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Abstract: Electric distribution grids are seeing an increased penetration of photovoltaic (PV) genera-
tion. High PV generation exceeding the grid load demand results in a reverse active power flow in
the grid, which raises the voltage level. This paper presents a reactive power controller to overcome
the overvoltage problem in the distribution system. A sequentially coordinated and cooperative
volt/var control technique is presented. The proposed controller aims to use as low reactive power as
possible while mitigating the voltage issues. Accordingly, it reduces the active power loss associated
with reactive power flow and reduces the probability for active power curtailment of the PV system.
The controller is developed for each lateral and is replicated for all laterals. The lateral controller
coordinates the operation of the smart PV inverters in a sequential manner. Cooperative control
is proposed between the laterals’ controllers as well and is engaged when the individual laterals’
controllers are unable to solve their overvoltage issues. The performance of the proposed controller is
evaluated by comparing it to two other volt/var controllers, and it demonstrates better performance
in terms of reactive power requirement. To conduct the simulation study, a modified version of the
unbalanced IEEE 13-bus system is utilized, which includes an additional 44 low-voltage bus. The
study involves simulating 720 operating points across daily time series. The results indicate that the
proposed controller effectively addresses overvoltage problems that occur during periods of high
PV generation.

Keywords: distribution system; overvoltage; PV generation; smart inverters; volt/var control;
voltage control

1. Introduction

The world is becoming more dependent on clean and renewable energy sources as
a result of actions to counteract climate change and other environmental factors [1,2]. As
shown in Figure 1 [3], solar power had the highest share among the various renewable
energy source installations in the world in 2021. The operation and management of the
electric grids are challenged in several ways by photovoltaic (PV) systems, despite their
financial, technical, and environmental benefits [4–6]. In a conventional radial distribution
system, active power flows from the main substation to the loads. However, with a high
level of PV penetration into the distribution grid, this assumption is not always satisfied
where active power may flow upstream from the load points to the main substation, which
is referred to as the reverse power flow problem [7]. Reverse power flow occurs when the
net PV generation exceeds the load demand and may lead to voltage rise at the load points,
violating the acceptable operational upper voltage limit [8,9]. PV systems are derived by
smart inverters to regulate and maximize generated power. This paper extends the work
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firstly reported in [10] and focuses on approaches that use PV smart inverters to address the
overvoltage issue instead of relying on more traditional devices such as voltage regulators.
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International standards currently consider the participation of the smart inverters
in voltage control, e.g., IEEE standard 1547 [11]. Voltage control could be accomplished
through reactive power (volt/var) control and/or active power (volt/watt) control [11,12].
Due to high R/X ratio for the distribution grids, the voltage sensitivity to change in active
power is higher than its sensitivity to change in reactive power [13]. Nevertheless, the
volt/watt depends on active power curtailment, which negatively affects the financial
return from the PV system. Therefore, the volt/var control is more acceptable. The PV
inverter changes its reactive power based on the voltage magnitude. In case of undervoltage,
the PV inverter injects reactive power to the system to increase the voltage level. On the
other hand, the inverter absorbs reactive power from the system if the voltage exceeds
the upper voltage setting. The characteristics of the standard volt/var controller will be
presented later in the paper. The default configuration for the volt/var controller specified
in IEEE standard 1547 has been tested against a number of operational scenarios in [14] and
has proven to be effective for regulating the voltage. The increased thermal overloading
of the network cables and transformers is one of the downsides and restrictions of the
volt/var droop control system [15].

