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Abstract 

Additive manufacturing (AM) is becoming an increasingly popular manufacturing process due 

to its design freedoms and material efficiency. However, the use of AM in industry is limited 

by the reliability of the deposited parts. Process-microstructure-property relationships are of 

paramount importance to increasing understanding and consistency within additive 

processes.  

Within this work, thermal and microstructure modelling methods are investigated to develop 

an efficient approach to the simulation of solidification microstructure. Finite element thermal 

models are considered as well as the implementation of analytical solutions. Cellular automata 

methods are used to simulate grain growth, 2D models are implemented for computational 

efficiency. 

The established approach is applied to three case studies within this work. The first is the 

application to laser scans on a bare nickel superalloy substrate, followed by the application to 

direct energy deposition techniques. Within the second study the capability of the modelling 

approach to capture changes in microstructure as a result of a change in process parameters 

is investigated. Finally, the modelling approach is applied to functionally graded materials 

through in situ changes in process parameters. 
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1 Introduction and Background 

1.1 Additive Manufacturing 

Additive manufacturing (AM) is the process of creating products by depositing material in a 

layer-by-layer manner. It is officially defined as “a process of joining materials to make objects 

from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing 

methodologies” (ASTM International, 2013). The process works by breaking down 3D 

geometries into 2D layers or slices. Each layer is then deposited sequentially to build the full 

part. There are numerous methods that can be used to deposit each layer, with varying heat 

sources and material feedstocks. For additive manufacture of metals, these techniques can 

be broken down into two main groups, direct energy deposition and powder bed fusion. 

Experimental examples of both of these types is shown in Figure 1. 

 

Figure 1: Images of the experimental set up for powder bed fusion (left) and direct energy deposition (right). 

Images courtesy of TWI Ltd. 

Powder bed fusion (PBF) methods take place within a build chamber. A thin layer of powder 

is spread across the build plate (or substrate) within the chamber, from the material reservoirs 

within the AM machine. Throughout the build of the geometry, the required 2D geometry of 

each layer is traced within the powder using the heat source (laser or electron beam). Upon 

completion of each layer, the build plate is lowered by the specified layer height and another 

layer of powder is swept across the top of the previously deposited material. A number of 

process parameters, including hatch spacing, scan speed and layer height, need to be 

specified for each deposition. The two main powder bed fusion techniques include laser-

powder bed fusion (L-PBF), also referred to as selective laser melting (SLM), and electron 

beam melting (EBM). The heat source for each method is a laser and an electron beam 

respectively. The inert atmosphere when using a laser heat source is normally nitrogen or 

argon gas (Yap, et al., 2015), whilst a vacuum is normally used when working with an electron 



beam (Gibson, et al., 2015). PBF is more suitable for small scale parts, as it usually uses 

reasonably small layer heights on an order of 10μm (Gibson, et al., 2015). This means a good 

resolution of geometry can be achieved, at a cost of longer build times. Furthermore, 

limitations on geometry size are imposed by the size of the build chamber. 

Direct energy deposition (DED), on the other hand, refers to AM techniques that deposit 

molten material directly from a nozzle on to a substrate. The ASTM standard defines them as 

“an additive manufacturing process in which focused thermal energy is used to fuse materials 

by melting as they are being deposited” (ASTM International, 2013). Popular DED methods 

include laser metal deposition (LMD) and wire-arc additive manufacturing (WAAM). As 

expected, the heat source used within LMD is a laser, whilst WAAM applies traditional welding 

techniques in an additive way and therefore an arc is used as the heat source, similar to that 

in Gas-Metal Arc Welding (GMAW) (Williams, et al., 2016). Additionally, a wire feedstock is 

used in WAAM, whereas LMD can be performed using both a powder or wire feedstock. DED 

methods offer higher deposition rates and component size than PBF, but this is normally at 

the expense of part resolution. In particular, WAAM can produce parts with build rates up to 

10kg/hr (Williams, et al., 2016) and with sizes on the order of metres. Moreover, due to the 

increased freedom of the procedure, techniques such as LMD can be used for part repair.  

Over recent years, additive manufacturing has seen high levels of interest from industries such 

as aerospace, automotive and biomedical. There has seen a number of successful 

applications within the aerospace industry including the GE LEAP fuel nozzle and GE9X 

engines, both now in service (Sher, 2020; GE, 2018) As an industry, AM is expected to be 

worth $21.5 billion by 2025, after reaching $7.336 billion in 2017 (AM-motion, 2016). This is 

due to the wide range of benefits that AM processes can offer.  

One of the most attractive benefits of AM is the more efficient material usage. As the process 

is based on the principle of depositing material in the required location, this means that there 

is significantly less waste material compared to more conventional subtractive methods, such 

as machining. Consequently, this results in a higher buy-to-fly ratio for industries, making the 

parts more cost efficient and economical. Furthermore, AM offers more customisation options 

as the need for costly moulds and dies is no longer required, as well as the ability to create 

more complex geometries. As a consequence of removing the need for component dies, a 

number of constraints on the geometry imposed as a result of using a die are also removed. 

For example, through the use of PBF one can create lattices and complex internal channels. 

This also presents opportunities for part consolidation, leading to simplified production lines 

and optimised geometries. Other benefits include, part repair opportunities presented by DED 

techniques, topology optimisation and tailoring of material properties. Functionally graded 



materials are materials that are tailored for specific purposes, be that through the deposition 

of multiple materials or the tailoring of microstructure to induce certain material properties. 

This adds another element of customisation and design to additive processes. 

However, as with any relatively new technology there are a number of challenges and 

disadvantages. These can be things as small as the constraints posed by build chamber size 

or limitations on deposition speed. Furthermore, stair stepping effects can be introduced to 

the geometry. This is as a result of discretising 3D geometries into a number of 2D slices. If 

the layer height is not suitably small, the geometry cannot be resolved well and stair like effects 

may be seen on the surface as a result. Consequently this can lead to surface roughness, and 

subsequently fatigue initiation sites, and can be limited by the control of layer height. This 

effect can be visualised in Figure 2. 

 

Figure 2: Demonstration of the stair step effect. 

Further challenges include lack of fusion and porosity. Lack of fusion can be caused by 

unsuitable process parameters, meaning that not all of the required material is fully-fused 

within each layer. Although most AM processes achieve a nearly fully dense component, 

porosity can also be caused as a result of entrapped gases during the build process. Part 

distortion is also experienced within AM processes, caused as a result of the rapid heating 

and cooling cycles the material is subjected to. The thermal process, inherent to the layer-by-

layer deposition, results in the build-up of residual stress within the component and 

consequently part distortion, particularly upon removal of the build plate. 

One of the more significant challenges for industries looking to implement AM technologies is 

the repeatability and reliability of the process. Reliability and structural integrity is obviously of 

paramount importance for all industries from biomedical to aerospace, without this assurance 

components cannot be used with confidence within their designed roles. Lack of knowledge 

surrounding the resultant properties of additive manufactured parts is at the root of this 



challenge. Furthermore, the level of repeatability of parts between machines and even 

between each individual builds with a given machine is not fully understood (Dowling, et al., 

2020). All of this means that there is a significant uncertainty to whether each AM part that is 

designed and manufactured will be fit-for-purpose. Recently, there has been a focus on 

increasing understanding of links between process parameters, microstructure and material 

properties to try and address these problems. A full review of the research gaps in the field of 

additive manufacturing will take place in the literature review in Chapter 2. 

1.2 Metals for AM  

A number of materials can be used in the additive manufacturing process including ceramics, 

plastics and metals. However, throughout this work, the focus will solely be on metal AM. 

Metals for additive manufacture need to have good weldability (Bourell, et al., 2017). This is 

because, as AM is a joining process, many of the same properties are required as those that 

are required for welding. According to ISO/TR 581 a material is said to be weldable, for a 

specific process, when subject to a suitable weld procedure, metallic continuity can be 

achieved and metallurgical and mechanical properties comply with specified requirements 

(ISO, 2005) .  A material’s weldability is therefore affected by a number of properties including 

its melting point, conductivity and thermal expansion, as well as its susceptibility to cracking 

and behaviour within the heat affected zone (Dwivedi, 2022). For this reason, the list of metals 

currently used within AM is reasonably limited. Common materials include, titanium alloys, 

stainless steels, aluminium alloys and nickel alloys. In particular there has been significant 

focus on Ti-6Al4V, AlSi10Mg and nickel superalloys, such as Inconel 718 and 625 (Bourell, et 

al., 2017). 

Superalloys are specific metal alloys that have had their alloy composition chosen in order to 

achieve increased performance. Nickel superalloys is a term used for alloys whose base 

element is nickel (Ni). These were initially developed for use in gas turbines (McLean, 1995), 

but are of particular interest in the aerospace industry. This is due to their increased 

performance at high temperatures (Andersson, 2011; Debroy, et al., 2018). Specifically, nickel 

superalloys boast increased strength as well as corrosion and oxidation resistance, increased 

creep strength and wear resistance (Attallah, et al., 2016; McLean, 1995; Graybill, et al., 

2018). Examples of common nickel superalloys include Inconel alloys, Hastelloy-X and 

Waspaloy. Inconel 718 and 625 have become increasingly popular in relation to additive 

manufacturing. The nominal composition of each of these can be seen in Table 1. 

Although it has been shown that some mechanical properties of additively manufactured nickel 

superalloys surpass those of their cast counterparts, after heat treatment (Xu, et al., 2019), 

there are still a number of challenges with processing nickel superalloys using additive 



methods. These include the build-up of residual stress and poor surface finish (Seetharaman, 

et al., 2016). Moreover, nickel alloys can be susceptible to defects and cracking, due to their 

alloy composition (Tang, et al., 2021; Attallah, et al., 2016). It has been observed, that there 

is also significant anisotropy of mechanical properties within additively built Ni-superalloy 

components. This is as a direct result of anisotropy within expitaxial solidification 

microstructures (Attallah, et al., 2016). Until these problems are understood, nickel superalloys 

cannot be used confidently within industry (Graybill, et al., 2018). 

Composition (%) Alloy 718 Alloy 625 

Ni (Plus Co) 

50.0-55.0 

58.0 min 

Cr 17.0-21.0 20.0-23.0 

Fe Bal. 5.0 max 

Mo 2.8-3.3 8.0-10.0 

Nb (plus Ta) 4.75-5.5 3.15-4.15 

C 0.08 max 0.1 max 

Mn 0.35 max 0.5 max 

Si 0.35 max 0.5 max 

P 0.015 max 0.015 max 

S 0.015 max 0.015 max 

Al 0.2-0.8 0.4 max 

Ti 0.65-1.15 0.4 max 

Co 1.0 max 1.0 max 

B 0.006 max N/A 

Cu 0.3 max N/A 

Table 1: Nominal composition of popular Inconel alloys, 718 (Special Metals, 2007) and 625 (Special Metals, 

2013). 

1.3 Numerical Modelling Methods for Additive Manufacturing 

Numerical modelling methods are becoming increasingly popular, especially with the birth of 

industry 4.0 and digital manufacturing (Rodic, 2017). Industry 4.0 focuses on the digitalisation 

of industry, with key areas of interest including data analytics, autonomous systems, additive 

manufacturing and the internet of things (Rodic, 2017). Inherently, simulation is also of high 

interest in relation to industry 4.0, through its application of digital technologies to develop and 

progress industrial processes. 

Modelling methods make use of underling physical equations to simulate and predict physical 

scenarios, including manufacturing processes such as additive manufacturing. By modelling 

a situation by its fundamental laws, this allows one to predict and gather required information, 



and provide understanding to complex systems (Velten, 2009). This can significantly reduce 

costs and lead times by reducing the number of experimental tests that would otherwise be 

required (Rodic, 2017). Furthermore, simulation can be used as a tool for optimisation to 

improve part performance or the manufacturing process itself. This could be achieved through 

process parameter optimisation, design optimisation or even operations optimisation (Cruz-

Mejia, et al., 2019; Hinsen, 2020). 

There are a number of various modelling methods, typically these can be stochastic or 

deterministic (Marion, 2008). Stochastic methods include statistical or probabilistic features, 

resulting in varying results for each run. On the other hand, deterministic results have no 

statistical dependence and therefore produce a single, repeatable outcome. Examples of 

stochastic models include Monte Carlo and Cellular Automata methods, which can both be 

used to simulate microstructure growth and are explained in further detail later on in this work. 

Furthermore models can be mechanistic or empirical - mechanistic models take into account 

underlying causes directly, whereas empirical models use mathematical relationships to 

approximate any changes that may take place. 

When modelling industrial manufacturing processes, mechanistic models are normally 

implemented. This involves solving the underlying partial differential equations (PDEs) that 

define the problem, such as the heat transfer equation, mass conservation and conservation 

of momentum. PDEs can be extremely complex to solve analytically, especially when there 

are a large number of variables. However, they can be solved using a variety of techniques 

based on discretisation and approximation, namely finite difference, finite volume and finite 

element methods. Whilst these methods are similar in that they all use discretisation methods 

to approximate PDEs, they have some distinctive differences. The finite difference method is 

by far the easiest to implement and most suited to uniform meshes (Tadmor, 2012). The 

method makes use of Taylor series to approximate the solution. An example of the application 

of this to the heat equation can be found here (Recktenwald, 2011). On the other hand, finite 

volume methods use conservation equations to monitor the flux in and out of a volume 

surrounding each node (Versteeg & Malalasekera, 2007). This technique is closely linked with 

computational fluid dynamics (CFD) and best suited for determining fluid flow. The final 

approach is the finite element method, which is the most popular method within industry and 

one of the main numerical modelling methods that will be implemented within this work. It 

allows application to more complex geometries with irregular meshes and advanced problems 

that require multi-physics approaches (Tadmor, 2012). Further detail on the finite element 

method is given in the next section, as the method will feature heavily within the work 

presented here.  



 

 

1.4 The Finite Element Method 

The finite element method (FEM) has been used frequently throughout the engineering 

industry since its implementation at Boeing between 1950 and 1962 (Felippa, 2004). It was 

originally established for use in structural analyses and is widely used throughout the 

engineering industry today. The theory used within FEM dates back as early as the 1800’s 

with connections to work developed by Raleigh and Ritz (Pepper & Heinrich, 2017). A brief 

overview of the theory of the finite element method is given here. A number of resources can 

be used to understand the theory of the finite element method including (Fish & Belytschko, 

2007; Moatamedi & Khawaja, 2018; Rao, 2005) 

The main aim of the FEM (with regard to linear elastic static mechanics) is to solve the 

equilibrium equation, given in Equation 1. Here F is the external loads, K the global stiffness 

matrix and u the resulting displacements. The displacements are the degrees of freedom 

within this problem. A degree of freedom is a variable of interest within the analysis. This 

equation ensures internal and external loads are balanced and can be compared to the spring 

equation. 

𝐹 = 𝑲𝑢 

Equation 1: Finite element method equilibrium equation. 

The first step of the FEM is to discretise the computational domain into a number of elements. 

This will define the shape of the elements and the nodal connectivity used within the 

computation. Furthermore, Gaussian quadrature is used to determine a number of integration 

points, with weightings, within the element. These integration points are a fundamental aspect 

of the finite element method for two reasons. Firstly, through the use of Gaussian quadrature 

they allow a simple and convenient calculation of integrated components over the whole 

element through the use of weightings and summation. Furthermore, they provide a 

convenient location for the calculation of derivatives, for example when calculating strain, as 

the derivatives are not necessarily continuous at the nodes.  

After discretising the domain and determining the element and nodal connectivity, the next 

stage is to decide on the order of the elements, usually linear or quadratic. This will determine 

the shape functions which define how values are interpolated within the element. Shape 

functions are determined as polynomials of the required order that are equal to 1 at the node 

in consideration and 0 everywhere else. Figure 3 shows an example of a 2D fully integrated, 



linear quadrilateral element, with the corresponding shape function for each node. These 

shape functions can then be used to interpolate between nodes and the integration points 

within the elements through the use of Equation 2, where 𝑁𝑖 represents the shape function for 

node i.  

 

Figure 3: Example linear quadrilateral element and corresponding shape functions. 

 

𝑢(𝑥, 𝑦) =  ∑𝑁𝑖(𝑥, 𝑦)𝑢𝑖 

Equation 2: Use of shape functions to interpolate displacement.  

The other two key components required to solve the problem statement and complete the 

system of equations are the compatibility and constitutive equations. The compatibility 

equations define the relationship between strain and displacement, whilst constitutive provide 

the relationship between stress and strain.  
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Equation 3: Strain-displacement relationship in 2D. 

The compatibility equations are closely related to the shape functions as the shape functions 

describe the displacement across the element. The relationship between strain and 

displacement within a 2D analysis is given in Equation 3, where u and v are the displacements 

in the x and y directions respectively. The derivatives of u and v are calculated through the 

use of the shape functions and the chain rule as demonstrated in Equation 4a. This allows us 

to construct the compatibility matrix, B, seen in Equation 4b.  
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휀 = 𝑩𝑢                                                            (b) 

Equation 4: Compatibility equations, (a) using shape functions and chain rule and (b) in matrix form 

(Moatamedi & Khawaja, 2018). 

Equation 4 gives the compatibility matrix, B, with respect to the global coordinate system (x,y). 

However, chain rule can be used to more easily calculate this with respect to the local 

coordinate system (ξ,η), through the transformation shown in, where J is the Jacobian. 
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Equation 5: Coordinate transformation through the use of the Jacobian (Liu & Quek, 2014). 

Once the compatibility matrix is determined, the constitutive matrix can then be calculated. 

This is done using the stress-strain relationship defined by the problem statement and material 

properties. The general relationship between stress and strain can be seen in Equation 6, 

where D is the constitutive matrix, whilst Equation 7 shows an example constitutive matrix for 

plane stress and plane strain. 

𝜎 = 𝑫휀 

Equation 6: General stress-strain relationship. 

 

 

 



𝑫 =
𝐸

1−𝑣2
(
1 𝑣 0
𝑣 1 0
0 0 0.5(1 − 𝑣)

)                                                       (a) 

𝑫 =
𝐸

(1+𝑣)(1−2𝑣)
(
1 − 𝑣 𝑣 0
𝑣 1 − 𝑣 0
0 0 0.5 − 𝑣

)                                                  (b) 

Equation 7: Example constitutive matrices for (a) plane stress and (b) plane strain (Fish & Belytschko, 

2007).  

Once the compatibility and constitutive matrices have been determined, these can be used to 

calculate the local stiffness matrix for the element. This is defined by Equation 8, further 

background on the formulation of this equation can be found here (Fish & Belytschko, 2007). 

However, as a consequence of the Gaussian quadrature implemented to define the integration 

points, the integral can be determined by computing the matrix multiplication at each 

integration point and summing the resulting matrices with appropriate weightings. 

𝑲𝒆 = ∫𝑩𝑻𝑫𝑩
 

𝑽

 

Equation 8: Calculation of elemental stiffness matrix.  

Again, this integration can be made simpler by performing this with respect to the local 

coordinate system. This can be done through the application of the Jacobian using the 

relationship shown in Equation 9 (Liu & Quek, 2014). 

𝑑𝑉 = det(𝑱) 𝑑𝜉𝑑휂𝑑휁 

Equation 9: Transformation of integrals to the local coordinate system. 

Finally, the global stiffness matrix can be found by combining all of the elemental stiffness 

matrices. The global stiffness matrix has dimensions NxN, where N is the number of degrees 

of freedom within the system. Any boundary conditions are then applied to the problem 

statement and Gaussian elimination can then be used to solve Equation 1. 

 

1.5 Heat Transfer 

Heat transfer mechanisms are extremely important in any experimental process where large 

temperature changes occur. In particular, within additive manufacturing concentrated heat 

sources are used and rapid heating and cooling is experienced throughout the course of the 

build. For this reason understanding the heat transfer mechanisms that take place is key to 

understanding AM processes. 



Heat transfer can take place in any physical scenario through three mechanisms; conduction, 

convection and radiation. Each of these mechanisms follows certain physical laws that can be 

described by mathematical equations. Firstly, conduction is the process of heat energy 

transferring from particle to particle through vibrations of these particles, and hence 

undertaking a transfer of kinetic energy (Annaratone, 2010). It can be represented by Fourier’s 

Law, as seen in Equation 10. Here, q represents the heat flux, k the materials thermal 

conductivity and T the temperature.  

𝑞 = −𝑘∇𝑇 

Equation 10: Fourier’ law for conduction of heat (Lienhard IV & Lienhard V, 2019). 

On the other hand, convection is the transfer of heat between a solid and a fluid. It can be 

thought of as conduction in the presence of fluid motion (Lienhard IV & Lienhard V, 2019). 

Heat transfer due to convection can be determined using Newton’s law of cooling, given in 

Equation 11, where h represents the heat transfer coefficient of the solid, and 𝑇𝑎𝑚𝑏 the 

temperature of the surroundings. 

𝑞 = ℎ(𝑇 − 𝑇𝑎𝑚𝑏) 

Equation 11: Newton’s law of cooling. 

The final heat transfer mechanism is radiation. This term refers to heat transfer through 

electromagnetic waves and is determined using Stefan-Boltzmann’s law. This is presented in 

Equation 12. Here, 휀 is the emissivity of the material and 𝜎 the Stefan-Boltzmann constant. All 

other variables remain as previously defined.  

𝑞 = 휀𝜎(𝑇4 − 𝑇𝑎𝑚𝑏
4 ) 

Equation 12: Stefan-Boltzmann law for radiation (Jiji, 2009). 

All three mechanisms must be taken into consideration when considering a system in which 

heat transfer plays a key role. The overall heat transfer equation can be seen in Equation 13. 

𝜕𝑇

𝜕𝑡
=  𝛼∆𝑇 +

𝑄

𝑐𝜌
 

Equation 13: Overall heat transfer equation (Han, 2012; Naterer, 2022) 

Within the heat equation, 𝑐 and 𝜌 represent the materials specific heat and density respectively 

and  𝛼 represents the materials thermal diffusivity, which can be calculated as 𝑘/𝑐𝜌. The 

equation is derived by determining the total amount of energy coming in and out of the domain 

and using the values of specific heat and density to calculate the corresponding changes in 

temperature. Fourier’s law is used directly in the derivation to determine how much heat is 



being conducted into and out of the region under consideration. Meanwhile, the Q in Equation 

13 represents any external heat sources or sinks, and therefore any convective or radiative 

heat losses are accounted for within this term. 

1.6 Solidification 

The thermal profiles experienced by additive manufactured material are unique when 

compared with traditional manufacturing methods, and consequently unconventional 

microstructural features occur (Attallah, et al., 2016). In order to help understand these 

concepts throughout this work, some basic solidification theory is presented here. A lot of the 

understanding here was taken from (Kou, 2003) and (Dantzig & Rappaz, 2016). These 

sources can be referred to for further detail. 

Most solidification within materials, and metals in particular, takes place by nucleation and 

growth.  Nucleation is the establishment of a collection of particles within the molten material 

that is above a critical size, so as to be energy preferential. There are 2 main methods of 

nucleation; homogenous and heterogeneous. Homogeneous nucleation refers to nucleation 

that takes place within the molten region of pure material, whereas, heterogeneous nucleation 

takes place in the presence of foreign particles such as the mould wall or particles present 

within the material. The critical size of a nucleus depends on temperature, or more specifically 

undercooling. This is the temperature below the liquidus point (𝑇𝑓) as shown in Equation 14. 

 

∆𝑇 = 𝑇𝑓 − 𝑇 

Equation 14: Calculation of undercooling. 

Athermal nucleation assumes that there exists a predetermined amount of nuclei that all have 

a required undercooling to form. Upon reaching the required magnitude of undercooling for a 

certain nucleus, that nucleus is created instantaneously. This is often demonstrated with a 

Gaussian distribution, defined by the critical undercooling and the standard deviation (Dantzig 

& Rappaz, 2016; Rappaz, 1989).   

Once a nuclei is formed, the nuclei continues to grow within the molten material. If stable, a 

grain continues to grow spherically until impinged upon by other grains, this is equivalent to a 

planar microstructure. Other structures include cellular and dendritic. These are formed when 

the interface becomes unstable as a result of constitutional supercooling due to solute 

redistribution. This is common in alloys, as the material composition is effected upon 

solidification, this is known as solute redistribution. When this takes place this means there is 

a local effect on the local undercooling, as a result of alterations in composition, known as 



constitutional supercooling. This leads to instabilities within the interface allowing for the 

formation of dendrites. The total undercooling, as shown in Equation 15Equation 14, can be 

broken down into a number of different components namely, concentration-induced, 

curvature-induced, thermal and kinetic undercoolings, respectively. 

∆𝑇 = ∆𝑇𝐶 + ∆𝑇𝑅 + ∆𝑇𝑇 + ∆𝑇𝐾 

Equation 15: Equation for undercooling (Kou, 2003). 

The solidification microstructure is highly dependent on the magnitudes of the thermal 

gradient, G, and the solidification velocity, R. As discussed by Kou, the type of structure is 

determined by the ratio G/R and the product of G and R, which is actually the cooling rate. 

This can be represented by a solidification diagram, or G-R diagram (Kou, 2003), such as that 

shown in Figure 4. This gives a graphical representation of when a material forms columnar, 

equiaxed or mixed grain structures based on the values of G and R. Typically for large thermal 

gradients a columnar structure is formed as the solidification takes place more rapidly than 

bulk nucleation can take place, and epitaxial growth occurs instead. Similarly, at lower thermal 

gradients it is more likely that equiaxed grains will form as sufficient time for nucleation and 

growth takes place. 

 

Figure 4: Example G-R diagram for IN718, taken from (Debroy, et al., 2018). 

Metal alloys tend to exhibit dendritic microstructures. The dendrite tip velocity, determines the 

rate of solidification of each grain, and is again dependent on the local undercooling. Metals 

solidify as crystalline structures. Depending on the alloy in consideration, a number of different 

structures are observed. The most common are face-centred cubic (FCC), body-centred cubic 

(BCC) or hexagonal close packed (HCP) crystals (Groover, 2020). These are shown in Figure 

5.  



 

Figure 5: Common crystallographic structures, image from (Engineer Educators, 2022) . 

1.7 Objectives and Aims 

This chapter has highlighted the benefits that additive manufacturing processes have to offer 

for industry. However, it has also summarised some of the main challenges being faced in the 

AM industry. In order to increase the potential for the adoption of AM within industry these 

challenges must be addressed, particularly the part reliability and repeatability. It is thought 

that this could be achieved through the increased understanding of the thermal history of AM 

processes, as well as the resulting microstructure and mechanical properties, as it is 

understood that mechanical properties are directly related to the microstructure which is in 

turn related to the thermal profile (Malinov, et al., 2001; Malinov, et al., 2001). Modelling 

methods are presented, within this work, as a cost effective solution to investigating these 

types of physical phenomena. A more detailed review of the research gaps in AM and the 

modelling methods available is presented in the following chapter, along with the research 

objectives of this project. 

