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A B S T R A C T   

Objectives: To investigate the association of exposure to per- and polyfluoroalkyl substances (PFAS) during early 
pregnancy with markers of the maternal thyroid system. 
Methods: Serum concentrations of seven PFAS as well as thyroid stimulating hormone (TSH), free and total 
thyroxine (FT4 and TT4), free and total triiodothyronine (FT3 and TT3) were measured in pregnant women in 
early pregnancy in the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy (SELMA) 
study. Outcomes were concentrations of TSH and thyroid hormones, FT4/FT3 or TT4/TT3 ratios, TSH/FT4 ratio 
as a marker of the negative feedback loop, TT4/FT4 or TT3/FT3 ratios as markers of the binding of thyroid 
hormones to binding proteins. 
Results: The study population comprised 2,008 women with median (95% range) gestational age of 10 (6–14) 
weeks. There was no association between PFAS and TSH. Higher PFNA, PFDA, PFHpA and PFOA levels were 
associated with a higher FT4 (largest effect estimate for PFDA: β [95% CI]: 0.27 [0.10 to 0.45], P = 0.002). 
Higher PFUnDA levels, but no other PFAS, were associated with a lower FT3 (β [95% CI]: − 0.05 [-0.09 to 
− 0.01], P = 0.005). Higher PFUnDA levels were associated with lower TT4 (β [95% CI]: − 1.58 [-3.07 to − 0.09]) 
and there was an inverted U-shaped association of PFOS with TT4 (P = 0.03). Higher PFDA, PFUnDA, PFHpA 
levels were associated with a lower TT3. Overall, higher PFAS concentrations were associated with a higher FT4/ 
FT3 ratio and a higher TT4/TT3 ratio. There was no association of PFAS with the TSH/FT4 ratio. Higher con
centrations of several PFAS were associated with lower TT4/FT4 and TT3/FT3 ratios. 
Conclusions: These findings translate results from experimental studies suggesting that exposure to PFAS may 
interfere with the thyroid system during pregnancy. Further experimental studies should take into account 
human evidence to better understand the potential underlying mechanisms of thyroid disruption by PFAS 
exposure.   

1. Introduction 

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a group of 
persistent and bio-accumulating chemicals with a wide range of appli
cations in consumer and industrial products, resulting in ubiquitous 

human exposure (Lau et al., 2007). Biomonitoring data also shows that 
virtually all people have measurable levels of PFAS in serum (Sunder
land et al., 2019). Observational data have shown that exposure to PFAS 
has been associated with endocrine disruption, alteration of the immune 
system (e.g. suppression of antibody production in response to 
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antigens), and a higher risk of developing malignancies of the breast and 
liver, metabolic diseases, reproductive disorders in humans (Kahn et al., 
2020; Fenton et al., 2020; Coperchini et al., 2020) and adverse fetal 
growth and neurodevelopment (Wikström et al., 2020; Oh et al., 2021; 
Mughal et al., 2018). Experimental studies showed that PFAS can 
disrupt various components of the thyroid system in humans for 
example by binding to transthyretin (Weiss et al., 2009; Ren et al., 
2016), by decreasing the activity of thyroid peroxidase enzyme (Song 
et al., 2012) and increasing intrathyroidal deiodinase enzyme gene 
expression while decreasing the hepatic expression of the same genes 
(Yu et al., 2009). 

Thyroid hormone is a regulator of fetal growth and development 
(Korevaar et al., 2017). However, fetal thyroid hormone availability 
relies on the placental transfer of maternal thyroid hormones, especially 
during the first half of pregnancy, which makes pregnancy a sensitive 
period for any form of thyroid disruption (Demeneix, 2019). While 
already mild alterations in thyroid hormone homeostasis may affect 
fetal neurodevelopment (Korevaar et al., 2017; Demeneix, 2019), 
several studies have also shown that maternal exposure to PFAS during 
pregnancy is associated with a higher risk of adverse neuro
developmental outcomes in the offspring, such as behavioral difficulties 
and autism spectrum disorder (Oh et al., 2021; Luo et al., 2020). If and to 
what extent maternal PFAS exposure affects thyroid homeostasis during 
pregnancy remains unknown. The currently available human studies 
remain inconclusive with varied results (Coperchini et al., 2020; Boesen 
et al., 2020), and most studies have only focused on concentrations of 
thyroid hormones or TSH as outcomes without utilizing their measure
ments to have a more in-depth look at functions of the thyroid system 
(such as thyroid hormone metabolism or balance of the pituitary-thyroid 
axis), and as a result key experimental findings have not yet been 
translated to human data. Therefore, we aim to investigate the associ
ation of serum PFAS with various components of the maternal thyroid 
system during pregnancy. 