Instead of using the default volt/var droop setting as specified in [11] for all inverters
in the system, an optimized setting was proposed in [16] where a different setting was
allocated to different inverters. The PV inverters were coordinated based on their droop
setting, which was deduced from solving a multi-objective optimization problem. The
optimization problem was formulated at a critical operating point where the droop settings
were the control variables. Using different settings for different inverters resulted in
better performance in terms of reactive power requirements. In [17], the reactive power
setting was related to the output active power from the PV system. Specifically, the
PV system was designed to absorb reactive power when the active power surpassed a
certain threshold level. To determine the appropriate threshold level and droop setting
for different PV systems, an optimization problem was solved to minimize the associated
power loss. However, the estimated settings in [16,17] may not be optimum at different
operating conditions. A combined voltage control method was proposed in [18] where a
new characteristic was developed from combing reactive power control based on voltage
Q(V) and power factor control based on active power PF(P). The reactive power reference
value was calculated as the weighted sum of the reference values resulting from the Q(V)
and PF(P) controllers. With the aid of communication between various PV systems, two
reactive power control methods were proposed in [19]. These two methods relied on either
low or high bandwidth communication means. The first method used information about
reactive power from all inverters to set the controller slope, with the goal of equalizing
the reactive power sharing between the inverters. Meanwhile, the second method used
measured active power from all inverters to solve an optimization problem and set the
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droop slope. The second approach aimed to regulate voltage and minimize power loss.
Despite the superior performance of the second method, it is more expensive. Voltage
control at the lateral level was developed in [20]. A controller was suggested for each
lateral using voltage measurement at the lateral’s end node and the measured active power
generation from all PV systems. The controller depended on the system voltage sensitivity
matrix, which was calculated offline. Another option to mitigate the voltage violation is the
installation of energy storage systems. Charging an energy storage system when there is an
extra PV generation was suggested in [21] to avoid the overvoltage issue in the system and
discharging this energy during the system’s peak loading periods as needed. As previously
mentioned, the voltage can be controlled through the active power [17]. The effectiveness
of active power and reactive power control methods to solve the voltage rise problem due
to high PV generation in a Malaysian distribution grid was studied in [12]. Coordination
between different voltage control devices such as capacitor banks, on-load tap changers,
and PV inverters is also a potential application for the PV inverters that facilitates the PV
penetration into the distribution grids [22]. In [23], a central controller was proposed that
used an optimization technique to determine the reactive power setpoints for the central
dispatch of reactive power. The aim was to minimize the system active power loss while
also estimating the droop settings for the local controllers to respond to changes in real-time
PV output power. Implementing a central controller requires a sophisticated and expensive
communication infrastructure, as well as a thorough understanding of system information,
and adds a substantial computational burden [24].

The literature review demonstrates the need for additional study regarding the integra-
tion of PV systems into the distribution network and the resulting voltage issues. This paper
extends the work presented in [10]. A sequential coordinated and cooperative controller at
the lateral level is proposed to mitigate the overvoltage problem. The sequential coordi-
nated control ensures the coordination between different inverters to utilize as low reactive
power as possible. The cooperative control is activated if the individual controllers are
unable to solve their overvoltage problem. In comparison to other lateral level controllers
and local controllers, the suggested controller offers the following advantages:

1. It does not require measuring/communicating the active power data. Therefore, a
low bandwidth communication channel would suffice;

2. It uses as little reactive power as possible, therefore reducing the chances for active
power curtailment due to reactive power requirement, which increases the profitability
of the PV system. Active power curtailment occurs if the inverter-rated apparent
power does not allow both active power and reactive power flow;

3. There is no need for droop settings, unlike the local droop controllers;
4. The coordination between the inverters is satisfied at different load and PV operating

conditions.

The rest of the paper is organized as follows. Section 2 presents the principles of the
standard volt/var droop control method as described in IEEE standard 1547-2018. The
proposed sequential control method is presented in Section 3. The proposed controller is
compared to two other controllers in Section 4. Section 5 presents the simulation results
and discussion on a modified version of the IEEE 13-bus feeder. Finally, the conclusions are
presented in Section 6.

2. State of the Art Volt/Var Droop Control

The volt/var droop control is briefly explained before moving on to the suggested
controller because it will serve as the foundation for a comparison study in a later section.
According to IEEE standard 1547-2018, distributed resources must take part in voltage
regulation utilizing a variety of control strategies [11]. The commonly used control strat-
egy is the volt/var droop control method, which employs the characteristics shown in
Figure 2. [14,25]. Based on the voltage magnitude, the inverter changes its reactive power
(over-excited, under-excited, or unity power factor). The droop controller requires setting
the voltage and reactive power values indicated by the four points in Figure 2. If the system
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exhibits an overvoltage, the inverter absorbs reactive power, following its setting, to reduce
the system voltage and does the opposite if there is an undervoltage situation. Setting the
droop controller and coordinating different controllers is a tricky point if the accompanied
active power loss is considered [10,16].
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3. Proposed Controller

