions at the boundary of multiple labels. The new at-
las is almost identical to the original, with the addition of
more specific labels in the white mater and PuM. However,
as with our previous atlas, the reticular and other classes out-
side the thalamus are used only for modelling purposes and

are merged into the background for output, resulting in the
segmentation of 50 labels.
2.5. Implementation details
2.5.1. Data preparation

Weassume that the sMRI has been processedwith FreeSurfer,
which yields a bias field corrected image and a whole brain
segmentation (aseg.mgz, Fischl et al. 2002). The labels in
aseg.mgz are used to initialise both the atlas deformation
(Iglesias et al., 2015, 2018) and hyperparameters in the struc-
tural prior in Eq. (14). In practice the hypermeanMs

i is es-timated from the median of the relevant label in this initial
coarse segmentation, and nsi relates to the number of voxels
used in estimatingMs

i . However, it is more difficult to ro-
bustly inform prior distributions of the covariance, so we set
both Ψsi and �si to zero to provide a non-informative prior,
giving the set of prior parameters 
si = {Ms

i , n
s
i }.We also assume that the source dMRI has been put through

the preprocessing stages of TRACULA (Yendiki et al., 2011;
Maffei et al., 2021). This includes FSL’s eddy current and
subjectmotion correction (Andersson and Sotiropoulos, 2016)
before fitting the tensor model. Additionally, we identify
DTI voxels with poor fits as those with tensors that have
negative eigenvalues or FA outside the range [0, 1]. These
are replaced by a local average tensor constructed by convo-
lution of the log space tensors with a 3D Gaussian kernel.
These cleaned tensors are converted to the log domain (Ar-
signy et al., 2006) before interpolation to the voxel grid of
the sMRI.
2.5.2. Mixture model specification

The assignment of component distributions to label classes
is one of the modelling choices that must be made before
segmentation. We assign structural and diffusion compo-
nents independently for each label class, defining what we
will call the structural mixture model (sMM) and diffusion
mixture model (dMM) respectively. In practice, this con-
strains most weights gc,i and wc,j to 0 or 1, with a single
component distribution often shared between groups of la-
bels. However, we do allow for many-to-many relationships
between the label-classes and components. For example, al-
lowing the structural appearance of the CSF label to be mod-
elled by two Gaussian components, one for "clean" CSF that
is also used to model ventricle labels and one for "messy"
CSF that is shared with the choroid plexus.

For class likelihoods composed of multiple distributions,
the non-zero weights are set to be equal for the first E step
and initial component parameters are obtained by use of k-
means clustering. Details of this clustering for each likeli-
hood formulation can be found in Section S.3 of the sup-
plement, while optimisation of the default sMM and dMM
definitions is performed in Section 3.2.
2.5.3. Reflective symmetry

A common regularising constraint applied in structural
Bayesian segmentation algorithms is to use a single distribu-
tion to model structures present in both hemispheres, even if
they are subsequently given separate labels denoting their
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hemisphere. Such constraints have a similar effect to in-
creasing the sample size in fitting the distribution, reducing
the effect of outliers from initialisation errors or local in-
tensity variations on the resulting segmentation. Hence we
enforce this constraint in our sMRI modelling as well as a
similar constraint on the dMRI models.

Due to the directionality of dMRI data we cannot en-
force a single distribution to model two contralateral struc-
tures as in sMRI. Instead we make the assumption that there
is a reflectional symmetry between the distributions on ei-
ther side of the midline. This can be visualised as reflecting
the average ellipsoids described by each distribution in some
plane such as the medial plane. However, in practice such a
plane of reflective symmetry is unlikely to be aligned per-
fectly with the scanner coordinate system. For this reason
we obtain the plane of reflection from the dMRI data itself,
optimising a vector normal to the plane of reflection, r, ini-
tially assumed to be parallel to the left-right axis of the voxel
grid.

Prior to each M step, we substitute reflected distribution
parameters to the bound in Eq. (8) and formulate the contri-
bution of r, producing an optimisation that can be written in
the form

r = argmax
r∶‖r‖=1

W∑
j=1

f
(
�dj
) V∑
v=1

ℎ
(
qjv,�

d
j ,dv, r

)
. (21)

Here, ℎ(⋅) is a function of the location statistics (e.g. mean
vectors for log-Gaussian and DSW-beta), the dMRI voxel
data and the diffusion component posteriors, ensuring con-
tributions to the objective are weighted by their certainty.
Similarly, f (⋅) is a function of the dispersion statistics (e.g.
precision, concentration or degrees of freedom) which en-
sures the contributions of each component distribution are
weighted more strongly when more heavily peaked.

Detailed formulations for the reflection optimisation and
joint distribution fitting can be found in Section S.1 of the
supplement. In each case the objective is a fourth order poly-
nomial in rwith closed form first and second derivatives and
can be optimised using an interior-point method. We can
then jointly fit parameters for corresponding component dis-
tributions in the left and right hemispheres.
2.5.4. Likelihood adjustment

Our model assumes that the resolutions of the dMRI and
sMRI are identical. While datasets such as the HCP devi-
ate from this assumption to a lesser degree, conventional
quality datasets have much lower resolution for the dMRI
in particular, for example T1-weighted images are typically
acquired with each voxel dimension at approximately 1 mm
while dMRI voxel dimensions can approach 2.5mm in each
direction. As we resample to the resolution of the sMRI,
more dMRI voxels are used in likelihood parameter estima-
tion than are available from the source imaging, which leads
to overfitting of the dMRI. In practice, we counteract this
effect by raising the contribution of the dMRI likelihood in
Eq. (7) to a fractional power �, thereby downplaying the
weight of the dMRI voxels in the objective.

To choose the value of � we then examine the effect of
this change on the M step bound in Eq. (11), which becomes

Qd(�dj ) = log p(�
d
j |
dj ) + �

V∑
v

[∑
c,i
qc,i,jv

]
log p(dv|�dj ). (22)

Here we see that optimisation of the diffusion parameters is
performed with contributions from a total of V voxels which
have been obtained by interpolation from a smaller number
of voxels V d . By setting � equal to the ratio of voxel sizes
between dMRI and sMRI, the sum in Eq. (22) becomes ap-
proximately equal to the sum over V d voxels, where the con-
tribution of each source voxel is a weighted mean of the sur-
rounding interpolated voxel contributions. Further details
can be found in Section S.2 of the supplement.

3. Experiments and Results
To quantitatively evaluate our method and compare be-

tween the three likelihood formulations we performed ex-
periments using co-registered sMRI and dMRI from three
datasets. In Section 3.1 we generate a population template
fromHCP subjects, and use it to identifymanually segmentable
labels corresponding to groups of labels from our histolog-
ical atlas. In Section 3.2 we use this template to tune our
method in a process of model selection. In Section 3.3 we
evaluate application of our method to high resolution dMRI
on subjects fromHCP, including comparisons tomanual seg-
mentations and test-retest reliability. Finally, in Section 3.4
we evaluate application of our method to conventional qual-
ity dMRI. This includes test-retest reliability on images ac-
quired locally at the University College London Dementia
Research Centre (UCLDRC) and indirect evaluation on sub-
jects with underlying pathologies by testing our method’s
ability to distinguish between healthy controls and subjects
with AD from the ADNI dataset.

In the following experiments, when comparing regions
of interest (ROIs) corresponding to the same label in two
separate segmentations we use the Dice Similarity Coeffi-
cient (DSC) and 95th percentile of Hausdorff distance (95HD).
For two ROIs X and Y these are defined as
DSC(X, Y ) = 2‖X ∩ Y ‖

‖X‖ + ‖Y ‖ , (23)
95HD(X, Y ) = max(d95(X, Y ), d95(Y ,X)), (24)
where ‖ ⋅‖ indicates the volume of the ROI and d95(X, Y ) isthe 95th percentile of the set of distances between points on
the ROI boundaries, {dx = miny∈SY |x − y|}x∈SXAdditionally, when comparing to segmentations performed
using our previous structural-only method (Iglesias et al.,
2018), we show results produced using the code distributed
as part of FreeSurfer 7.2. However, in an attempt to ensure
fair quantitative comparisons, the default mesh stiffness pa-
rameter of this structural implementation was increased to
match the joint model that had been developed on the HCP
dataset. This improved both the DSC and 95HD structural
results compared to the default FreeSurfer distribution. Vi-
sual comparisons of these structural segmentations with and
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Figure 4: Representative axial view of the 10 label manual
segmentation overlaid on the T1-weighted (left) and DEC-FA
(right) population templates of the thalamus. Additional views
are shown in Section S.8 of the supplement. Manually seg-
mented label colour maps are given in Table 1 as are groupings
for quantitative analysis.

without mesh stiffness tuning can be found in section S.6 of
the supplement.
3.1. Population template and manual labels

When evaluating segmentation methods for medical im-
ages, it is common practice to compare the resulting label
maps to a gold standard, usually obtained from manual de-
lineation by a trained rater. However, manual delineation of
50 histological labels on in vivo MRI is infeasible, as many
of the boundaries between are invisible at ∼1mm resolution.
Manual segmentation protocols for larger groups of thalamic
regions (with fewer labels) exist in the literature (Tourdias
et al., 2014), but their anatomical definitions are incompat-
ible with those of our histological labels, introducing bias
and preventing direct and fair comparison. In this study, our
goal is to compare the performance of our tool with a gold
standard that is based on our 50 histological labels and in-
formed by both sMRI and dMRI contrast. For this reason, we
adapted these labels to define our own manual segmentation
criteria for thalamic labels that can be accurately visualised
and segmented on a combination of T1-weighted MPRAGE
and directionally-encoded colour FA (DEC-FA); when la-
bels of smaller thalamic nuclei were not identifiable from the
intensity and contrast of the MRIs, these labels were com-
bined and grouped together, so that the boundaries of the
original 50 histological atlas labels can be easily matched
and compared.