2. Methods 

2.1. Study population 

This study was set in the Swedish Environmental Longitudinal, 
Mother and child, Asthma and allergy (SELMA) study, a prospective 
population-based pregnancy cohort. SELMA was designed to investigate 
the impacts of early life exposure to environmental factors, on maternal 
and offspring health (Bornehag et al., 2012). In total 6,658 pregnant 
women were invited out of which 2,582 agreed to participate. At the 
first antenatal visit, blood samples were taken from pregnant women in 
weeks 3–27 of pregnancy (median 10 weeks) in the county of Värmland 
(Sweden) between September 2007 and March 2010. Informed written 
consent was given by participating families for collection of biological 
samples and participation in the SELMA study. The SELMA study has 
been approved by the regional ethical committee, Uppsala, Sweden 
(Dnr: 2007/062, DNR:2015/177). 

2.2. Laboratory measurements 

Serum samples were frozen at − 80◦ Celsius and stored in a biobank 
at the Central Hospital in Karlstad. Serum thyroid stimulating hormone 
(TSH), free thyroxine (FT4), total thyroxine (TT4), free triiodothyronine 
(FT3), total triiodothyronine (TT3), thyroid peroxidase antibodies 
(TPOAb) and thyroglobulin antibodies (TgAb) were measured by elec
trochemoluminescence assays (Cobas® e601; Roche Diagnostics, Man
nheim, Germany) at the Department of Clinical Chemistry, Máxima 
Medical Center (Veldhoven, The Netherlands). Between-run coefficients 
of variation were 2.1%, 3.5%, 3.8%, 3.8%, and 7.7% for TSH, FT4, TT4, 
FT3 and TT3, respectively. TPOAb positivity and TgAb positivity were 
defined as TPOAb > 34 IU/ml or TgAb > 115 IU/l (manufacturer cut- 
offs), and the coefficients of variation were 12.4% and 7.1% for 

TPOAb at 33 or 100 IU/l, respectively, 10.9% and 8.6% for TgAb at 76 
and 218 IU/l, respectively. 

2.3. Chemical analysis 

Serum concentrations of 8 PFAS (Lindh et al., 2012) and cotinine, a 
biomarker of tobacco exposure (Axelsson et al., 2018), were analyzed 
using liquid chromatography - tandem mass spectrometry (LC-MS/MS; 
QTRAP 5500, AB Sciex, Framingham, MA). Briefly, 100 µl aliquots 
serum were added with labelled internal standards for all compounds. 
Proteins were precipitated using acetonitrile and the samples were 
shaken for 30 min, followed by centrifugation. The LODs ranged from 
0.01 to 0.06 ng/mL. The laboratory participates in the Erlangen Round 
Robin inter-laboratory control program for several PFAS and cotinine 
and has qualified as a European Human Biomonitoring Initiative 
(HBM4EU) laboratory for the analysis of PFAS. Any PFAS detected 
in<50% of the samples was excluded from the analyses which was the 
case only for PFDoDA. 

2.4. Outcomes 

We studied various aspects of the thyroid hormone system based on 
previous literature. First, absolute serum concentrations of TSH, FT4, 
TT4, FT3 or TT3. Second, thyroid autoimmunity, as reflected by TPOAb 
and/or TgAb positivity (Song et al., 2012). Third, the ratio of FT4/FT3 
or TT4/TT3 as a marker of peripheral T4 conversion by deiodinase en
zymes (Yu et al., 2009). Fourth, the TSH/FT4 ratio as a proxy of the 
negative feedback system at the level of the pituitary (Rothacker et al., 
2016). Finally, the TT4/FT4 or TT3/FT3 ratios as a marker of the 
binding of thyroid hormones to thyroid hormone binding proteins, 
mainly thyroxine binding globulin and transthyretin (Ishihara et al., 
2003). 