A controller is used for each lateral governing the lateral voltage through utilization of
the reactive power capabilities of the smart PV inverters installed along the lateral as shown
in Figure 3. Once an overvoltage is detected, the lateral controller adjusts the reactive
power setpoint (reference) for the inverter control algorithm. The inverter control algorithm
itself can be a PI controller, and its design is outside of this paper’s scope. The proposed
controller can be a separate unit. However, it can be integrated as a function within one
of the smart PV inverters and is referred to as the “Lateral Leader”. The lateral leader is
selected as the most downstream inverter along the lateral as it will see the maximum
voltage value in case of overvoltage [16]. The lateral leader monitors its local voltage and
acts if the voltage exceeds the permitted limit. During an overvoltage situation, the inverter
is required to absorb reactive power to reduce the voltage (under-excited mode [11]). This
reactive power flow results in active power loss on the distribution cables/lines. Therefore,
it is not only necessary to solve the overvoltage problem but to minimize the associated
active power loss as well.
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To solve the voltage violation issue in the system under various operating conditions,
the proposed control approach tries to use as little reactive power as possible. The overvolt-
age issue can be resolved by using the arbitrary/default droop setting from IEEE standard
1547 [14,15], although doing so may result in consuming more reactive power than is
necessary, increasing active power loss. The power loss caused by reactive power flow can
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be decreased by optimizing the droop setting between various PV systems [16]. However,
the coordination of the functioning of the PV systems is often done at a single operating
point (ideally a critical point). Therefore, not all operational conditions may result in the
minimum reactive power use being met.

In Figure 3, a lateral leader dispatches reactive power to one of the inverters along
the lateral at a time. The sensitivity of a bus/node voltage to a change in reactive power
increases while moving downstream along the lateral [26]. Therefore, the lateral leader,
at the most downstream inverter, controls firstly the reactive power of its inverter. The
inverter reactive power setpoint (Qset) is recursively changed by an amount of (∆Qpu) until
any of the following conditions is met:

1. The voltage violation case is solved;
2. The inverter is absorbing its maximum reactive power (Qmax).

If the second condition is satisfied while the first is not, the controller moves to
controlling the reactive power setpoint of the next inverter and so on as shown in Figure 4.
The change in the reactive power ∆Qpu can be a fixed value or varies during the control
iterations according to the voltage deviation level. A fixed value of 0.05 pu is used in this
study. According to IEEE standard 1547 [11], the maximum reactive power of a PV inverter
is 0.44 pu in the under-excited mode.
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Different leaders operate independently following the procedure in Figure 4. However,
it might happen that all the PV inverters along a lateral absorb their maximum reactive
power without solving the overvoltage problem. Under these circumstances, cooperation
between different leaders can help solve the problem. This is referred to as “cooperative
control” and is activated when necessary. A lateral leader that cannot individually solve
its lateral voltage problem seeks help from another leader. The online cooperative control
follows the procedure in Figure 5.

For a certain leader, what is the best order of other leaders to support it? This question
is answered through carrying out a voltage sensitivity analysis for the system [26]. The
analysis can be done by activating only one leader at a time and checking the corresponding
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effect on the voltage of the other leaders. In the results section, a numerical example for
this sensitivity study is provided on a modified version of the IEEE 13-bus system.
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Unlike the sequence used to control the PV inverters along a lateral during the lateral
leader individual operation, which starts by the lateral leader bus then moves upstream to
the other inverters as needed, the cooperative control starts by the most upstream inverter
on the lateral. To help illustrate this point, assume the lateral leader “m” in Figure 3 requires
help from the lateral leader “k” to solve the overvoltage problem on lateral “m”. The
voltage variation at bus “m” due to a change in the reactive power of a PV system “j”
along the lateral “k” is constant for different “j” (i.e., ∂Vm/∂Qjk = constant, for different “j”).
Therefore, when the lateral leader “k” is called by the cooperative control, it starts acting
on the first PV system near the lateral head because it results in lower active power loss
compared to the rest of the inverters along the lateral (lower distance is lower loss). In
other words, a lateral leader “k” starts by “PVn” during its individual operation in case of
an overvoltage on the lateral “k” and starts by “PV1” during the cooperative control.