 

  



 

2 Literature Review 

This chapter starts by identifying the research needs and challenges within the industry of 

additive manufacturing, focusing on those addressed within the current work. Following this, 

existing modelling approaches are reviewed for both thermal and microstructure prediction 

within AM processes. The chapter concludes by outlining the aims and objectives for this work. 

2.1 Research Needs in Additive Manufacturing 

Developments in additive manufacturing have been of great interest in recent years. As 

discussed in section 1.1, AM offers a wide variety of benefits for industry and it is for this 

reason that AM is a key component in the development of industry 4.0 (Khanpara & Tanwar, 

2020). However, the lack of understanding regarding certain aspects of the process, mean 

that the current applications of additive manufacturing in industry are limited. A number of 

roadmaps and reviews have been developed to help identify and address the key challenges 

in the manufacturing process (Fielding, et al., 2016; Energetics Incorporated, 2013; Lloyd's 

Register Foundation, 2016; Additive Manufacturing Center of Excellence, 2020; AM-motion, 

2016). Amongst these reports there are a large number of research gaps and challenges 

presented, however they are frequently grouped into smaller topic groups relating to specific 

stages of the manufacturing process, such as: 

 Design 

 Materials 

 Process 

 Post-processing 

 Non-destructive evaluation (NDE) 

 Knowledge transfer 

 Standardisation and qualification 

Firstly, there are a number of challenges presented relating to the design process of additively 

manufactured parts, in particular the desire for clear design guidelines, including the 

determination of whether AM is a suitable manufacturing method for a given component and 

application, and if so, which process would be most advisable along with guidelines 

surrounding process parameters and features such as support structures (America Makes & 

ANSI Additive Manufacturing Standardization Collaborative (AMSC), 2017; Additive 

Manufacturing Center of Excellence, 2020). This also includes design guidelines for more 

complex structures and functional materials. In general, readily available guidelines describing 

suitable approaches for additive methods would significantly help increase the use of AM in 



industry. The roadmap presented by LRF discussed the benefits of design optimisation and 

the need for further work to maximise the benefits and ensure safe implementation (Lloyd's 

Register Foundation, 2016).  Furthermore, there is currently a limitation on the materials 

available for AM processes and consequently there is a desire within industry to expand this 

range. Moreover, it is clear that there is a need to understand the properties of AM materials 

and how certain properties, such as spreadability (for power bed processes) and flowability 

(for powder based, direct energy deposition processes), impact the build. Specifications and 

standards for raw materials are also required if AM is to become widely adopted. With regards 

to the added concept of materials-by-design and functionally graded materials, it has been 

observed that further research is required to fully understand and most efficiently utilise the 

additional design capabilities AM offers (National Institute of Standards and Technology, 

2013). This relates closely to the process-structure-property relationships that will be 

discussed later.  

The next range of challenges relate to the additive process itself. They include parameter 

control and machine calibration. In particular, it has been highlighted by a number of sources 

that there is a significant requirement for in-situ monitoring and control throughout AM builds 

(Additive Manufacturing Center of Excellence, 2020; AM-motion, 2016). The aim of this would 

be to reduce variability with additive builds and increase reliability. Similarly, there is a need 

to understand and address the variations introduced between different machines in order to 

further increase part repeatability. There is also a substantial need for standards on post-

processing, as well as non-destructive evaluation methods (Additive Manufacturing Center of 

Excellence, 2020; National Institute of Standards and Technology, 2013). NDE plays a vital 

role in validation of part quality, but suitable NDE methods and standards are required for this. 

In addition, understanding of the impact of defects and their implications on part quality is 

crucial to determining a part’s safety and suitability. 

A key step in the adoption of AM in industry is knowledge dissemination. This includes 

development of training courses to ensure there is a suitably qualified work force to undertake 

the required tasks. This is already being introduced through projects such as CLLAIM 

(CLLAIM, 2021). Furthermore, knowledge transfer and education is an important part of 

initiating the cultural changes that are instrumental to any wide spread adoption of new 

technologies. Both companies and consumers need to be assured of functionality and safety 

before AM can truly be accepted as a reliable manufacturing process.  

A common goal that appeared amongst the majority of the reviews and reports cited here was 

the need for reliable, certified parts that are fit for purpose. Standards play a large role in the 

achievement of this goal, by ensuring safe, dependable procedures are available for all 



aspects of the additive manufacturing process (Additive Manufacturing Center of Excellence, 

2020). The core task that needs addressing in order to produce these standards is an increase 

in the fundamental understanding of the intricate mechanisms and relationships involved. This 

was captured by a number of the reports reviewed as part of this work (Energetics 

Incorporated, 2013; Lloyd's Register Foundation, 2016; Bourrel, et al., 2009).  The additive 

manufacturing roadmap presented by the Lloyd’s Register Foundation in 2016, in particular, 

discussed how an increase of understanding, resulting in the development of new standards 

could lead to a reduction in the excessive testing currently needed for the implementation of 

AM parts. The roadmap also highlighted the importance of developing an understanding of 

AM materials and their behaviour for the safety of AM components. One area, specifically, that 

has consistently been identified as requiring a significant increase in understanding is the 

resultant material properties of additively manufactured parts. The work presented here aims 

to contribute to the understanding of this by establishing methods of investigating relationships 

between process parameters and the resultant microstructure. 

A discussion of the anisotropy and heterogeneity of the material properties in AM parts was 

undertaken within the work completed by Kok et al. (Kok, et al., 2018). As determined within 

their work, such material properties can be induced as a result of the complex thermal histories 

imposed upon the material during additive processes, which are significantly different to those 

experienced in other manufacture methods. In a recent review of metal additive manufacturing 

in aerospace, Zhang and Liang identified one of the primary challenges to be the stability of 

mechanical properties (Zhang & Liang, 2019). Ngo et al. also identified anisotropic 

microstructure and mechanical properties as a key challenge in their review of AM (Ngo, et 

al., 2018). Further works also investigated the resultant microstructure of additively 

manufactured including the work by Parimi et al (Parimi, et al., 2014) and Alhuzaim et al 

(Alhuzaim, et al., 2021), both undertaken at the University of Birmingham. The prior work 

presented by Parimi et al investigated the influence of deposition strategy and power on laser 

DED processes. The influence of power was further investigated by the Alhuzaim et al. The 

results of this study showed that the laser power had significant influence on both the 

morphology of the grains and their size. 

A number of reports have identified the development of comprehensive relationships between 

process parameters, microstructure and mechanical properties as an important aspect for the 

advancement of AM. A review of additive manufacturing for aerospace by Singamneni et al., 

identified a number of key aspects that require further development (Singamneni, et al., 2019). 

These included further evaluation of the physics involved within additive manufacturing 

processes as well as the development of material-process-structure-property relationships. 

These relationships between raw material, manufacturing process, microstructure and 



resultant properties are also in the technical focus areas given in (Additive Manufacturing 

Center of Excellence, 2020).  Bourrel et al. also presented the need for understanding these 

relationships and being able to use these predictively, possibly with the assistance of 

multiscale modelling (Bourell, et al., 2009).  Likewise, it was established by ASTM, among 

others, that simulation of AM processes to establish material-process-structure properties is 

an area that needs further development in order to establish suitable standardisation 

techniques (Additive Manufacturing Center of Excellence, 2020).  

Many of the challenges discussed here can be addressed or supported through the use of 

numerical modelling. As discussed in section 1.3, simulations are a useful tool to provide 

insight and increase understanding on the mechanisms involved in the process. As noted in 

the work by Ghobakhloo (Ghobakhloo, 2018), numerical modelling will play a key role in the 

successful implementation of industry 4.0, by providing capabilities of efficient design and 

optimisation, as well as digital twins and in-situ monitoring. The metal based additive 

manufacturing review presented by the National Institute of Standards and Technology in 

2013, also discussed the need for simulation methods in order to increase design capabilities 

and part certification (National Institute of Standards and Technology, 2013). Moreover, the 

need for microstructure models as well as both low and high fidelity physics based models. A 

similar AM roadmap also highlighted the need for modelling and simulation methods for AM 

in order to help additive processes reach their full potential (AM-motion, 2016).   

2.2 Advances in Numerical Modelling for Additive Manufacturing 

As noted, numerical modelling and simulation techniques are vital to the advancement of AM. 

A significant increase in the number of published papers related to models in additive 

manufacturing has been seen in recent years (Figure 6). This is owing to the ability of 

modelling methods to provide insight and understanding, with a significant reduction in 

experimental testing. This is particularly useful in AM due to the large amount of process 

parameters involved. Simulation and modelling methods have been used within additive 

manufacturing to investigate, predict and understand a wide variety of different phenomena, 

from defect and melt pool geometry prediction to residual stress and distortion simulations.  



 

Figure 6 Frequency of published papers relating to modelling of additive manufacturing over recent years (when 

using the search “Additive Manufacturing” + Model on Web of Science). 

An extensive review of the modelling progress within additive manufacturing was given in the 

open source report produced by Wei et al. (Wei, et al., 2021). The report was extremely 

thorough and presented a great deal of insight on the modelling of AM processes from residual 

stress to microstructure predictions. Research gaps for each topic were discussed, including 

the need for efficient models and open access models, as well as the wider integration of 

certain complex physical laws. This built on the modelling aspects of the additive 

manufacturing review presented by the same team (Debroy, et al., 2018). Within this report a 

thorough review of both experimental and modelling aspects of the process, structure, 

property links in additive manufacturing was given. Here, the need for openly available 

modelling methods was identified to help improve the understanding surrounding these 

relationships ultimately leading to increased reliability and part validation. Other modelling 

needs, such as access to temperature dependent material properties are also identified. A 

collection of the literature undertaken within modelling of AM, for various processes, with 

varying objectives can be seen in the review presented by (Stavropoulos & Foteinopoulos, 

2018). 

Furthermore, Peter et al. provided a comparison of a number of specifically designed additive 

manufacturing software tools (Peter, et al., 2020). The capability of each package to predict 

and suggest a number of different features was assessed, including; orientation and support 

optimisation, part distortion and recoater contact. This was done through the comparison of 

simulated parts against experimentally manufactured IN718 parts built using the EOS M290 

system. Three numerical methods were presented as the underlying mechanisms used within 

the software packages discussed; namely, the finite element, inherent strain and thermal 



circuit network methods. Each method was used in an attempt to allow computationally 

efficient part scale models. 

Recently, in 2018, an additive manufacturing benchmark was held by the National Institute of 

Standards and Technology (NIST) in order to accelerate the development of additive 

manufacturing models. The benchmark consisted of a number of challenges with extensively 

measured experimental tests. Each was then opened to blind simulation submissions. A 

thematic series relating to the challenges within this benchmark was published in Integrating 

Materials and Manufacturing Innovation (IMMI). A number of the papers within this series will 

be discussed later on within this work, when individual challenges within the benchmark are 

discussed in more detail. The organisers of the benchmark also published a paper reviewing 

the overall outcomes (Levine, et al., 2020). A subsequent benchmark is to be undertaken in 

2022.  

More specific examples of the literature for thermal and microstructure modelling within 

additive manufacturing are given in the subsequent sections. 

2.3 Review of Thermal Modelling for Additive Manufacturing 

Thermal modelling of additive manufacturing processes has been a topic of great interest over 

the past years. This is owing to the multiple uses of the thermal profile from process parameter 

optimisation to residual stress, distortion and microstructure prediction. Thermal models play 

an extremely important role in microstructure prediction and must be as accurate as possible 

to ensure the best simulation of grain growth achievable (Li, et al., 2020).  In order to accurately 

represent the process there are a number of features that need to be accounted for within the 

simulations. These include moving heat sources, material deposition and heat loss. 

Furthermore, due to the intensity of the heat source within AM builds, AM thermal models can 

be highly computationally expensive and therefore this also has to be taken into account within 

the modelling approach. How all of these factors are taken account within the current literature 

is detailed below. Within this section an overview of the current literature available on thermal 

models in additive manufacturing is provided. Due to the large amount of literature available 

for AM models, as can be seen in Figure 6, it is unfeasible to review all the relevant papers 

here. Instead a selection of relevant papers highlighting the important features will be 

presented. The literature discussed will be broken down into powder bed fusion and direct 

energy deposition processes, owing to the different approaches that need to be undertaken 

as a result of the physical processes involved in the respective manufacturing methods. 

Firstly, a review of some of the work undertaken in the simulation of thermal history for powder 

bed fusion processes is covered. A 3D thermo-mechanical model of laser powder based 



processes with metals and ceramics within the dental industry was presented by Dai and Shaw 

(Dai & Shaw, 2004). Most notably within this work, there was a significant focus on the 

adaptation of material properties to account for the transition of material from powder to solid 

material. Equations were provided to determine the effective thermal conductivity of the 

powder bed as well as the contributions to heat loss from the powder material. The 

implementation of material properties for powder as well as solid material is one of the aspects 

of thermal models of particular interest for powder bed fusion processes. Huang et al. also 

provided similar equations for the effective thermal conductivity in their work on selective laser 

melting of Ti-6Al-4V (Huang, et al., 2016). However, much simpler relationships between 

material properties of the solid and powder materials are found elsewhere within literature. In 

particular, Foroozmehr et al. utilised a scaling factor of 0.01 to convert between bulk and 

powder material properties (Foroozmehr, et al., 2016). Moreover, within the work presented 

by Roberts et al the level of porosity within the powder bed was used to determine the scaling 

factor for material properties (Roberts, et al., 2009). The same approach was applied by 

Hussein et al. in their sequentially coupled thermo-mechanical models of single layers, 

representative of overhangs within complex geometries (Hussein, et al., 2013).   

Roberts et al. presented a 3D thermal model for the simulation of L-PBF with Ti6Al4V. A 

Gaussian heat source was implemented, along with element birth techniques to simulate 

material deposition (Roberts, et al., 2009). This is by far the most common material activation 

method within powder bed fusion processes, as it is a convenient method to activate a layer 

of material at a given time. The model proposed within the work by Roberts et al. utilised 

quarter symmetry, for efficiency, to validate the modelling approach against experimental data 

within literature. The approach was then applied to a multilayer model. The same experimental 

results were used to validate the modelling approach developed by Huang et al. also (Huang, 

et al., 2016). The authors within this work also implemented a Gaussian heat source, within 

their simulation of a single layer deposition process. The validated approach, developed within 

this work, was then used to investigate the influence of process parameters on the predicted 

thermal history and melt pool dimensions. Fu and Guo also used a Gaussian heat source in 

their simulation of a 5 layer, Ti6Al4V, SLM build (Fu & Guo, 2014). The models were validated 

against experimental melt pool measurements, and used to investigate the influence of laser 

power. Similarly, the modelling approach presented by Foroozmehr et al was used to 

investigate the effect of the scanning speed on the melt pool shape (Foroozmehr, et al., 2016). 

However, this work presented an alternative heat source method based on the optical 

penetration depth, in which a uniform flux was applied over a volume.  On the other hand, a 

Goldak heat source was used by Song et al. within their 2D fully coupled, thermo-mechanical 

simulations. Although it was unclear if any of the surrounding powder bed was accounted for 



within this model. Denlinger et al. also used the implementation of a Goldak heat source 

(Denlinger, et al., 2017). A sequentially coupled thermo-mechanical model was undertaken, 

with a combination of quiet and element birth techniques being applied to simulate material 

activation, with respect to the mechanical properties. Mesh coarsening was also used to 

increase efficiency of the approach. 

A wide range of work has been undertaken at Lawrence Livermore National Laboratory, on 

the modelling of powder bed fusion models (King, et al., 2015; Khairallah & Anderson, 2014; 

Hodge, et al., 2014). Typically this was done on a multiscale approach, where by 2 in house 

software packages, ALE3D and Diablo were used. First ALE3D was used to model the 

process on the melt pool scale. The information from this was then transferred into the part 

scale models in Diablo. However, the software used within these works will not be considered 

any further here. 

Within DED processes, as with the PBF models, a number of attributes must be taken into 

account within the thermal modelling process, including material deposition, dynamic heat 

sources and temperature dependent properties. Firstly, whereas the material in PBF models 

is deposited as a layer of powder and then selectively melted according to the geometry, with 

either the laser or electron beam, the material in WAAM is deposited as a molten melt bead 

at the location of the heat source. Therefore, it is not as physically representative to initiate 

material on a layer by layer manner as in the PBF simulations. Both element birth/ death 

techniques and quiet element methods can be used as a method of representing this 

alternative deposition technique. However, if element birth techniques are implemented, 

elements are often activated within smaller sub regions in a layer, to try and more accurately 

replicate material deposition with the moving heat source. Michaleris provided a 

comprehensive comparison of both the quiet and inactive element activation methods 

(Michaleris, 2014). Furthermore, different heat sources are typically used for DED processes 

to the common Gaussian heat source seen in the PBF models. Various different heat sources 

were discussed by Wei et al (Wei, et al., 2021), and also within the review of heat sources 

which covers Gaussian surface models as well as both Gaussian and Goldak volumetric 

models (Hamahmy & Deiab, 2020). Moreover, temperature-dependent properties and heat 

loss boundary conditions must still be taken into account, however the models are made 

simpler by the lack of powder in the process. A review of some of the current literature, for 

DED applications, is given below. 

There are a number of papers that look at the finite element simulation of the thermal history 

of WAAM processes. Element birth and death techniques were implemented along with a 

Goldak heat source by Xiong et al. (Xiong, et al., 2017), as part of their work looking at the 



effects of substrate preheating on the resultant thermal profile within a cylindrical build. As 

previously stated, Goldak heat sources are a popular choice of heat source model for wire-arc 

processes and have been used multiple times within WAAM thermal simulations and can be 

seen in work such as (Ding, 2012; Li, et al., 2019) as well, whilst some other authors still 

implement a Gaussian distribution (Bonifaz, 2018; Hejripour, et al., 2019). Montevecchi et al. 

looked at the development of a new heat source that takes into account both the heat 

dissipated from the molten metal as well as the welding arc (Montevecchi, et al., 2016). This 

was done through the combination of both a body and surface heat flux and was implemented 

along with the quiet element approach for material deposition. The model was experimentally 

validated for a single bead wall and showed much better agreement with experimental 

displacement results than a model using the more traditionally used Goldak heat source. More 

recently, Hejripour et al. (Hejripour, et al., 2019) studied the effect of cooling rate on phase 

formation through the use of thermal modelling in duplex stainless steel WAAM builds using a 

Gaussian heat source. A domain activation technique, similar to element birth, was 

implemented within this work to account for material deposition. Heat loss due to radiation and 

convection are often taken into account through the implementation of boundary conditions 

on exposed surfaces, however Bonifaz et al. (Bonifaz & Palomeque, 2020) made use of a 

FILM subroutine within their stress analysis of a single bead wall. This was to replicate the 

heat loss effects within the bead caused by the arc (Bonifaz, 2018). 

Furthermore, another feature of interest within WAAM is the shape of the deposited weld bead. 

In contrast to the finite domain of a powder bed, as molten material is deposited with the heat 

source in WAAM the geometry is much less predictable. The work carried out by D. Ding et 

al. (Ding, et al., 2015) focused on a model to accurately represent the bead shape through the 

use of mathematical functions such as parabolic and cosine equations. However, this work 

focused purely on shape and did not give any insight into the thermal profile of the bead. 

Similarly, Bai et al. (Bai, et al., 2018) also predicted the bead geometry through the use of a 

fluid flow model. Within most finite element thermal models, a layer within the WAAM build is 

represented as an idealised division of the geometry, ie. a rectangle within a wall or circle 

within the cylindrical builds (Hejripour, et al., 2019; Montevecchi, et al., 2016; Bonifaz & 

Palomeque, 2020), although some alter the geometry to try and account for the bead 

curvature. For example Graf et al. (Graf, et al., 2018) modelled the weld beam by semi-circular 

and sickle shaped layers, within their thermo-mechanical finite element model. A similar shape 

was undertaken in the work by Wang and Wang (Wang & Wang, 2016). 

A project that focused on the development of a more computationally efficient steady state 

thermal model, was presented by Ding (Ding, 2012). However, he also successfully 

implemented a detailed Lagrangian approach achieving a strong agreement with 



experimentally obtained thermal data. The steady state model has since been used in their 

subsequent publications, but will not be used here due to the assumption of a continued steady 

state. Symmetry has been used in multiple papers as an alternative method to reduce 

computational cost, by reducing the size of the computational domain (Ding, 2012; Ou, et al., 

2018). Fluid flow models are taken into account by both Ou et al. and Ogino et al (Ogino, et 

al., 2018). However, these are beyond the scope of this work as fluid flow models will not be 

incorporated as they are generally too computationally expensive and complex to model the 

thermal history on larger domains, such as the full size of the build part.  

A review of modelling approaches for laser metal deposition processes, up to 2015, was given 

by Andrew Pinkerton (Pinkerton, 2015). It summarised the then current modelling approaches 

being undertaken to simulate the LMD process on a range of scales from the powder stream 

to final build properties. Furthermore, it highlighted the ultimate goal of modelling in AM which 

is to be able to predict the resultant properties of the build. Some of the current work in LMD 

modelling is discussed here.  

Zhan et al. presented a recent study on the application of LMD processes to the repair of a 

trapezoidal groove in a 316L stainless steel plate (Zhan, et al., 2019). Within this study a 

Gaussian conical heat source was applied along with modified thermal conductivity to account 

for Marangoni effects. Whilst the model predicted melt pool geometry reasonably well, when 

compared to an experimental macrograph, there was a lack of experimental validation for the 

transient temperature values. The report concluded by considering the effect of the thermal 

history on microstructure and consequently microhardness. Whilst this does  not seem like a 

typical AM application, the ability for part repair is one of the benefits of DED processes and 

a lot of the principles required to model the process is the same as the deposition of a new 

part. Additive manufacturing simulations, and in particular DED processes, involve a lot of the 

same principles as those involved in traditional weld simulations (Lindgren, et al., 2016) and 

so we can also consider the established methods for welding and cladding applications, when 

simulating AM methods. Nevertheless, these will not be covered here as the review focuses 

on work within AM. 

A multi-physics approach was undertaken by Zhang et al. to simulate the thermal history of 

thin walls produced by LMD, and investigate the effects of certain process parameters 

including deposition strategy, deposition velocity and laser power (Zhang, et al., 2017).  The 

approach involved a number of complex physical laws and considered both a simulation of 

the laser-powder interaction zone and the full 3D geometry. A multilayer build, with a total of 

6 layers was simulated and a strong level of agreement was obtained for the predicted shape 

of the build for 4 different sets of process parameters. However, a quantitative comparison of 



thermal history values was not given. The bead geometry is of great interest within LMD 

processes, and the accurate prediction for this features heavily across literature. The shape 

of the bead surface was also predicted by Peyre et al. and compared against in-situ melt pool 

imaging (Peyre, et al., 2017). Also within this work, different values of travel speed and power 

were investigated and the thermal gradient and solidification rates were evaluated to 

determine columnar or equiaxed growth. Whilst the thermal models were validated with 

experimental data, the microstructure morphology predictions were not accurate for all 

process parameter combinations. Ahsan and Pinkerton implemented an iterative analytical 

model to predict thermal history, bead shape and cooling rate, as well as a prediction of grain 

size based on the cooling rate values (Ahsan & Pinkerton, 2011). The analytical model 

implemented is the Cline and Anthony’s equation based on the Gaussian heat source. Varying 

values of flow rate and power were investigated. 

A 3D sequentially coupled thermo-mechanical analysis was undertaken by Mukherjee et al., 

however fluid flow aspects were also accounted for within this work (Mukherjee, et al., 2017). 

Nevertheless, contrarily to the works presented previously that focused on bead shape, flat 

surfaces were assumed for the bead deposits. Half symmetry was also implemented as single 

track walls were simulated. Despite the assumption of flat surfaces, a good level of agreement 

was achieved between the simulated and experimental thermal measurements. Knapp et al. 

also considered the effect of assuming a flat bead geometry (Knapp, et al., 2017). This was 

shown by comparing the flat surface model to a curved surface model with and without the 

inclusion of convection within the melt pool. Very little difference was seen between the flat 

surface and curved surface models, whilst a much clearer variation was seen by not including 

convection. The curved shape of the bead was defined by an ellipsoidal equation and a 

combined surface and volumetric heat flux was implemented, similar to that in the WAAM work 

by Motevecchi et al. (Montevecchi, et al., 2016). A strong level of agreement was achieved 

with experimental images of the melt pool shape. 

Heigel et al. investigated the assumption of free convection within finite element models of 

direct energy deposition (Heigel, et al., 2015). Sequentially coupled thermo-mechanical 

models of the deposition of Ti-6Al-4V walls were compared against experimental results. The 

Goldak heat source was assumed and a forced convection model, based on measured heat 

transfer coefficient values, was suggested. It was determined that the forced convection model 

proposed achieveed more accurate results, for both the thermal and residual stress 

predictions, than the common assumption of free convection. In the thermo-mechanical model 

presented by Kumar and Vedrtnam, a combined heat transfer coefficient has been 

implemented (Kumar & Vedrtnam, 2018). This has been used widely within literature (Yongjie, 

et al., 2012). Kumar and Vedtram implemented a Gaussian heat source for their single track 



multilayer model, however they suggested that the use of volumetric heat sources would be 

more suitable in future works. Furthermore, it appears there was a lack of inclusion of material 

deposition methods within this study. Single track wall deposits have featured prominently 

within the literature reviewed here. However, the work presented by Lundbäck and Lindgren 

presented the application to much more complex geometries, with the implementation of a 

Goldak heat source and activation based on a defined path for the heat source (Lundbäck & 

Lindgren, 2011). 

In more recent works, Doux and Phillipe applied a calibrated Goldak heat source, with the 

built-in element progressive activation feature in Abaqus (made available in the 2018 release), 

to simulate the thermal history and residual stresses in an IN718 wall (Doux & Philippe, 2019). 

Although comparative experimental results for the thermal history were provided at 6 

thermocouple positions, it was difficult to draw a direct comparison with simulation results due 

to how the two are presented. The comparison presented within the work suggests that the 

overall shape of the thermal profile was accurately represented, whilst peak and final 

temperature values were under predicted. Experimental data for comparison of residual stress 

predictions was not yet provided. Li et al. also made use of a Goldak heat source and 

progressive element activation within their recent multi-scale analysis of a 42 layer LMD 

deposit in a binary nickel-copper alloy (Li, et al., 2020). The thermal history simulated here 

was used to provide both residual stress and microstructure predictions through the 

implementation of a multi-phase field model. Whilst the work provided a modelling approach 

for the microstructural and residual stress developments as a result of the thermal history, it 

did not provide any form of experimental validation for the modelling approach proposed. 

Furthermore, thermal modelling approaches have been applied to single track, wall builds with 

functionally graded materials within the work by (Li, et al., 2020). Within this work a circular 

heat source was implemented and element birth techniques applied, with a single element 

width being deposited in each step. This approach could be very labour intensive during the 

model development of large AM builds. 

Physically representative numerical simulations can be extremely computationally expensive. 