The first step in defining these criteria was to create a
high resolution template using 500 subjects from theWashU-
UMN HCP dataset (Van Essen et al., 2013) and an unbiased
template construction method (Joshi et al., 2004). We used
three channels in the registration: T1-weighted intensity, T2-
weighted intensity, and FA. In order to include directional
information in the template, we used the final set of registra-
tions to align and average the DTI tensors in the log domain.
The resolution of the template is equal to the resolution of
the HCP sMRI data, i.e., 0.7mm isotropic. Slices from the
template are shown in Fig. 4.

As a second step to define the gold standard for compari-
son, we registered the histological atlas to the template, pro-
ducing a preliminary segmentation of 50 separate thalamic
labels. This preliminary segmentation was then manually

Table 1
Summary of the label merging operations used to generate
the manually segmented labels from histological atlas nuclei,
and groupings of manual labels used for evaluation. Displayed
colours follow the convention used in figures throughout this
manuscript. Abbreviation definitions are listed in Section S.4
of the supplement. Visual comparisons of these three protocols
are shown in Section S.8 of the supplement.

Grouping Manual label
Anterior AV
Dorsal LD LP

Lat-Rostral VA VAmc VLa VLp VM
Lat-Caudal Lat-Caudal VPL

Intralaminar CeM Pc Pf MV(Re) Pt
Int-lmnr-Post CM

Medial Medial CL MDI MDm
Pulvinar L-Sg PuA Pul PuL PuM

LGN LGN
MGN MGN

Histological atlas labels

Ant-Lat

Intralaminar

Posterior

refined by an anatomy expert (JA, assisted by MB), to cor-
rect any anatomical errors from registration, and to combine
those thalamic regions which were not reliably identifiable
from the multi-modal template into labels which represent
larger thalamic groups. This resulted in a set of 10 bilateral
labels that were manually identifiable from the template.

The labeled template is used in Section 3.2 to aid in tun-
ing our method. Additionally, features identified from this
template segmentation are used as criteria in Section 3.3 to
manually generate gold standard segmentations for compar-
ison. These subject segmentations are performed without
the aid of an automated preliminary segmentation. How-
ever, on application to individual HCP subjects, the reduced
contrast and resolution resulted in increased ambiguity for
some boundaries. Therefore we further combine the set of
10 manual in vivo labels generated for each subject into a fi-
nal set of 5 coarser groupings, enabling evaluation without
biasing results. Manual labels for the template can be seen
in Fig. 4 and the correspondences between the evaluation
groupings, manually segmented labels and original histolog-
ical atlas labels can be seen in Table 1, with the exception of
the Reticular, which is grouped with white matter as in our
previous work (Iglesias et al., 2018).
3.2. Model selection

Practical implementation of the proposed framework re-
quires decisions on how to share the sMM and dMM param-
eters (Section 2.5.2), which amounts to a model selection
problem. In principle, our generative models enables the
computation of the so-called model evidence, which enables
comparison of models with different number of parameters.
While theoretically appealing, computing this evidence re-
quires marginalisation over all parameters, which leads to
intractable integrals that require approximations. Instead,
we selected the sMM/dMM groupings with a combination
of prior knowledge and a systematic approach called “Tech-
nique for Order Preference by Similarity to Ideal Solution”
(TOPSIS), which is a standard technique in operations re-
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TOPSIS: DSW-beta
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Figure 5: TOPSIS fitness plot for combinations of structural
(horizontal axis) and diffusion (vertical axis) grouping models
in the DSW-beta likelihood framework. Higher values indicate
the combination of models produced Dice scores and boundary
distances closer on average to the best value for each label.
A mapping from model numbers to parameter groupings is
provided as a spreadsheet in the supplementary material.

search (Hwang and Yoon, 1981; Behzadian et al., 2012).
Structural groupings. In our previous work, we used two
Gaussian components to model the contrast difference be-
tween medial and lateral classes (Iglesias et al., 2018). Here,
we added a third Gaussian modelling the medial portion of
the PuM, which has a structural appearance closer to grey
matter compared with the lateral portion of the PuM. We
then compared the atlas prior and histograms of the tem-
plate volumes to identify 33 possible sMMs grouping nuclei
into three component distributions, which were considered
by TOPSIS (detailed below).
Diffusion groupings. In Section 3.1 we defined 10 labels
for each thalamus that are manually identifiable from com-
bined sMRI and DEC-FA. However, inspection of the dMRI
tensors within these regions found greater heterogeneity in
some regions than in others. As additional borders within
these labels could not be confidently matched with bound-
aries in the histological atlas, we examined multiple options
for combining histological nuclei into larger structures to be
fit with a component distribution. Including these additional
boundaries, and allowing for the possibility of bimodal his-
tograms for some labels, we arrived at 21 possible dMMs,
grouping nuclei into between 11 and 13 component distri-
butions.
TOPSIS. To optimise the choice of sMMs and dMMs in a
systematic fashion, we tested each possible combination of
sMM and dMM parameter groupings on the population tem-
plate. We calculated Dice scores and 95HD for the whole
thalamus as well as the "grouping" and "manual label" re-
gions listed in Table 1. These Dice scores and distances
were then used as measurement channels in the calculation
of a single, normalised fitness score for each combination of

shared parameters using TOPSIS.
TOPSIS operates by first setting vectors of positive and

negative ideal solutions for each measurement channel. For
example, the positive ideal would be a vector containing the
maximum Dice score achieved in each label as well as the
minimum 95HD across all experiments. Each channel is
then normalised and the L2-norm distance is calculated giv-
ing scalar distance measures for each experiment from both
the positive and negative ideal. These distances are then
combined into a single similarity measure between 0 and 1
for each experiment, with 0 indicating the candidate achieves
the worst performance in every Dice and 95HD measure-
ment and 1 indicating the candidate achieves the best in each.
These scores provide an effective fitness measure balanc-
ing the desire to achieve high precision measures of differ-
ing types for multiple labels while penalising poor perfor-
mance in other measurements. The resulting scores for the
DSW-beta model is shown in Fig. 5; equivalent plots for
the Wishart and DSW-beta models may be found in section
S.5 of the supplement. The chosen models are provided in
a spreadsheet in the supplementary material as well as de-
scriptions of all candidate models.
3.3. Application to high resolution dMRI

Having individually tuned the mixture models and de-
fined a manual protocol corresponding to our histological
labels, the obvious next step is to assess the performance
of our joint segmentation method on HCP quality data. A
comparison of our joint segmentation to both the FreeSurfer
whole thalamus segmentation (aseg.mgz) and our previous
structural-onlymethod are shown in Fig. 6. This figure shows
each segmentation overlaid on both the T1-weighted sMRI
and the DEC-FA for two healthy subjects2.

In both subjects the whole thalamus aseg segmentation,
used as an initialisation for both Bayesian methods, shows
obvious errors when overlaid on the DEC-FA, with more
extreme over-segmentation for subject 2. In subject 1 the
structural-only segmentation appears to compensate for these
errors and provides an improved exterior boundary. How-
ever, our joint method shows marked improvement in the
agreement of internal boundaries with colours displayed in
the dMRI (solid arrows) as well as a smaller improvement in
the exterior boundary. This effect is much more pronounced
in subject 2, where the initial over-segmentation of the tha-
lamus propagates to the structural-only method but is cor-
rected by the joint method (arrow outlines).

Such observations provide compelling qualitative evi-
dence for the efficacy of our new method. However, to fully
evaluate its usefulness wemust quantitatively assess both ac-
curacy and repeatability.

2The joint segmentation shown here uses our DSW-beta likelihood
model and the structural method has been optimised for the HCP dataset
by tuning of the stiffness parameter. For a visual comparison of all likeli-
hood models and the default structural segmentation please see the Section
S.6 of the supplement.
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Figure 6: Comparison of representative axial slices from thalamic segmentations generated by FreeSurfer’s recon-all (aseg.mgz),
structural and joint (DSW-beta) Bayesian segmentation on two HCP subjects. Coloured outlines correspond to the histological
atlas labels listed in Table 1. These labels are grouped for further quantitative analysis. Comparisons of coronal and sagittal
slices are shown in Section S.6. of the supplement.