In comparison to other lateral level controllers [20] and local droop controllers [16],
the suggested controller offers the following advantages:

1. Unlike [20], the proposed controller does not require measuring/communicating
power data. Therefore, a low bandwidth communication channel would suffice;

2. It uses as little reactive power as possible, therefore reducing the chances for active
power curtailment due to reactive power requirement, which increases the profitability
of the PV system. Active power curtailment occurs if the inverter-rated apparent
power does not allow both active power and reactive power flow;

3. There is no need for droop settings, unlike the local droop controllers;
4. The coordination between the inverters is satisfied at different operating conditions.

4. Comparative Study

The proposed controller is compared to two other volt/var controllers [11,16]. The
control methods in [11,16] depend on the droop control concept shown in Figure 2. The
comparison was performed on the system used in [16], which is depicted in Figure 6.
Parameters of the low voltage system are given in Table 1. The IEEE standard 1547-2018
provides a potential range for each of the droop control parameters with a default setting
indicated [11]. It has been shown in [20] that the arbitrary droop setting achieves a similar
performance to the voltage sensitivity-based droop setting. The study in [14] emphasized
the ability of the default settings to overcome the voltage problem. Accordingly, the default
droop setting was applied when testing the method in [11].
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Figure 6. Simulated distribution system used in [16].

Table 1. Parameters of the low voltage lateral.

Element Parameters

Medium voltage grid 20 kV, 100 MVA, X/R = 1
Transformer 20/0.4 kV, 250 kVA, Z = 4%

Cable impedance 0.346 + j0.0754 Ω/km

On the other hand, an optimized setting was employed in [16]. The setting was
derived from solving an optimization problem at a critical operating point as detailed
in [16]. The derived setting for the under-excited operating zone is shown in Table 2. The
reactive power values in Table 2 are based on the kW rating of the PV system, not the kVA
rating [16]. The Open Distribution System Simulator (OpenDSS) program was used to
model the system including the PV systems [27]. OpenDSS allows other programs such
as MATLAB/Python to run and control the simulation via the program’s COM interface.
The proposed controller was modelled using MATLAB and was applied to the distribution
system modelled on OpenDSS via the COM interface. In order to match the simulation
conditions in [16], the following points were considered:

• The system was unloaded such that the generated PV active power flows to the main
substation, which results in an increase in the system voltage;

• An upper voltage limit of 1.1 pu, following EN 50160 [28], was used;
• The total generated power was increased up to 150 kW.

Table 2. Optimized droop setting according to [16].

Parameter PV1 PV2 PV3 PV4 PV5

V3 1.023 1.054 1.073 1.087 1.094
(V4, Q4) (1.026, 0) (1.056, −0.207) (1.078, −0.484) (1.093, −0.484) (1.1, −0.484)

Figure 7 shows the voltage profile along the system at total PV generation of 75 kW,
100 kW, and 150 kW. Reverse power flow resulted in an increase in the voltage, while
moving downstream, that may exceed the upper voltage limit depending on the generated
power. The standard volt/var control (standard) [11], the optimized-setting volt/var con-
trol (optimized) [16], and the proposed volt/var control (proposed) methods were applied
individually to the system at different generation levels Figure 8 shows the voltage at the
last bus (bus 5) before and after applying the control for generation level from 100 kW
to 150 kW. The three control methods successfully solved the overvoltage problem. The
three controllers show a difference in the point at which the control started its action. The
proposed controller only reacted at 127 kW, while the optimized-setting controller [16]
started around 115 kW, and the IEEE standard controller was acting over the entire gen-
eration range presented. The PV systems absorb reactive power from the system to bring
the voltage down. Therefore, excessive reaction of the controller results in absorbing more
reactive power, which increases the system power loss. The absorbed reactive power as a
percentage of the PV systems reactive power capability is shown in Figure 9.
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As is clear, the standard IEEE controller resulted in absorbing at least 50% of the
total reactive power capability. The optimized-setting controller provides an improved
performance. The proposed controller has the lowest reactive power requirement. It
is worth noting that if the PV smart inverter kVA rating is equal to the PV system kW,
absorbing reactive power may require reducing the generated active power, which is known
as active power curtailment [20]. Therefore, it is better to absorb as little reactive power as
possible to:
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1. Reduce the active power loss associated to the reactive power flow;
2. Avoid the need for large active power curtailment if the inverter cannot provide both

active power and reactive power, which increases the profitability of the PV system.