Typically, the more physical phenomena accounted for within the model, the more 

computationally expensive the model is. On the other hand, computational expense is also 

significantly influenced by the size of the simulation domain and the fidelity of the mesh and 

incrementation strategies implemented. Certain works have focused on the development of 

efficient modelling strategies within AM. As previously discussed, Ding et al presented an 

efficient model for the simulation of WAAM (Ding, 2012). Yan et al. also focused on the 

development of a computationally efficient model capable of predicting the transient thermal 

profile (Yan, et al., 2018). The model used a combination of thermal flux density and volume 



heat generation. Both layer based and track based approaches were compared against 

experimental results. As is expected, a direct trade-off was seen between the accuracy of the 

model and the computational time. 

Similarly, Yang et al (Yang, et al., 2021) attempted to address the computational expense of 

part-scale additive manufacturing simulations through the implementation of a semi-analytical 

heat source model, based on the commonly used Goldak heat source, leveraging the principle 

of superposition. Within this study, the significant reduction in computational expense was 

largely attributed to the coarse mesh size that could be used, as smaller mesh sizes are not 

required to resolve the heat source. Adaptive remeshing is another technique that has been 

used within literature to increase computational efficiency. For example, Olleak and Xi 

presented a modelling approach that simulated the deposition of a single layer within each 

model, allowing for mesh refinement in the layers of interest (Olleak & Xi, 2019). Moreover, 

inherent strain approaches have also been used in an effort to increase computational 

efficiency of thermo-mechanical models, however this technique is not really applicable to the 

application of microstructure simulations. 

Analytical solutions have also been applied as an efficient method of approximating thermal 

problems. As discussed by Lu, (Lu, 2021), the computational efficiency provided by the 

implementation of analytical thermal models allows for a fast and simple approach to 

investigate processes at the design level, such as process parameter optimisation. This could 

be particularly beneficial for AM, due to the large amount of process parameters and design 

freedoms such as functionally graded microstructures. By far, the most popular analytical heat 

source used in literature is the Rosenthal solution which has been used widely in welding 

applications. This will be the primary analytical solution used within this work, although other 

analytical methods such as Green’s function (Steuben, et al., 2019) have been seen within 

literature. 

Obviously, the efficiency of the analytical solutions come at a cost. Namely, this is due to the 

simplification of the physics involved. Physical phenomena such as Marangoni effects and 

latent heat of fusion are not typically accounted for within these types of solution. Furthermore, 

temperature independent properties are usually implemented, therefore limiting the accuracy 

of the predictions. However, a detailed comparison of the application of the finite element 

method and this analytical approach, for the simulation of thermal history in L-PBF processes 

with IN718, was provided by Promoppatum et al (Promoppatum, et al., 2017). A Gaussian 

surface heat flux was implemented within the finite element model. On the other hand, the 

Rosenthal solution could only account for a point heat source and temperature-independent 

material properties. Influence on the melt pool geometry, thermal history and microstructure 



were considered. The predicted melt pool width was compared against experimental data in 

literature. A good agreement was achieved by both heat source approaches for small energy 

density values. Similarly, both approaches obtained similar thermal gradient values and 

predicted columnar grain growth, whilst there was a larger difference in cooling and 

solidification rates. The work presented by Steuben et al. aimed to enhance the analytical 

methods, for specific use with AM processes, by introducing a number of capabilities to 

account for temperature dependent properties, representative computational domains and 

accounting for material deposition (Steuben, et al., 2019). The methods developed showed a 

significant improvement in the accuracy of the model when compared to a corresponding FE 

model, particularly through the inclusion of temperature dependent properties. 

One of the benefits of using analytical solutions is the ability to derive other quantities 

associated to the thermal model, such as melt pool width and length. A number of these are 

given in the works by Tang (Tang, 2017) and Lu (Lu, 2021). Similarly, Bertoli et al, utilised the 

Rosenthal solution to determine the thermal gradient and solidification velocity for L-PBF 

processes (Bertoli, et al., 2019). This information was leveraged to investigate the expected 

grain structure within these AM parts. The prediction of melt pool geometry using the 

Rosenthal is validated against experimental measurements in the work presented by Reese 

et al. (Reese, et al., 2018). The approach was then used to predict melt pool geometry as a 

function of velocity and power. However, very little detail on the modelling approach was 

provided, such as material properties and efficiency values. In the works presented by Walker 

et al. (Walker, et al., 2019; Walker, et al., 2020) a combined analytical and finite element 

analysis was used to predict track profile, thermal history and residual stress in single track 

deposits of IN718. The analytical model was based on that presented by Ahsan and Pinkerton 

(Ahsan & Pinkerton, 2011), and was used to predict the track profile. In their most recent work 

the modelling approach was used to predict these features with an in-situ change of process 

parameters within the scan.  

2.4 Microstructure Modelling Methods in Literature 

There are four primary methods of microstructure modelling seen within literature. These 

include empirical, kinetic Monte-Carlo (kMC), Cellular Automata (CA) and Phase Field (PF) 

models. A brief overview of each technique and its applications is given here.  

Empirical methods include methods such as the Johnson-Mehl-Avrami-Kolmogorov (JMAK) 

and Koistinen-Marburger equations (Bhadeshia, 2022). These analytical equations determine 

phase fraction based on a given temperature profile and information about the phase 

transitions of the material under consideration. Relevant information pertaining to this kind of 

phase information is usually found in TTT or CCT diagrams, where the specific phase 



transformations of an alloy are displayed as a function of temperature. The JMAK equation is 

used to model the diffusional transformation of phase α to β under isothermal conditions. The 

equation originates from the work performed by Kolmogorov in 1937 and the theory of the 

kinetics of phase transformations can be found in the series of works published by Avrami 

(Avrami, 1939; Avrami, 1940; Avrami, 1941). An application of the models to isotherm cooling 

of Ti6Al4V can be seen in the work by Malinov et al. (Malinov, et al., 2001; Malinov, et al., 

2001). Meanwhile, the Koistinen-Marburger equation is used to model martensitic 

transformations. These methods are extremely efficient, however, they can only supply a 

limited amount of data. Results from such an analysis would be in the form of a phase fraction 

for each representative element. Leblond and Devaux present an adaption of the models for 

anisothermal phase transformations in steels (Leblond & Devaux, 1984). These methods have 

also seen implementation with manufacturing processes. An example of this is the work 

presented by Mi et al. (Mi, et al., 2014). In this paper, JMAK equations were coupled with a 

3D finite element model to predict phase transformations in a TIG welding process. However, 

one of the main drawbacks of the approach is that it is unable to give any visual representation 

of the grain size, morphology or orientation, unlike other methods such as Cellular Automata 

and kinetic Monte Carlo simulations. 

Cellular automata was introduced as a method of modelling solidification, primarily, by Rappaz 

and Gandin in their seminal work for the application of cellular automata methods to casting 

processes (Rappaz & Gandin, 1993; Rappaz, et al., 1996; Gandin, et al., 1999; Rappaz & 

Thevoz, 1987; Gandin & Rappaz, 1994; Gandin & Rappaz, 1997). The technique is based on 

basic principles of nucleation and capture. Rappaz first presented improved models for 

nucleation in his preliminary work (Rappaz, 1989). A Gaussian distribution was suggested as 

oppose to the almost discontinuous representation used previously. In their more notable 

work, a 2D growth envelope model was developed to represent crystal growth within the 

material (Rappaz & Gandin, 1993). This was later modified establishing what is now a 

commonly implemented modelling method, the 2D decentred square algorithm (Gandin & 

Rappaz, 1997). This work also presented the 3D decentred octahedron algorithm for the 

representation of 3D FCC crystals. The 2D growth envelope technique was initially applied 

with a uniform temperature field. The CA- FE coupling was introduced in later work (Gandin & 

Rappaz, 1994), with weak and full couplings being presented here (Gandin, et al., 1999). The 

methods developed here are renowned within the implementation of CA for solidification 

mechanisms and form the basis for all other CA applications presented within this thesis, 

making the work presented by these authors one of the most significant developments for the 

simulation of microstructural development. 



In more recent work, Guillemot et al. presented an improvement to the CA-FE coupling through 

the implementation of a front tracking method and compared this against the coupling 

approach presented by Rappaz and Gandin (Guillemot, et al., 2004). This work was developed 

further by Carozzani et al. (Carozzani, et al., 2012), where by an iterative 3D fully coupled 

model was implemented by reducing memory usage. The authors provided experimental 

validation of this approach in subsequent work (Carozzani, et al., 2013), as well as efficient 

parallelisation methods for the simulation of large scale parts (Carozzani, et al., 2014). 

Furthermore, Chen et al. then presented a detailed description of the application of the 3D 

cellular automata finite element coupling for the application of arc-welding (Chen, et al., 2016). 

A level-set function was implemented to model the gas-liquid interface, along with a concise 

algorithm of five main rules for the implementation of the Rappaz-Gandin growth envelope 

algorithm. Moreover, it was also assumed that nucleation was not included within the melt 

pool. The work successfully simulated microstructure development for an arc welding process, 

but was not supported by experimental validations. Further works have been presented by 

Zinovieva and Zinoviev et al. for the application of solidification. In their early work, they 

demonstrated a 2D fully coupled cellular automata – finite difference model for the 

solidification of a nickel based superalloy (Zinovieva, et al., 2015) . The authors also presented 

an alternative approach to the reduction of mesh anisotropy, to the decentred algorithm 

suggested by Gandin & Rappaz, using two correction factors, one for the correction of grain 

shape and one to remove staggered boundary effects. (Zinovieva, et al., 2015). However, 

again, neither work was supported with experimental validations. 

The next method, of microstructural prediction, is the kinetic Monte Carlo approach, or Potts 

model as it is sometimes referred to. Monte Carlo simulations are statistical models that can 

be applied to a wide range of applications. For the application of microstructure predictions, 

kMC is very similar to the CA approach in that a discrete grid of cells is used to assign a state 

variable, or spin as it is more commonly called within kMC methods. One key difference is the 

rules used to update this variable, whilst the CA method uses solidification laws, kMC focuses 

on the implementation of the least energy principle. This approach sees a site change grain 

ID, with a given probability, if this configuration is more energetically preferential (Holm & 

Battaile, 2001). Nevertheless, some work has also demonstrated the incorporation of the least 

energy principle within CA methods (Ding, et al., 2006).  Spittle and Brown presented some of 

the first uses of Monte Carlo methods for the application of solidification (Spittle & Brown, 

1989; Spittle & Brown, 1989). Incrementally, Spittle and Brown introduced the effects of 

thermal field as well as solute redistribution within their work. The current leader in the 

application of the kinetic Monte Carlo is arguably the Sandia National Laboratories, whom 

have developed and released open source software, SPPARKS (Stochastic Parallel Particle 



Kinetic Simulator), for the implementation of kMC models. Examples of the implementation of 

this software for welding applications are given here (Rodgers, et al., 2016; Rodgers, et al., 

2017). Steady state melt pools were implemented to prescribe the temperature profile and 

steps were taken to relate the MC simulation to physical measures of both time and space 

through calibration. Temperature-dependence of the grain growth was implemented through 

the use of a grain boundary mobility function. In their later work, the effects of weld speed and 

laser mode (pulsed or continuous) were considered. 

The final method discussed here is the phase field method. This is probably the most 

physically accurate modelling technique, presented here, but is consequently also the most 

computationally expensive method. Phase field methods work by tracking a number of 

continuous field variables, known as order parameters, as they vary between 0 and 1 in 

accordance with a number of physical laws based on thermodynamics and the conservation 

of energy at the interface (Singh, 2015). The common method implemented in phase field 

models is the diffuse interface approach, where the order parameter varies continuously 

across the interface (Bhadeshia, 2010). This is different from the sharp interface method 

where a discrete change in order parameter occurs (ie. the order parameter can take on the 

value of 0 or 1). Further details on the phase field method can be found here (Singh, 2015). 

These methods generally take place on a much smaller scale, than the other methods 

discussed here, simulating microstructure development on the scale of single dendrites. The 

approach has been implemented by a number of authors within literature, some of these works 

are referenced here (Steinbach, et al., 1996; Fan & Chen, 1997; Krill III & Chen, 2002).  

Each of these established methods have their benefits and limitations. For this reason, all 4 

methods have seen exposure to the application of metal additive manufacturing processes. 

The next sections focus on presenting the current state of the art for this area, as well as 

comparing the positives and drawbacks of each modelling approach in order to assess the 

suitability of each technique.  

2.5 Literature for Microstructure Prediction in Additive Manufacturing Processes 

The interest in microstructure prediction for additive manufacturing has become of increasing 

interest in recent years. To that end, all of the mechanisms presented above have been used 

to investigate a number of different processes, phenomena and materials, with an aim of 

providing a better understanding of solidification mechanisms in metal additive manufacture. 

Empirical approaches have been applied by a wide range of authors for the application of AM. 

As additive processes involve highly non-uniform temperature profiles, the additivity rule is 

implemented for the implementation of the empirical approaches with such complex, 



anisothermal temperature histories (Charles Murgau, 2016). This technique essentially sees 

the discretisation of the thermal profile into very small individual isothermal segments. Some 

of the more important works in this area are presented by Kelly and Charles. Kelly and Kampe 

presented an extensive analysis of the resultant microstructure of laser metal deposited Ti-

6Al-4V (Kelly & Kampe, 2004). The authors’ subsequent work presented a modelling approach 

that accompanied the experimental investigation (Kelly & Kampe, 2004).  A simple 2D thermal 

model, perpendicular to the scanning direction, was implemented, whereby each new layer 

was deposited at a fixed temperature and the heat source shape was neglected. This thermal 

model was then used to determine the phase evolution within the material. Further details can 

be found in the thesis completed by Kelly (Kelly, 2004). Similarly, Charles presented a 

modelling approach for the prediction of phase composition in TIG wire metal deposition of 

Ti6Al4V (Charles, 2008). The approach undertaken is very similar to that of Kelly and Kampe, 

and focused on the time and spatial discretisation of the empirical equations. A detailed 

description of the JMAK and Koistinen-Marburger equations, as well as the incremental 

additivity approach was given in the later work by Charles Murgau et al. (Charles Murgau, et 

al., 2012). 

There has been a heavy accent on the use of empirical models for the prediction of 

microstructure development in the titanium alloy, Ti-6Al-4V. This is likely due to the popularity 

of the alloy within AM applications but also as a result of the complex phase transformations 

undertaken by the alloy, meaning that empirical approaches are more suitable for capturing 

all aspects of the phase transformations involved. The principles developed by Kelly and 

Charles have been implemented by a number of subsequent works by other authors. These 

include the work presented by Vastola et al. whereby empirical equations accounting for the 

formation and dissolution of α phase, as well as martensite were used to predict microstructure 

formation for Ti6Al4V produced by both SLM and EBM (Vastola, et al., 2016). The 

microstructure model presented here is coupled with a 2D finite element thermal model, and 

shows a clear difference in the microstructural phases formed by the two processes. Irwin et 

al., similarly, implemented the methodology, suggested by Kelly and Charles, to Ti6Al4V LENS 

production (Irwin, et al., 2016). A 3D finite element thermal model was used as the input for 

the microstructural model. The work optimised the material properties implemented, through 

experimental validation and compared them against the material properties suggested by 

Kelly and Charles. However, the model did not consider the effects of martensitic 

transformations separately. Both diffusion and diffusionless transformations were accounted 

for in the work presented by Suarez et al., for the application of laser metal deposition of 

Ti6Al4V (Suarez, et al., 2011). In a more recent work, Yang et al. used similar methods to 



simulate phase transformations in powder bed fusion of Ti-6Al-4V but with an added capability 

to determine dislocation density within the martensitic phases (Yang, et al., 2020). 

Whilst the application to Ti-6Al-4V heavily dominates the current literature, application to other 

alloys have also been seen in the literature. Zhang et al. applied similar methods in their recent 

work presenting a framework for the simulation of phase transformation in AM (Zhang, et al., 

2019). As the work presented a generic framework that could be applied to alternative alloys 

and AM processes, application for steel 5140 was demonstrated, whilst the model was also 

applied to powder bed fusion of Ti-6Al-4V, with calibration and validation against experimental 

samples.  Lindgren et al. also applied empirical methods for the prediction of phase formation 

in Ti-6Al-4V and IN718 (Lindgren, et al., 2016). Computational welding mechanics were 

exploited within the modelling approach and flow stress models were implemented to 

determine mechanical behaviour. Further work was presented by the authors that expanded 

on the implementation of the modelling approach with Ti-6Al-4V (Babu, et al., 2019). Similarly, 

phase transformation kinetics were implemented within the work by Lu et al to predict the 

development of precipitates within IN718 WAAM builds (Lu, et al., 2021). 

Furthermore, a number of papers within literature have focused on the assessment of 

microstructural development through the quantification of the solidification parameters: 

thermal gradient, G, and solidification velocity, R. As discussed within chapter 1, these 

parameters control solidification mechanisms and determine the grain morphology. This 

phenomena can be exploited through investigation of the thermal history. Firstly, Liu et al. 

investigated the effect of laser power and scan speed on the solidification parameters of a 

single melt pool in selective laser melting of AlSi10Mg (Liu, et al., 2018). 3D thermal models 

were developed using finite element software. This allowed the authors to predict where in the 

melt pool columnar to equiaxed transitions were likely to take place. Furthermore, Sabau et 

al. also investigated the thermal gradient and solidification velocity distributions in single track 

models of laser powder bed fusion with IN625 (Sabau, et al., 2020). Two modelling 

approaches were used for the thermal model, heat transfer only and heat transfer coupled 

with fluid dynamics. The difference in solidification parameters provided by the two methods 

were discussed. Moreover, Hunt’s model was also used to predict primary dendrite arm 

spacing. 

Phase field models can also be used to predict microstructure on the scale of dendrite arm 

spacing. Sahoo and Chou modelled the development of a single grain as the result of electron 

beam powder bed fusion of Ti6Al4V (Sahoo & Chou, 2016). The model used a 3D finite 

element thermal model to calculate the thermal gradient and solidification velocity, which were 

then imported into the phase field model. Finite difference methods were implemented to solve 



the required phase field and concentration equations on a 100μm x 100μm domain. Notably, 

the effects of thermal gradient and scan speed on the grain growth were investigated. The 

results were compared with experimentally and analytically obtained microstructures and a 

reasonable level of agreement was achieved, although no quantitative measurements were 

obtained experimentally. Similar work for laser powder bed fusion of IN625 was undertaken 

by Keller et al. (Keller, et al., 2017). Cellular growth was successfully simulated using a 2D 

phase field model following a 3D thermal analysis. However, unlike the nucleation of a circular 

seed in the work presented by Sahoo and Chou, Keller et al. initiated a planar solid-liquid 

interface. Furthermore, the frozen temperature approximation was implemented, whereby a 

linear thermal profile was assumed that moved along the growth direction with a given speed 

and maintained a constant thermal gradient. A 2D phase field model was also used by Acharya 

et al. due to the computational expense of 3D models, although the model was undertaken in 

both the longitudinal and transverse planes to give a more thorough analysis of the 

microstructural evolution (Acharya, et al., 2017). A CFD analysis was undertaken to estimate 

the melt pool and solidification region, whilst the seeding method applied within this work 

allowed for multiple seeds to be applied at both the bottom and top of the melt pool. In the 

work by Kumara et al. they also applied multiple seeds with a distance equivalent to the 

primary dendrite arm spacing (Kumara, et al., 2019). 

Unlike Archarya et al., whom assumed a binary system for IN718, in the more recent works 

presented by Kumara et al. the alloy was represented by a seven component system (Kumara, 

et al., 2019; Kumara, et al., 2019). This obviously provided a more accurate representation of 

the alloy system. Within this work the commercial software MICRESS was implemented to 

undertake the phase field models. There were two stages to the phase field model, first the 

solidification model and then a subsequent model that simulated microstructure development 

as a result of in situ heat treatment. Experimental microstructures were analysed and the 

simulation results were also compared with comparative simulations of a casting scenario. 

However, unlike other works, a thermal analysis was not undertaken within this work. Instead 

a representative cooling rate was assumed, and the heat treatment temperature was taken 

from experimental thermocouples. It should be noted that the domain size modelled in each 

of the authors works was extremely small, with one being 6μm x 6μm and another 25μm x 

25μm. This gives the reader an idea of the small scale to which phase field models can be 

applied. For this reason other mesoscale modelling approaches need to be applied to give a 

more global representation of the grain morphology. 

The application of kMC methods to additive manufacturing has also been seen. Ge et al. 

presented a process-structure-property modelling approach, that utilised Monte Carlo 

methods to simulate the microstructure development in Ti-6Al-4V (Ge, et al., 2019). The kMC 



method was used on a multi-scale basis to provide simulation of the development of β grains, 

whilst a single grain scale model simulated the development of α phase within the prior β 

grains. The thermal aspects of this work were discussed in an earlier section. The most 

notable work in this area is that presented by Rodgers et al. Building on their application of 

kMC to welding, (Rodgers, et al., 2016; Rodgers, et al., 2017), Rodgers et al. used kinetic 

Monte Carlo techniques to investigate grain structures in metal additively manufactured parts 

(Rodgers, et al., 2017). As part of the Sandia National Laboratories, this was done through 

the use of the SPPARKS software. The model was used to simulate microstructural 

development within LENS processes and compared against experimental studies in literature. 

An idealised melt pool and heat affected zone were used to replicate the thermal field, whilst 

this was not exactly representative of the process it was beneficial for the computational 

efficiency of the model. Inactive material was hidden from the simulation to replicate material 

deposition. Qualitative and quantitative comparisons were undertaken. Results showed how 

grain structures could be altered by scanning strategy, although with a reasonably low 

resolution. The authors commented on the simplifications made in the model and the need for 

future work in this area. In their more recent work, Rodgers et al. applied the developed 

modelling approach to investigate the effect of process parameters on mechanical properties 

(Rodgers, et al., 2020). 

Within the work provided by Rodgers et al., a comparison of microstructure modelling methods 

was also given (Rodgers, et al., 2017). Within the comparison CA-FE, CA-Lattice Boltzmann 

(CA-LB), Monte Carlo and empirical methods were evaluated. Whilst the benefits of the kMC 

method identified included, the availability of the open source software SPPARKS, the ability 

to account for solid-state transformations and being slightly more computationally efficient 

than both CA-FE and CA-LB, its limitations were also presented. These included the inability 

to account for crystal orientation as well as difficulties drawing quantitative links to 

experimental conditions. This point was also acknowledged in the comparison of CA and kMC 

techniques, for the application of recrystallisation, given by Sieradzki and Madej (Sieradzki & 

Madej, 2013). Rodgers et al. also identified empirical methods as the most computationally 

efficient, however it was also noted that even this is still relatively expensive for the simulation 

of full AM build parts. The overall opinion given within this work is consistent with the 

conclusions drawn in a number of other critical reviews of microstructure modelling methods. 

Zhang et al. presented a comparison of microstructure models for laser AM and in this work 

they considered Monte Carlo, Cellular Automata and Phase field. However, the CA approach 

applied in this work was a more probabilistic approach than that presented by Rappaz and 

Gandin. In this work, the CA approach presented appeared to be more computationally 



efficient than the MC, but will not be considered any further due to the lack of physical 

relevance. 

More recently, Tan et al. compared phase field, kinetic Monte Carlo and Cellular Automata 

approaches, as well as a very recent modified Cellular Automata approach that applied CA 

methods on a scale of dendrite shape, akin to the phase field approach. Conclusions drawn 

included the necessity of either kMC or CA modelling for the prediction of material properties, 

due to the larger scale of simulation, as well as the more accurate grain size predictions 

obtained through CA. Similar work was undertaken by Korner et al. (Korner, et al., 2020). As 

in other works, the accuracy of phase field models at the expense of efficiency was highlighted. 

However, it was stated that whilst PF methods are computationally expensive, they could be 

used to give insight into the dendrite growth velocity for implementation in more efficient CA 

models. Furthermore, the review also commented on the inability of Monte Carlo approaches 

to simulate grain texture. Similar conclusions can be seen in the work presented by Gatsos et 

al. and Li et al. (Gatsos, et al., 2020; Li, et al., 2020). Whilst Rodgers et al. identified the 

limitation of CA to be the inability to account for simulation of solid state transformations, 

accounting for subsequent work presented by Yang et al. (Yang, et al., 2018), Gatsos et al. 

identified this as one of the benefits of CA methods. Moreover, it is established by Korner et 

al. that the common challenge across all the modelling approaches is the simulation of new 

grain nucleation, as well as ensuring the development of well-established nucleation 

parameters for independent alloys. Li et al. also identified nucleation methods as an open 

question within microstructure simulations and identified the lack of microstructural simulations 

that validate thermal/melt pool models prior to the completion of grain growth predictions (Li, 

et al., 2020). 

Within this work, we will focus on the application of cellular automata methods for metal AM 

processes. This choice has been made as it offers a visual representation of the grain 

morphology which is not achievable using empirical, transformation kinetics, based models. 

Furthermore, it is more physically accurate than kinetic Monte Carlo methods whilst remaining 

more computationally efficient than the phase field approach and provides a simulation on a 

larger scale. Li et al. drew the same conclusion that these attributes make CA the most suitable 

modelling technique for this application (Li, et al., 2020). Figure 7 demonstrates the visual 

differences between these three modelling techniques. Moreover, there is a wide range of 

literature demonstrating the successful application of CA methods. For example, the work by 

Gu et al, presents the application of 3D CA methods to predict grain structure and porosity for 

casting applications with a good level of agreement with experimental tests (Gu, et al., 2019). 

The following sections aim to present some of the key works in the application of CA for the 



prediction of microstructure in metal additive processes and identify current limitations and 

possible areas for development within the literature.  

 

Figure 7: Schematic of different microstructure modelling approaches. Sourced from (Korner, et al., 2020) 

2.6 Use of Cellular Automata for Simulation of Microstructure in AM 

Following the decision to implement cellular automata methods within this work, an in-depth 

review of the current literature on applications of CA within additive manufacturing is provided. 

As previously mentioned, cellular automata models are often coupled with a supplementary 

modelling approach that provides the thermal results of the analysis. Rai et al. coupled a CA 

microstructure model with a lattice Boltzmann model (Rai, et al., 2016). The 2D model was 

used to simulate grain development in powder based processing of IN718. The 2D decentred 

square algorithm, developed by Rappaz and Gandin, was implemented with automatic 

incrementation. A rain drop model was used to generate powder particles. Meanwhile, Lopez-

Botello et al. implemented the more commonly used Cellular Automata – Finite Element 

(CAFE) method (Lopez-Botello, et al., 2017). In this particular work an approximation of the 

Gaussian heat source was used to simulate the thermal history in a 4 layer SLM build using 

the aluminium alloy AA-2024. A weak coupling between the FE and CA models was used with 

the Von Neumann neighbourhood condition. A good level of agreement was achieved when 

comparing the predicted grain size against those seen experimentally. Powder bed fusion 

processes were also considered in the work presented by Yang et al., (Yang, et al., 2018) . A 

2D CA model was implemented within the commercial software MATLAB. The prior beta grain 

structure in Ti-6Al-4V was simulated as well as the prediction of solid-state transformations. A 

good qualitative agreement was achieved between the model results shown and experimental 

samples. 