2.5. Covariates 

Maternal age, ethnicity, education level, parity, weight and height 
were ascertained using questionnaires. Data on weight and height were 
used to calculate BMI (kg/length2) and was ascertained from the 
Swedish National Birth Register. Serum cotinine levels with the 
following cut-offs, below 0.2 ng/mL, 0.2–15 ng/mL or higher than 15 
ng/mL, were used to categorize participants as non-smoker, passive 
smoker or active smoker, respectively. 

2.6. Statistical analysis 

TSH and PFAS concentrations were natural log-transformed to better 
deal with outlier effects and to normalize model residuals. We used 
Spearman’s correlation coefficients to assess the correlations between 
PFAS concentrations. We utilized multivariable linear regression to 
study the association of PFAS with the thyroid system outcomes. All 
analyses were adjusted for maternal age, BMI, parity, smoking status 
(according to serum cotinine concentrations), education level, ethnicity, 
gestational age at the time of blood sampling, TPOAbs and TgAbs based 
on a directed acyclic graph (Textor et al., 2016) (Supplemental Fig. 1). 
We used restricted cubic splines with 3 knots to investigate potential 
non-linear associations between PFAS and thyroid system parameters. 

Based on previous evidence that thyroid disruption by PFAS can be 
more prominent in TPOAb positive pregnant women (Coperchini et al., 
2017), the product interaction term of TPOAb status was added to all 
TSH and FT4 analyses to investigate any effect modification by TPOAb 
status. 

We utilized multiple imputation by chained equations to impute 
missing data of covariates, pooling 25 imputed datasets for analyses 
(Buuren et al., 2011). All statistical analyses were performed using R 
statistical software version 3.6.3 (packages mice; rms and corrplot; 
https://www.r-project.org/). 
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3. Results 

After exclusions, the study population comprised 2,008 women 
(Fig. 1) with a mean (SD) age of 30.9 (4.9) years and median (95% 
range) gestational age of (6-14) weeks (Table 1). Serum concentration of 
PFAS are provided in Supplemental Table 1. PFNA, PFDA, PFHxS, PFOA 
and PFOS concentrations were above the LOD in 100% of cases, and 
99.6% for PFUnDA, while PFHpA and PFDoDA concentrations were 
above the LOD in 73.4 % and 44.5%, respectively. The Spearman cor
relation coefficients between different PFAS ranged from 0.06 to 0.75 
(Fig. 2). 

3.1. PFAS and maternal TSH, thyroid hormones, TSH/FT4 ratio and 
thyroid autoimmunity 

There was no association between PFAS and TSH (Table 2). Higher 
PFAS levels were associated with a higher FT4 (Table 2; largest effect 
estimate for PFDA: β [95% CI]: 0.27 [0.10 to 0.45], P = 0.002), but 
associations of PFUnDA, PFHxS and PFOS with FT4 did not reach sta
tistical significance. The results of further analyses indicated that TPOAb 
positivity modifies the association of most PFAS with FT4 (P for inter
action: 0.0008 to 0.025; Supplemental Table 2). The effect estimates of 
the association of PFNA, PFDA, PFUnDA, PFHxS, PFOA and PFOS with 
FT4 were up to 6-fold larger in the TPOAb positive women compared to 
TPOAb negative women (Supplemental Table 3). Moreover, there was 
no association of PFAS with the TSH/FT4 ratio (Table 2). 

A higher PFUnDA concentration, but no other PFAS, was associated 
with a lower FT3 (Table 2; β [95% CI]: − 0.05 [-0.09 to − 0.01], P =
0.005). For total thyroid hormones, a higher PFUnDA concentration was 
associated with lower TT4 (Table 3, β [95% CI]: − 1.58 [-3.07 to − 0.09]) 
while there was an inverted U-shaped association of PFOS with TT4 (P =
0.03; Supplemental Fig. 2). Higher PFUnDA, PFHpA and PFOS concen
trations were associated with a lower TT3 (Table 3), and this association 
was L-shaped for PFDA (Supplemental Figure 3). None of the PFAS were 
associated with thyroid autoimmunity (TPOAb and/or Tg antibody 
positivity combined) or isolated TPOAb positivity (Supplemental Table 
4). 