The comparison shows that the proposed controller dominates the other two con-
trollers in terms of reactive power requirement.

5. Results and Discussion

In this section, the proposed controller was applied to a modified version of the IEEE
13-bus feeder. Firstly, voltage sensitivity analysis to reactive power change was performed
as a part of the cooperative control. Then, time series simulation was used to evaluate
the performance of individual and cooperative controllers under different load and PV
generation profiles.

5.1. System Description

The unbalanced IEEE 13-bus medium voltage system was used in this study [29]. The
system was modified by:

• Fixing the regulator tap position at the main substation;
• Disconnecting the capacitor banks at buses 675 and 611;
• Adding eleven low voltage laterals.

The modified system is shown in Figure 10 with five three-phase laterals connected at
buses 633, 675, 680, and 671 and six single-phase laterals connected at buses 692, 652, 611,
645, and 646. Description and data for the IEEE-13 bus feeder is available in [29], while the
data for the added laterals is given in Appendix A. The distribution system was simulated
using the OpenDSS program [27]. Figure 11 shows the voltage profile when all loads and
PV systems were operating at the rated power, along the feeder where the main substation
lies at the zero distance. The unbalanced nature of the system is clear from Figure 11 noting
that the PV systems were operating at unity power factor.
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5.2. Voltage Sensitivity Analysis for Cooperative Control

When a lateral leader “m” is not able to solve the overvoltage problem depending on
its lateral PV systems, it activates the cooperative control and seeks other leaders’ support
(one at a time). The effect of different leaders on the voltage of the lateral “m” determines
the order by which they are called to support the lateral leader “m”. This section studies
the voltage sensitivity to change in reactive power by different leaders to define the leaders’
order for each leader seeking support. To do so, the modified IEEE 13-bus system shown in
Figure 10 was used with PV systems rated to the loads level. In this subsection, loads were
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operating at unity power factor to avoid reactive power flow due to loading. The following
procedure was followed:

1. For once, all the PV systems were running at unity power factor;
2. A single PV system on lateral 1 has been modified to absorb reactive power (under-

excited mode), while the rest of the PV systems were operating at unity power factor;
3. The previous step for different laterals instead of lateral 1 is repeated;
4. Voltage at different leaders was recorded for the previous steps.
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Because the system has single-phase and three-phase PV systems, the absorbed Q was
assumed the same value per phase. The percentage change in voltage at different leaders
when absorbing reactive power by each lateral individually is calculated by (1):

%∆= (V i1 − Vij)/Vi1·100 (1)

where %∆Vij, Vi1, and Vij are the percentage change in voltage at leader “i” due to reactive
power absorption on lateral “j”, the measured voltage at leader “i” when all PV systems
operated at unity power factor, and the measured voltage at leader “i” due to reactive
power absorption on lateral “j”, respectively.

The three-phase laterals have seen different voltage values for different phases because
the system is unbalanced. Both minimum and maximum voltages for the three-phase
laterals were used in the calculation. The calculated percentage change in voltage is given
in Tables 3 and 4. From the two tables, the following points can be derived:

1. As expected, a lateral self-effect is the maximum. This emphasizes the role of the
individual lateral-based control part;

2. From Table 4, absorbing Q by single-phase laterals (6 to 11) may have a negative
impact on the three-phase laterals due to the unbalance caused by this single-phase
reactive power flow. Therefore, using single-phase leaders to support three-phase
leaders will be avoided;

3. Different leaders may have the same impact on another leader. Looking at the row
corresponding to lateral 4 in Table 3, the effect of laterals 2, 3, and 5 is the same on
lateral 4. In this case, the leaders are ordered according to their electrical distance
from the main substation (i.e., lower loss first);

4. Single-phase leaders of the same phase (e.g., 6 and 7) have a larger impact on each
other but may have a negative impact on the other phases due to system unbalance.
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Table 3. Voltage sensitivity to change in reactive power (maximum change for three-phase laterals).