On the other hand, Zhang et al. looked at the application of a fully coupled 2D CA-FE method 

for the application of LMD. Element activation was achieved through the use of element birth 

techniques and a Gaussian heat flux was assumed, although no experimental validation of 



the thermal history was undertaken within this work, simulated microstructures were compared 

against experimental samples both quantitatively and qualitatively. Both clearly showed 

columnar grains of a similar magnitude.  This work was built upon in their later work, where 

the authors implemented a new growth envelope model, the modified decentred polygon 

(Zhang, et al., 2018). This approach was thought to be more suitable for the non-uniform 

thermal fields seen in additive manufacturing, as well as being more computationally efficient. 

However, the details of implementation were not presented. The study focused on a single 

deposition scan and showed good agreement with both experimental thermal measurements 

and microstructure. A columnar to equiaxed transition was predicted within the melt pool. 

As discussed previously, whilst nucleation methods among models remain reasonably similar, 

whether the inclusion of nucleation techniques is necessary, and how they can account for 

different aspects, is often in question. The effect of nucleation mechanisms was explored in 

the work presented by Li and Tan (Li & Tan, 2018). Within this work a number of simulations 

were carried out on both single scans and multiple layer builds to assess the effect of nuclei 

density and critical undercooling on microstructure predictions. The modelling approach 

undertaken was a weakly coupled finite volume – CA approach. A significant alteration in the 

microstructure was seen as a result of the changes in both nuclei density and critical 

undercooling. Akram et al. (Akram, et al., 2018) implemented a cellular automata based 

microstructure prediction model in order to demonstrate the effects of scanning strategy on 

resultant microstructure within additively manufactured parts. A 2D model was implemented 

to show the final microstructure in all 3 planar directions. The model only allowed for nucleation 

on interface regions, such as the melt pool boundary, and used an alternative model to the 

Gaussian approach implemented by Rappaz (Rappaz, 1989). Out of plane nucleation was 

artificially accounted for through additional nucleation sites. A good visual agreement was 

achieved with experimental images reported in literature and a clear change was witnessed 

between the different scanning strategies. However, within this work fixed thermal gradients 

were imposed, the microstructure model was not coupled with any thermal models. 

Furthermore, the results shown here were independent of any particular alloy. Rolchigo and 

Le Sar also suggested that a correction to the nucleation mechanisms within 2D CA models 

was required to accurately model the columnar to equiaxed transition (Rolchigo & LeSar, 

2019). The adaption of nucleation methods has also been considered by Mohebbi and 

Ploshikin, where the authors recently investigated the development of new nucleation 

methods to account for specific microstructural features in aluminium alloys (Mohebbi & 

Ploshikhin, 2020). This particular study focused on the grain nucleation along the fusion 

boundary witnessed in additive manufacturing of AlSi10Mg and other aluminium alloys. Three 

nucleation methods, each with sound justification, were implemented and compared against 



experimental images. The most suitable method of nucleation was determined by direct 

comparison with the experimentally obtained microstructures. Simulated microstructures have 

also been compared against alternative aluminium alloys, although fully calibrated and 

validated models have not yet been undertaken on alloys other than AlSi10Mg.  

Following on from their early work, Zinovieva and Zinoviev et al. adapted their modelling 

approach for the application of powder bed fusion AM in their more recent publications. In 

2016 the group presented a study implementing a 2D CA- finite difference (CAFD) method for 

the simulation of 316L processed by SLM (Zinoviev, et al., 2016). Adaptive time 

incrementation was undertaken and it was assumed, within this work, that due to the rapid 

cooling within the process, nucleation did not take place within the melt pool. Variations of the 

Goldak parameters were investigated and it was determined that the 2D model more 

accurately simulated grain growth within shallower melt pools, whilst it would be beneficial to 

include 3D aspects for deeper melt pools. The use of 2D and 3D models have both been seen 

in literature. It has been identified that 3D models are required to account for all aspects of 

microstructural evolution, including out of plane growth and 3D texture (Lian, et al., 2019 ; 

Gandin & Rappaz, 1997). However, as expected, a 3D CA model comes with an increase in 

computational expense. For this reason, Rolchigo and LeSar investigated the effects of 

including the third dimension, in their recent work applying CA to simulate grain growth in 

scenarios similar to LENS (Rolchigo & LeSar, 2019). The work concluded that a change from 

2D to 3D resulted in a difference in the amount of grain impingement within the model, as well 

as the ability to accurately represent the columnar to equiaxed transition. The primary reason 

for this is the considerably smaller range of orientations available in the 2D model. It should 

be noted that within this work, growth rates were prescribed at a constant rate and as such, 

the modelling approach was not strictly representative of the manufacturing process. 

However, the literature clearly demonstrated the need for 3D CA approaches to fully capture 

microstructure characteristics. 

The more recent work, presented by Zinovieva et al., implemented a 3D CAFD model, using 

a modified decentred octahedron growth envelope, for the application of Ti6Al4V (Zinovieva, 

et al., 2018). A sub volume was modelled in order to reduce computational efficiency. Both 

works provided comparisons of the grain structures produced in the CAFD model against 

experimentally manufactured microstructures, however, there was no validation of the thermal 

profile implemented. Koepf et al. focused on the computational efficiency of 3D powder bed 

fusion models (Koepf, et al., 2018; Koepf, et al., 2019). In the earlier work (Koepf, et al., 2018) 

the Rosenthal solution was used to analytically represent the thermal profile. This served to 

improve computational cost, along with the reduced simulation domain implemented within 

this work. Simulations were compared against experimental results of manufactured, cuboid, 



samples. A good agreement was seen in both EBSD images and pole figures. In the following 

work, a more representative thermal profile was used (Koepf, et al., 2019). A finite element 

model was used to model the thermal history of a single layer within the additive process. The 

thermal profile was then stored locally and reused, rotated by the required angle for each new 

layer. Simulated microstructures were again compared with experimental images, with good 

agreement.  Whilst these works focused on the improvement of computational efficiency the 

3D models still required 200 hours of computing time on 720 cores. This would be an 

unfeasible amount of computational power for the majority of industrially relevant applications. 

It has been widely recognised that one of the biggest challenges of microstructure modelling 

is the trade-off between accuracy and computational efficiency. In an attempt to address this 

issue Liu and Shin presented a coupled 2D cellular automata-phase field model (Liu & Shin, 

2020). The purpose of the work was to combine the accuracy of a PF approach with the 

efficiency of CA methods. A 2D CA model was implemented to model the dendrite growth, 

whilst a 1D PF model was used to determine the dendrite growth kinetics. The modelling 

approach was applied to DED of Ti6Al4V and was compared against 2D PF and 3D CA models 

as well as experimental results. Whilst a good agreement was achieved with experimental 

results, some aspects of the grain morphology was lost by the use of the 2D model compared 

to the 3D CA. It was also more computationally expensive than the 3D CA model, but more 

efficient than the 2D PF whilst still being able to simulate sub grain structure.  

Moreover, one of the key reasons for establishing microstructure modelling methods for 

additive manufacturing is to be able to understand and predict the effect of process parameters 

on the resultant microstructure and hence material properties. Herriott et al. developed a multi-

scale framework for the simulation of material properties in additively manufactured parts 

(Herriott, et al., 2019). The framework presented implemented a finite volume - 3D CA method 

for the simulation of resultant microstructure. The domain was then split into subvolumes that 

were used as input for an elasto-viscoplastic fast Fourier transform (EVPFFT) model, for the 

simulation of mechanical properties. The microstructure was simulated using 4 different 

nucleation conditions. Each approach returned reasonably different results, accenting the 

need for established nucleation parameters as discussed by Korner et al. (Korner, et al., 

2020). Furthermore, whilst the obtained stress-strain curves were compared with experimental 

results, simulated microstructures were not compared with those achieved experimentally. 

Similar work was undertaken previously by Yan et al. (Yan, et al., 2018). Here, a CFD thermal 

model was used to determine the thermal history used as an input for the 3D CA grain growth 

model. Microstructure outputs were then used in a self-consistent clustering analysis (SCA) 

crystal plasticity model. 



A number of works focused solely on the link from process parameters and resultant 

microstructure. The authors of the process-structure-property framework proposed by Yan et 

al, (Yan, et al., 2018), also presented a subsequent work focusing solely on the grain growth 

predictions. Lian et al. presented a recent work that investigated the effects of laser power, 

scan speed and scanning strategy on the resultant microstructure of IN718 LMD deposits 

(Lian, et al., 2019 ). The model made use of a weakly coupled finite volume – cellular automata 

model. A decrease in grain size was observed with an increase in scan speed or decrease in 

laser power. Whilst the paper demonstrated the capability of the modelling approach to 

capture these changes, the results were not validated with experimental tests. Rolchigo and 

LeSar also noted the importance of being able to understand the relationship between process 

parameters and microstructure development (Rolchigo & LeSar, 2019). As mentioned earlier, 

their work looked at the use of 2D and 3D CA for microstructure predictions in Laser 

Engineered Net Shaping (LENS) and demonstrated the effects of thermal gradient and 

solidification velocity on the resultant microstructure, as well as solute concentration. In a 

similar approach, Shi et al. made use of ALE3D, a hybrid finite element and finite volume code, 

along with CA to investigate the effects of beam shape and consequently melt pool geometry 

on the resultant microstructure in a single track powder bed fusion deposit. A total of 3 different 

beam shapes were explored, and a 3D CA method was implemented with the use of 

DREAM3D software to generate an equiaxed initial substrate microstructure. The effect of 

beam shape on nucleation and epitaxial growth, as well as its effects on thermal gradient and 

solidification velocity were investigated. Among other things, it was concluded that the amount 

of nucleation is correlated to the width of the melt pool when the laser is on and depth when 

the laser is off. However, both the work presented here and that by Rolchigo and LeSar, lacked 

support from experimental investigations. Whilst Shi et al. discussed the calibration of the 

thermal model against absorptivity values and melt pool depth, the study was largely a 

numerical study of the modelling approach, independent of a physically representative AM 

scenario. In particular, the computational domain was reasonably small and nucleation 

densities had been artificially increased above those witnessed experimentally in order to 

investigate the effects of bead shape on nucleation. Some small comparisons were drawn to 

previous experimental work undertaken by the authors (Roehling, et al., 2017). Whilst this 

supported some conclusions drawn in the work, other conclusions drawn through the model 

investigations were not in agreement with those seen experimentally. Meanwhile, the work 

presented by Rolchigo and LeSar was limited by the thermal assumptions made. The work 

presented here imposed a frozen temperature approximation, which is more commonly used 

in phase field models due to the small domain (Li, et al., 2020). This is where the thermal field 

is defined by prescribing a fixed cooling rate and thermal gradient. Therefore, the work was 

not representative of an experimentally observed thermal profile.  



The most recent works within this area include those presented by Wang (Wang, 2021) and 

that by Teferra and Rowenhorst (Teferra & Rowenhorst, 2021). Wang used a 2D CA model 

combined with a CFD thermal model to investigate all 3 principal planes, similarl to Akram et 

al. (Akram, et al., 2018), for powder bed fusion of IN718 . The effects of scan strategy, laser 

power and scan speed were investigated, however, experimental validation of these studies 

is required. Similarly, Teferra and Rowenhorst, simulated microstructural developments using 

a 3D CA model with an analytical thermal model to simulate powder bed fusion of 316L SS. 

Significant effort within this work was taken to investigate parallelisation techniques to improve 

computational efficiency. Two different scan strategies were simulated, initially with varying 

nucleation densities on a smaller domain, with simulations taking approximately 6.5 hours with 

132 cores. The nucleation density was chosen based on experimental results, taken from 

literature, and larger domain simulations were undertaken taking approximately 65 hours on 

144 cores. 

The literature discussed here represents the current state-of-the-art in the use of cellular 

automata methods to simulate grain growth in additive manufacturing processes. Whilst it 

clearly presents a wide range of applications and developments of the methodology, it also 

shows a range of limitations and challenges available within the current scope of work 

developed. Below, a table summarising some of the key papers and the limitations and 

challenges presented within each work is provided. 

Authors Year Key Features Limitations 

Akram et al. 2018  2D CA simulation in PBF. 

 Simulation with 3 principal 

planes. 

 Investigates influence of scan 

strategy, thermal gradient and 

cooling rate. 

 No coupling with thermal model. 

 Constant thermal gradients/cooling 

rates imposed. 

 No association to any particular alloy. 

Zinovivea et 

al. 

2018  3D CA finite difference model 

for PBF. 

 Experimental validation of 

microstructure. 

 No bulk nucleation. 

 No validation of the thermal model is 

given. 

Koepf et al.  2019  3D weakly coupled CA-FE 

model for PBF. 

 Compared against 

experimental microstructures. 

 Iterative use of thermal model 

for computational efficiency. 

 High performance cluster computers 

used, which may not be accessible 

within industrial application. 

 Lack of inclusion of nucleation effects, 

other than from the surrounding 

powder. 



Lian et al.  2019  Application to DED processes 

with IN718 

  3D CA and finite volume 

methods. 

 Laser power, scan speed and 

scan strategy investigated. 

 Lack of experimental validation for 

both thermal and microstructure 

models. 

Teferra and 

Rowenhorst 

2021  3D CA PBF model with 

analytical thermal model. 

 Investigates 2 scan strategies. 

 Focus on computational 

efficiency. 

 Although computational efficiency is 

investigated the hardware used is still 

much more sophisticated than that 

typically available in industry. 

 Analytical thermal model 

implemented. 

Wang 2021  Simulation using 2D CA within 

3 planes for PBF of IN718, 

with CFD thermal model. 

 Investigates the effects of 

various process parameters. 

 Limited experimental validation.  

 In particular experimental validation for 

the effects of process parameters is 

required. 

Table 2: Table summarising the current state-of-the-art in microstructure prediction for metal AM. 

 The next section within this work outlines the research challenges and objectives addressed 

within the scope of this project. 

2.7 Research Aims and Objectives 

It is clear from the literature reviewed above that there is a great need for increased 

understanding within the additive manufacturing industry. The main aim of this work is to 

contribute to this by investigating the link between process parameters and microstructure to 

increase reliability of additive manufacturing. Taking into consideration the key features and 

limitations of the work available in the current literature, the work presented here aims to 

contribute through the following objectives: 

 Contribute to the smaller catalogue of work available for the application of CA to direct 

energy deposition processes, particularly for multi-layer builds. 

 Implement cellular automata methods with experimentally-validated thermal models.  

 Improve computational efficiency of the required models to achieve sensible run times 

with practical hardware requirements, suitable for use in industry. 

 Apply CA models to investigate the influence of process parameters, with experimental 

validation. 

 



 

  



3 Thermal Modelling Activities 

The first stage to predicting microstructure development, is to be able to simulate the thermal 

history experienced. As discussed within the literature review, there are a number of different 

aspects that need to be accounted for when developing a finite element model of an additive 

manufacturing process. These include moving heat sources, temperature dependent 

behaviour and material deposition. Within this chapter some of the work completed in order to 

develop an understanding of thermal models for additive manufacturing, early on within this 

project, is presented. We first discuss the work undertaken as part of the additive 

manufacturing benchmark study and conclude with other work undertaken as part of projects 

undertaken by TWI Ltd and linked to this PhD. Note, the results of this chapter are not directly 

relevant to the conclusions and results of this thesis, but are presented here as a background 

and examples of development in the field of thermal modelling. 

At the start of this project one of the main priorities of the work was to establish the current 

state of the art for modelling within the additive manufacturing industry. For this reason, the 

2018 National Institute of Standards and Technology (NIST) additive manufacturing 

benchmark (National Institute of Standards and Technology, 2018), provided an ideal 

opportunity. It was my privilege to work as part of a team with TWI and Dassault Systèmes to 

complete a submission to the first challenge, for residual stress predictions. Whilst the focus 

of this thesis is on thermal and microstructural model development, residual stress predictions 

are also highly-dependent on the thermal history. Therefore, this provided a good opportunity 

to both familiarise myself with modelling techniques for additive manufacturing as well as test 

and validate thermal modelling approaches.  

As discussed in section 2.2, the NIST 2018 AM benchmark, gave global access to 4 heavily 

monitored, AM based, experimental trials. For each, a challenge outlining a number of 

objectives for numerical predictions was given. Submissions of numerical predictions were 

entered as blind studies, before the experimental measurements were released. The data 

made openly available as part of the benchmark ensured high quality experimental trials were 

completed and extensively monitored. Furthermore, this was all completed using equipment 

available at a globally renowned laboratory, with resources and associated costs that could 

otherwise not have been feasible within the scope of this work. The first challenge, which will 

be the subject of this section, requested predictions for the residual stress profile, distortion 

measurements and microstructure predictions of the manufactured geometry. Within the 

earlier stages of this work, the focus remained on the thermal history predictions prior to the 

development and implementation of microstructure codes. Therefore, the numerical 

predictions undertaken as part of this challenge were of residual stress and distortion. Data 



from this benchmark was used in subsequent work, chapter 5, to test and validate the 

microstructure modelling methods.  

The test article was manufactured through laser powder bed fusion in both Inconel 625 (IN625) 

and stainless steel 15-5; however, only the IN625 samples have been modelled within this 

work. This is relevant as nickel-base superalloys feature heavily in this project. The geometry 

was designed as single cantilever with additional ridges on the top surface for accurate 

measurement of part deflection upon removal from the substrate. This can be seen in Figure 

8. A detailed report of the process parameters and scan strategy were provided in the 

challenge description (National Institute of Standards and Technology, 2018). This included 

details of both contour and infill strategies throughout the total build height of the geometry. A 

layer height of 20um was used throughout the manufacturing, meaning a total of 625 layers 

were manufactured during the build of the test specimen. For this reason special 

considerations need to be made in order to model the geometry at the part scale. 

 

 

Figure 8: Geometry specified for challenge AMB2018-01 (National Institute of Standards and Technology, 

2018).  

As highlighted, there are a wide range of factors that need to be accounted for within thermal 

models for additive manufacturing: material deposition, scan strategy, heat source 

characteristics and heat loss. During the development of the models, the (then recently 

released, beta version) Abaqus AM app, that was made available to TWI, was used for 

efficiency. The app combines the ability to apply element birth techniques and a moving heat 

source through the definition of an event series. An event series is a table of data defining the 

path of the heat source by specifying the power and location of the heat source at various time 

points. Linear interpolation is used between the specified points to find the required details 



between these times. The AM app utilises this information within user subroutines to activate 

the material as specified by the “recoater event series” and apply a moving concentrated point 

heat source in accordance with the “laser event series”. A visual representation of the event 

series within the AM app is shown in Figure 9. Within the app, the toolpath-mesh intersection 

module is used to identify all the elements that are intersected by the heat source within a 

given time increment. The energy delivered by the heat source during this increment is then 

distributed uniformly over these elements.  Heat loss due to convection and radiation were 

also accounted for within the model.  

 

Figure 9: Visual demonstration of the application of the event series within the AM app (Yang, et al., 2019). 

Specifically my role within this work focused on the development of finite element thermal 

models utilising the AM app within Abaqus with temperature-dependent material data. The 

use of the AM app was beneficial within this work as it removed the need for defining individual 

steps for each layer of new material, which would otherwise need to be defined through the 

use of a model change. Furthermore, the development process also involved calculation of an 

event series, for the geometry, based on the details of the scan strategy given as part of the 

challenge description. The models created were then compared to similar thermal models 

developed by other team members, and ultimately a more efficient technique of layer 

aggregation was implemented due to the large number of layers.  

Layer aggregation is a method where multiple layers are deposited in the model at once, as if 

they are a single layer. The final models represented averagely 10 layers within each individual 

element. The layer aggregation technique applied here is an acceptable approach when 

simulating residual stress due to the resolution needed on the part scale as opposed to the 

macro or micro scale. However, this would not be a suitable technique when trying to simulate 

the solidification microstructure. Similarly, the fidelity of the heat source model for this 

simulation would not be appropriate when looking on at the micro scale; however the work 

provided a good demonstration of both the use of moving heat sources and event series. 

Temperature-dependent material properties were used for both the thermal and mechanical 

models. As the focus of this thesis is thermal and microstructural modelling for any further 



details of the mechanical model the reader is asked to refer to the resulting paper (Yang, et 

al., 2019). 

The resulting submission to the challenge was completed by a team from Dassault Systèmes 

and TWI and ultimately received 1st place for residual stress predictions out of a total of 6 

submissions for this category worldwide. The team were invited to write a journal article 

detailing the model as part of a special issue on the AM benchmark, which one contributed to 

significantly within the writing and submission procedure (Yang, et al., 2019). The resulting 

residual strain predictions and corresponding experimental measurements can be seen in 

Figure 10 and Figure 11 respectively. As presented by Levine et al in the review of the 

benchmark outcomes (Levine, et al., 2020), the distortion predictions submitted for this 

challenge worldwide were consistently over or under predicted. Interestingly, half of the 

submissions predicted extremely similar results above the experimental distortion values and 

the other half provided very similar predictions below the experimental curve, highlighting that 

despite significant efforts within literature to predict part level distortions, accurate models for 

additive manufacturing are still required. 

 

 

Figure 10:  Predicted residual strain profiles a) EE11, b) EE33 (Yang, et al., 2019). 

 



 

Figure 11: Experimentally observed residual strain profiles a) EE11 b) EE33 (National Institute of Standards 

and Technology, 2019). 

Subsequent work was undertaken as part of another project within TWI, involving the thermal 

modelling of L-PBF of AlSi10Mg. This was performed as part of the European Comission-

funded project PASSPORT (European Commission: CORDIS, 2020).  This was done in order 

to determine the effectiveness of using the specific point energy and power factors as design 

parameters in laser powder bed fusion. Modelling work was used to support these 

investigations, by using thermal models to predict the influence of various process parameters.  

Within this work I worked closely with colleagues to develop finite element models involving 

the development of user defined subroutines to prescribe moving heat sources. The use of an 

event series to define the heat source location was also leveraged within this work and 

material activation was modelled through the use of the model change function within Abaqus 

to define element birth within various steps. Further detail on the outcomes of this work can 

be found in the paper, published in 2019, summarising this work (Zavala-Arredondo, et al., 

2019). 

Overall, the work completed within both of these exercises provided an opportunity to gain 

familiarity and knowledge of specific techniques required for thermal modelling of AM 

procedures, in order to establish modelling methods to produce thermal profiles which can be 

used to drive the solidification models. Whilst the results from these studies will not be used 

directly within this work, they have provided a means to implement and validate the use of 

certain approaches, such as the implementation of event series and the use of user 

subroutines to define heat source movement, which can be carried forward and adapted into 

subsequent thermal models within this work. Particularly, the methodology used within the 

Abaqus AM app, is useful when considering efficient modelling approaches later on within this 



work. Nevertheless, fine scale models, with higher fidelity, need to be undertaken for the 

simulation of solidification microstructure. For example, implementing Goldak or conical 

Gaussian heat source models in order more accurately predict the melt pool, as seen in more 

detail within later sections of this work. This level of fidelity cannot be achieved using the 

Abaqus AM app implemented within the NIST benchmark study. The corresponding papers, 

for works discussed here, can be found within the Appendix. 

  



4 Microstructure Model for AM Processes 

Within this chapter we will discuss the background behind the modelling methods implemented 

in this work. This will include an overview of the Cellular Automata (CA) technique as well as 

detailed information regarding its application to grain growth predictions and the 

implementation methods used within this work. The chapter will conclude with a discussion of 

techniques that can be used to determine the success of the model. 

4.1 Cellular Automata 

Cellular Automata is a modelling technique that was developed in the 1940’s by John Von 

Neumann and Stanislaw Ulam (Shiffman, 2012). One of its initial implementations was actually 

for the simulation of grain growth as well as self-replicating robots. This application eventually 

lead to the most famous application of the CA modelling technique - James Conway’s game 

of life created in 1970 (Shiffman, 2012). This is a zero-player game that uses CA to determine 

if a cell is living or dead. The notable feature of the game is that, no matter the initial 

configuration of the game, a number of specific shapes and images are produced within the 

simulation. Cellular automata is an efficient way of simulating complex phenomena by 

discretising a spatial domain. It has numerous applications and can be tailored to a wide range 

of phenomena, including the simulation of growth of numerous substances; leaves, shells and 

snowflakes (Andrews, 2008; Wolfram, 2002), fluid flow models , application in intrusion 

sensors (Navid & Aghababa, 2013) as well as uses in cryptography (Wolfram, 1994). Within 

this work we focus solely on the application of CA to the simulation of crystal growth. 

The technique makes use of a grid of cells, or elements, the two terms will be used 

interchangeably throughout this work due to the coupling with finite element models. The gird 

of cells is usually a uniform structure, however techniques can also be applied to irregular 

grids (Navid & Aghababa, 2013). The cells, within a uniform CA grid, can be any regular, 

tessellating shape for example, squares, triangles or even hexagons. For simplicity throughout 

this chapter we will assume each cell to be a square. Each cell, within the domain, is assigned 

a number of state variables. These are updated throughout the analysis using a set of 

prescribed rules. Colours or shading can be assigned to variables allowing for visual 

representations of the scenario. The rules are typically dependent on the value of state 

variables within previous steps of both the cell of interest and its neighbouring cells. Therefore, 

we must also define the neighbourhood of each element at the beginning of the analysis. 

There are two common types of neighbourhood; Moore’s and Von Neumann’s. The Von 

Neumann neighbourhood was established in 1952 by John von Neumann himself, whilst 

Edward Moore developed the Moore neighbourhood in 1962 (Wolfram, 2002). 

Representations of these two neighbourhoods can be seen in Figure 12. Whilst these are two 



of the more common neighbourhood definitions, the neighbourhood of a cell can in fact be 

defined in any manner that the user so wishes. 

 

Figure 12: Diagrammatic representation of a) Von Neumann and b) Moore neighbourhoods. 

Every individual cell is updated at the same time using the state variables from previous steps. 

Each time this occurs, this is known as a CA step. The step is typically time independent, but 

depending on the application it can be associated with real time increments. The concepts 

described here can be seen in the following simple example (Figure 13). Imagine we have a 

domain that has been divided into 25 uniform cells and the state variable applied to each cell 

(𝑣) is its colour (𝐶𝑣); B (blue) or O (orange). We assign the rule that if a blue cell has an orange 

neighbour then the cell also becomes orange. This can be written in an algorithmic form, using 

standard mathematical notation, as below, in Table 3. Within this formulation we describe the 

cell under consideration as 𝑣 and its neighbourhood as Ω. 

Initial State Final State Condition 

𝐶𝑣 = 𝐵 𝐶𝑣 = 𝑂 ∃  𝜇𝜖𝛺 𝑠. 𝑡. 𝐶𝜇 = 𝑂 

Table 3: Example formulation of a CA rule. 