3.3.1. Direct evaluation with manual ground truth
To provide a quantitative measure of segmentation qual-

ity, our anatomy expert (JA, assisted by MB) manually seg-
mented images for 10 randomly selected subjects from the
WashU-UMN HCP dataset (Van Essen et al., 2013) using
criteria developed from the population template as described
in Section 3.1. The manual segmentations were performed
using a combination of T1-weighted andDEC-FA at a 1.25mm
isotropic resolution, corresponding to the native resolution
of the diffusion data in HCP.We generated segmentations for
these subjects using each of the three joint likelihood imple-
mentations from Section 2.3 as well as our previously pub-
lished structural-only implementation (Iglesias et al., 2018).
These automated segmentations, which have the resolution
of the structural scans (0.7mm), were resampled to 1.25mm
isotropic resolution and compared with the ground truth us-
ingDSC and 95HD.Dice scores and 95HD for the five group-
ings (in column one of Table 1) and the whole thalamus are
shown in Fig. 7. We highlight the model achieving the best
median value for each measurement as well as statistically
significant differences between models (Wilcoxon signed-
rank test).

All three joint segmentation methods show distinct im-
provements in both DSC and 95HD across multiple labels
and smaller improvements in the whole thalamus exterior.
Here, the structural-only, Wishart and Log-Gaussian imple-
mentations achieve median DSCs of 0.88 with a small in-
crease to 0.89 for DSW-beta implementation. While this in-
crease does achieve significance compared to the other three,

it is countered by a small increase of 0.12 mm in median
95HD compared to theWishart and log-Gaussian implemen-
tations. Even so, the 95HD for all methods was between 2.3
and 2.5 mm, equivalent to approximately 2 voxel widths on
the manual segmentations.

A joint segmentation method obtained the best 95HD in
each of the five label groups with particularly large improve-
ments in the antero-lateral and lateral-caudal groups. Sim-
ilarly, the joint methods outperform structural-only DSC in
four of the five groups with lateral-caudal class showing an
improvement of 10 Dice points. The only label class where
the structural method outperforms the joint implementations
is the medial class. This is expected as the medial-lateral
contrast change is the only explicitlymodelled interior bound-
ary in the structural-only method. However, the 95HD mea-
surement for themedial thalamus shows no significant differ-
ences between the structural implementation and theWishart
implementation, which performs best in this measurement.

There is comparatively little difference between the three
diffusion likelihood implementations. TheWishart and Log-
Gaussian implementations show themost similar results, while
in the DSW-beta implementation small decreases in accu-
racy of the intralaminar and posterior classes are offset by
improvements in the antero-lateral classes and whole thala-
mus exterior.
3.3.2. Test-retest reliability analysis

In order to assess the test-retest reliability of the method
(a crucial feature in large scale, multi-centre studies), we
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Figure 7: Dice score (top) and 95HD (bottom) comparison of
automated thalamic segmentations to manual delineations of
10 HCP subjects. Scores are stated for our previous structural
only method as well as the three likelihood implementations
of our joint method. Asterisks denote significance level on
Wilcoxon signed-rank test.

segmented images from 110 HCP subjects using two differ-
ent sets of DTI images for each subject – one based on the
b=1000 s∕mm2 shell and one based on the b=2000 s∕mm2
shell – and compared the outputs. While the results of such
an experiment are optimistic when compared to experiments
in which images are acquired with multiple scanners, it does
enable thorough comparison within the same dataset; test-
retest experiments with multiple acquisitions are described
in Section 3.4.1 below.

First we examine the effect of such an acquisition change
on the groupings evaluated in Section 3.3.1. Dice scores for
these groupings can be seen in Fig. 8. These results gener-
ally show that all three models are reasonably robust to such
an acquisition change in HCP quality data, with a median
Dice score of 0.85 or greater in each grouped label across
all models and greater than 0.95 for the whole thalamus.
However, the DSW-beta implementation does appear to be
more robust. This model shows improved Dice scores with
high significance in the whole thalamus, antero-lateral, me-
dial and posterior groupings. Conversely, there is a slight
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Figure 8: Dice score evaluation of test-retest reliability on 110
HCP subjects. For each subject, we performed two segmenta-
tions using DTI images obtained by fitting the tensor to the
data from b=1000 s∕mm2 and b=2000 s∕mm2 shells separately
and computed Dice scores for groups of labels in the two re-
sulting segmentations. Asterisks denote significance level on
Wilcoxon signed-rank test.

but significant drop in the lateral-caudal grouping and there
is no significant difference between the three models in the
intralaminar grouping.

This increased stability of the DSW-beta implementation
compared to the other models is also reflected in the individ-
ual label Dice scores. In the left-right averaged Dice scores
for 25 labels we find that the DSW-beta achieves the highest
median scores in 17 labels and differences from the winning
model in a further 3 labels do not reach significance. Of the
remaining 5 labels DSW-beta still achieves scores greater
than 0.85 in the VPL and CM nuclei and greater than 0.75
for the MV(Re). The lowest Dice scores for all three meth-
ods are present in the VM, Pc and Pt nuclei. These are small
nuclei, in the region of 2−5 mm3, and consist of fewer than
ten voxels in each hemisphere. Dice scores for individual
nuclei from the DSW-beta implementation can be found in
section S.7 of the supplement.

To account for these small classes, we also examine the
volume measurements of each label. These volumes are cal-
culated as the sum across voxels of the posterior probability
of each label multiplied by the voxel size to account for vox-
els with multiple non-zero posteriors. Examining the intra-
class correlation coefficients (ICC) for these volumes in the
DSW-beta implementation shows the volumes are extremely
stable between acquisition types. Looking at the left and
right labels separately we find that 27 of the labels have ICCs
above 0.9 with a further 20 having values above 0.8, indi-
cating high correlation between the volume measurements
generated by each acquisition type. In fact the ICCs for the
remaining labels are also all above 0.75 apart from the right
Pc with a value of 0.69, indicating that the volumes for the
VM, Pc and Pt may still be used for volumetric analysis. The
median label volumes and ICCs for the DSW-beta imple-
mentation can be found in section S.7 of the supplement.
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3.4. Applications to conventional quality dMRI
While our method assumes that the resolution of the dif-

fusionMRI approaches 1 mm isotropic (which is the case for
many modern datasets, e.g., following the HCP protocol), it
is of high interest to segment the thalamic nuclei in lower res-
olution scans for two reasons. First, because large amounts
of legacy data were acquired at lower resolution. And sec-
ond, because many current studies (e.g., ADNI, GENFI) still
use those acquisitions, either in order not to deviate from
the protocol used to acquire images earlier in the project
or to accommodate acquisition constraints such as available
scanner time. As explained in Section 2.3 above, compat-
ibility with conventional quality data is actually the reason
why we chose to model the diffusion tensor in our likeli-
hood term, rather than using a more sophisticated, higher
order model. Therefore, to assess our method on conven-
tional quality scans, we perform both reliability analysis and
indirect evaluation using two conventional quality datasets.
In the first experiment we use a locally acquired dataset at
the UCLDRC, which provides T1-weightedMPRAGEs and
two dMRI scans for 21 healthy controls. In the second ex-
periment we use both healthy controls and subjects with AD
from the ADNI dataset.3

The resolution of the dMRI scans provided by these two
datasets is heavily reduced from that of the HCP data. The
voxels in the UCL DRC images encompass 8 times the vol-
ume of those in the HCP images, while the ADNI image
voxels are 2.5 times larger than HCP, with double the slice
thickness. This decrease in the resolution of such scans,
compared to HCP, make manual delineation infeasible using
the joint structural and DEC-FA criteria from Section 3.1.
The large volumes of these voxels increase partial volume
effects within the dMRI, obscuring boundaries, while the in-
creased slice thickness makes it difficult to trace the first and
last slices of every group. Instead, in Section 3.4.1 we per-
form test-retest reliability analysis and in Section 3.4.2 we
perform indirect validation, using the ability to discriminate
between subjects with AD and healthy controls as a proxy
for segmentation accuracy.

3The ADNI was launched in 2003 by the National Institute on Ageing,
the National Institute of Biomedical Imaging and Bioengineering, the Food
and Drug Administration, private pharmaceutical companies and non-profit
organisations, as a $60million, 5-year public-private partnership. The main
goal of ADNI is to test whether MRI, positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assessment
can be combined to analyse the progression of MCI and early AD. Markers
of early AD progression can aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as decrease the time and
cost of clinical trials. The Principal Investigator of this initiative is Michael
W. Weiner, MD, VA Medical Center and University of California — San
Francisco. ADNI is a joint effort by co-investigators from industry and
academia. Subjects have been recruited from over 50 sites across the U.S.
and Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI
has been followed by ADNI-GO and ADNI-2. These three protocols have
recruited over 1500 adults (ages 55–90) to participate in the study, consist-
ing of cognitively normal older individuals, people with early or late MCI,
and people with early AD. The follow up duration of each group is spec-
ified in the corresponding protocols for ADNI-1, ADNI-2 and ADNI-GO.
Subjects originally recruited for ADNI-1 and ADNI-GO had the option to
be followed in ADNI-2. For up-to-date information, see http://www.adni-
info.org.
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Figure 9: Dice score evaluation of test-retest reliability on
conventional-quality data from 21 subjects acquired at the UCL
Dementia Research Centre. For each subject, we performed
two segmentations using dMRI data acquired in the same ses-
sion using the same acquisition parameters and computed Dice
scores for groups of labels. Asterisks denote significance level
on Wilcoxon signed-rank test.