3.2. PFAS and thyroid hormone metabolism 

Higher PFAS levels were associated with a higher FT4/FT3 ratio and 
a higher TT4/TT3 ratio indicative of reduced conversion of the pro
hormone T4 to T3 by deiodination (Table 3), although the associations 
of PFNA, PFHxS and PFOA with FT4/FT3 ratio and PFOA with TT4/TT3 
ratio were not statistically significant. The effect estimates for FT4/FT3 
ratio ranged from a β per one log unit change of PFAS (95% CI) of 0.03 
(0.0004 to 0.07) for PFOS to 0.06 (0.02 to 0.09) for PFHpA (Table 3) and 
the effect estimates for TT4/TT3 ratio ranged from 0.87 (0.14 to 1.60) 
for PFHxS to 1.99 (1.18 to 2.79) for PFOS (Table 3). Fig. 1. Flowchart of the study population.  

Table 1 
Characteristics of the study population.  

Characteristics N = 2,008 

Thyroid-stimulating hormone (mU/L) 1.30 (0.11–4.13) 
Free thyroxine (pmol/L) 15.0 (11.4–19.5) 
Total thyroxine (nmol/L) 118 (81–166) 
Free triiodothyronine (pmol/L) 4.67 (3.72–5.96) 
Total triiodothyronine (nmol/L) 1.93 (1.27–2.90) 
Thyroid peroxidase antibodies positivity 206 (10.3) 
Thyroglobulin antibodies positivity 159 (7.9) 
Gestational age (weeks) 10 (6–14) 
Age (years) 30.9 (4.9) 
BMI (kg/m2) 24.8 (4.5) 
Parity, n (%)  

0 894 (45) 
1 713 (36) 
≥2 389 (19) 

Ethnicity, n (%)  
Western 1,935 (97) 
Non-western 61 (3) 

Serum cotinine levels, n (%)  
Non-smoker: <0.2 ng/mL 1,699 (85.1) 
Passive smoker: 0.2–15 ng/mL 117 (5.9) 
Active smoker: >15 ng/mL 180 (9) 

Education level, n (%)  
Low 83 (4) 
Medium 724 (36) 
High 1,189 (60) 

Data are median (95% range), mean (SD) or number (percentage) as 
appropriate. 

Fig. 2. Correlations of maternal serum PFAS.  
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3.3. PFAS and possible displacement of thyroid hormones from distributor 
proteins (Ratios of TT4/FT4 and TT3/FT3) 

Higher PFDA, PFUnDA or PFHpA levels were associated with a lower 
TT4/FT4 ratio (Table 4, Supplemental Figure 4). Moreover, except for 
PFHxS and PFOA, higher PFAS concentrations were linked with a lower 
TT3/FT3 ratio (Table 4), and the association of PFDA was L-shaped 
(Supplemental Figure 4). 

4. Discussion 

We investigated the cross-sectional association of maternal serum 
PFAS concentrations with various markers of the maternal thyroid sys
tem in early pregnancy, identifying that higher concentrations of PFAS 
are associated with higher FT4 concentrations especially in TPOAb 
positive women. Our findings correspond well with a Chinese study of 
1885 pregnant women, where higher PFNA was associated with a higher 
FT4 in TPOAb positive women and in general the effect estimates were 
larger in the TPOAb positive group compared to the negative (Aimuzi 
et al., 2020). However, in a Canadian study of 494 pregnant women 
higher PFAS levels were associated with lower FT4 only among TPOAb 
negative women (Reardon et al., 2019). Furthermore, in two other small 
studies, the association of PFAS with TSH or FT4 did not differ according 
to thyroid antibodies status (Itoh et al., 2019; Lebeaux et al., 2020). 
While the smaller sample sizes of these studies can be a reason for their 
contradictory results (not being able to detect differences), various po
tential mechanisms could underlie the associations with FT4 and effect 
modification by TPOAb positivity. First, PFAS could directly affect the 
susceptibility to thyroid autoimmunity, but we could not identify any 
association of PFAS exposure with thyroid antibodies (as a marker for 
thyroid autoimmunity). Second, there could be indirect effects causing 
thyroid autoimmunity, but the limited experimental data on potential 
cytotoxic effects of PFAS on thyroid cells show no cytotoxic effects of 
short-chain PFAS (Croce et al., 2019), or only with very high doses 
(Coperchini et al., 2015). Several studies have shown that PFAS can 
suppress the immune system (Fenton et al., 2021; Peden-Adams et al., 
2008; Grandjean et al., 2012). In view of all the currently available 
evidence, it is hard to define mechanisms that might explain our 
observation of associations of PFAS with FT4 in TPOAb positive subjects. 
However, it appears that the effect is not due to any influence of PFAS on 
thyroid autoimmunity but rather might arise from the susceptibility of 