Within this example, we will show the effects of applying the same CA rules to the same initial 

configuration, but applying different neighbourhood definitions. Figure 13a) shows the 

application of the rules with the implementation of the Von Neumann neighbourhood and 

Figure 13b) with the Moore neighbourhood. 



 

Figure 13: Example of a CA process with a) Von Neumann and b) Moore neighbourhoods. 

As you can see the neighbourhood chosen has an obvious impact on how the CA model 

develops. Within the work of this thesis, the Moore neighbourhood will be implemented as it 

best represents the continuous surroundings experienced within solidification mechanisms. 

This is also demonstrated through an analytical comparison in the work by Rappaz and 

Gandin, (Rappaz & Gandin, 1993). The modelling techniques and transition rules used to 

replicate physical solidification mechanisms are explained below. 

4.2 Nucleation Mechanisms 

Solidification, within metals, takes place through nucleation and growth mechanisms. A 

detailed description of the background of solidification laws and mechanisms can be found in 

section 1.6.  The rest of this chapter focuses on the modelling techniques used to replicate 

these solidification mechanisms. One of the first cellular automata grain growth models was 

developed by Rappaz and Gandin for the application of castings (Rappaz & Gandin, 1993), 

and many of the techniques presented herein have been developed from their seminal work. 

Firstly, the modelling mechanisms used to replicate physical nucleation processes will be 

examined. The following section will then describe the techniques employed to simulate grain 

growth.  

Heterogeneous nucleation is modelled by Rappaz in his early work (Rappaz, 1989) where he 

presents a nucleation model, for the application of equiaxed casting. The model represents 

the rate of change in nucleation density as a function of the undercooling.  In this paper, the 

author summarises why the previous model suggested by Turnbull and Fisher insufficiently 

represents the complexities of nucleation mechanisms and fails to predict grain size correctly. 

The main reason for the discrepancies in the Turnbull and Fisher method originates from the 

extremely rapid increase in nucleation density for a significantly small interval in undercooling. 



Consequently, due to the discreteness of the distribution, the majority of nucleation sites would 

be initiated within the same increment. The work presented by Rappaz proposed a new 

nucleation model that more accurately represented physical nucleation mechanisms. The 

work utilised the theory suggested by Oldfield and has been widely accepted as well as 

implemented successfully within the large majority of cellular automata microstructure models. 

Within the model, nucleation probability is described as a Gaussian distribution. Figure 14 

shows diagrammatic representations of the nucleation model proposed. 

 

Figure 14: Gaussian nucleation model (Rappaz, 1989). 

Figure 14a) represents the rate of change in nucleation density as a function of undercooling. 

It assumes a Gaussian distribution where ∆𝑇𝐶 represents the critical undercooling, the mean 

of the distribution, and ∆𝑇𝜎 the standard deviation of the distribution. The same model is shown 

in Figure 14b) as a cumulative distribution, where 𝑛𝑚𝑎𝑥 is the maximum grain density of the 

material. The 3 parameters (∆𝑇𝐶 , ∆𝑇𝜎 , 𝑛𝑚𝑎𝑥), can be determined experimentally. The model 

can be adjusted to account for different sites of nucleation by assigning two different nucleation 

models with different parameters to allow for the difference in critical undercooling required for 

a nucleus to form in the bulk liquid or the mould wall (Rappaz & Gandin, 1993). This is more 

appropriate for casting applications, but less so for additive techniques and hence only a single 

distribution will be modelled in this work. This is common in other cellular automata models for 

additive manufacturing. It is a reasonable assumption as there is no mould wall within additive 

manufacturing applications and other rules are applied to account for epitaxial growth from 

existing crystal material, as can be seen in Section 4.3. 

The modelling approach described above can be implemented within the cellular automata 

through a number of different mechanisms. The first is by calculating the change in nucleation 

density that occurs as a result of undercooling for each time increment and then distributing 

the required number of nucleation sites within the domain. This method is implemented by 

(Zinovieva, et al., 2015; Zhan, et al., 2018). However, it poses issues within processes such 



as additive manufacturing where a non-uniform thermal profile is experienced. This is 

because, at any given time the molten region is moving or changing profile and a different 

degree of undercooling is seen throughout, making it difficult to determine an exact value of 

nucleation density throughout the domain. In order to resolve this problem another method is 

employed within papers such as (Lopez-Botello, et al., 2017; Lian, et al., 2019 ; Li & Tan, 

2018). This technique involves prescribing a probabilistic undercooling to a number of cells at 

the start of the analysis.  

The latter method of applying the nucleation model was applied within this work. At the start 

of each analysis each cell is given a value of probabilistic undercooling. Once the undercooling 

of the cell exceeds this value, the cell is nucleated. An initial approach was implemented 

whereby every cell within the CA domain was assigned a probabilistic undercooling from the 

Gaussian distribution at the beginning of the analysis or whenever a cell became liquid. 

However, this method is not physically representative of the nucleation density as the density 

becomes dependent on mesh size. As a consequence of this, this method introduces a degree 

of mesh dependency into the model. For this reason, other methods were considered, 

throughout the course of this project, which were physically representative of the 

experimentally determined nucleation density. In order to do this the required number of 

nucleation sites was calculated at the start of the analysis. The sites were then assigned 

randomly among the CA cells within the domain. Each nucleation site was prescribed a 

random probabilistic undercooling from the Gaussian distribution as before. However, all cells 

which were not a nucleation site were assigned artificially large probabilistic undercooling 

values to prevent them from nucleating within the analysis. 

Within additive manufacturing, there is a common assumption made within solidification 

models that nucleation does not occur within the melt pool during these processes. This 

assumption has been made in a large number of papers (Akram, et al., 2018; Chen, et al., 

2016; Zinoviev, et al., 2016). Zinoviev et al. explain the reasoning behind this assumption, by 

arguing that due to the large thermal gradients, experienced in additive manufacturing, 

epitaxial growth from existing grain structures will occur before a high enough degree of 

undercooling is reached to initiate bulk nucleation. However, Li and Tan investigated the 

effects of bulk nucleation in such models and found it can have a large effect (Li & Tan, 2018). 

Whilst there is an obvious influence on the final microstructure, the comparison to 

experimental processes is less clear, whilst highlighting there is a strong need for calibration 

of nucleation parameters against experimental results. Within the earlier parts of this work we 

will undertake the assumption that nucleation does not occur within the melt pool. In later 

studies the inclusion of nucleation and necessary nucleation densities are investigated. 



 

 

4.3 Solidification and Growth Techniques 

Once a nucleus has been generated within the molten region, growth mechanisms then 

determine the development and expansion of the grain. In order to replicate solidification 

mechanisms within cellular automata grain growth models,   Rappaz and Gandin developed 

the growth envelope mechanism (Rappaz & Gandin, 1993). This involves assigning an 

intrinsic shape, representative of the materials crystal structure, to each growing cell. For 

example, within this work we will focus primarily on FCC crystals which can be represented 

by a regular octahedron in 3D or a square in 2D, the 2D projection of an octahedron. The 

geometry is used to model the development of the envelope, or convex hull, formed by the 

dendrite tips within the crystal. Once the centre of a liquid cell falls within the growth envelope 

of a neighbouring growing cell, the cell is captured and becomes part of the growing crystal. 

A growth envelope is then associated with the captured grain to ensure the continued 

development of the crystal. To explain the concept behind the growth envelope, we will first 

discuss the most simple 2D case available and then discuss adaptations that have been made 

in order to make the method more physically representative. 

  

Figure 15: Example of centred 2D grain capture. 

For 2D applications, the growth envelope is represented by a square, as this is the 2D 

projection of an octahedron (FCC crystals) or cube (BCC crystals), as mentioned previously. 

The square is geometrically defined by two parameters; orientation and size, seen in Figure 

15. In 2D, orientation can be described by a single angle, 휃, in the range 0 < 휃 ≤
𝜋

2
, due to the 



quarter symmetry of the geometry (Rappaz & Gandin, 1993). This defines the preferential 

growth directions of the crystal. The size of the shape is defined using the kinetic growth laws 

given by Kurz, Giovanni and Trevdi (Kurz, et al., 1986). As shown in Equation 16, the envelope 

size can be determined from the integral of the dendrite growth velocity, with respect to time, 

from the time of nucleation to the current time. Here, 𝐿𝑣
𝑡  represents the envelope size at time 

t as shown in Figure 15, 𝑡𝑛  is the time of nucleation and 𝑣 is the dendrite growth velocity. 

Dendrite growth velocity is given as a function of the local undercooling. This function is often 

approximated by a polynomial function. This can be seen in a number of works using third 

order polynomials (Lian, et al., 2019 ; Li & Tan, 2018; Yang, et al., 2018). Rappaz and Gandin 

(Gandin, et al., 1996) use the approximation 𝑣 = 𝐴 ∙ ∆𝑇2, where 𝐴 = 10−4 (
𝑚

𝑠𝐾2
) , this 

representation has been successfully used within other works (Rai, et al., 2016; Koepf, et al., 

2019) and will be used here.   

𝐿𝑣
𝑡 =

1

√2
∫ 𝑣[∆𝑇𝑣(𝜏)]
𝑡

𝑡𝑛

 𝑑𝜏 

Equation 16: Grain growth kinetics in 2D (Gandin & Rappaz, 1997). 

In 3D, the same principles can be applied, only in this case the envelope is represented by 

the full 3D geometry (Figure 16). For the case of an FCC grain this would be an octahedron. 

In order to specify this geometry a total of 4 parameters must be given. These describe the 

size and orientation of the geometry, as before, however in 3D three Euler angles must be 

specified in order to fully define the crystal orientation. 

 

Figure 16: Example of 3D octahedral growth envelope. 



Euler angles are used commonly throughout mathematical and engineering disciplines. They 

describe a composition of three rotations (휃, 𝜑1, 𝜑2) that uniquely describe a 3D orientation. 

Within this work the Bunge convention is used to describe the Euler angles, as it is a common 

definition that is also used within software to produce inverse pole figures from angle data. 

This convention is described within the work of H.-J. Bunge (Bunge, 1982). This convention 

dictates that the 3 rotations consist of a rotation of 𝜑1 about the z- axis, followed by a rotation 

of 휃 about the new x-axis and finally a rotation of 𝜑2 about the rotated z- axis.  Here 𝜑1 and 

𝜑2  are in the interval 0 < 𝜑1, 𝜑2 ≤ 2𝜋, whilst 휃 is limited by 0 and 𝜋, 0 < 휃 ≤ 𝜋.  A visual 

representation of these three rotations can be seen in Figure 17. 

 

 

Figure 17: Bunge Euler angle convention (AZO Materials, 2015). 

The size of the envelope is defined in a similar fashion to that of the 2D geometry, using the 

kinetic growth laws. This is shown in Equation 17, where 𝐿𝑣
𝑡  represents the normal distance 

from the octahedron to each face (Figure 16). 

𝐿𝑣
𝑡 =

1

√3
∫ 𝑣[∆𝑇𝑣(𝜏)]
𝑡

𝑡𝑛

 𝑑𝜏 

Equation 17: Grain growth kinetics in 3D (Gandin & Rappaz, 1997). 

Whilst the work shown by Rappaz and Gandin et al. shows the successful implementation of 

the initial 2D methods, there are still a number of discrepancies within the model. A number of 

considerations have been made within the seminal work of Rappaz and Gandin, in order to 

adjust the physical accuracy of the modelling approach. This includes evaluation of 

neighbourhood effectiveness as well as a dendrite tip correction. Their most recent modelling 

approach, presented in 1997, introduces a decentred grain growth algorithm (Gandin & 

Rappaz, 1997). In initial approaches, the growth envelope associated with a newly captured 

cell was the same as that of the capturing cell, only continued growth calculations were 

undertaken using the new undercooling values associated with the captured cell. The 

decentred method presented here calculates a new growth centre for each captured cell in 



order to more accurately represent the crystal shape and reduce mesh anisotropy. Figure 18 

represents how the calculations for each cell capture are undertaken. 

  

Figure 18: Decentred growth algorithm (2D) (Gandin & Rappaz, 1997). 

We consider a cell, 𝑣, which has been nucleated within the molten region. Upon nucleation 

the growth envelope is activated. As the cell has been nucleated independently, the growth 

centre, ie. the geometric centre of the prescribed shape,  is coincident to the cell centre. After 

a certain amount of time, 𝑡, the growth envelope reaches a size of 𝐿𝑣
𝑡  and a neighbouring cell, 

𝜇, is captured within the envelope and changed to a growing cell. In order to be able to continue 

with the calculations of the growth algorithm, we then need to know the growth envelope 

associated with 𝜇. This requires an orientation, size and centre. Orientation, as before, is 

obtained from the capturing cell. The centre and size must be calculated as below.  

Firstly, the capturing face of the envelope is identified. This can be determined reasonably 

easily by dividing the square diagonally into quadrants or by identifying the face with the 

smallest normal distance to the cell centre. Once this has been determined, the two distances 

that are obtained by dividing this edge by the normal to the captured cell centre (Figure 18) 

are calculated, 𝐿𝜇1
𝑡  and 𝐿𝜇2

𝑡 . The values are used to determine the size of the growth envelope 

associated with 𝜇 using Equation 18. Here, 𝐿𝜇
𝑡  is the size of the growth envelope associated 

with 𝜇 at time 𝑡, whilst 𝑙 represents the cell spacing

𝐿𝜇
𝑡 = 

1

2
[𝑀𝑖𝑛(𝐿𝜇1

𝑡 , √2 ∙ 𝑙) + 𝑀𝑖𝑛(𝐿𝜇2
𝑡 , √2 ∙ 𝑙)] 

Equation 18: Decentred growth envelope size calculation. 

The final parameter required to define the envelope is the growth centre. This is determined 

by defining a square of side length 2𝐿𝜇
𝑡 , with the same orientation as the capturing envelope, 



such that the corner of this envelope is coincident to the nearest corner of the capturing 

envelope. A diagrammatic representation of this can be seen in Figure 18. The centre of this 

square delimits the growth centre associated with 𝜇, 𝐿𝜇
𝑡  denotes the initial envelope size and 

additional growth can be calculated, as before, using Equation 16. 

The same decentring can be applied to the 3D octahedral envelope. The growth centre of the 

captured cell can be calculated in a very similar manner. A detailed algorithm of the 

calculations required can be found in the original work (Gandin & Rappaz, 1997). 

Whilst the 2D model is efficient and reasonably representative of the in plane crystallographic 

morphology, it does make the assumption that all grains are growing perpendicular to the 

plane in consideration. This is due to the fact that whilst a square is the 2D projection of an 

octahedron, it is only achieved as an intersection of a plane and an octahedron along the 

central axis of the octahedron. If an octahedron is intersected along any plane, that is not one 

of the 3 principal planes, a hexagon is obtained. Therefore, within this work a code for a 2.5D 

model considering only the 8 in plane neighbours, but utilising the 3D growth envelope was 

tested, as well as the a code for the 3D model. However both the 2.5D and 3D models proved 

to be too computationally expensive and will not be used any further within this work. 

4.4 CA Algorithm 

In order to simulate the nucleation and growth mechanisms presented in the previous sections 

state variables and algorithmic rules representative of the underlying modelling theory must 

be used. Firstly, two main state variables are assigned to each cell; physical state, 𝐼, and grain 

orientation, 휃 (or 휃, 𝜑1, 𝜑2 in the 3D model). The physical state monitors the state of each cell. 

This is achieved by assigning a different value depending on the state of the material. Namely, 

a value of 0 defines the cell as liquid, 2 a solid cell and 1 a growing cell. For the case of additive 

manufacturing we also require a value that assumes a cell is inactive and not to be take into 

account within the simulation. That is a cell that exists within the computational domain but 

has not yet been deposited within the additive process. In finite element models, this can be 

achieved through the implementation of element birth and death techniques. However, for a 

CA analysis we require details regarding the neighbours of each element. For this reason, as 

well as other meshing limitations described later, it is easier to establish a fixed domain within 

the simulation. Therefore, in these CA simulations, material deposition is modelled by 

assigning a physical state value of -2 to any inactive material, ie. material that has not yet be 

deposited. Furthermore, for processes involving a static powder bed, eg. L-PBF, powder 

materials are given a physical state of -1. Grain orientation is a state variable that stores the 

angles assigned with the grain envelope. In 2D, a single array is used to store the 휃 value 

assigned to the square envelope. However, in 3D three separate arrays are used to store the 



three Euler angles of the octahedral envelope. The grain orientation variable is also used to 

determine which cells belong to the same grain. Any neighbouring cells with the same grain 

orientation are assumed to be part of the same grain. This is a reasonable assumption 

because, due to the randomness in orientation assignment, it is probabilistically unlikely that 

any two cells that have nucleated separately or captured from different growing grains would 

have identical grain orientations. 

The state variables are then updated according to a number of rules that represent the 

nucleation and growth modelling techniques. There are five main rules within the CA algorithm 

that can be seen in a mathematical formulation within Table 4. These do not include any 

mechanisms with regards to inactive or powder material. These will be discussed separately 

further on in the work. The main rules presented here are based on those seen in the work 

presented by Chen et al. (Chen, et al., 2016). Within the formulation seen below, 𝑣 represents 

the cell for which the calculations are taking place and 𝜇 a cell within the neighbourhood of 

that cell, Ω𝑣. Furthermore, 𝐼𝑣 and 휃𝑣 are the physical state and grain orientation of cell 𝑣 

respectively. Similarly, 𝑇𝑣 represents the current temperature at the cell,  Δ𝑇𝑣 the current 

undercooling and Δ𝑇𝑝𝑢 the probabilistic undercooling assigned to that cell. Finally, the growth 

envelope of cell 𝑣, described in Section 4.3, is given here by 𝐴𝑣. 

Rule Initial State Final State Condition 

M1 𝐼𝑣 ≠ 0 𝐼𝑣 = 0, 휃𝑣 = 0 𝑇𝑣 ≥ 𝑇𝑙𝑖𝑞 

M2 𝐼𝑣 = 2 𝐼𝑣 = 1 ∃ 𝜇 ∈ Ω𝑣 𝑠. 𝑡.  𝐼𝜇 = 0 

N1 𝐼𝑣 = 0, 휃𝑣 = 0  
𝐼𝑣 = 1  

휃𝑣 = 휃𝑟𝑎𝑛𝑑 & 𝐴𝑣 initiated 
∆𝑇𝑣 ≥ ∆𝑇𝑝𝑢 

S1 𝐼𝑣 = 0, 휃𝑣 = 0  
𝐼𝑣 = 1  

휃𝑣 = 휃𝜇 & 𝐴𝑣 initiated 
∃ 𝜇 ∈ Ω𝑣 𝑠. 𝑡.  𝑣 ∈ 𝐴𝜇 

S2 𝐼𝑣 = 1 𝐼𝑣 = 2 ∄ 𝜇 ∈ Ω𝑣 𝑠. 𝑡.  𝐼𝜇 = 0 

Table 4: CA algorithm rules. 

The first two rules presented within Table 4 describe the methods of melting within the 

algorithm, hence the nomenclature M1 and M2. The first of these rules represents the physical 

state change experienced by the metal when liquidus temperature is obtained. The rule 

specifies that any cell that is not already liquid, becomes liquid upon reaching or surpassing 

the liquidus temperature. The second melting rule then states that if any solid cell obtains a 

liquid neighbour, the cell becomes growing as it now has a neighbouring liquid region into 

which it could grow. This is the key rule that allows for epitaxial growth from existing grains. 

Following this, there is a nucleation rule that works by initiating growth within any cell that 

surpasses the probabilistic undercooling assigned to it at the start of the analysis. Upon 



nucleation the cell is given a random grain orientation and the grain envelope is initiated. For 

the 2D implementation this is a value within the range 0 ≤ 휃 <
𝜋

2
, due to the four fold symmetry 

of the square envelope. In 3D, three random values are assigned to the three Euler angles 

described in Figure 17.  

The final two rules in the model implement the solidification mechanisms. The latter of these 

rules ensures the termination of a growing cell, by specifying that any growing cell with no 

liquid neighbours becomes a fully solid cell. Grain capture using the grain growth envelope 

technique is implemented through S1. This rule states that if a liquid cell falls within the growth 

envelope of a neighbouring cell then the cell is caught. Grain envelopes are defined 

geometrically within the model and Equation 16 is used to determine the grain size. However, 

since the analysis is undertaken in discrete steps, the integral must also be discretised. 

Therefore, the current envelope size, 𝐿𝑡, is determined as follows. Equation 19 represents the 

discretisation of the 2D equation for a time increment of length δt from t-δt to t. The same can 

also be applied to the 3D equation. 

𝐿𝑡 = 𝐿𝑡−𝛿𝑡 +
1

√2
𝑣(∆𝑇𝑡−𝛿𝑡) ∙ 𝛿𝑡 

Equation 19: Discretised envelope size calculations. 

Upon capture, the cell in consideration assumes the grain orientation for the cell it has been 

caught by, and the growth envelope for the captured cell is initiated. In the event that a cell is 

caught by multiple cells within the same time increment a number of approaches can be 

undertaken. Lopez-Botello et al. implemented a random selection (Lopez-Botello, et al., 2017), 

whilst Rai et al. compared the difference between three mechanisms, including selection by 

greatest undercooling and selection based on iteration order, and showed minimal difference 

in results (Rai, et al., 2016). Within this work a random selection between any capturing grains 

were assigned. Due to the small size of time increment used throughout the model, this is a 

reasonable approximation to make. Furthermore, within some CA work, boundary conditions 

are applied to the edges of the domain (Rappaz & Gandin, 1993; Yang, et al., 2018). Boundary 

conditions within the CA model are not applied within this work. 

In order to model material deposition within the CA models, material can be assigned with an 

inactive physical state. As previously mentioned, this ensures that these cells are not taken 

into account within any of the CA calculations, until a time when the cell becomes active. The 

cells can be activated by assigning an alternative state value within the program to cells on a 

time or temperature basis. For example, within an L-PBF simulation like the one shown in 

Chapter 7, material is deposited in layers of powder.  Therefore, prior to the deposition of any 



powder layers, the corresponding cells are all prescribed an inactive cell state, 𝐼 = −2. Then 

each subsequent layer is deposited individually according to the appropriate recoat times 

within the scan strategy. This is achieved by changing the physical state from inactive to 

powder (-2 to -1) based on a function of time and position. For direct energy deposition 

methods where material is deposited in a molten state continuously, within a layer, it is less 

feasible to activate material as a function of time and position. Therefore, is it suggested here 

that within DED simulations material is activated as a function of temperature. The algorithmic 

formulation of this can be seen in Table 5. 

Rule Initial State Final State Condition 

A1 𝐼𝑣 = −2 𝐼𝑣 = 0, 휃𝑣 = 0 𝑇𝑣 ≥ 𝑇𝑙𝑖𝑞 

Table 5: CA rule defining temperature-based material activation within DED methods. 

The algorithm implemented within microstructure code can be seen as a flow chart in Figure 

19. It begins with the assignment of probabilistic undercoolings at the start of the analysis and 

then shows the various decision loops that are undertaken within each time increment, at each 

element, to implement the various rules that have been detailed within this section. 



 

 

Figure 19: Decision tree representation of the basic CA algorithm occurring within each element. 



4.5 Implementation within Abaqus 

The algorithm, described in Section 4.4, is implemented through the use of Fortran subroutines 

with Abaqus standard. Abaqus is a useful tool to use for the implementation of the cellular 

automata model due to the elemental nature of the software. Firstly, due to the finite element 

methods employed within the software, calculations are undertaken at each element before 

moving to the next time increment. This is the same mechanism required within the CA 

algorithm. In addition, calculations are undertaken independently at each element. More 

importantly, by using Abaqus to carry out the CA calculations, this makes the coupling 

between the finite element thermal model and microstructure model easier to implement, as 

the thermal history can be imported directly from the thermal analysis undertaken in Abaqus. 

Linear interpolation is also automatically applied within the CA model to determine the 

temperature at each integration point. 

Within this work a weak coupling has been used between the finite element thermal and 

cellular automata microstructure models. This means that the microstructural developments 

explained in Section 1.6, such as solute concentrations, are not accounted for within the 

thermal analysis. Strong coupling approaches, whereby microstructural calculations are fed 

back into the thermal calculations can be seen in works such as (Zhang, et al., 2018) and a 

detailed explanation can be found in (Gandin & Rappaz, 1994). These models involve 

curvature calculations based on solid fractions as well as the constitutional effects on 

undercooling and more realistically represent all of the physical mechanisms involved within 

the solidification mechanisms described earlier (section 1.6).  

However, weakly coupled models have also been used in a number of works and offer the 

benefit of a simpler and more computationally efficient model, whilst still providing successful 

predictions of microstructural features. Computational efficiency of the model is important 

when trying to simulate larger domains, such as the full build, in an efficient manner, 

particularly at a design level and is part of the reason the CA approach was chosen. The 

assumption made here means that the undercooling of each cell is determined as the 

difference between liquidus temperature and current temperature, calculated on a continuum 

scale as in Equation 20. 

∆𝑇 = 𝑇𝐿 − 𝑇 

Equation 20: Undercooling calculations used within weakly coupled models. 

Whilst the fully-coupled approach is the most physically accurate, a weak coupling is a 

reasonable assumption to make due to the large thermal gradients within the additive 

manufacturing process. Rappaz et al. state that a “semicoupling” can be used, where the 



thermal field is pre-calculated, when thermal gradients are particularly large (Rappaz, et al., 

1996) and present such a weak coupling approach in their following work (Gandin, et al., 

1999). The use of a weak coupling also makes the modelling approach simpler to implement 

and more computationally efficient. This coupling approach is also seen within the work by 

Koepf et al. and their implementation of a more computationally efficient model (Koepf, et al., 

2019) among others (Rai, et al., 2016; Lian, et al., 2019 ; Lopez-Botello, et al., 2017).  

The weak coupling approach means that the thermal analysis and microstructure analysis are 

undertaken sequentially. Following the completion of the thermal analysis, the microstructure 

model is implemented within a static, implicit general step in Abaqus. Although this type of 

procedure is typically used for linear elastic stress problems, the use of this procedure here 

allows for the prescription of the thermal history as a predefined field. A smaller domain is 

normally used within the CA model, by using Abaqus the in-built interpolation and mapping 

capabilities can be used to interpolate the thermal field from the coarse thermal mesh onto the 

finer CA mesh. Typically this is a 2D cross section of the region of interest, however other 

domains can be modelled with the application of the 3D algorithm. 3D elements are used 

within the model regardless of whether the CA algorithm is 2D or 3D, as this allows for the 

correct interpolation of the 3D thermal field. Reduced integration, 8-node linear stress 

elements are used. Reduced integration is necessary for the simulation as they have a single 

central integration point at which all the state variables can be calculated and updated, Figure 

20. This represents the centre of each cell within the CA grid. This is important because, as 

we will describe later, the subroutines used are called at every integration point, and therefore 

there needs to be a single integration point at the centre of each element in order for them to 

be used efficiently as CA cells. 