Lateral Absorbing Q (j)

1 2 3 4 5 6 7 8 9 10 11

%
∆

V
on

la
te

ra
l(

i)

1 0.2619 0.0582 0.0582 0.0582 0.0582 0.0873 0.0873 0.0970 0.0970 0.0970 0.0970
2 0.0582 0.3104 0.1261 0.1164 0.1164 0.1843 0.1843 0.1843 0.0970 0.0970 0.0970
3 0.0582 0.1261 0.3104 0.1164 0.1164 0.1843 0.1843 0.1843 0.0970 0.0970 0.0970
4 0.0582 0.1164 0.1164 0.3298 0.1164 0.1843 0.1843 0.1843 0.0970 0.0970 0.0970
5 0.0582 0.1164 0.1164 0.1164 0.3007 0.1843 0.1843 0.1843 0.0970 0.0970 0.0970
6 0.0485 0.0970 0.0970 0.0970 0.0970 0.3976 0.1842 −0.0097 −0.0388 −0.0097 −0.0388
7 0.0485 0.0970 0.0970 0.0970 0.0970 0.1842 0.4363 −0.0194 −0.0388 −0.0097 −0.0388
8 0.0582 0.1164 0.1164 0.1164 0.1164 −0.0582 −0.0679 0.4363 0.0000 0.0970 0.0000
9 0.0582 0.0582 0.0582 0.0582 0.0582 −0.0097 −0.0097 −0.0291 0.3588 −0.0388 0.1261

10 0.0582 0.0582 0.0582 0.0582 0.0582 −0.0291 −0.0291 0.0970 −0.0097 0.3588 −0.0097
11 0.0582 0.0582 0.0582 0.0582 0.0582 −0.0097 −0.0097 −0.0291 0.1261 −0.0388 0.3394

Table 4. Voltage sensitivity to change in reactive power (minimum change for three-phase laterals).

Lateral Absorbing Q (j)

1 2 3 4 5 6 7 8 9 10 11

%
∆

V
on

la
te

ra
l(

i)

1 0.2522 0.0485 0.0485 0.0485 0.0485 −0.0291 −0.0291 −0.0291 −0.0388 −0.0291 −0.0388
2 0.0485 0.3007 0.1067 0.0970 0.0970 −0.0582 −0.0582 −0.0582 −0.0388 −0.0291 −0.0388
3 0.0485 0.1067 0.3007 0.0970 0.0970 −0.0679 −0.0679 −0.0582 −0.0388 −0.0291 −0.0388
4 0.0485 0.0970 0.0970 0.3104 0.0970 −0.0582 −0.0582 −0.0582 −0.0388 −0.0291 −0.0388
5 0.0485 0.0970 0.0970 0.0970 0.2910 −0.0582 −0.0582 −0.0582 −0.0388 −0.0291 −0.0388

From the previous points and the results provided in the tables, the first four support-
ing leaders can be sorted as given in Table 5 for different leaders that need help. When a
certain leader requires help through the cooperative control, it calls its supporters according
to the order in Table 5. For instance, if leader 1 requires support, it calls leader 5 first. In
case leader 5 is not able to help leader 1, due to Q limitation, then the request goes to the
next leader, which is leader 2 in this occasion.

Table 5. Supporting leaders for every leader that needs help during the cooperative control.

Leader That Needs Support

1 2 3 4 5 6 7 8 9 10 11

Su
pp

or
te

rs 1st 5 3 2 5 2 7 6 5 11 8 9
2nd 2 5 5 2 3 5 5 2 1 1 1
3rd 3 4 4 3 4 2 2 3 5 5 5
4th 4 1 1 1 1 3 3 4 2 or 3 2 or 3 2 or 3

5.3. Time Series Daily Simulation

The daily time series solution mode within the OpenDSS was used to simulate one
day of operation with two minute’s step resulting in 720 test points. Different irradiance
profiles [30] and load demand profiles [29] were used. The total load power and PV
generated power are shown in Figure 12. As it can be seen, there are intervals where the
PV generation exceeds the load, which resulted in an overvoltage at certain buses due to
reverse power flow in the system.