3.4.1. Test-retest reliability analysis
In order to assess the test-retest reliability of the method

on lower resolution dMRI, we used a separate dataset, com-
prising 21 healthy volunteers (9 male, 12 female, aged 53 –
80 years) acquired at the UCL DRC. Three MRI sequences
were performed for each subject in a single session: one T1-
weighted MPRAGE 1.1 mm isotropic resolution; and two
diffusion weighted acquisitions each consisting of 64 gradi-
ent directions at a b-value of 1,000 s∕mm2 and a 2.5 mm
isotropic resolution. Using the two dMRI acquisitions as
separate tests, segmentationswere performed at a 1mm isotropic
resolution in the native orientation of the individual dMRI
volumes before being resampled to the native space of the
structural volume for calculation of test-retest Dice scores.
GroupwiseDice scores for this experiment are shown in Fig. 9.

As expected from the increased voxel size and reduced
quality of the data, the Dice scores in Fig. 9 are lower than
those in in Fig. 8, although median scores are still above 0.9
for whole thalamus and 0.8 for four of the five grouped la-
bels. However, it is clearer from this plot that the DSW-beta
implementation is the most robust to differences in dMRI,
with the highest median Dice score in each category. This
may be due the increased dimensionality of the Wishart and
log-Gaussian models, meaning imprecise fitting of the ten-
sor model caused by partial volume effects has a greater im-
pact than for themore robust FA and principle directionmodel
used by the DSW-beta likelihood.

Aswith the previous test-retest experiment, this increased
stability of the DSW-beta is also reflected in the individual
label Dice scores. In this case DSW-beta achieves the high-
est median scores in 21 labels and differences from the win-
ning model in a further 2 labels do not reach significance
when looking at left-right averaged Dice scores. Of the re-
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maining labels, DSW-beta still achieves scores greater than
0.80 in the VLp, while the LD is a small nucleus in the re-
gion of 19 mm3 and still achieves ICCs above 0.95 in both
hemispheres. In fact, of all the nuclei, 20 show ICCs above
0.9, with a further 18 having values above 0.8 and all but 5
above 0.7, including for some small nuclei under 50 mm3
where Dice scores are reduced. The median label volumes,
Dice scores and ICCs for the DSW-beta implementation can
be found in section S.7 of the supplement.
3.4.2. Alzheimer’s disease study

So far we have performed experiments to evaluate both
reliability and accuracy measures for the three joint models.
While all three models show similar differences in accuracy
compared to structural only segmentation on HCP quality
data, generation of ground truth manual segmentations on
conventional quality data was infeasible using the protocol
from Section 3.1, due to the reduced resolution of the dMRI.
To compensate for this we repeat an indirect evaluation ex-
periment from our previous work (Iglesias et al., 2018, 2019)
in which we evaluate the utility of our segmentations in a
scenario more closely resembling a classical group study.

Specifically, we examine the ability to discriminate be-
tween healthy controls and subjects with AD from the ADNI
dataset using the volume measurements derived from the
DSW-beta implementation as compared to the structural only
and FreeSurfer whole thalamus segmentations. While the
thalamus is less strongly affected in AD than other struc-
tures (e.g., the hippocampus), it is still expected to see bi-
lateral atrophy of around 12%, with local shrinkage in the
anterodorsal, centromedial, intralaminar and pulvinar nuclei
(Pini et al., 2016). Despite this, volume measurements of
whole thalamus segmentations can show poor discrimina-
tive ability, making improved discriminative ability from nu-
clei measures indicative of improved segmentation quality.
The decision to focus on the DSW-beta implementation was
taken due to the significantly improved reliability of theDSW-
beta labels compared to bothWishart and log-Gaussianmod-
els in HCP quality and conventional quality scans, while ac-
curacy on HCP quality scans remains comparable.

First we consider 45 subjects with AD and 45 controls
(73.7±18.0 years; 44 females total) from the ADNI. These
subjects were initially processed for a study on connectivity
differences in dementia (Frau-Pascual et al., 2019) and used
for a classification experiment in our previous work (Iglesias
et al., 2019). The data consisted of T1-weighted scans, with
a resolution of 1.2×1×1mm (sagittal), and dMRI with a res-
olution of 1.35×1.35×2.7mm (axial). We fit the DTI model
to the b=1000 s∕mm2 shell (41 directions), combined with 5
volumes at b=0. We then segmented each subject using the
FreeSurfer recon-all stream as well as our previous struc-
tural only method and DSW-beta model joint implementa-
tion. However, initial examination of these subjects revealed
some cases where the inclusion of the dMRI shifts bound-
aries in the segmentation due to the lower resolution of the
dMRI data (and thus increased partial volume effects). An
example is the over-segmentation of the thalamus into the

(a) (b) 

Figure 10: Comparison of thalamic segmentations of a subject
from the ADNI dataset using equal (a) and reduced (b) dMRI
likelihood weighting. Weighting the dMRI likelihood by the ra-
tio of voxel volumes between sMRI and dMRI results in more
accurate estimation of boundaries with heavy partial volum-
ing in the diffusion channel, e.g., the CSF/posterior-thalamus
boundary (red arrows).

Table 2
AUC, accuracy at elbow, and p-value for improved AUC values
as given by a DeLong test.

FreeSurfer Structural Diffusion
(whole) (nuclei) (nuclei)

AUC 62.02% 72.30% 81.98%
Acc. at elbow 62.22% 68.89% 75.56%
p-value vs FreeSurfer 0.150 0.004
p-value vs Structural 0.049

CSF in Fig. 10a. We addressed this by allowing the contribu-
tion of the dMRI likelihood term to be reduced in proportion
to the ratio between voxel volumes in the sMRI and dMRI
volumes (Fig. 10b) as outlined in Section 2.5 and Section
S.2 of the supplement.

As in Iglesias et al. 2019, we computed receiver oper-
ating characteristic (ROC) curves for discrimination of sub-
jects into the two classes using five approaches: three based
on thresholding the volume of the whole thalamus (as given
by the FreeSurfer recon-all stream, the structural segmenta-
tion, and the joint segmentation); and two based on thresh-
olding the likelihood ratio given by a linear discriminant
analysis (LDA, Fisher 1936) on the volumes of the histologi-
cal nuclei (as given by the structural and joint segmentation).
The resulting ROC curves are shown in Fig. 11(a) with the
area under the curve (AUC), accuracy at the elbow and p-
values for comparison of AUC values shown in Table 2.

From these curves we can see that all three methods re-
lying on the total volume of the thalamus have poor discrimi-
native ability, with little difference between using FreeSurfer,
structural or joint segmentations. This contrasts to the nu-
clei specific methods, which both show marked improve-
ments. Structural segmentation shows an increase of 10%
AUC over FreeSufer’s whole thalamus and joint segmenta-
tion an increase of 20%. However, only the improvements of
the joint method show statistical significance with p = 0.004
vs. FreeSurfer and p = 0.049 vs structural nuclei segmenta-
tion.

Tables 3 and 4 compareAUCvalues andCohen’s d scores
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(a) (b)

Figure 11: ROC curves for classification of subjects within the ADNI dataset based on thalamic volumes. a) Compares classification
between AD and controls using 5 methods. b) Compares classification of subjects with AD, early and late MCI from healthy
controls using the nuclei volumes from diffusion.

Table 3
Thalamic nuclei showing statistically significant differences be-
tween Alzheimer’s and controls for the joint segmentations,
sorted by increasing p-value (Wilcoxon rank-sum).

Structure AUC Cohen’s d p-value

PuM-medial 71.60% 0.7850 0.0004
MDm 66.77% 0.5827 0.0062
MDl 62.96% 0.3005 0.0345

Table 4
Thalamic nuclei showing statistically significant differences be-
tween Alzheimer’s and controls for the structural segmenta-
tions, sorted by increasing p-value (Wilcoxon rank-sum).