 

Figure 20: Visual representation of C3D8R elements. 



In built meshing techniques, within Abaqus, can also be utilised to prescribe a uniform grid of 

cells to the domain. Subsequently, Python scripts can be used to determine the 

neighbourhood for each element. However, throughout this work the mesh has been 

generated manually in order to determine the relevant neighbourhood of cells more efficiently. 

In other words, the meshing module within Abaqus/CAE was not used. Instead, by generating 

the mesh algorithmically, it was possible to uniquely identify the neighbours of each element 

based on a consistent element numbering strategy. This way the neighbours of each cell can 

be determined within the calculation of the mesh and stored within a data file. This approach 

also ensures a more methodical approach to the elemental/cellular numbering than that 

automatically assigned within Abaqus itself. Data files can then be read into the Fortran 

subroutines and stored as an array, ensuring the information is easily accessible for every 

element throughout the calculations. 

User subroutines are implemented to carry out the actual calculation required within the CA 

model. A combination of a USDFLD and a UEXTERNALDB subroutine are implemented with 

access to a module. The USDFLD subroutine is used to perform the calculations required for 

the cellular automata algorithm at the centre of each element, whilst the UEXTERNALDB is 

used to store and update all the required data through the use of arrays. Meanwhile the module 

allows global access to array data between the two subroutines.  

A USDLFD is a subroutine commonly used to allow the definition of a user defined field. It 

allows for the creation and calculation of field variables and state variables. State variables 

can be updated, stored and output within the Output Database (odb) file. Field variables are 

very similar, but can also be used within the analysis to determine a change in the analysis, 

such as field-dependent material properties. The field and state variables within this subroutine 

are used to output the variables within the CA algorithm to an odb file so they can be visualised 

throughout the time step. The subroutine is called for each integration point of each element 

(in this instance once, due to the choice of element type) for each time increment. There are 

two other features of the USDFLD that have also been exploited within this model, the ability 

to access material point data and the ability to specify a new value of time incrementation. The 

first of these features is used to access the temperature values at the integration point, at each 

time increment. This is achieved through the use of the utility subroutine GETVRM. Time 

incrementation can be dictated (Gandin, et al., 1999) through the variable PNEWDT, this is 

utilised to allow for automatic incrementation within the model. We can then update time 

incrementation based on mesh size and growth velocity through the use of an identity, such 

as the one in Equation 21, where 𝛼 is a scaling factor and 𝑙 the cell spacing. Similar 

approaches to automatic incrementation can be seen in a number of papers including within 



the work by Gandin et al. (Gandin, et al., 1999) among others (Koepf, et al., 2019; Zinoviev, 

et al., 2016) . 

 

𝛿𝑇 = 𝛼
𝑙

𝑣(∆𝑇)𝑚𝑎𝑥
 

Equation 21: Automatic time incrementation. 

A UEXTERNALDB is an external database subroutine, its primary purpose is for the storage 

of arrays that can be accessed in other subroutines, such as the USDLFD. In this case it is 

used to store arrays of variables and attributes required to be able to carry out the cellular 

automata algorithm. The subroutine is called at the start and end of the analysis and also at 

the start and end of each increment. This feature allows us to update all the relevant array 

values at the end of each increment prior to the analysis in the next time increment. The use 

of the different subroutines and coupling approach is demonstrated in the flow chart in Figure 

21. Within the diagram E represents the element being considered, with 𝐸𝑡𝑜𝑡  representing the 

total number of elements within the CA analysis and 𝑡𝑡𝑜𝑡 the total time of the microstructure 

simulation. More details on all of the Abaqus user subroutines can be found in the 

documentation (Dassault Systèmes, 2015). Within the development of these codes, geometric 

aspects were utilised from open source code (Burkardt, 2005). 



 

Figure 21: Flow chart of overall subroutine approach.  



4.6 Analytical Verification 

The implementation through Fortran subroutines, described above, has been developed within 

this work as open source code is unavailable. Therefore, in order to verify the code developed 

within this work, an analytical study was undertaken. Within the model, the 2D decentred 

growth envelope code was applied with a uniform thermal boundary condition. A single cell is 

assigned with a critical undercooling to allow nucleation of a single crystal. The nucleation, 

growth and capture mechanisms are then compared against hand calculations to ensure the 

Fortran subroutines are performing as expected. 

 

Figure 22: Initial stages of the growth of a single crystal within the CA code.  

Within this study, the assumption made by Rappaz and Gandin regarding the growth kinetics 

were implemented. A cooling rate of 50°Cs-1 was imposed. Assuming the domain starts at 

liquidus, a critical undercooling of 5°C was applied to the nucleation cell with a grain orientation 

of 30°. Fixed incrementation of 0.01s was applied, to simulate the development of the grain 

growth. Hand calculations, using the same parameters, were undertaken as a comparison for 

the developed CA subroutines. The cell nucleated at the expected frame within the analysis, 

and neighbouring grains were captured within the growth envelope at the expected times. 

These initial steps can be seen in Figure 22. However, hand calculations become too complex 

beyond a certain point, so only the initial steps were involved within the analytical verification. 

An example of further growth beyond this point is shown in Figure 23. 



 

Figure 23: Growth development of a single crystal with a grain orientation of 30°. 

4.7 Analysis and Comparison Methods 

The CA model presented here gives predictions in the form of a visual representation of the 

grain structure. In order to be able to validate the capabilities of the model we need to be able 

to compare the simulated microstructure to experimental results both quantitatively and 

qualitatively. Qualitative comparisons are relatively easy to undertake as the results show a 

visual representation of the physical domain. Grains can be coloured by orientation within 

Abaqus or by a grain number attributed during post processing in MATLAB. This allows us to 

see the grain boundaries and draw visual conclusions about the morphology of the grains. 

However, unless a 3D simulation has been undertaken, comparisons that can be made 

regarding grain orientation are limited. Moreover, due to the finite number of colours available 

in either Abaqus or MATLAB, a bias of results can be introduced when two similarly orientated 

or neighbouring grains are assigned the same colour. This is part of the reason why 

quantitative measurements are an important feature of the analysis.  

Quantitative comparisons are based around physical, numerical measurements of features 

such as average grain size. They allow us to see a numerical measure of how successful the 

model is. The traditional method of measuring grain size is through the linear intercept method 

presented in the ASTM standard for determining average grain size (ASTM International, 

2013). This involves drawing a line, of length L, across the domain, where L should be long 

enough to encounter a minimum of 50 intercepts. It is then calculated how many grain 

boundaries are crossed by the line, each of these events is an intersection. The total number 

of these is represented by 𝑁𝐿. A numerical relation between the average value of 𝑁𝐿 per mm 

and the ASTM grain size number, G, is then used to give us a value for the average grain size. 

Within the standard the relationship between G and grain area, A, is given via a tabulated set 

of values. In order to allow for a continuous set of data a function has been fitted to the set of 



the data within Excel. This method of grain analysis is a simple yet effective approach to 

evaluating average grain size within a sample. However, it is only an accurate measurement 

for equiaxed structures, which is not a true representation for the grain structures witnessed 

within some of the additive manufacturing processes seen within this work.  

Within the standard (ASTM International, 2013) it is noted that, for non-equiaxed grain 

structures, measurements should be undertaken in all principal directions and the average 

grain size estimated from these values.  This could still be insufficient for the grain structures 

experienced within AM, as this would only allow us to determine the average grain size along 

a given axis and not for the overall plane of material. For example, for the simulation of a single 

melt pool (as will be seen in Chapter 5) due to the thermal processing, grains are often 

orientated to the centre of the melt pool as this is the direction of the thermal gradient, Figure 

24 . Consequently, there is no one principal direction that would give an overall representation 

of the average grain size within the melt pool. 

 

Figure 24: Example grain structure experienced within an AM melt pool (National Institute of Standards 

and Technology, 2018). 

For this reason, alternative methods of quantitative measurements have been implemented 

within some of the studies undertaken as part of this project. The alternative method involves 

post processing of the grain structures within MATLAB. Data can easily be extracted from the 

Abaqus odb file, using a Python script, and imported into MATLAB. Once in MATLAB, an open 

source function is implemented to fit each grain with a minimum bounding ellipse (Moshtagh, 

2005). Examples can be seen within Figure 25. The area, length and width of the minimum 

bounding ellipse can then be determined and used to give a close approximation of the grain 

dimensions, irrelevant of orientation or size. Using this method, the length and width can also 

be used to determine the aspect ratio associated with the grain. The aspect ratio is given by 

length of the minor axis divided by length of the major axis. This is useful as it provides us with 

a numerical value associated to the morphology of the grains. For example a grain with an 

aspect ratio of 1 is perfectly circular and therefore equiaxed. Meanwhile, a columnar grain 



would have a much greater length than width and therefore a much smaller aspect ratio would 

be witnessed.  

 

Figure 25: Examples of minimum bounding ellipse fitting. 

A comparative study between the linear intercept method and minimum bounding ellipse 

approach has been undertaken in order to discuss the differences and effectiveness of each 

technique. This has been done on both experimental microstructures and simulated 

microstructures.  

Three experimental EBSDs were generated from 316L substrate material, an example of one 

of these can be seen in Figure 26. The microstructure was analysed using both the linear 

intercept method and minimum bounding ellipse method. Firstly, MTEX was used to extra 

pixel locations, calculate grain IDs and fill in some of the unindexed data with the EBSD. Once 

the required data was extracted, the linear intercept method and minimum bounding ellipse 

approach described above were applied, ignoring any remaining unindexed data. Within the 

linear intercept method, 500 random lines were applied to each EBSD. The comparison 

between the methods can be seen in Table 6. 

 



 

Figure 26: Experimental EBSD of substrate material for grain analysis. 

 Linear Intercept Minimum Bounding Ellipse 

EBSD # G A (𝝁𝒎𝟐) D (𝝁𝒎) Ellipse Area 

(𝝁𝒎𝟐) 

L (𝝁𝒎) W (𝝁𝒎) Aspect 

Ratio 

1 8.96 258.52 16.02 1100.82 57.53 16.97 0.429 

2 9.11 233.83 15.24 1112.08 35.93 15.73 0.414 

3 8.87 275.95 16.55 1228.434 40.70 18.70 0.440 

Table 6: Comparison of linear intercept and minimum bounding ellipse analysis methods on experimental 

microstructures. 

This study was also undertaken on three numerically simulated, reasonably equiaxed 

substrates of varying grain size. For the linear intercept approach, a total of 65 random lines 

were imposed onto the substrate and extended to reach the limits of the domain. The number 

of lines was chosen after witnessing approximately how many lines it took for the average 

grain area measurements to stabilise/converge. The results of the comparison of methods for 

the simulated microstructures can be seen in Table 7. 

  Linear Intercept Minimum Bounding Ellipse 

# Cell Area 

(𝝁𝒎𝟐) 

G 𝑵𝑳 

(𝒎𝒎−𝟏) 

Area 

(𝝁𝒎𝟐) 

D 

(𝝁𝒎) 

Ellipse 

Area 

(𝝁𝒎𝟐) 

L 

(𝝁𝒎) 

W 

(𝝁𝒎) 

Aspect 

Ratio 

1 1109.84 7.753 45.892 598.84 24.40 1656.82 48.991 33.274 0.6704 

2 1634.91 7.377 40.287 777.03 27.80 2536.32 61.574 40.085 0.6382 

3 2309.02 6.802 33.007 1157.53 33.94 3581.09 73.628 48.926 0.6539 

Table 7: Comparison of linear intercept and minimum bounding ellipse analysis methods on simulated 

microstructures. 



This comparison allows us to consider the differences between the two results. Within the 

experimental comparisons, the grain width calculated by the minimum bounding ellipse is very 

similar to the diameter determined using linear intercept methods. However, the grain area 

and length (comparable again to the grain diameter assuming reasonably equiaxed grains) 

are largely overestimated. This is similar to that seen in the simulated microstructures, where 

the grain area and length are much larger than those calculated via linear intercept methods. 

Whilst the width is closer in value to the grain diameter, it is still larger. However, within this 

comparison we were also able to compare cell area. This  is calculated by multiplying the 

number of pixels within a grain by the area of an individual pixel, as such this can be 

considered the most accurate measure of grain area for the simulate microstructures. In the 

comparison of methods here it is clear that the linear intercept method consistently 

underestimates this value whilst the ellipse method overestimates it by a similar amount. Over 

estimation of the are a is expected form the minimum bounding ellipse approach, as by nature 

the ellipse contains regions of empty space, as can be seen in Figure 25. 

 From this exercise we can conclude that both methods give different estimations of grain 

features such as grain diameter or length. However, while the two methods differ in area 

estimations, they both give a similar level of accuracy when compared to cell area. Despite 

the variation in estimations, within this work we will be using the minimum bounding ellipse as 

it can be applied to non-equiaxed structures, such as those seen within the additive 

manufacturing process where columnar anisotropic grain structures are seen. Furthermore, it 

is highlighted that the same measurement process, ie. the minimum bounding ellipse method, 

will be undertaken on both experimental and simulated microstructures within subsequent 

case studies, so that the quantitative measurements can be compared like for like between 

the experimental results and predicted microstructures. 

  



 

5  AMB2018-02 Validation Study 

This chapter presents a case study using open source experimental results, that have been 

made publically available as part of the National Institute of Standards and Technology (NIST) 

AM Benchmark 2018, as validation data. The main aim of this study was to validate the overall 

modelling technique for a reasonably simple experimental set up. All of the experimental 

details were described thoroughly as part of the benchmark (National Institute of Standards 

and Technology, 2018) and an overview of these can be found below. Following this the 

thermal modelling approach will be discussed before looking at the use of the cellular 

automata models for microstructure prediction. The chapter will conclude with a statistical 

analysis of the model and a discussion of the accuracy of the results. 

5.1 Challenge Description 

The focus of this case study was challenge AMB2018-02 of the open benchmark presented 

by NIST. This involved scanning a bare IN625 substrate with 10 laser scans, of varying power 

and scan speed. Details of experiments, as well as test data, were found on the Benchmark 

website (National Institute of Standards and Technology, 2018; National Institute of Standards 

and Technology, 2019). Diagrammatical representations of the experiment, involved within 

this case study, can be seen in Figure 27. 

 

Figure 27: Diagrammatical representations of the experimental set up within AMB2018-02 (National 

Institute of Standards and Technology, 2018). 

The substrate used had dimension 24.82mm x 24.08mm x 3.18mm. Each scan was 14mm 

with a hatch spacing of 0.5mm between scans. A combination of three different sets of process 

parameters were used on two different processing machines. In this work we have focused 

solely on the experiments completed using the NIST Additive Manufacturing Metrology 



Testbed (AMMT) machine as the experimental results were more readily available for these 

tests. The process parameters used with this machine can be seen below in Table 8. Within 

this work we focus solely on the process parameters of Scan B and use this example to 

validate the modelling approach. The laser used featured 170μm and 100μm, D4σ and FWHM 

spot sizes respectively.  

Scan Power (W) Scan Speed (mm/s) 

A 137.9 400 

B 179.2 800 

C 179.2 1200 

Table 8: Process Parameters for each scan. 

The melt pool geometry and cooling rate were measured experimentally for each scan through 

a combination of thermal imaging, scanning electron microscopy (SEM) and electron 

backscatter diffraction (EBSD) among other techniques. Cooling rate was calculated through 

thermal imaging, as it was impossible to monitor the temperature within the melt pool directly. 

The image was used to determine the location of the point along the scan direction at which 

the temperature was 1290°C (solidus temperature) and 1190°C respectively. The distance 

between these two points was then divided by the scan speed to determine the time for cooling 

(Figure 28). Similarly, the melt pool length was calculated from these images by determining 

the distance between the front and back point of the melt pool at solidus temperature. EBSD 

maps and SEM images were taken on a cross section of the substrate, perpendicular to the 

scan direction, and were used to determine the melt pool width and depth as well as expose 

the resultant microstructure.   

 

Figure 28: Calculation of cooling rate (National Institute of Standards and Technology, 2018). 



Work on this particular challenge can also be seen within a number of thematic papers 

published as part of the Benchmark (Gan, et al., 2019; Kollmannsberger, et al., 2019; 

Robichaud, et al., 2019). The work seen in all three of these works varies slightly as each 

paper focuses on different aspects of the tasks outline. Gan et al. (Gan, et al., 2019) compared 

three types of thermal models and determined that the most accurate modelling method was 

the thermal-fluid vaporisation model, accounting for both fluid flow within the melt pool and 

heat loss due to vaporisation. They then used this thermal profile to look at surface topography 

and dendrite arm spacing. However, this simulated the process using the CBM machine and 

not the AMMT machine seen here. Robichaud et al. entered a submission to the benchmark 

as a team from Applied Optimization inc. (Robichaud, et al., 2019). Their work focused on the 

prediction of the thermal profile and grain structure, and received 2nd place for their grain 

structure predictions using a cellular automata method, similar to the work within this thesis. 

However, their thermal model was also performed using computational fluid dynamics (CFD) 

techniques. Finally, Kollmannsberger et al. (Kollmannsberger, et al., 2019) focused solely on 

melt pool geometry and cooling rate predictions. Isotropic and anisotropic conductivity were 

considered within their work. The anisotropic conductivity appeared to be more successful, as 

it partially accounts for the fluid flow within the melt pool. However, it is not used within this 

model as it increased computational expense significantly. 

5.2 Thermal Models 

As detailed in the previous sections, the modelling approach taken within this work involves 

two key steps: 1) the development of the 3D thermal model and 2) the application of the 

thermal model within the microstructure model of a 2D cross section. A 2D model has been 

chosen in order to reduce computational expense and also to allow for a higher resolution 

within the plane through the implementation of a finer mesh. The thermal model was calibrated 

using the experimental melt pool geometry and cooling rate measurements released after the 

Benchmark.  

Thermal modelling was undertaken through the use of commercial FE software, Abaqus. A 

3D analysis was performed, however due to computational expense a reduced domain was 

modelled in order to improve efficiency. The reduced substrate domain focused only on a 

single Scan B laser scan. It was stated in the challenge description that the time between 

scans was sufficiently long such that the scans were independent of each other, therefore 

such a reduction is justified. The reduced domain was representative of the full depth of the 

original substrate, 3.18mm, but a smaller substrate width and length were used. The width 

measured 1mm and was used in order to capture the full region affected by the melt pool, 

whilst minimising excess material. Similarly, the reduced length was taken to be 4mm as to 

allow time for the melt pool to reach a stable steady state, which is said within the challenge 



description to be achieved after the first 2mm. Furthermore, a biased mesh was used to 

achieve a 10μm element size within the centre of the domain, where the laser scan takes 

place, in order to achieve accurate results within the region of interest, whilst optimising 

computational efficiency. Furthermore, a time incrementation of 3.125e-06s was implemented 

as the result of a convergence study (Figure 29). This incrementation was chosen as the 

thermal profile was suitably close to that of the finer incrementation within the critical cooling 

region, but with a reduced run time by approximately half.  

 

Figure 29: Graph representing the convergence study for the thermal analysis within the critical cooling 

region. 

The moving laser was modelled by a Goldak heat source. The defining equations for this heat 

sources are given in Equation 22.  
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Equation 22: Goldak heat source (Zinoviev, et al., 2016). 



Both radiation and convection boundary conditions were applied to the top and bottom of the 

substrate to represent heat loss to the surroundings. No boundary conditions were applied to 

the sides of the substrate, as within Abaqus the lack of a boundary condition represents a zero 

flux condition, which in turn is representative of a symmetry plane. Therefore, as we are only 

modelling a small region of a larger substrate the symmetry boundary condition accounts for 

the other material surrounding the smaller domain. Temperature dependent material 

properties were used based on those found within a literature review. The material properties 

used can be seen in Figure 30. A latent heat of fusion of 227 kJ/kg was used between the 

solidus temperature of 1290°C and the liquidus temperature 1350°C (Shrestha & Chou, 2018). 

 

Figure 30: Temperature dependent material properties used for IN625 a) Thermal Conductivity (Shrestha & 

Chou, 2018; Arisoy, et al., 2019) , b) Specific Heat Capacity (Shrestha & Chou, 2018; Gan, et al., 2019), c) 

Density (Shrestha & Chou, 2018; Gan, et al., 2019). 

The thermal model was calibrated using the experimental measurements. The cooling rate 

within each simulation was calculated by extracting the thermal profile along the central path 

once the melt pool had reached a stable state. Calculations were then undertaken as in the 

experimental analysis with the use of linear interpolation. The length was calculated as in the 

experiments according to the solidus temperature, whereas width and depth were calculated 

according to liquidus temperature as these experimental values were measured from the 

residual melt pool line within the macrographs. An in-depth design of experiments (DoE) was 

undertaken using DoE software, Design-Expert 12. The aim of this DoE was to optimise the 

heat source input parameters to reduce the error between the simulated and experimental 



melt pool dimensions and cooling rate. A total of 5 variables within the model were optimised, 

namely; the dimensions of the Goldak heat source (a, b and c, where c is assumed to be equal 

to cf+cr), the ratio between the front and back ellipses within the Goldak heat source (ff) and 

the heat source efficiency (λ). Suitable intervals for all variables were chosen based on some 

preliminary models. An initial 50 models were run, of which, due to the design chosen 7 were 

duplicate parameter combinations and could therefore be ignored. Optimised solutions were 

then identified. No solutions were found that allowed for a maximum of 1 standard of deviation 

for all of the measured variables. Therefore, the equations were set to minimise error for the 

melt pool geometry and then minimise cooling rate within these results, as cooling rate was 

the property with the biggest deviation from experimental results. The corresponding models 

were then run and analysed. If the predicted solutions and simulated solutions were suitably 

different the runs were added to the analysis and the analysis was undertaken again. A total 

of 60 models were run and the most suitable of the solutions was used as the thermal profile 

within the cellular automata analysis.  

The final thermal model implemented within the microstructure simulations used the 

parameters a=0.117, b=0.05, c=0.162, ff=0.435 and λ=0.357. The relative error between this 

thermal model and the average measurements over the 10 experimental tests of scan B can 

be seen in Table 9. It is acknowledged that the Goldak parameter b, is on the boundary of its 

allowed interval. However, predicted results for an analysis using a larger value than this were 

consulted and, if the accuracy of length, width and depth are maintained, the predicted 

variation in cooling rate was minimal. Therefore, the original parameters have been used 

within the final analysis.  

  Length (μm) Width (μm) Depth (μm) Cooling 

Rate (°s-1) 

Experiment Average  359 123.5 36 1080000 

CoV (%) 5.57 5.26 5.28 54.44 

Simulation Value 360.9 125.4 36.4 3964606 

% Error 0.53 1.53 1.04 267.09 

Table 9: Error between thermal simulation and experimental measurements. 

These results clearly show the close simulation of melt pool geometry using these process 

parameters. However, there is clearly a large difference in cooling rates between the 

experimental and simulated results. Although the values are of the same order of magnitude 

there is a substantial difference in value, with the simulated cooling rate being more than 5 

standard deviations faster than that of the experimental measurements. There are a number 

of reasons why such a large difference is seen. Firstly, cooling rate is naturally a very difficult 



attribute to measure accurately within the melt pool, due to the inability to monitor this using 

thermocouples. The method seen in the NIST benchmark uses thermal imaging and therefore 

uncertainty errors are introduced by the spatial and temporal resolution of the equipment. 

Furthermore, in order to attempt to measure the cooling rate within the simulations in the same 

way, linear interpolation was used within elements. This, again, could introduce a degree of 

uncertainty within the measurements. However, it is thought that the main source of error 

between the results is the lack of inclusion of fluid flow effects within the model. Marangoni 

effects are a well-known physical phenomena that take place within molten material. It 

accounts for the movement of material within the melt pool and how this alters the effective 

conductivity. Within literature, these effects can be taken into account through the artificial 

alteration of thermal conductivity values (Safdar, et al., 2013; Lopez-Botello, et al., 2017). This 

provides a rough approximation to the effects caused by fluid flow within the melt pool.  

However, the discontinuity in material properties that is introduced can lead to a significant 

increase in run time. Such methods were attempted within this work, but were found to be too 

computationally expensive, with minimal impact on the results. The most accurate results are 

suspected to be achieved with a computational fluid dynamics (CFD) model, but this is beyond 

the scope of this project. 

5.3 Microstructure Predictions 

Following the development of the calibrated thermal model, we now move onto the 

implementation of the microstructure model. The 3D thermal model is applied to a 2D CA grid, 

representative of a cross section, with the same dimensions as the EBSD map, perpendicular 

to the scan direction. The corresponding EBSD map was then used to determine the quality 

of the final microstructure predictions. Both qualitative and quantitative comparisons were 

undertaken using the measurement methods outlined in section 4.7. Note, all grain 

measurements made within this study removed any grain with cell area smaller than 10μm2, 

in order to try and replicate the noise reduction seen in the EBSD map. 

A visual representation of the overlap between the 3D thermal profile and the 2D cross section 

used for microstructure predictions can be seen in Figure 31. A mesh size of 0.25μm is used 

within the CA domain with automatic incrementation techniques. The CA model used in this 

analysis is a 2D decentred method and does not allow for bulk nucleation within the melt pool, 

due to the rapid cooling times. Before applying the cellular automata algorithm to the model, 

one must first establish an initial substrate microstructure. This is done by applying an artificial 

thermal profile, representative of a casting application, whereby the material is uniformly 

cooled from a temperature at or above liquidus. Ideally, the resultant microstructure should be 

representative of that used experimentally. 



 

Figure 31: Visual representation of the overlap of 3D thermal and 2D CA models. 

Unfortunately, no detail is given within the challenge description regarding the substrate initial 

microstructure. Therefore, the most detail we can obtain regarding this is from the grains within 

the resultant EBSD that have not been effected by the laser scan. These grains were analysed 

within MATLAB and dimensions of the grains were obtained using the minimum bounding 

ellipses. Note, the grain length and width have been measured in terms of the major and minor 

axes within this study. The parameters within the microstructure model were then altered to 

calibrate the initial microstructure. The most suitable parameters for this model were chosen 

to be a critical undercooling, μ, and standard deviation, ν, of 17.5 and 1.0 respectively. 

Average dimensions of both the experimental and simulated substrate microstructures can be 

found in Table 10. It can be seen that all measurements made within the simulated 

microstructure are within 1 standard deviation of those seen experimentally within the EBSD. 

Therefore, it is determined that the parameters used to create this substrate are suitably 

accurate enough for implementation within the case study. 

  Cell/Pixel 

Area 

Ellipse 

Area 

Half Length 

(major radius) 

Half Width  

(minor radius) 

Aspect 

Ratio 

Experiment Average 91.67 135.61 7.91 4.45 0.602 

SD 92.47 148.06 4.47 2.09 0.145 

Simulation Average 84.74 131.74 6.84 4.66 0.677 

SD 103.97 168.17 3.68 2.91 0.149 

Table 10: Calibration of initial substrate microstructure. 