The proposed controller has been applied to the system, and examples for three-phase
and single-phase laterals exhibiting overvoltage are provided without and with the control
applied in Figures 13–16. The upper voltage limit used in this part of the study is 1.05 pu
following ANSI C84.1 [8]. The maximum voltage before applying the control for phase-A,
phase-B, and phase-C is 1.0854 pu, 1.0733 pu, and 1.0833 pu, respectively.
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For a few test points, the individual controllers were not able to totally solve the
overvoltage problem. Therefore, the cooperative control was activated. The performance
of the individual and cooperative controllers is shown in Figures 17–19. The voltage
was slightly greater than the upper limit when operating the individual controllers, and
the cooperative control allowed the voltage to satisfy the limit. The simulation results
ensure the ability of the proposed control to mitigate the overvoltage problem at different
operating conditions.
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6. Conclusions

A volt/var controller has been presented in this paper to address voltage rise in the
distribution grid caused by excess PV generation. The developed controller is proposed to
operate at the lateral level coordinating the operation of different smart inverters along the
lateral under different operating conditions. The controller relied on sequential activation
of inverter control to minimize reactive power usage, resulting in lower active power loss
due to reactive power flow. A cooperative control mechanism has been proposed to com-
plement the individual laterals’ controllers. It only comes into play when one or more of the
individual laterals’ controllers cannot resolve their overvoltage problems. A comparison
study between the proposed controller and two other droop-based volt/var controllers
emphasized that the proposed controller could solve the overvoltage problem using a lower
amount of reactive power at different net PV generation levels. The proposed controller
requires a simple low bandwidth communication platform between the lateral leading con-
troller and the other inverters to dispatch the reactive power sequentially. However, it does
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not require defining a droop setting. On the other hand, the droop-based controllers operate
locally without any communication but cannot ensure low reactive power requirement
even if the droop setting was optimized as declared from the comparison study.

The IEEE 13-bus feeder was modified by adding 44 low-voltage buses and was simu-
lated using the OpenDSS program to allow evaluation on an unbalanced system. Time series
simulation solution mode was used to evaluate the controller performance at 720 operating
points. The test points covered different loading and PV generation combinations. The
individual laterals’ controllers succeeded to solve the overvoltage problem for most of the
test points. When the individual control alone was unable to accomplish so, the cooperative
control action made sure the overvoltage problem was solved. The evaluation at different
load and PV generation levels ensures the successful coordination between the inverters at
different operating conditions. The future work will target evaluation on other networks
and the inclusion of other voltage control devices such as voltage regulators and FACTs. In
addition, the design of the communication network is to be considered.
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Appendix A

The IEEE 13-bus feeder was modified by adding three- and single-phase laterals. The
laterals’ data are provided in this appendix. Each lateral has one step-down transformer,
four cable sections, four loads, and four PV systems. Table A1 provides the transformer
and cable data. All three-phase PV systems are rated at 100 kW with inverter rating of
111 kVA. All single-phase laterals are rated at 30 kW with inverter rating of 33.5 kVA. The
loads were assumed to operate at 0.9 lagging power factor and are rated as follows:

• All single-phase loads are rated at 30 kW;
• Laterals number 1, 2, and 3 have unbalanced loads for each loading point and are

rated at (phase-A is 40 kW, phase-B is 30 kW, and phase-C is 30 kW);
• Laterals 4 and 5 are balanced and rated at 100 kW at each loading point.

Table A1. Transformer and cable parameters.

Element Parameters

Single-phase transformer 2.4/0.277 kV, 150 kVA, X = 2%, R = 1.1%
Three-phase transformer 4.16/0.48 kV, 500 kVA, X = 2%, R = 1.1%

Single-phase cable section 50 m, Z = 0.14 + j0.0357 Ω/km

Three-phase cable section 50 m, Zs = 0.114 + j0.0359 Ω/km,
Zm = 0.0228 + j0.0072 Ω/km
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