Structure AUC Cohen’s d p-value

MDm 68.20% 0.7478 0.0030
MDl 68.05% 0.4868 0.0032
AV 67.31% 0.5432 0.0047
VA 66.12% 0.5626 0.0085
PuA 63.85% 0.4631 0.0239

for the nuclei showing statistically significant differences be-
tween Alzheimer’s and controls (p < 0.05) in the joint and
structural segmentation methods respectively. The most sig-
nificant atrophy detected by the joint segmentation method
was present in the medial portion of the PuM that was added
to the atlas to model heterogeneity in the pulvinar. While the
smaller sample size in the current study (N=90 vs N=374)
resulted in lowered significance for some atrophy measure-
ments and contributes to reduced AUC overall for the struc-
tural method compared to the experiment in (Iglesias et al.,
2018), the medial PuM still reaches significance in joint seg-

mentation after Bonferroni-correction for 26 multiple com-
parisons (p < 0.0019). Comparing these to the structural
measurements, more structural labels reach significance at
p < 0.05 but not after correction for multiple comparisons.
The joint segmentation differentiates more between nuclei,
while the structural volumes are more correlated, possibly
due to the two component model used in the structural likeli-
hoodmodel. We note that unlike our previous work the LGN
and MGN do not contribute significantly to atrophy in either
method, this is likely due to modification of these labels in
the latest version of the atlas available in FreeSurfer 7.2.

Given the improved discriminative ability of the jointly
segmented nuclei for AD vs control’s, we applied the DSW-
beta segmentationmethod to 84 additional subjects fromADNI.
These consisted of 52 subjects (73.7±18.5, 11 females) with
earlymild cognitive impairment (EMCI) and 32 subjects (73.2±16.7,
19 females) with late mild cognitive impairment (LMCI).
The corresponding ROC curves for discrimination between
these groups and controls in Fig. 11(b) show a smooth, pro-
gressive transition across the four stages of the disease. This
highlights the ability of our method to pick up onmore subtle
volume differences from LMCI (AUC 62.57%, Acc. at el-
bow 66.23%) although not from EMCI (AUC 50.56%, Acc.
at elbow 57.73%).

4. Discussion and Conclusion
In this article, we have presented and tested a novel seg-

mentation method for thalamic subregions from structural
and diffusion MRI. Building on the Bayesian segmentation
literature, we propose an algorithm to incorporate likelihood
models of both structural and diffusion MRI into a single
joint segmentation. By combining this with novel likelihood
models of dMRI, we obtain accurate identification of the
main thalamic regions. Through this method the informa-

H.F.J. Tregidgo et al.: Preprint submitted to Elsevier Page 17 of 25

                  



Multi-modal thalamic segmentation

tion in structuralMRI enables placement of boundaries in re-
gions with strong contrast (e.g. themedial boundarywith the
ventricles) with high precision, attributed to its higher res-
olution; the diffusion information enables the accurate seg-
mentation of boundaries that are invisible in typical struc-
tural MRI sequences. Furthermore, we have presented an
improved version of our previous histological atlas, which
enables more accurate modelling of diffusion MRI in the
cerebral white matter. The proposed method will be dis-
tributed with FreeSurfer and is widely applicable because
the likelihood: (i) relies on a simpleDTImodel, whichmakes
it compatible with virtually every diffusion dataset; (ii) ad-
justs to different resolutions by correcting for voxel sizes;
and (iii) relies on an unsupervisedmodel that is robust against
changes in MR contrast.

We have conducted extensive experiments with manual
segmentations, test-retest acquisition, and group studies –
including datasets with different resolutions. The results have
shown that the joint model exploiting the diffusion informa-
tion improves accuracy over structural-only segmentation.
Moreover, we have also found that the varying resolution
gap between structural and diffusion MRI may be accom-
modated by weighting the diffusion likelihood term to ac-
count for voxel size differences, thus bypassing the need to
explicitly model partial voluming – which quickly becomes
intractable, particularly in multi-modal images defined on
different voxel grids. While both our proposed likelihood
model (DSW-beta) and the two competing alternatives showed
similar levels of improved accuracy over structural-only seg-
mentationwhen comparedwithmanual delineations, we found
the DSW-beta distribution to have the highest test-retest reli-
ability and to be the most robust at lowered dMRI resolution.

Our proposedmethod has a large number of design choices,
particularly linked to the specification of shared parameters
across classes in the structural and diffusion mixture mod-
els. We set these parameters with the combination of expert
prior knowledge, a labelled template, and a well-known ap-
proach from the decision making literature (TOPSIS).While
this approach is suboptimal (our prior knowledge is imper-
fect; a single template is biased towards a certain population,
contrast, and resolution; and TOPSIS’s criteria may not nec-
essarily be ideal), it yielded groupings that worked well in
practice for different datasets with different resolution.

This work has a number of limitations. In particular,
there are aspects of our modelling which could be further
improved, or which require additional investigation. For ex-
ample, we do not explicitly model the partial volume effect;
while accounting for the voxel size ratio mitigated this prob-
lem in our experiments, it is possible that it does not suffice
for more extreme ratios. This could be addressed with fur-
ther experimentation on datasets with varying dMRI resolu-
tion or solutions based on CNNs.

Another modelling decision that could be investigated
further is the reflective symmetry constraint we impose on
dMRI distributions for contralateral structures. Our approach
attempts to protect against abnormal structural asymmetry
by deriving the plane of reflection from the reflected dMRI

likelihood distributions rather than anatomical markers. We
expect that asymmetries uniformly affecting a hemisphere
would cause the estimated reflective plane to be rotated from
the midline, but that segmentation accuracy would remain
unaffected. More focal pathologies that cause asymmetrical
directionality are likely to result in less heavily peaked like-
lihood distributions for the affected labels, equivalent to an
increased variance for a Gaussian model. This could poten-
tially impact segmentation accuracy for affected contralat-
eral structures, though the impact is expected to be mitigated
by the contribution of the prior and structural likelihoods,
and their contribution to the reflection objective would be re-
duced limiting their effect on other labels. Pathologies with a
larger impact on brain anatomy, such as lesions and tumours,
are likely to affect segmentation accuracy for the additional
reason that they are not explicitly modelled by our atlas, as is
the case with many methods. Determining the effect of such
asymmetries, and testing the performance of our methods
with and without reflection, require further work and valida-
tion, so that the method can be reliably applied to a wider
range of conditions.

There are also opportunities to improve the validation
of our method, e.g. by assessing the quality of the man-
ual labels through intra- and inter-rater variability or inves-
tigating other methods to generate ground truth segmenta-
tions. We designed our manual segmentation protocol to
allow comparison of regions discernible from a combina-
tion of 3T T1-weighted MPRAGE images and HCP quality
DEC-FA. This resulted in the segmentation of ten thalamic
regions, whichwere further combined into five groupings for
evaluation, limiting the detail of our ground truth compar-
isons. Improved accuracy for such groups of nuclei is a pos-
itive step towards validation of the separate labels, and regis-
tration of grouped boundaries in a hierarchical approach has
been shown to improve segmentation accuracy (Liu et al.,
2020). However, full validation of our nuclei level labels re-
mains to be done and will require datasets that pair standard
sMRI/dMRI with advanced imaging in which nuclei level
structures are manually identifiable.

Advanced 7T MRI sequences can show improved con-
trast for thalamic nuclei, with manual segmentations hav-
ing been generated from both white-matter-nulled (WMn)
MPRAGE sequences (Su et al., 2019) and susceptibilityweighted
imaging (Liu et al., 2020) to validate thalamic segmenta-
tion algorithms. For example, Liu et al. (2020) demonstrate
Dice scores of between 0.53 (habenula) and 0.9 (whole pul-
vinar) when applying their semi-automated method to 3T
T1-weighted images for which an accurate exterior thalamic
boundary has been provided as an input. Similarly Su et al.
(2019) demonstrate Dices scores between 0.64 (ventral lat-
eral anterior) and 0.89 (mediodorsal) using multi-atlas seg-
mentation on their 7T WMn-MPRAGE images. Addition-
ally, while dMRI clustering methods (Battistella et al., 2017)
have shown limited qualitative alignment to histological la-
bellings, advanced dMRI in the form of short-track tract den-
sity imaging has been used to manually identify 13 histolog-
ically guided nuclei (Basile et al., 2021). Currently there
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are no standard guidelines when it comes to neuroimaging
of the thalamus; harmonisation of competing thalamic label
definitions is a focus in the thalamic segmentation commu-
nity, with ongoing efforts from the international ThAlamic
nuclei Neuroimaging GrOup (TANGO), mirroring a similar
effort for hippocampal subfields (Wisse et al., 2017).

The presentedmethodwill be publicly available in FreeSurfer
as an extension of our current structural-only code. As high-
resolution diffusion data become increasingly accessible, al-
gorithms that can exploit them to produce accurate segmen-
tations – particularly for boundaries that are invisible in struc-
turalMRI – have the potential to greatly enhance neuroimag-
ing studies.