Table 2 
Association of serum concentrations of per- and polyfluoroalkyl substances (PFAS) with TSH, FT4 and FT3 concentrations.  

PFAS TSH FT4 FT3 TSH/FT4 ratio 

β (95% CI) P value β (95% CI) P value β (95% CI) P value β (95% CI) P value 

PFNA 0.02 (-0.04 to 0.09)  0.47 0.21 (0.05 to 0.38)  0.009 0.01 (-0.03 to 0.06)  0.52 0.0003 (-0.004 to 0.004)  0.89 
PFDA 0.009 (-0.06 to 0.08)  0.81 0.27 (0.10 to 0.45)  0.002 0.007 (-0.04 to 0.05)  0.78 − 0.0005 (-0.005 to 0.004)  0.80 
PFUnDA 0.05 (-0.01 to 0.11)  0.10 0.08 (-0.06 to 0.21)  0.26 − 0.05 (-0.09 to − 0.01)  0.005 0.001 (-0.001 to 0.005)  0.30 
PFHxS 0.01 (-0.05 to 0.08)  0.72 0.13 (-0.01 to 0.28)  0.07 0.01 (-0.03 to 0.05)  0.63 0.001 (-0.002 to 0.005)  0.61 
PFHpA 0.003 (-0.06 to 0.07)  0.92 0.23 (0.07 to 0.40)  0.004 − 0.01 (-0.06 to 0.03)  0.50 0.00008 (-0.004 to 0.004)  0.96 
PFOA 0.06 (-0.01 to 0.13)  0.12 0.20 (0.03 to 0.36)  0.02 0.04 (-0.001 to 0.09)  0.05 0.002 (-0.001 to 0.007)  0.21 
PFOS 0.03 (-0.04 to 0.10)  0.43 0.16 (-0.001 to 0.33)  0.05 0.007 (-0.04 to 0.05)  0.73 0.001 (-0.003 to 0.005)  0.62 

Betas (95% CI) are calculated with a multi-variable linear regression model for each PFAS separately (natural log-transformed), adjusted for gestational age at the time 
of sampling, maternal age, thyroid peroxidase antibodies, thyroglobulin antibodies, smoking status (according to serum cotinine), body mass index, education, 
ethnicity and parity. 

Table 3 
Association of serum concentrations of per- and polyfluoroalkyl substances (PFAS) with maternal total T4 and total T3 concentrations as well as FT4/FT3 and TT4/TT3 
ratios.  

PFAS TT4 TT3 FT4/FT3 ratio TT4/TT3 ratio 

β (95% CI) P value β (95% CI) P value β (95% CI) P value β (95% CI) P value 

PFNA 0.12 (-1.65 to 1.90)  0.89 − 0.03 (-0.06 to 0.001)  0.06 0.03 (-0.0001 to 0.07)  0.05 1.13 (0.33 to 1.93)  0.005 
PFDA 0.42 (-1.47 to 2.33)  0.66 Non-linear† 0.001 0.05 (0.01 to 0.08)  0.008 1.46 (0.60 to 2.31)  0.0009 
PFUnDA − 1.58 (-3.07 to − 0.09)  0.03 − 0.06 (-0.09 to − 0.03)  <0.0001 0.05 (0.02 to 0.08)  0.0006 0.95 (0.28 to 1.63)  0.005 
PFHxS 1.59 (-0.03 to 3.22)  0.05 − 0.001 (-0.03 to 0.03)  0.90 0.02 (-0.008 to 0.05)  0.15 0.87 (0.14 to 1.60)  0.018 
PFHpA − 0.59 (-2.36 to 1.17)  0.50 − 0.06 (-0.09 to − 0.02)  0.0007 0.06 (0.02 to 0.09)  0.0006 1.50 (0.71 to 2.30)  0.0002 
PFOA 1.61 (-0.20 to 3.43)  0.08 0.001 (-0.03 to 0.03)  0.93 0.01 (-0.02 to 0.05)  0.40 0.70 (-0.12 to 1.53)  0.09 
PFOS Non-linear*  0.03 − 0.06 (-0.10 to − 0.03)  0.0003 0.03 (0.0004 to 0.07)  0.04 1.99 (1.18 to 2.79)  <0.0001 