Once the initial microstructure has been developed, the next step of the analysis is to simulate 

how this existing structure is altered by the laser scan, through the application of the thermal 

model previously developed. A number of incrementation methods were considered for this 

application, including 2 values of fixed increment and 2 values of automatic incrementation. 

These were applied to the same initial substrate microstructure. The results can be seen in 

Figure 32. An automatic incrementation method with a scaling factor of 0.1 (Figure 32d) was 



chosen due to its close similarity to the finest increment choice in Figure 32b whilst being more 

computationally efficient.  For both the simulated and experimental microstructures, in order 

to compare the effects of the laser scan, the grains affected by the melt pool are separated 

from those that are not. This is done within MATLAB and allows us to focus solely on grains 

within the melt pool. 

 

Figure 32: Different incrementation methods, tested on the same initial substrate. 

Below we see the comparison of the results of the microstructure model and the experimental 

EBSD, both qualitatively (Figure 33) and quantitatively (Table 11).  

 

Figure 33: Visual comparison of microstructure predictions (right) against the NIST EBSD (left). 

  Cell 

Area 

Ellipse 

Area 

Half Length 

(major radius) 

Half Width 

(minor radius) 

Aspect 

Ratio 

Experiment Average 188.06 378.15 15.56 5.80 0.347 

CoV (%) 101.12 118.62 53.68 76.6 46.86 

Simulation Average 303.35 568.93 20.28 7.31 0.413 

% Diff 61.30 50.45 30.33 26.05 18.97 



Table 11: Quantitative comparison of predicted vs. experimental microstructures. 

Visually a good agreement is achieved between the predicted and experimental 

microstructure. There is clear elongated grain growth, within the melt pool, in the direction of 

the thermal gradient. The microstructure in the EBSD is slightly more disjoint than that in the 

simulation, but this will be contributed to by the sensitivity of the EBSD but also by the lack of 

3 dimensional growth within the microstructure model. The simulated microstructure is also 

visually affected by the colour scheme used within Matlab or Abaqus, as only a discrete 

number of colours are used. This can make grains appear larger than they are by assigning 

the same colour to two neighbouring grains. Such is the case for the large orange grain seen 

in the simulation results above, this grain is actually made of at least 2 separate grains, which 

have unfortunately been given the same colour. For this reason, among others, a quantitative 

analysis has also been undertaken so that we can eliminate any bias introduced through the 

presentation of the results. It should be noted that this study was undertaken early on within 

the thesis, and since alternative contour plots and colour maps have been used within Matlab 

to reduce the influence of this. The quantitative results can be seen in Table 11. A clear 

increase in the aspect ratio, in both experimental and simulation results, shows a transition 

from reasonably equiaxed grains within the substrate to columnar, elongated grains within the 

melt pool. Moreover, there is a significant increase in average grain size post laser scan for 

both the microstructures, although the average grain dimensions are slightly larger within the 

simulated microstructure than those seen experimentally. However, the average values still 

remain within one coefficient of variation of the experimental microstructure, so it can be 

concluded that it is a successful prediction of the microstructure properties. Some of the 

differences of grain structure can be attributed to the uncertainty of the initial substrate 

microstructure as well as variation of the thermal profile. 

In addition, the microstructure model used within this work features a number of probabilistic 

features, namely the probabilistic nucleation and the probabilistic choice of grain capture, 

discussed earlier. Within this case study, due to the small time increment used and the lack of 

bulk nucleation within the melt pool, the main probabilistic impact comes from the variation in 

initial substrates. Due to the lack of information surrounding the initial substrate microstructure 

in the experimental studies, it is impossible to replicate the exact substrate and therefore an 

approximation has been simulated. When using the model to cast this substrate, probabilistic 

nucleation means a different substrate is created each time and consequently different post 

melt microstructures. Therefore, a statistical analysis has been undertaken to determine the 

impact of the probabilistic aspects of these substrates and determine the average results over 

the entire analysis.  



 

5.4 Statistical Analysis 

The statistical analysis featured a total of 25 runs of the microstructure predictions, each using 

the exact same algorithm parameters, mesh size and incrementation parameters. The 

microstructure of each initial substrate and resultant melt pool were analysed and compared 

with the results taken from the experimental EBSD.  The mean and standard deviation of the 

average grain characteristics from each analysis were monitored. A total of 25 runs was 

chosen as this allowed sufficient runs such that the average standard deviation of the majority 

of the grain dimensions began to stabilise as can be seen in Figure 34. Table 12 presents the 

average and standard deviation of the post melt microstructures across the statistical analysis. 

 

Figure 34: Variability of standard deviation throughout statistical analysis. 

  Cell 

Area 

Ellipse 

Area 

Half Length 

(major radius) 

Half Width 

(minor radius) 

Aspect 

Ratio 

Experiment Average 188.06 378.15 15.56 5.80 0.347 

SD 190.18 448.58 8.35 4.44 0.163 

CoV (%) 101.12 118.62 53.68 76.6 46.86 

Mean  of 

Simulation 

Measurements 

Average 257.12 488.20 19.96 6.74 0.366 

% Diff 36.72 29.10 28.31 16.29 5.49 

SD  219.95 418.75 8.92 3.79 0.171 

Max value 394.78 735.02 22.78 9.07 0.443 

Min value 158.69 295.83 17.52 4.87 0.311 

Best Simulation Average 197.94 378.88 19.12 5.65 0.335 

% Diff 5.25 0.19 22.89 -2.54 -3.44 

Table 12: Statistical analysis results. 



The results, again, show that the mean of the average area, length, width and aspect ratio all 

lie within one coefficent of variation of the experimental results. Notably, there is a smaller 

difference on all accounts between the mean values across the 25 runs than those seen in 

the first simulation (Table 11). As can be seen by the minimum and maximum values for each 

dimension, the range of average charactersitics clearly varies greatly depending on the initial 

microstructure used. The range of each variable includes the experimental value, except for 

that for the grain length. The grain length is consistently predicted longer than seen 

experimentally, though not by much. This could be due to the 2D aspects of the model. In 3 

dimensions, one could expect some new grains to be dragged into the meltpool from the 

scanning direction that here is the out of plane direction. The introduction of these would 

hypothetically inhibit further growth of some grains and hence slightly reduce grain length. 

Despite this, there is only a minimal difference within the length averages and therefore the 

computaional efficency of implementing the 2D model outweighs the slight difference in 

measurements. Furthermore, although averages over 10 scans were given for thermal profiles 

only a single experimental EBSD map was supplied and therefore more experimental 

information would be useful to fully determine the level of statistical variation within 

experimental tests. 

To summarise, this case study has given us the ability to validate the modelling approach 

against detailed experimental data. A strong agreement was achieved between the simulated 

and experimental microstructures. Therefore verifying the suitability of the modelling method. 

Furthermore, this exercise has highlighted key features within the model that need to be 

considered within future analyses. For example, the dependence of results on probabilistic 

elements, such as initial microstructure, and hence the importance of performing a statistical 

analysis. 

  



 

 

6 Direct Energy Deposition (DED) Validations 

Following the validation of the sequentially coupled 2D CA-FE modelling approach for a single 

laser scan in the previous chapter (chapter 5), the main objectives of this chapter are to 

validate the model for a more complex, additive manufacturing application and to determine if 

the identified modelling approach is capable of predicting differences in solidification as a 

result of changes in the deposition process. 

Within this section the microstructure modelling methods will be applied to DED processes. 

The main advantage of validating the model using direct energy deposition rather than powder 

bed fusion, is the lack of powder deposition. In PBF simulations there is a requirement to 

model three material phases: solid, liquid and powder, whilst modelling of the deposition in 

DED only utilises two material phases: liquid and solid material. Thus, there is less room for 

inaccuracy both in the thermal model through material properties and in microstructure 

predictions via the assumptions made regarding nucleation from powder material. 

Furthermore, DED structures are typically built with a much coarser deposition strategy than 

PBF parts, with fewer layers and larger melt pools. Therefore, thermal models can be used to 

model the whole domain with accurate deposition strategies more easily and more efficiently. 

Moreover, larger melt pools means that a slightly larger cell size can be used, whilst 

maintaining the same level of resolution with respect to the cell size in comparison to the melt 

pool size. Hence increasing computational efficiency of the microstructure simulations. 

This case study aims to provide the required experimental arrangement to address the 

objectives identified in section 2.7: 

 Contribute to the smaller catalogue of work available for the application of CA to direct 

energy deposition processes, particularly for multi-layer builds. 

 Implement cellular automata methods with experimentally-validated thermal models.  

 Improve computational efficiency of the required models to achieve sensible run times 

with practical hardware requirements, suitable for use in industry. 

 Apply CA models to investigate the influence of process parameters, with experimental 

validation. 

 



Originally, plans were made to undertake extensive wire-arc additive manufacturing 

experiments. However, unfortunately, due to the outbreak of COVID-19 within the UK, the 

WAAM experiments were suspended due to lack of technical staff. Therefore, due to the loss 

of time, the decision was made to go ahead with alternate plans to achieve the desired 

objectives of this study. This involved focusing on existing data available within TWI from some 

recent LMD experiments.  

6.1 Laser Metal Deposition (LMD) Experiments 

As discussed above, unfortunately due to staff shortages and the onset of COVID-19, 

sufficient resources were not available to carry out the desired WAAM experiments. Alternative 

plans were made to replace the experimental data with IN718 laser metal deposition 

experiments that had already been carried out as part of another project. Whilst there are 

some differences within the scope of the experiments to those that were planned, the main 

concepts remained the same as both processes are direct energy deposition techniques using 

IN718 as the deposition material. On the other hand, the particular LMD process used within 

these experiments used a powder fed nozzle, as oppose to a wire feed. However, this will 

have minimal influence on the modelling process as the raw material, in either case, is melted 

by the heat source, and is deposited onto the build in a molten form. Other differences include 

the deposition strategy implemented along with the approximate dimensions of the build, both 

of which can be accounted for within the modelling process. Also, it should be noted that these 

samples were deposited on SS 304L substrates, not IN718 substrates as originally planned 

when developing the WAAM experiments. Whilst IN718 substrates would have provided 

consistency in microstructure between the substrate and the build part, SS 304L is also a face 

centred cubic structure and it is expected that this will have little influence on the resultant 

microstructure predictions. Within the first layer, the microstructure may be influenced by 

dilution of the composition, but it is expected that the influence of this would be negligible 

within subsequent layers. Nevertheless, alternative material properties will need to be applied 

within the thermal model. 

Within the project for which the LMD samples were deposited, a wide range of samples were 

built using various sets of process parameters. Specifically, 32 samples were deposited with 

varying values of laser power, gas flow rate and powder feed rate, although not all samples 

were deposited with thermocouple measurements. For this work, 3 samples were identified 

that were completed with full thermocouple measurements and kept all process parameters 

consistent except from the travel speed. This was an important choice, as it ensures any 

variation in microstructure can be attributed directly to the change in travel speed, as opposed 

to a combination of parameters. Upon detailed analysis of the experimental data, it was 



established that there were some queries with regards to the data recording and labelling 

process, and it was believed that some of the thermocouple labels did not correspond correctly 

to those expected. Consequently, the three samples were deposited again with increased 

focus on the data records. This time, three repeats of each sample were completed to provide 

evidence of repeatability for the samples. The data collected from these nine samples (three 

builds, each with three repeats) is used within this work. A full description of the LMD samples 

completed is given within this section. 

Element % 

Al 0.57 

B <0.02 

Co <0.02 

Cr 19.59 

Cu <0.02 

Fe 19.24 

Mn <0.02 

Mo 3.18 

Nb 5.39 

Ni 50.96  (by remainder) 

P <0.005 

Si 0.03 

Sn 0.02 

Ta <0.02 

Ti 0.94 

V 0.02 

W <0.02 

C 0.04 

S 0.001 

N 0.01 

O 0.01 

Table 13: Composition of IN718 powder used. 

Firstly, each sample was deposited using IN718 powder onto a 304LSS substrate with 

approximate dimensions of 200mm x 120mm x 15.75 mm. The powder was characterised, by 

an external company, and the composition can be seen in Table 13. A particle size distribution 

of approximately 45-90μm was seen, along with an apparent density of 4.69g/cm3.  The 

system used for the deposition of the samples was a Trumpf TruLaser Cell 7040+, with a 

Trumpf Trudisk 3002 3kW disc laser and an ILT multi-jet powder nozzle with 1.5mm inserts. 

A stand-off distance of 10.6mm was applied. The other key build parameters used for each 

deposition can be found in Table 14. The z-inc defines the distance in the build direction moved 

by the nozzle between layers.  



 

 

Sample Travel 

speed 

(mm/min) 

Powder 

feed rate 

(g/min) 

Nozzle 

gas flow 

(l/min) 

Track 

Sep 

(mm) 

Tracks in 

odd/even 

layers 

Number 

of layers 

Z-inc 

(mm) 

A 2000 35 10 2.4 8/7 13 0.9 

B 1000 35 10 2.6 7/6 7 1.7 

C 1500 35 10 2.4 8/7 9 1.2 

Table 14: Build parameters used within the LMD samples. 

A total of 9 samples were built, 3 variations on the travel speed, as can be in Table 14, and 3 

repeats of each sample. The number of tracks and layers within each deposition was chosen 

in order to achieve a similar geometry across all samples. By keeping the geometry consistent 

as opposed to number of layers and tracks, this is more representative of a scenario where 

the same part is manufactured using different process parameters. Furthermore as discussed 

earlier, by keeping all other parameters consistent other than travel speed, this allows us to 

investigate the ability of the model to capture any variations in microstructure as a direct result 

of changes to this variable. The only other parameter that changes within Table 14 is the track 

separation. This is larger for sample B than it is for A and C. This is because the lower travel 

speed results in a larger melt pool and the overlap between each layer is calculated to be 

approximately 33%, therefore the track separation increases with an increase in bead width. 

 

 

Figure 35: Schematic of thermocouple fixture. 



 

Figure 36: Experimental set up for the LMD samples. 

For each build, a thermocouple fixture with 16 channels machined into the surface was used, 

with a build substrate clamped on top of the fixture. A schematic of the thermocouple fixture 

can be seen in Figure 35, which clearly shows the different lateral and transverse locations of 

the channels for thermocouples with respect to the build plate. The experimental set up of the 

thermocouple fixture and clamped substrate, prior to the deposition of the build, can be seen 

in Figure 36. As in the originally planned WAAM activities, simple wall geometries have been 

built. However, the scan strategy used was a bidirectional deposition strategy with an offset 

on even layers in order to fill in the troughs created as a result of each odd layer, as this had 

already been established within the design of these samples for the corresponding project, 

due to manufacturing considerations related to the efficiency of material usage and nozzle 

movement. A schematic of the deposition strategy can be seen in Figure 38. The 

representative build dimensions of the builds as a result of the change in build parameters 

were recorded. These values can be seen in Table 15, along with images of the final builds in 

Figure 37. 

Sample Build Height (mm) Build Width (mm) Build Length (mm) 

A 12.5 19.1 140.5 

B 12.4 19.0 140.7 

C 11.9 19.3 140.7 

Table 15: Resultant build dimensions. 



 

Figure 37: Images of deposited samples. 

 

Figure 38: Schematic showing the deposition strategy implemented, a) shows a cross section 

perpendicular to the deposition direction, b) shows the deposition direction in the build plane. 

Thermocouple results were obtained for all repeats of each of the three samples. One of the 

initial steps in the analysis of the experimental results was the assessment of the repeatability 

of the thermal profiles for each set of process parameters. Manual post-processing of the data 

to align the start times of each repeat was undertaken. Due to a large, unexpected change in 

initial temperature samples (as can be seen in the experimental thermocouple results for 

sample A in Figure 39), the repeatability of the samples has been compromised. It is expected 

that this is due to insufficient time between repeated samples to allow the set up to return to 

room temperature. Therefore, samples A1 and C1 have been discounted from certain aspects 

of this analysis, such as thermal calibrations, as the initial temperature for these samples were 

substantially lower than their repeats. Only the two remaining repeats for both samples A and 

C will be used throughout the work presented here. The thermocouple data for sample A, B 

and C is shown in Figure 39, Figure 40 and Figure 41 respectively. Only a sample of the 



thermocouples are shown for each of the three samples for clarity. For sample A and C, a 

reasonable level of repeatability is seen within two of the samples, where as one set of data 

clearly starts at a much lower initial temperature. A schematic of the corresponding locations 

of each thermocouple reading within the fixture is shown in Figure 42. Consistently 

thermocouple 0 is lower than the rest of the profiles, which is to be expected as it is the furthest 

away from the centre of the build. The hotter thermocouples do not always follow the logic that 

the thermocouples closest to the centre, both longitudinally and laterally, will be the hottest. A 

level of epistemic uncertainty should be considered due to inability to accurately position the 

deposit centrally on the build plate. 

 

Figure 39: Thermocouple results for sample A. 



 

Figure 40: Thermocouple results for sample B. 

 

Figure 41: Thermocouple results for sample C. 

 



 

 

Figure 42: Labelling of thermocouple locations. 

 

6.2 Microstructural Examination 

Following deposition, each sample has been cross-sectioned and examined to reveal a 

number of features of the builds. Firstly, macrographs have been taken of the cross-section 

normal to the deposition direction in order to reveal the melt pool geometry achieved 

throughout the build. Figure 43, Figure 44 and Figure 45 show the macrographs for one repeat 

of sample A, B and C respectively. These images show the clear changes in bead geometry 

as a result of the change in travel speed. Specifically a much shallower bead geometry is seen 

for sample A when compared with sample B and C; this is expected due to the higher travel 

speed.  

 

Figure 43: Experimental macrograph of sample A1. 



 

Figure 44: Experimental macrograph of sample B2. 

 

Figure 45: Experimental macrograph of sample C2. 

Secondly, EBSD images have been taken on the cross section normal to the deposition 

direction (XY plane) on each of the 9 samples. This reveals the solidification microstructure of 

the as-built geometry parallel to the build direction. By completing this on all 9 samples, this 

gives an indication of the repeatability of the grain morphology between repeats of the same 

samples. In addition, EBSD imaging was undertaken on both of the other two cross sectional 

planes (XZ and YZ planes) for one sample of each set of process parameters. This was not 

completed on all 9 samples due to the resources available. In an ideal scenario microstructural 

analysis would have been completed in each plane for all 9 samples with additional sections 

taken throughout the samples to assess repeatability of the grain structure within each 

individual sample. However, the EBSD images obtained still allow for the analysis of 

microstructural changes as a result of the change of process parameters within all three 

principal planes within the as-built material. As EBSD maps visually show the grain 



morphology and texture within a material, they are a good source of experimental data for 

comparison with the microstructural simulations. 

All EBSD images were taken as close to the centre of the build as possible to ensure they 

were taken in a region where the melt pool was relatively stable. Specifically, the XY plane 

examinations were undertaken approximately half way through the build length. Similarly, YZ 

plane was taken as close to the centre of the sample as possible and the XZ plane was 

examined just above mid-point of the build height. In order to achieve large EBSDs that could 

analyse large domains, such as the full build height, the EBSDs were completed using a 

relatively large step size of 20µm and a low magnification of 40x nominal magnification. EBSD 

maps were completed in individual strips using Aztec software produced by Oxford 

instruments. The final maps were then constructed by stitching individual strips together, such 

as that seen in Figure 46. These were all completed by staff at TWI Ltd. 

 

Figure 46: EBSD image of sample A1, XY plane, step size=20um.  

The inverse polar figure (IPF) scheme has been chosen for the EBSD images as it showed 

more distinctly the crystallographic texture and alignment within the various samples than the 

Euler scheme. This is a common attribute of Euler schemes as a result of how the Euler angles 

are used to determine the colour of a grain, which can result in similarly orientated grains being 

prescribed dissimilar colours. The IPF colouring scheme identifies if the <100>, <101> or 



<111> symmetry group is in line with a chosen direction, which defines a reference plane. This 

is explained clearly for cubic materials by UC Riverside by discussing when a plane, face or 

corner is parallel to the reference plane (UC Riverside, Central Facility for Advance 

Microscopy and Microanalysis, 2013). Figure 47 demonstrates the corresponding orientation 

of the octahedron for face centred cubic crystals. The EBSDs presented within this work are 

consistently displayed using the reference plane normal to the build direction. The legend for 

this colouring scheme is shown in Figure 48. 

 

Figure 47: Octahedral crystal orientations within IPF EBSD images. 

 

 

Figure 48: IPF colour scheme legend for EBSD images. 

 

 



6.3 Planned Thermal Modelling Approach 

The finite element methods intended for use in the thermal modelling approach are discussed 

here. Unfortunately, again due to events out of our control, the resources required to run these 

models were not available and alternate strategies had to be implemented. High power 

computing resources were required in order to be able to undertake the 3D finite element 

thermal models, with sufficient fidelity for use in microstructures, whilst still being able to 

simulate the complete build height. This section presents the intended finite element approach 

and preliminary work undertaken.  

Finite element models were created in Abaqus 2019 for each sample individually. The 

geometry was defined as a cuboid of length 140mm. The specific height for each sample was 

determined by calculating the average experimental layer height by dividing the total height 

by the number of layers. This varied slightly from the expected z-increment as can be seen in 

Table 16. The width of the build was determined by the track separation and the number of 

tracks per layer. For sample A and C, 8 tracks were deposited in each odd layer, with a track 

separation of 2.4mm. Assuming a bead width of approximately 4mm, as this is the beam 

diameter, another 2mm is included on either side of the outer most scan locations to account 

for the width of the melt pool. Therefore, a width of 20.8mm was modelled. Similarly, for sample 

C a width of 19.6mm was assumed. 

Sample Actual Height 

(mm) 

Expected z-

inc (mm) 

No. layers Modelled 

layer height 

(mm) 

Modelled 

build height 

(mm) 

A 12.5 0.9 13 0.96 12.48 

B 12.4 1.7 7 1.77 12.39 

C 11.9 1.2 9 1.32 11.88 

 

Table 16: Table of calculated layer height and build eight for thermal models. 

The assembly was created including the IN718 wall deposit, SS 304L substrate and SS 304 

thermocouple fixture. This is shown in Figure 49. It should be noted that a single set of 

stainless steel 304 material properties have been used for both the fixture and substrate. 

Geometric partitions were created to define individual layers. Similarly, partitions were used 

within the build substrate to replicate the thermocouple locations on the bottom surface of the 

substrate. Tie constraints were used at the interface between the deposit and substrate, as 

well as the interface between the substrate and thermocouple fixture.  



 

Figure 49: Assembly of sample C in Abaqus 2019. 

Temperature-dependent material properties were implemented for both materials within this 

model. These have been found in literature (Salerno, et al., 2018; Lee & Zhang, 2015; 

Venkatkumar & Ravindran, 2016; Vakili-Tahami & Ziaei-Asl, 2013) and are show in Figure 50. 

A value of 227kJ/kg was assumed for IN718 (Rai, et al., 2016) with a solidus and liquidus of 

1260°C and 1336°C respectively (Special Metals, 2007). Equivalently, a value of 273.79kJ/kg 

and a melting range of 1399°C to 1454°C was assumed for the stainless steel (De Moraes & 

Czekanski, 2017; AK Steel Corporation, 2007) . 

 

Figure 50: Temperature-dependent thermal properties (Salerno, et al., 2018; Lee & Zhang, 2015; 

Venkatkumar & Ravindran, 2016; Vakili-Tahami & Ziaei-Asl, 2013)  



Material activation was achieved within the models using the new functionality within Abaqus 

2019 of progressive element activation. This was implemented through the use of a 

UEPACTIVATIONVOL subroutine and specific keyword edits that can be found in the Abaqus 

2019 documentation (Dassault Systemes, 2019). Progressive element activation allows 

elements to be activated or deactivated during a given step. Similar to the AM app utilised in 

section 3 this removes the need for individual steps and model changes when trying to 

implement element birth techniques. However, LMD models typically require the use of quiet 

element methods as material is deposited with respect to the movement of the heat source 

and not in easy to define geometric regions such as powder layers within PBF models. Quiet 

elements utilise dampened material properties to supress thermal diffusivity within elements 

which are technically active within the finite element calculations but represent inactive 

material. Consequently, the sudden change in material properties ahead of the heat source 

when activating new material can result in convergence errors. The use of progressive 

element activation avoids the need for this technique and hence also avoids these 

convergence challenges. Within this work progressive element activation has been used 

efficiently to combine the highlights of both of these approaches. A new step has been defined 

for the deposition of each layer for ease and clarity when defining the scan strategy. Within 

each new step the corresponding layer is specified as the region of activation for the specific 

step. Activation of elements within the layer is then determined by the value of the heat flux 

present, and hence material is activated in coordination with the heat source location as 

required by the LMD process. 

There are a number of different heat source models available for the simulation of laser AM 

processes, as can be seen in some of the presented literature within chapter 2. Within this 

work, two heat source model approaches were considered. The first was the conical Gaussian 

heat source. The conical heat source still provides the Gaussian profile typically associated 

with a laser, but also provides the added benefit of being a volumetric heat source, which is 

more suitable for a DED process than a 2D Gaussian surface flux. It also has fewer parameters 

for calibration than the volumetric, Goldak, double ellipsoid model.  However, for accurate 

resolution of this heat source a fine mesh and time increment must be implemented. This is 

ideal for trying to resolve the melt pool geometry and thermal profile for microstructure models. 

Nevertheless, it is extremely computationally expensive when trying to model a significantly 

large domain size, such as the build height and width in consideration here. The model is 

shown in Figure 51 (although, the labelling for r0 and ri should be reversed) and defined in 

Equation 23. Although, the conical model was never validated and implemented within the 

completed work presented here, suggested values for the parameters were as follows. The 

value of re is taken to be equal to that of the beam diameter, whilst a ratio of 0.6 between re 



and ri was to be undertaken, as in the work presented by Shahabad et al. (Shahabad, et al., 

2020) . The difference between ze and zi is assumed to be the layer height.  

 

Figure 51: Volumetric conical Gaussian heat source, taken from (Zhan, et al., 2019).  

𝑞(𝑥, 𝑦, 𝑧) =
9𝑄0

𝜋(1 − 𝑒−3)(𝑧𝑒 − 𝑧𝑖)(𝑟𝑒
2 + 𝑟𝑒𝑟𝑖 + 𝑟𝑖

2)
exp (−

3(𝑥2 + 𝑦2)

𝑟0
2(𝑧)

) 

𝑟0(𝑧) = 𝑟𝑖 + (𝑟𝑒 − 𝑟𝑖)
𝑧 − 𝑧𝑖
𝑧𝑒 − 𝑧𝑖

 

Equation 23: Conical Gaussian heat source (Zhan, et al., 2015; Agarwal, et al., 2018). 