Acknowledgments
Thisworkwas primarily funded byAlzheimer’s Research

UK (ARUK-IRG2019A003). PG’s work in this area was
supported by NIH NIBIB NAC P41EB015902 AY’s work in
this area was supported by NIH grants R01 EB021265 and
R56 MH121426. DCA’s work in this area was supported
by EPSRC grant EP/R006032/1 and Wellcome Trust award
221915/Z/20/Z. The Dementia Research Centre is supported
by Alzheimer’s Research UK, Alzheimer’s Society, Brain
Research UK, and The Wolfson Foundation. This work was
supported by theNational Institute for Health Research (NIHR)
Queen Square Dementia Biomedical Research Unit and the
University College London Hospitals Biomedical Research
Centre, the Leonard Wolfson Experimental Neurology Cen-
tre (LWENC) Clinical Research Facility, and the UK De-
mentia Research Institute, which receives its funding from
UK DRI Ltd, funded by the UK Medical Research Coun-
cil, Alzheimer’s Society and Alzheimer’s Research UK. This
project has received funding from the EuropeanUnion’sHori-
zon 2020 research and innovation program under the Marie
Sklodowska-Curie grant agreement No. 765148, as well as
from the National Institutes Of Health under project num-
ber R01NS112161. MB is supported by a Fellowship award
from theAlzheimer’s Society, UK (AS-JF-19a-004-517). MB’s
work was also supported by the UK Dementia Research In-
stitute which receives its funding from DRI Ltd, funded by
the UKMedical Research Council, Alzheimer’s Society and
Alzheimer’s Research UK. JDR is supported by the Miriam
Marks Brain Research UK Senior Fellowship and has re-
ceived funding from an MRC Clinician Scientist Fellowship
(MR/M008525/1) and the NIHR Rare Disease Translational
Research Collaboration (BRC149/NS/MH). JEI is supported
by the European Research Council (Starting Grant 677697,
project BUNGEE-TOOLS) and the NIH (1RF1MH123195-
01 and 1R01AG070988-01).

The collection and sharing of the ADNI data was funded
by theAlzheimer’s DiseaseNeuroimaging Initiative (National
Institutes of Health Grant U01 AG024904) and Department
of Defence (W81XWH-12-2-0012). ADNI is funded by the
National Institute onAging, theNational Institute of Biomed-
ical Imaging andBioengineering, and the following: Alzheimer’s
Association; Alzheimer’s Drug Discovery Foundation; Bio-

Clinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Com-
pany; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and
Company; F. Hoffmann-La Roche Ltd and affiliated com-
pany Genentech, Inc.; GE Healthcare; Innogenetics, N.V.;
IXICO Ltd.; Janssen Alzheimer Immunotherapy Research
& Development, LLC.; Johnson & Johnson Pharmaceuti-
cal Research & Development LLC.; Medpace, Inc.; Merck
& Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Re-
search; Novartis Pharmaceuticals Corporation; Pfizer Inc.;
Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharma-
ceutical Company. The Canadian Institutes of Health Re-
search is providing funds for ADNI clinical sites in Canada.
Private sector contributions are facilitated by the Founda-
tion for the National Institutes of Health. The grantee is the
Northern California Institute for Research and Education,
and the study is coordinated by the Alzheimer’s Disease Co-
operative Study at the University of California, San Diego.
ADNI is disseminated by the Laboratory for Neuro Imaging
at the University of Southern California.

References
Al-Saady, M. L., Wolf, N. I., Pouwels, P. J. W., 2022. Segmentation of

intrinsically very low contrast magnetic resonance brain images using
tensor-based DTI registration. Neuroimage: Reports 2 (4), 100120.

Andersson, J. L. R., Sotiropoulos, S. N., Jan 2016. An integrated approach
to correction for off-resonance effects and subject movement in diffusion
MR imaging. Neuroimage 125, 1063–1078.

Aron, A. R., Schlaghecken, F., Fletcher, P. C., Bullmore, E. T., Eimer, M.,
et al., 2003. Inhibition of subliminally primed responses is mediated by
the caudate and thalamus: Evidence from functional MRI and Hunting-
ton’s disease. Brain 126 (3), 713–723.

Arsigny, V., Fillard, P., Pennec, X., Ayache, N., 2006. Log-Euclidean met-
rics for fast and simple calculus on diffusion tensors. Magnetic Reso-
nance in Medicine 56 (2), 411–421.

Ashburner, J., Andersson, J., Fristen, K., 2000. Image registration using
a symmetric prior - in three dimensions. Human Brain Mapping 9 (4),
212–225.

Ashburner, J., Friston, K. J., 2005. Unified segmentation. NeuroImage
26 (3), 839 – 851.

Basile, G. A., Bertino, S., Bramanti, A., Ciurleo, R., Anastasi, G. P., et al.,
6/14/2022 2021. In vivo super-resolution track-density imaging for tha-
lamic nuclei identification. Cerebral Cortex 31 (12), 5613–5636.

Battistella, G., Najdenovska, E., Maeder, P., Ghazaleh, N., Daducci, A. o.,
2017. Robust thalamic nuclei segmentation method based on local dif-
fusion magnetic resonance properties. Brain Structure and Function
222 (5), 2203–2216.

Behrens, T. E., Johansen-Berg, H., Woolrich, M., Smith, S., Wheeler-
Kingshott, C., et al., 2003. Non-invasive mapping of connections be-
tween human thalamus and cortex using diffusion imaging. Nature neu-
roscience 6 (7), 750–757.

Behzadian, M., Khanmohammadi Otaghsara, S., Yazdani, M., Ignatius, J.,
2012. A state-of the-art survey of TOPSIS applications. Expert Systems
with Applications 39 (17), 13051–13069.

Benarroch, E. E., 2015. Pulvinar: associative role in cortical function and
clinical correlations. Neurology 84 (7), 738–747.

Billot, B., Greve, D. N., Van Leemput, K., Fischl, B., Iglesias, J. E., et al.,
06–08 Jul 2020. A learning strategy for contrast-agnostic MRI segmen-
tation. In: Arbel, T., Ben Ayed, I., de Bruijne, M., Descoteaux, M., Lom-
baert, H., Pal, C. (Eds.), Proceedings of the Third Conference on Med-
ical Imaging with Deep Learning. Vol. 121 of Proceedings of Machine
Learning Research. PMLR, pp. 75–93.

Bocchetta, M., Gordon, E., Cardoso, M. J., Modat, M., Ourselin, S., et al.,
2018. Thalamic atrophy in frontotemporal dementia—not just a C9orf72
problem. NeuroImage: Clinical 18, 675–681.

H.F.J. Tregidgo et al.: Preprint submitted to Elsevier Page 19 of 25

                  



Multi-modal thalamic segmentation

Braak, H., Braak, E., 1991a. Alzheimer’s disease affects limbic nuclei of
the thalamus. Acta Neuropathol 81 (3), 261–268.

Braak, H., Braak, E., 1991b. Neuropathological stageing of Alzheimer-
related changes. Acta Neuropathol 82 (4), 239–259.

Clayden, J. D., Thomas, D. L., Kraskov, A., 2019. Tractography-based par-
cellation does not provide strong evidence of anatomical organisation
within the thalamus. NeuroImage 199, 418–426.

Dale, A.M., Fischl, B., Sereno, M. I., 1999. Cortical surface-based analysis:
I. segmentation and surface reconstruction. NeuroImage 9 (2), 179–194.

de Jong, L. W., van der Hiele, K., Veer, I. M., Houwing, J. J., Westendorp,
R. G. J., et al., 6/14/2022 2008. Strongly reduced volumes of putamen
and thalamus in Alzheimer’s disease: an MRI study. Brain 131 (12),
3277–3285.

Dempster, A. P., Laird, N. M., Rubin, D. B., 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statis-
tical Society: Series B (Methodological) 39 (1), 1–22.

Dryden, I. L., Koloydenko, A., Zhou, D., 2009. Non-Euclidean statistics for
covariance matrices, with applications to diffusion tensor imaging. The
Annals of Applied Statistics 3 (3), 1102 – 1123.

Eickhoff, S. B., Thirion, B., Varoquaux, G., Bzdok, D., Dec 2015.
Connectivity-based parcellation: Critique and implications. Human
Brain Mapping 36 (12), 4771–4792.

Fama, R., Sullivan, E. V., 2015. Thalamic structures and associated cogni-
tive functions: Relations with age and aging. Neuroscience & Biobehav-
ioral Reviews 54, 29–37.

Fan, Q., Witzel, T., Nummenmaa, A., Van Dijk, K. R., Van Horn, J. D.,
et al., 2016. MGH–USC human connectome project datasets with ultra-
high b-value diffusion MRI. NeuroImage 124, 1108–1114.

Fischl, B., 2012. FreeSurfer. NeuroImage 62 (2), 774–781.
Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., et al., 2002.

Whole brain segmentation: Automated labeling of neuroanatomical
structures in the human brain. Neuron 33 (3), 341–355.

Fischl, B., Sereno, M. I., Dale, A. M., 1999. Cortical surface-based analy-
sis: II: Inflation, flattening, and a surface-based coordinate system. Neu-
roImage 9 (2), 195–207.

Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F.,
et al., 01 2004. Automatically Parcellating the Human Cerebral Cortex.
Cerebral Cortex 14 (1), 11–22.