Betas (95% CI) are calculated with a multivariable linear regression model for each PFAS separately (natural log-transformed), adjusted for gestational age at the time 
of sampling, maternal age, smoking status (according to serum cotinine), body mass index, education, ethnicity, parity, thyroid peroxidase antibodies and thyro
globulin antibodies. 
* Supplemental Figure 2. 
† Supplemental Figure 3. 

Table 4 
Association of serum concentrations of per- and polyfluoroalkyl substances 
(PFAS) with maternal TT4/FT4 and TT3/FT3 ratios.  

PFAS TT4/FT4 ratio TT3/FT3 ratio 

β (95% CI) P value β (95% CI) P value 

PFNA − 0.09 (-0.19 to 
0.006)  

0.06 − 0.008 (-0.01 to 
− 0.002)  

0.006 

PFDA Non-linear*  0.001 Non-linear*  0.0005 
PFUnDA − 0.14 (-0.22 to 

− 0.05)  
0.0008 − 0.006 (-0.01 to 

− 0.001)  
0.006 

PFHxS 0.03 (-0.05 to 0.12)  0.48 − 0.001 (-0.006 to 
0.004)  

0.68 

PFHpA − 0.15 (-0.25 to 
− 0.05)  

0.001 − 0.01 (-0.01 to 
− 0.004)  

0.0003 

PFOA − 0.006 (-0.10 to 
0.09)  

0.89 − 0.003 (-0.008 to 
0.003)  

0.32 

PFOS − 0.09 (-0.19 to 
0.001)  

0.05 − 0.01 (-0.02 to 
− 0.007)  

<0.0001 

Betas (95% CI) are calculated with a multivariable linear regression model for 
each PFAS separately (natural log-transformed), adjusted for gestational age at 
the time of sampling, maternal age, smoking status (according to serum cotin
ine), body mass index, education, ethnicity, parity, thyroid peroxidase anti
bodies and thyroglobulin antibodies. 
* Supplemental Figure 4. 
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TPOAb positive women to thyroidal stress. There are currently too few 
experimental data to explain the potential underlying mechanisms of the 
effects of PFAS on TSH or FT4 in TPOAb positive women. Nonetheless, 
our results can provide new orientations for experimental studies to 
explore the potential underlying mechanisms that have not yet been 
investigated in experimental settings. 

We did not find any association between PFAS exposure with TSH, 
while higher concentrations of several PFAS were associated with higher 
FT4 levels. The results of previous epidemiological studies on the asso
ciation of PFAS with TSH in pregnant women are heterogeneous, either 
showing that higher serum concentrations of PFAS were associated with 
higher TSH (Reardon et al., 2019; Xiao et al., 2020; Berg et al., 2015; 
Webster et al., 2014; Wang et al., 2014), lower TSH (Kato et al., 2016; 
Yang et al., 2016) or a lack of association with TSH (Itoh et al., 2019; 
Lebeaux et al., 2020; Preston et al., 2020; Inoue et al., 2019). Experi
mental studies have shown that exposure to PFAS does not affect mRNA 
expression of the TSH receptor or TSH concentrations in rats (Yu et al., 
2009; Ramhøj et al., 2020), did not affect TRβ mRNA expression in silver 
female eels (Couderc et al., 2016) or TSH-stimulated cAMP production 
in cultured human thyroid cells (Croce et al., 2019); all of which can 
indicate that exposure to PFAS might not affect the TSH balance. In line 
with these results, we did not find any association of PFAS with the TSH/ 
FT4 ratio, indicating that the HPT-axis was not be affected by PFAS. 