Fisher, R. A., 2022/06/23 1936. The use of multiple measurements in taxo-
nomic problems. Annals of Eugenics 7 (2), 179–188.

Frau-Pascual, A., Augustinack, J., Varadarajan, D., Yendiki, A., Fischl, B.,
Aganj, I., 2019. Detecting structural brain connectivity differences in
dementia through a conductance model. In: 2019 53rd Asilomar Con-
ference on Signals, Systems, and Computers. pp. 591–595.

Görür, D., Rasmussen, C. E., Jul 2010. Dirichlet process gaussian mixture
models: Choice of the base distribution. Journal of Computer Science
and Technology 25 (4), 653–664.

Greve, D. N., Fischl, B., Oct 2009. Accurate and robust brain image align-
ment using boundary-based registration. Neuroimage 48 (1), 63–72.

Heckemann, R. A., Hajnal, J. V., Aljabar, P., Rueckert, D., Hammers, A. o.,
2006. Automatic anatomical brain MRI segmentation combining label
propagation and decision fusion. NeuroImage 33 (1), 115–126.

Henderson, J.M., Carpenter, K., Cartwright, H., Halliday, G.M., 6/14/2022
2000. Loss of thalamic intralaminar nuclei in progressive supranuclear
palsy and Parkinson’s disease: clinical and therapeutic implications.
Brain 123 (7), 1410–1421.

Henschel, L., Conjeti, S., Estrada, S., Diers, K., Fischl, B., et al., 2020. Fast-
surfer - a fast and accurate deep learning based neuroimaging pipeline.
NeuroImage 219, 117012.

Hwang, C.-L., Yoon, K., 1981. Methods for Multiple Attribute Decision
Making. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 58–191.

Hwang, K., Bertolero, M. A., Liu, W. B., D’Esposito, M., 06 2017. The
human thalamus is an integrative hub for functional brain networks. The
Journal of Neuroscience 37 (23), 5594.

Iglesias, J. E., Augustinack, J. C., Nguyen, K., Player, C. M., Player, A.,
et al., 2015. A computational atlas of the hippocampal formation using
ex vivo, ultra-high resolution MRI: Application to adaptive segmenta-
tion of in vivo MRI. NeuroImage 115, 117–137.

Iglesias, J. E., Insausti, R., Lerma-Usabiaga, G., Bocchetta, M., Van Leem-
put, K., et al., 2018. A probabilistic atlas of the human thalamic nuclei
combining ex vivo MRI and histology. NeuroImage 183, 314 – 326.

Iglesias, J. E., Van Leemput, K., Golland, P., Yendiki, A., 2019. Joint in-
ference on structural and diffusion MRI for sequence-adaptive Bayesian
segmentation of thalamic nuclei with probabilistic atlases. In: Chung,
A. C. S., Gee, J. C., Yushkevich, P. A., Bao, S. (Eds.), Information Pro-
cessing in Medical Imaging. Springer International Publishing, Cham,
pp. 767–779.

Jack Jr., C. R., Bernstein, M. A., Fox, N. C., Thompson, P., et al.,
2022/06/28 2008. The Alzheimer’s disease neuroimaging initiative
(ADNI): MRI methods. Journal of Magnetic Resonance Imaging 27 (4),
685–691.

Jakab, A., Blanc, R., Berényi, E. L., Székely, G., 12 2012. Generation of
individualized thalamus target maps by using statistical shape models
and thalamocortical tractography. American Journal of Neuroradiology
33 (11), 2110.

Jeurissen, B., Tournier, J.-D., Dhollander, T., Connelly, A., Sijbers, J., 2014.
Multi-tissue constrained spherical deconvolution for improved analysis
of multi-shell diffusion MRI data. NeuroImage 103, 411–426.

Jian, B., Vemuri, B. C., 2007. Multi-fiber reconstruction from diffusion
MRI usingmixture of wisharts and sparse deconvolution. In: Karssemei-
jer, N., Lelieveldt, B. (Eds.), Information Processing in Medical Imag-
ing. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 384–395.

Johansen-Berg, H., Behrens, T., Sillery, E., Ciccarelli, O., Thompson, A.,
et al., 2005. Functional-anatomical validation and individual variation
of diffusion tractography-based segmentation of the human thalamus.
Cerebral Cortex 15 (1), 31–39.

Jones, E. G., 2012. The thalamus. Springer Science & Business Media.
Joshi, S., Davis, B., Jomier, M., Gerig, G., 2004. Unbiased diffeomorphic

atlas construction for computational anatomy. NeuroImage 23, S151–
S160.

Kassubek, J., Juengling, F. D., Ecker, D., Landwehrmeyer, G. B., 2005.
Thalamic atrophy in Huntington’s disease co-varies with cognitive per-
formance: A morphometric MRI analysis. Cerebral Cortex 15 (6), 846–
853.

Krauth, A., Blanc, R., Poveda, A., Jeanmonod, D., et al., 2010. A mean
three-dimensional atlas of the human thalamus: Generation from multi-
ple histological data. NeuroImage 49 (3), 2053–2062.

Liu, Y., D’Haese, P.-F., Newton, A. T., Dawant, B. M., 2020. Generation
of human thalamus atlases from 7 T data and application to intrathala-
mic nuclei segmentation in clinical 3 T T1-weighted images. Magnetic
Resonance Imaging 65, 114–128.

Maffei, C., Lee, C., Planich, M., Ramprasad, M., Ravi, N., et al., 2021.
Using diffusion MRI data acquired with ultra-high gradient strength to
improve tractography in routine-quality data. NeuroImage 245, 118706.

Mai, J. K., Forutan, F., 2012. Chapter 19 - Thalamus. Academic Press, San
Diego, pp. 618–677.

Mai, J. K., Majtanik, M., 2019. Toward a common terminology for the tha-
lamus. Frontiers in Neuroanatomy 12.

Mang, S. C., Busza, A., Reiterer, S., Grodd, W., Klose, U., 2022/06/14
2012. Thalamus segmentation based on the local diffusion direction: A
group study. Magnetic Resonance in Medicine 67 (1), 118–126.

Mardia, K. V., Jupp, P. E., Mardia, K., 2000. Directional statistics. Vol. 2.
Wiley Online Library.

McKenna, M. C., Li Hi Shing, S., Murad, A., Lope, J., Hardiman, O.,
et al., 2022. Focal thalamus pathology in frontotemporal dementia:
Phenotype-associated thalamic profiles. Journal of the Neurological Sci-
ences 436, 120221.

Minagar, A., Barnett, M. H., Benedict, R. H. B., Pelletier, D., Pirko, I.,
et al., 01 2013. The thalamus and multiple sclerosis. Neurology 80 (2),
210.

Morel, A., 2007. Stereotactic atlas of the human thalamus and basal ganglia.
CRC Press.

Patenaude, B., Smith, S. M., Kennedy, D. N., Jenkinson, M., 2011. A
Bayesian model of shape and appearance for subcortical brain segmen-
tation. NeuroImage 56 (3), 907–922.

Pini, L., Pievani, M., Bocchetta, M., Altomare, D., Bosco, P., Cavedo, E.,

H.F.J. Tregidgo et al.: Preprint submitted to Elsevier Page 20 of 25

                  



Multi-modal thalamic segmentation

Galluzzi, S., Marizzoni, M., Frisoni, G. B., Sep 2016. Brain atrophy in
alzheimer’s disease and aging. Ageing Res Rev 30, 25–48.

Planche, V., Su, J. H., Mournet, S., Saranathan, M., et al., 2022/06/28 2019.
White-matter-nulled MPRAGE at 7T reveals thalamic lesions and atro-
phy of specific thalamic nuclei in multiple sclerosis. Multiple Sclerosis
Journal 26 (8), 987–992.

Pohl, K. M., Fisher, J., Grimson, W. E. L., Kikinis, R., Wells, W. M., 2006.
A Bayesian model for joint segmentation and registration. NeuroImage
31 (1), 228–239.

Puonti, O., Iglesias, J. E., Van Leemput, K., 2016. Fast and sequence-
adaptive whole-brain segmentation using parametric Bayesian model-
ing. NeuroImage 143, 235 – 249.

Rohrer, J. D., Nicholas, J. M., Cash, D. M., van Swieten, J., Dopper, E.,
et al., 2015. Presymptomatic cognitive and neuroanatomical changes in
genetic frontotemporal dementia in the genetic frontotemporal dementia
initiative (GENFI) study: a cross-sectional analysis. The Lancet Neurol-
ogy 14 (3), 253–262.

Sadikot, A. F., Mallar Chakravarty, M., Bertrand, G., Rymar, V. V.,
et al., 2011. Creation of computerized 3D MRI-integrated atlases of
the human basal ganglia and thalamus. Frontiers in Systems Neuro-
science (SEPTEMBER 2011).

Schmahmann, J. D., 2022/06/14 2003. Vascular syndromes of the thalamus.
Stroke 34 (9), 2264–2278.

Semedo, C., Cardoso, M. J., Vos, S. B., Sudre, C. H., Bocchetta, M., et al.,
2018. Thalamic nuclei segmentation using tractography, population-
specific priors and local fibre orientation. In: Frangi, A. F., Schnabel,
J. A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (Eds.), Med-
ical Image Computing and Computer Assisted Intervention –MICCAI
2018. Springer International Publishing, Cham, pp. 383–391.

Sherman, S.M., 2007. The thalamus is more than just a relay. Current Opin-
ion in Neurobiology 17 (4), 417–422.

Sherman, S. M., 2016. Thalamus plays a central role in ongoing cortical
functioning. Nature Neuroscience 19 (4), 533–541.

Sherman, S. M., Guillery, R. W., 2001. Exploring the thalamus. Elsevier.
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens,

T. E. J., et al., 2004. Advances in functional and structural MR image
analysis and implementation as FSL. NeuroImage 23, S208–S219.

Su, J. H., Thomas, F. T., Kasoff, W. S., Tourdias, T., Choi, E. Y., et al.,
2019. Thalamus optimized multi atlas segmentation (THOMAS): fast,
fully automated segmentation of thalamic nuclei from structural MRI.
Neuroimage 194, 272–282.

Tax, C. M., Jeurissen, B., Vos, S. B., Viergever, M. A., et al., 2014. Recur-
sive calibration of the fiber response function for spherical deconvolution
of diffusion mri data. NeuroImage 86, 67–80.

Tourdias, T., Saranathan, M., Levesque, I. R., Su, J., Rutt, B. K., 2014. Vi-
sualization of intra-thalamic nuclei with optimized white-matter-nulled
MPRAGE at 7T. NeuroImage 84, 534–545.

Umapathy, L., Keerthivasan,M. B., Zahr, N.M., Bilgin, A., Saranathan,M.,
2021. Convolutional neural network based frameworks for fast automatic
segmentation of thalamic nuclei from native and synthesized contrast
structural MRI. Neuroinformatics.

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E.,
et al., 2013. The WU-Minn human connectome project: An overview.
NeuroImage 80, 62–79.

Van Leemput, K., 2009. Encoding probabilistic brain atlases using Bayesian
inference. IEEE Transactions on Medical Imaging 28 (6), 822–837.

Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P., 1999. Auto-
matedmodel-based tissue classification ofMR images of the brain. IEEE
Transactions on Medical Imaging 18 (10), 897–908.

Vatsavayai, S. C., Yoon, S. J., Gardner, R. C., Gendron, T. F., Vargas, J.
N. S., et al., Dec 2016. Timing and significance of pathological fea-
tures in C9orf72 expansion-associated frontotemporal dementia. Brain
139 (Pt 12), 3202–3216.

Wachinger, C., Reuter, M., Klein, T., 2018. DeepNAT: Deep convolutional
neural network for segmenting neuroanatomy. NeuroImage 170, 434–
445.

Wells, W. M., Grimson, W. E. L., Kikinis, R., Jolesz, F. A., 1996. Adap-
tive segmentation of MRI data. IEEE Transactions on Medical Imaging

15 (4), 429–442.
Wisse, L. E. M., Daugherty, A. M., Olsen, R. K., Berron, D., Carr, V. A.,

et al., 2022/12/01 2017. A harmonized segmentation protocol for hip-
pocampal and parahippocampal subregions: Why do we need one and
what are the key goals? Hippocampus 27 (1), 3–11.

Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Zöllei, L., et al.,
2011. Automated probabilistic reconstruction of white-matter pathways
in health and disease using an atlas of the underlying anatomy. Frontiers
in Neuroinformatics 5.

Zarei, M., Patenaude, B., Damoiseaux, J., Morgese, C., Smith, S., et al.,
2010. Combining shape and connectivity analysis: An MRI study of
thalamic degeneration in Alzheimer’s disease. NeuroImage 49 (1), 1–8.

Zhang, D., Snyder, A. Z., Fox,M.D., Sansbury,M.W., Shimony, J. S., et al.,
2008. Intrinsic functional relations between human cerebral cortex and
thalamus. Journal of neurophysiology 100 (4), 1740–1748.

Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., Alexander, D. C.,
2012. NODDI: Practical in vivo neurite orientation dispersion and den-
sity imaging of the human brain. NeuroImage 61 (4), 1000–1016.

Zhang, Y., Brady, M., Smith, S., 2001. Segmentation of brain MR im-
ages through a hidden Markov random field model and the expectation-
maximization algorithm. IEEE Transactions onMedical Imaging 20 (1),
45–57.

H.F.J. Tregidgo et al.: Preprint submitted to Elsevier Page 21 of 25

                  



Henry F. J. Tregidgo: Methodology, Software, Formal analysis, Writing - Original Draft 

 

Sonja Soskic: Validation, Writing - Review & Editing 

 

Juri Althonayan: Investigation 

 

Chiara Maffei: Resources, Data Curation, Writing - Review & Editing 

 

Koen Van Leemput: Software 

 

Polina Golland: Conceptualization, Writing - Review & Editing 

 

Ricardo Insausti: Investigation 

 

Garikoitz Lerma-Usabiaga: Investigation 

 

               -Gaudes: Investigation 

 

Pedro M. Paz-Alonso: Investigation, Writing - Review & Editing 

 

Anastasia Yendiki: Conceptualization, Resources, Writing - Review & Editing 

 

Daniel C. Alexander: Conceptualization, Writing - Review & Editing 

 

Martina Bocchetta: Conceptualization, Investigation, Writing - Review & Editing 
 

Jonathan D. Rohrer: Conceptualization, Funding acquisition 

 

Juan Eugenio Iglesias: Conceptualization, Methodology, Software, Funding acquisition 

 

 

 

                  



 
 
 
The probabilistic atlas and segmentation tool will be made publicly available as part of the 
neuroimaging package FreeSurfer (https://www.freesurfer.net/). Publicly available raw data 
used in the evaluation of this method may be obtained from the Human Connectome 
Project (http://www.humanconnectomeproject.org/) and the Alzheimer’s Disease 
Neuroimaging Initiative (https://adni.loni.usc.edu/).  The UCL dataset that support the 
findings of this study are not publicly available due to ethical restrictions. 

                  



This work was primarily funded by Alzheimer’s Research UK (ARUK-IRG2019A003). PG’s work in this area 

was supported by NIH NIBIB NAC P41EB015902 AY’s work in this area was supported by NIH grants R01 

EB021265 and R56 MH121426. DCA’s work in this area was supported by EPSRC grant EP/R006032/1 and 

Wellcome Trust award 221915/Z/20/Z. The Dementia Research Centre is supported by Alzheimer’s Research 

UK, Alzheimer’s Society, Brain Research UK, and The Wolfson Foundation. This work was supported by the 

National Institute for Health Research (NIHR) Queen Square Dementia Biomedical Research Unit and the 

University College London Hospitals Biomedical Research Centre, the Leonard Wolfson Experimental Neu- 

rology Centre (LWENC) Clinical Research Facility, and the UK Dementia Research Institute, which receives its 

funding from UK DRI Ltd, funded by the UK Medical Research Council, Alzheimer’s Society and Alzheimer’s 

Research UK. This project has received funding from the European Union’s Horizon 2020 research and 

innovation program under the Marie Sklodowska-Curie grant agreement No. 765148, as well as from the 

National Institutes Of Health under project number R01NS112161. MB is supported by a Fellowship award 

from the Alzheimer’s Society, UK (AS-JF-19a-004-517). MB’s work was also supported by the UK Dementia 

Research Institute which receives its funding from DRI Ltd, funded by the UK Medical Research Council, 

Alzheimer’s Society and Alzheimer’s Research UK. JDR is supported by the Miriam Marks Brain Research UK 

Senior Fellowship and has received funding from an MRC Clinician Scientist Fellowship (MR/M008525/1) and 

the NIHR Rare Disease Translational Research Collabo- ration (BRC149/NS/MH). JEI is supported by the 

Euro- pean Research Council (Starting Grant 677697, project BUNGEE-TOOLS) and the NIH 

(1RF1MH123195-01 and 1R01AG070988-01).  

The collection and sharing of the ADNI data was funded by the Alzheimer’s Disease Neuroimaging Initiative 

(Na- tional Institutes of Health Grant U01 AG024904) and De- partment of Defence (W81XWH-12-2-0012). 

ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and 

Bioengineering, and the follow- ing: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; 

BioClinica, Inc.; Biogen Idec Inc.; Bristol- Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli 

Lilly and Company; F. Hoffmann-La Roche Ltd and affiliated company Genentech, Inc.; GE Healthcare; Inno- 

genetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunother- apy Research & Development, LLC.; Johnson & 

Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale 

Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; 

Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is 

providing funds for ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation 

for the National Institutes of Health. The grantee is the Northern California Institute for Research and 

Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of 

California, San Diego. ADNI is disseminated by the Laboratory for Neuro Imaging at the University of 

Southern California.  

 

                  