In the current study, there was no association of PFAS with FT3 
except for the association of a higher PFUnDA with lower FT3, similar to 
the findings of a small Norwegian study including 375 pregnant women 
for PFUnDA (Berg et al., 2015). On the other hand, in a Chinese study (n 
= 1,111), higher PFNA and PFHxS were associated with a higher FT3 
(Aimuzi et al., 2020) while in a Japanese cohort (N = 701), Canadian 
cohort (N = 494) and a cohort from the US (N = 468) there was no 
association of PFAS with FT3 (Reardon et al., 2019; Itoh et al., 2019; 
Lebeaux et al., 2020). Based on these results it could be concluded that in 
general there is no association between PFAS and maternal FT3 
concentrations. 

One of the main results of our study is that higher exposures to PFAS 
were associated with a larger FT4/FT3 ratio which was due to elevated 
FT4 not accompanied by lower FT3 concentrations (except for exposure 
to PFUnDA). On the other hand, in general there were no associations of 
PFAS with TT4 but higher concentrations of most PFAS were with lower 
TT3 which resulted in a higher TT4/TT3 ratio. We utilized the ratios of 
free and total T4/T3 as markers of T4 deiodination, thus our results may 
imply that exposure to PFAS decreases the deiodination of T4 meta
bolism in the liver, placenta or target cells. In experimental studies, 
exposure to PFAS has been associated with lower FT4 or TT4 in rats (Yu 
et al., 2009; Chang et al., 2007; Martin et al., 2007), a decrease in he
patic mRNA expression of deiodinase type I but an increase in expression 
of type III deiodinase mRNA (Yu et al., 2009; Martin et al., 2007). 
Likewise, studies in chickens show that exposure to PFAS has been 
associated with increased hepatic and/or neuronal mRNA expression of 
deiodinase types II and III (Mattsson et al., 2019; Cassone et al., 2012; 
Vongphachan et al., 2011). While deiodinase type I is responsible for 
conversion of T4 to T3, type III is responsible for inactivation of T4 and 
T3 to reverse T3; therefore, if the same pattern of interference with gene 
expression of these two enzymes as explained above happens in humans, 
it might result in higher T4 and lower T3 concentrations which then can 
explain our findings. 

In our study, higher exposures to most PFAS were associated with 
lower ratios of TT4/FT4 and TT3/FT3, markers of displacement of 
thyroid hormones from transport proteins. We speculate that higher 
exposure to PFAS in our study results in displacement of free thyroid 
hormones from binding proteins resulting in lower ratios of total to free 
thyroid hormones. This interpretation is supported by the findings of 
two experimental studies that show that PFAS can bind to human 
transthyretin with binding affinities comparable to T4 (Weiss et al., 
2009; Ren et al., 2016). Another potential underlying mechanism by 
which higher exposure to PFAS could be associated with lower ratios of 

total to free thyroid hormones (binding proteins) is their reported hep
atotoxic effects (higher liver enzymes or higher risk of nonalcoholic fatty 
liver disease) which can in turn reduce the production of proteins by 
liver (Fenton et al., 2021). 

In this study we were able to utilize data from a large population- 
based cohort of pregnant women to translate findings of experimental 
studies on the effects of exposure to PFAS on thyroid system into human 
data. Our findings should be interpreted as an entirety, considering the 
links between all the components of the thyroid system that can be 
affected by PFAS (from pituitary to the target cells of thyroid hormones 
and from deiodinase enzymes to binding proteins) and various forms of 
evidence from human and experimental data. Although we did not have 
repeated measurements of serum PFAS during pregnancy, the long half- 
life of PFAS as well as their potential for bioaccumulation in human 
body, including in thyroid cells (Coperchini et al., 2017; Conti et al., 
2020) mean that our measurements can be reflective of the exposures to 
PFAS that stretch back longer times. Another limitation of our study is 
that we did not have measurements of serum transthyretin, thyroid 
binding globulin or albumin which would have been beneficial to 
further investigate the underlying mechanisms of changes of total to free 
thyroid hormone ratios. 

In conclusion, exposure to PFAS during early pregnancy is associated 
with the homeostasis of the maternal thyroid system on different levels. 
Further human and experimental studies are needed to replicate these 
results and large international collaborations between pregnancy co
horts in form of individual participant data meta-analyses can help to 
conduct stronger epidemiological investigations in the field. 
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