The second heat source considered within this work was built on concepts used within the AM 

app that was utilised in section 3. However, it has been dev eloped within a stand-alone 

subroutine within this work to allow flexibility and adaptability within the subroutine. An 

integrated heat source approach was used which, in a similar fashion to the toolpath-mesh 

intersection module, determines the elements which are intersected by the specified 

deposition strategy within a given time increment from a specified event series. The total 

thermal energy delivered within this time increment is then determined by the power and 

increment duration. This is then applied uniformly as a volumetric heat flux over the region of 

newly deposited material. A visual representation of this heat flux model is shown in Figure 

52. The primary aim of using this integrated heat source approach was to improve 

computational efficiency of the models, particularly for iterative efficiency calibrations. The 

efficiency is a scaling factor applied to the power of a heat source, to account for how much 

energy is actually absorbed from the source compared to how much energy is delivered by 

the heat source. It can be calibrated in thermal models. 



 

Figure 52: Visual demonstration of the integrated heat source model. 

Heat loss is taken into account within the model in two ways – firstly, a user-defined film 

condition on the exterior surfaces of the fixture and substrate, as well as the evolving surfaces 

of the build part; and secondly, a temperature-dependent surface film condition on the base 

of the thermocouple fixture. Film conditions are used within Abaqus to define the heat loss on 

surfaces or element sets, by prescribing a heat transfer coefficient and sink temperature. The 

film condition on the evolving exterior surfaces is achieved through the use of progressive 

cooling by specifying an element based film condition directly within the input file, as described 

within the Abaqus documentation (Dassault Systemes, 2019). User-defined settings were 

chosen and a UFILM subroutine was used to implement the combined heat transfer equation, 

shown in Equation 24, where 휀 is the material emissivity, and, T is the temperature in degrees 

Kelvin. This equation has been used in literature (Yongjie, et al., 2012; Hu & Kovacevic, 2003; 

Alimardani, et al., 2007), and reduced the number of parameters required for calibration. 

ℎ𝑐 = 2.41 × 10
−3휀𝑇1.61 

Equation 24: Combined heat transfer equation (Yongjie, et al., 2012).  

A temperature dependent surface film condition was implemented on the base of the fixture 

to account for heat loss from the fixture to the bench. Temperature dependence was eventually 

implemented as a result of calibration studies. Initially, constant heat loss coefficients were 

implemented, however, this did not show the same concavity of the cooling curve as that seen 

experimentally. It is thought the temperature dependence of the film condition accounts for 

any variation in temperature within the surface of the bench resulting in how effectively heat 

is removed from the fixture. For example, as the build is deposited it is clear from the 

thermocouple data that the temperature at the interface between the substrate and fixture can 

reach upwards of 200°C. If this influences the temperature of the surface below the fixture, ie. 

the bench, and causes this to heat up also, this will change the effective ambient temperature 

below the surface, altering the rate of heat loss. The temperature dependent heat transfer 



coefficient, was calibrated along with the material emissivity. The final value of emissivity 

implemented was 0.3, and the resultant temperature dependent heat transfer coefficient for 

the bottom surface of the fixture is shown in Figure 53. 

 

Figure 53: Temperature-dependent heat transfer coefficient. 

Following the establishment of modelling methods presented here, the next stage of the 

modelling process was to calibrate the laser efficiency for each sample. Thermal models using 

the integrated heat source model were used for this to increase efficiency. Mesh and time 

increment sensitivity studies were undertaken to determine the suitability of the fixed time 

increment and mesh size choices.  Firstly, a time increment sensitivity study was undertaken 

to determine a suitable fixed time increment for the integrated heat source model. The results 

of the thermal profile, at one of the central thermocouple locations is shown for 4 different fixed 

time increments in Figure 54. There is an obvious lack of accuracy for the largest time 

increment, however the remaining three are very similar. The model run using the smallest 

increment did not complete due to convergence errors. Therefore, the second smallest time 

increment of 2.5s has been chosen as the fixed time increment within these studies. 



 

Figure 54: Time sensitivity study for integrated heat source models. 

Subsequently, a variety of mesh sizes were tested for each different component of the 

assembly. The combinations investigated, along with resulting run times (undertaken on the 

NSIRC-Brunel server with 24cpus) to simulate the full deposition, are shown in Table 17. 

Again, the resulting thermal profile at a central thermocouple for each mesh combination is 

shown in Figure 55. The mesh combination used for Model 1 was ultimately chosen for use in 

the final models. 

Model Wall (mm) Build Plate (mm) Fixture (mm) Run time (hh:mm:ss) 

Model 1 1 4 12 00:34:20 

Model 2 0.5 4 12 03:32:07 

Model 3 1 2 12 01:12:18 

Model 4 1 1 12 12:26:24 

Model 5 1 8 12 00:37:00 

Model 6 1 4 8 00:33:40 

Model 7 1 4 4 00:38:00 

Table 17: Mesh combinations investigated as part of the mesh sensitivity study. 



 

Figure 55: Results of mesh sensitivity study. 

Calibration of efficiency was undertaken individually for each step. Upon initial investigations 

it was discovered that the use of a single value of efficiency throughout the deposition meant 

that the thermal profile was over predicted in certain layers and under predicted in others. This 

is sensible as there are a number of reasons absorptivity may differ within the height of the 

build. For example, the heat sink effect introduced by the substrate and proximity to the 

substrate within lower layers may lead to an increase of energy lost to the surrounding plate. 

Furthermore, the material absorptivity may be variable with temperature and therefore, differ 

throughout the height of the build as the temperature of the part increases. Therefore, it was 

decided that efficiency would be defined as a function of layers. Calibrations were undertaken 

with the aid of the design of experiments software, Design-Expert 12 (StatEase, 2022). Five 

simulations were run with varying values of efficiency. The regression analysis tools within 

Design Expert were then utilised to predict the most suitable value by comparing the simulated 

temperature at the end of the layer with the corresponding experimental value for three of the 

thermocouple measurements. Initially, layers were calibrated individually. This however 

resulted in excessive over prediction of peak temperatures. Ultimately, the first two layers of 

each sample were calibrated individually as these were influenced more severely by the 

presence of the substrate. Subsequent layers were then calibrated in pairs. Given the scan 

strategy involves offsets within the even layers to fill in the troughs of the previous layer it is 

natural to consider the layers in sets of 2. The resultant efficiency values are shown in Table 

18.  

 

 



Layer Sample A Sample B Sample C 

1 0.189 0.391 0.329 

2 0.253 0.614 0.427 

3 0.314 0.523 0.561 

4 

5 0.457 0.538 0.522 

6 

7 0.336 0.503 0.532 

8  

9 0.489  0.515 

10  

11 0.405   

12 

13 0.67   

Table 18: Calibrated efficiencies as a function of layer for each sample. 

The calibrated thermal profiles are shown in Figure 56 to Figure 58. Experimental 

thermocouples are labelled ‘TC_x’, simulated thermocouple locations are labelled ‘TCx’. The 

results generally show a good agreement between thermal simulations and experimental data. 

The rate of increase of temperature at the location of the thermocouples is accurately 

represented, and the rate of cooling agrees well, particularly for sample B and C. Whilst some 

thermocouples are over predicted and others under predicted, for example thermocouple 2 

and 15 in sample C, the overall spread and peak temperatures of the thermocouples are well 

represented. Thermocouple 0, is the least accurate amongst the results, but as this is the 

thermocouple furthest from the centre of the build, it is less representative of the region of 

interest. Some of the inaccuracies seen could also be influenced by experimental uncertainties 

such as thermocouple contact, as well as the positioning of the deposition on the build plate. 

Whilst efforts were made to make this central, a variation in alignment could lead to uncertainty 

of thermocouple locations with respect to the build. 



 

Figure 56: Calibrated coarse-level thermal models for Sample A compared to experimental data. 

 

Figure 57: Calibrated coarse-level thermal models for Sample B compared to experimental data. 



 

Figure 58: Calibrated coarse-level thermal models for Sample C compared to experimental data. 

The intended approach for the fine level thermal models as input for the microstructure 

simulations, was to combine the two heat source approaches. Within this approach, each layer 

would be deposited within a separate model, allowing for refined mesh and incrementation 

methods within the region of interest. The integrated model would be used to provide 

predefined fields of the thermal field prior to the deposition of the layer of interest. Furthermore, 

a coarse mesh was used at either end of the build part, whilst a finer mesh was implemented 

within the central region of the build, based on the principle that there would be a weaker 

influence, on the region of interest, when the source is further away. Within the coarse region 

the integrated heat source was used, with a transition into the conical heat source for finer 

resolution within the central region of interest, where 2D planes were to be taken for 

solidification predictions. A correction factor would be applied to the calibrated efficiencies 

when applied to the conical heat source model, in order to account for the difference in thermal 

profile witnessed when simulating the model through the implementation of an integrated heat 

source versus a volumetric conical heat source. Preliminary test models were undertaken for 

this approach and an example can be seen in Figure 59. Whilst the use of the integrated heat 

source increases computational efficiency, these models still took approximately a day to run 

a single layer on a computer server with 8 cpus. Whilst this is not uncommon within industry 

for numerical models, unexpected problems with the computing resources available to this 

project meant that these models were unable to be completed. 



 

Figure 59: Coarse to fine heat source transition. 

6.4 Alternative Thermal Models 

Due to a significant lack of available computational resources, simpler, more efficient 

modelling methods needed to be implemented. As the computational resources were not 

available to run a finite element model with high enough fidelity within the melt pool for use in 

the microstructural simulations, an alternative method of predicting the thermal history was 

required. Therefore, analytical thermal solutions were implemented. This meant that the main 

objective of this work, to demonstrate and assess the capabilities of the microstructural model, 

could still be achieved, although more efficiently and with significantly less powerful 

computational resources. 

The Rosenthal solution is by far the most commonly used analytical solution for thermal 

models of welding and additive manufacturing applications. The defining system of equations, 

which is given in Equation 25, describes the resulting thermal profile of a stable melt pool 

based on a moving point heat source. Within these equations the x-axis is assumed to be scan 

direction, and y and z perpendicular to this, whilst V represents the scan speed, P the laser 

power and λ the efficiency. The material properties required are the thermal conductivity, 𝑘 

and the thermal diffusivity, 𝛼. Finally, the ambient temperature is represented by 𝑇0. 

𝑇 = 𝑇0 +
𝜆𝑃

2𝜋𝑘𝑟
exp (−

𝑉(𝑟+𝜉)

2𝛼
)    (a) 

𝑟 = √𝜉2 + 𝑦2 + 𝑧2                   (b) 

𝜉 = 𝑥 − 𝑉𝑡                               (c) 

Equation 25: Equations required to define the Rosenthal solution (Promoppatum, et al., 2017).  



The use of the Rosenthal solution provides the much required efficiency to undertaken fast 

microstructure predictions with limited computational resources. This is because it removes 

the need for fine-level finite element thermal models to resolve the thermal history within the 

melt pool, and moreover these do not need to be imported into the microstructure models and 

interpolated onto the CA mesh. The analytical thermal model can also be implemented in such 

a way that is representative of the experimental deposition strategy. Techniques such as 

superposition of the analytical solutions can also be used to adjust the melt pool geometry 

defined by the model. However, such methods have not been used explicitly within this work, 

as limited melt pool information is available for calibration, but also by not extensively 

calibrating the melt pool geometry against experimental measurements, one can assess if the 

modelling approach could actually be used at the design level, without the need for supporting 

experimental trials.  

Nevertheless, by using an analytical solution there are obviously a number of simplifications 

and assumptions that are made within the model (Hekmatjou, et al., 2020; Eagar & Tsai, 

1983). For the Rosenthal solution, these include: 

 The heat source is assumed to be a point heat source. 

 Temperature-independent material properties are used. 

 The heat source is applied to a semi-infinite domain.  

 Heat loss due to convection and radiation is not accounted for. 

 Temperature changes as a result of latent heat of fusion is not included. 

The assumption of a point heat source means that there is no way to account for the 

experimental beam diameter or distribution without undertaking calibration of the 

superposition of multiple sources as mentioned earlier. Furthermore, the use of constant 

material properties is a simplification on the material properties we have previously identified. 

Similarly, the lack of inclusion of latent heat of fusion will influence the accuracy of the thermal 

profile and melt pool geometry. Despite this, Promoppatum et al. (Promoppatum, et al., 2017)  

displayed the similarity between finite element models of laser powder bed fusion and the 

Rosenthal solution. Whilst the effects of the assumptions made should be noted and taken 

into consideration within any model that uses the Rosenthal solution, it is expected that the 

Rosenthal solution will still provide a suitable level of accuracy to determine changes in 

solidification grain morphology at the level predicted by the cellular automata approach. This 

would probably not be the case for phase field predictions that predict microstructure 

characteristics on a much finer scale and require a much more in depth physical basis. 

Furthermore, as efficiency is of significant importance, particularly at the design level, this 

study will identify if the Rosenthal solution can provide enough accuracy to predict solidification 



microstructures and their variations as a result of process parameters, to ultimately determine 

if this efficient modelling approach could be used for the design of AM parts. 

An additional benefit of using the Rosenthal solution, is that by the nature of being an analytical 

solution, equations for a number of features such as melt pool geometry can be derived. The 

derivative equations used to calculate melt pool width, W, depth, D, and length, L, are 

presented here within Equation 26. Being able to estimate these characteristics is useful when 

determining suitable dimensions for models, as well as comparing various characteristics 

between samples when trying to understand the underlying cause of microstructure variations. 

In the following equations, in addition to the parameters defined for Equation 25,  𝜌 and C are 

the material density and specific heat respectively, whilst 𝑇𝑚 represents the melt temperature. 

2𝐷 = 𝑊 ≈ √
8

𝜋𝑒

𝜆𝑃

𝜌𝐶𝑉(𝑇𝑚−𝑇0)
             (a) 

𝐿 ≈
𝜆𝑃

2𝜋𝑘(𝑇𝑚−𝑇0)
                               (b) 

Equation 26: Approximation of melt pool width (a) and length (b) (Promoppatum, et al., 2017; Tang, 2017) 

Property Value Units 

Density 8.22 kg/m3 

Conductivity 11.4 W/mK 

Specific heat 435 J/kgK 

Table 19: Temperature-independent material properties for IN718. 

The constant material properties used for the IN718 deposit are shown in Table 19. These 

values were found within literature (Promoppatum, et al., 2017). Room temperature properties 

for SS304L were also obtained from MPDB, the material properties database. The melt pool 

shape as a result of using SS304L properties within the substrate was investigated. Figure 60 

shows the resulting melt pool shape under this assumption compared to the shape when the 

IN718 properties are also assumed for the substrate. The change in material properties clearly 

results in a disjoint melt pool shape along the interface. Upon implementation of this thermal 

profile within the microstructure models, it was found to have an adverse effect on the 

microstructure simulations. This was believed to be because of the discontinuous thermal 

gradients imposed within the melt pool. Therefore, the final simulations have all been 

undertaken assuming all material has the same, IN718, material properties. This assumption 

will have some influence on the first layer of deposition, when compared for example to the 

equivalent finite element model. However, this influence is expected to be less significant than 

the simulation using a discontinuous thermal profile. 



 

Figure 60: Comparison of melt pool shape, with (left) and without (right) inclusion of stainless steel 

properties within the build substrate. 

The efficiency values determined for the finite element models were considered for the 

simulations - however not all were suitable for the application of the Rosenthal solution, 

resulting in lack of fusion.  Instead, the approximate depth of the melt pool was determined 

from the upper most melt pool on each macrograph (Figure 43 to Figure 45). This was used 

to calculate the expected efficiency using Equation 26. A value of 0.598, 0.614 and 0.596 were 

calculated for sample A, B and C respectively. Consequently, an average value of 0.6 was 

used throughout this study. Using this efficiency the resulting approximate melt pool 

dimensions for each sample is given in Table 20. Various other quantities such as the ratio 

between horizontal overlap to melt pool width are also calculated to help provide insight into 

certain aspects of the microstructural development. 

Sample Experimental 

Depth (mm) 

Approx. 

Depth (mm) 

Approx. 

Length (mm) 

Ratio of D 

to L (%) 

Horizontal 

overlap (mm) 

Ratio of 

overlap to W 

(%) 

Vertical 

overlap 

(mm) 

A 1.64 1.64 19.168 8.57 0.885 26.94 0.683 

B 2.35 2.32 19.168 12.12 2.046 44.03 0.563 

C 1.89 1.90 19.168 9.89 1.393 36.73 0.577 

Table 20: Simulated melt pool dimensions for all samples. 

6.5 Microstructure Modelling Approach 

As discussed above, due to issues with modelling resources, the developed cellular automata 

code was converted from the Fortran user subroutine, implemented within Abaqus, into a 

MATLAB script. This allowed the microstructure models to be run locally on a personal pc 

without the need for remote servers. Furthermore, due to the matrix and vectorisation 

functionalities that can be exploited within MATLAB, this significantly increased the 

computational efficiency of the CA code and decreased required run time. It should be 

highlighted that similar analytical predictions of a single grain were completed on the 



developed MATLAB code as those presented in section 4.6 for the Abaqus subroutine to 

validate the implementation of the microstructure model within MATLAB. Typical run times of 

each plane for sample A is given in Table 21. These are the run times taken to complete the 

simulations on a personal laptop with a 2.5Ghz cpu and 8GB ram.  As models were completed 

in MATLAB, simulation records detailing run time were not created as with Abaqus files; 

however the elapsed wall clock time was recorded for the simulation of each plane for sample 

A. It should be noted that as similar approaches were taken for sample B and C, whilst run 

times may vary due to differences in travel speeds and cooling rates, they will typically remain 

of a similar magnitude.  

The dimensions of the 2D domains used within the simulations is given in Table 21. The height 

of the domain was taken to be the number of layers multiplied by the layer height, with an 

additional two layers included to account for the build substrate. Layer heights were kept as 

defined in Table 16 except for the layer height within samples C. This was altered slightly to 

account for the mesh size. A mesh size of 40µm was implemented across all the 

microstructure models presented here. This was chosen as a step size of 20µm was used 

within the experimental EBSD images, however when preliminary investigations were being 

undertaken for the CA simulations within Abaqus, it was determined that at this mesh size for 

the full build height and width this would be too computationally expensive. Therefore, the 

decision was made that by doubling the step size, a significant increase in computational 

efficiency could be achieved for a relatively small loss in resolution. Consequently, for sample 

C, the layer height of 1.77mm is not divisible by 0.04mm. In fact, the layer height is not divisible 

by any sensible mesh size of similar magnitude. Therefore, the layer height was reduced 

slightly to 1.76mm to allow appropriate mesh discretisation. The width of the domain for the 

XY and XZ were determined to allow four scans on an odd layer, resulting in three infill scans 

within even layers. This was chosen as it was too computationally expensive to complete the 

simulation on the full domain, even increasing the domain by an extra scan in each layer 

results in a run time increase from approximately 3 hours to approximately 15 hours, whilst 

the added width provided little benefit to the prediction of microstructural characteristics. The 

run time has since been reduced since this check. Consequently, a four scan width was 

implemented as it was determined that this provided sufficient material to simulate the effects 

of melt pool overlap and infill, whilst ensuring enough material was sufficiently far from the 

boundary to be influenced severely by any boundary effects. A length of 7mm was chosen for 

the z direction as this allowed sufficient length to simulate enough material within the scan 

direction such that the overall domain was not heavily influenced by boundary effects, whilst 

compromising with run time. It should also be noted that run time can be significantly impacted 



by the frequency of outputting matrices as images to visually witness the progression of the 

simulation. 

Sample Plane X (mm) Y (mm) Z (mm) Cell 

Spacing 

(mm) 

Total no. of 

elements 

Approx. 

run time 

(hh:mm:ss) 

A 

XY 11.2 14.36 0.0 0.04 101441 01:21:09 

XZ 11.2 0.0 7.0 0.04 49456 00:15:29 

YZ 0.0 14.36 6.96 0.04 63000 00:30:02 

B 

XY 13.0 15.8 0.0 0.04 129422  

XZ 13.0 0.0 7.0 0.04 57376  

YZ 0.0 15.8 6.96 0.04 69300  

C 

XY 11.2 14.48 0.0 0.04 102284  

XZ 11.2 0.0 7.0 0.04 49456  

YZ 0.0 14.48 6.96 0.04 63525  

Table 21: Dimensions of model domains for each principal plane within each sample, and approximate run 

times. 

The models were assumed to be taken from the centre of the build in each direction as 

demonstrated by Figure 61. Consequently, within the XY plane models, alternating layers of 

4 and 3 scans for the full build height of the geometry were simulated. An offset was applied 

on even layers to fill in the troughs of the previous layer as shown by the deposition strategy 

demonstrated in Figure 38. The XZ plane was simulated by modelling the deposition of an odd 

layer (4 scans) followed by the subsequent two layers, to show the effects of re-melting caused 

by the deposition of the following layers. Finally, within the YZ plane it was assumed that the 

plane is taken from the centre of the build. Therefore, as 8 scans are present, within the 

experimental deposition of sample A and C, within each odd layer two scans, offset on either 

side of the plane by the hatch spacing, were simulated travelling in opposite directions. The 

subsequent layer then simulates the deposition of a bead centred on the plane. This is 

representative of the experimental deposition strategy undertaken. 



 

Figure 61: Demonstration of various planes for CA models. 

Calibration of substrate microstructure was achieved by altering the nucleation parameters 

used to initiate the substrate. As experimental data regarding the grain size within the 

substrate was not readily available, the nucleation parameters were chosen to achieve a 

suitable level of visual agreement with the grain size seen within the substrate present on the 

resultant EBSD images. The final parameters used were a critical undercooling of 7.5, a 

standard deviation of 1.5 and a nucleation density of 1e4. For the substrate initiation a time 

increment of 0.001s was used. The initial microstructure within the XZ plane was introduced 

with a much larger grain size, this is because it is assumed that the simulation plane is taken 

from the middle of the sample, at which point the microstructure will have coarsened 

significantly from the substrate microstructure. A critical undercooling of 17.5 was used for 

this. 

For the simulation of the actual additive process, a critical undercooling of 9.5 has been 

applied with a standard deviation of 2.0, as reported in literature for microstructure modelling 

of IN718 (Lian, et al., 2019 ). Various values of nucleation density have been investigated 

within the study. The automatic incrementation approach, seen in Equation 21 with a scaling 

factor of 1, was applied during deposition, limiting the time increment by growth velocity and 

cell spacing whenever liquid cells were present. 

6.6 Results 

Within this section the results of the microstructure simulations are shown and compared to 

the experimental EBSD images. For clarity, the simulated and experimental results for each 

of the principal planes will be presented within a separate section. Post-processing of the 

simulation results has been undertaken, within MATLAB, to provide the visual results 

presented here. Namely, the resulting matrix of grain orientation values has been converted 

into a visual representation of the grain structure through the use of the contourf function. The 

colour map ‘hsv’, Figure 62, has been implemented, as this is offers a wide range of colours 

to help distinguish between various grains. Furthermore, the colouring is similar to that of the 



EBSD imaging. However, perhaps most importantly, the colour distribution is continuous and 

therefore, the assumption can be made that similarly coloured grains have similar orientations, 

within the 2D plane making it easier to draw conclusions based on grain orientation. As the 

2D grain orientations vary from 0 to π/2, these will be the approximate limits of the colour 

scheme. A total of 314 divisions have been requested for this colour map, resulting in 

approximately one colour per 0.005 radians. Within these results, qualitative comparisons will 

be undertaken. Quantitative comparisons, such as those given in chapter 5, will not be 

undertaken due to the complexity of the grain morphologies and images compared. 

 

Figure 62: MATLAB hsv colour map (MathWorks, 2021). 

One of the main objectives within this section is to investigate the capabilities of the 2D CA 

model. Solidification, by nature, is a 3D mechanism, however, as discussed, a fully 3D CA-FE 

model is too computationally expensive to be undertaken here. For this reason, 2D cross-

sections in all 3 principal planes, similar to that in the work by Akram (Akram, et al., 2018),  

are simulated to determine if the 2D approach can be used in this way to capture 3D aspects. 

This is particularly important as certain 3D aspects such as out of plane growth cannot be 

accounted for intrinsically within the 2D models. Whilst the results of chapter 5 validate the 

use of the 2D model without bulk nucleation, the inclusion of nucleation was deemed 

necessary throughout this study and results with and without nucleation will be discussed. 

6.6.1 XY Plane 

Firstly, the simulations of the solidification microstructure within the XY plane are presented 

for all samples with and without nucleation (as discussed above). Some regions of the 

modelling domain have been cropped from the models shown below, to remove regions 

significantly influenced by boundary effects. Approximately the width of one melt pool has 

been removed from either side of the domain to focus on the more representative material 

within the centre of the domain. 



 

Figure 63: Microstructure predictions in XY plane without nucleation; sample A (left), B (middle), C (right). 

The numerical results shown in Figure 63 already show clear changes within the 

microstructure as a result of the changes in travel speed. In particular, all samples clearly 

demonstrate elongated columnar growth. This occurs through grain growth competition. As 

the grains with larger grain envelopes, due to orientation and undercooling, capture 

surrounding cells, other grains seize to grow and the number of grains present dramatically 

reduces from that seen within the substrate. Whilst in sample A and B these are seen 

throughout the entire length of the build height, the columnar grains within sample C are 

shorter. Elongated columnar grains are consistent with the experimental images for all three 

sample A builds, as shown in Figure 64. The individual images shown here, show a good level 

of repeatability of grain structure across the repeated samples of the deposition. However, 

elongated columnar grains throughout the height of the build are not witnessed in sample B, 

Figure 65, where grains have a smaller morphology typically contained within discrete melt 

pools. Sample C, Figure 66, almost shows a combination of the two structures, which is logical 

as sample C was deposited using a travel speed that is the mean of the travel speed for 

sample A and B. 

Throughout all three experimental samples, columnar grains, in red, are shown in vertical lines 

throughout the sample. These become more prominent with an increase in scan speed, with 

sample A demonstrating large strips of similarly aligned vertical grains. According to the 

legend of the EBSD, red denotes alignment of the octahedron with the build direction. Green 

shows an orientation approximately at 45 degrees to the build direction. Therefore, it is 



expected that the red strips are developed through growth vertically from the base of the melt 

pool, whilst the green strips (clearly seen in Figure 64) are a result of growth from the sides of 

the melt pool, as the melt pool solidifies radially inwards. Similarly, within the simulated 

microstructures, grains displayed in a red tone show grains with an angle close to 0 degrees 

(or π/2 by symmetry), in accordance with the colour scheme shown in Figure 62, ie. with the 

corner of the grain envelope aligned with the build direction. As can be seen in Figure 63 the 

grains that are typically elongated within each of the simulations are red (or similar tones). 

This corresponds to grain growth competition - that the grains aligned with the build direction 

and hence the thermal gradient, at the centre of the melt pool, are those showing favoured 

growth. 

 

Figure 64: EBSD images for sample A in the XY plane; A1 (left), A2 (middle) and A3 (right). 



 

Figure 65: EBSD images for sample B in the XY plane; B1 (left), B2 (middle) and B3 (right). 

 

Figure 66: EBSD images for sample C in the XY plane; C1 (left), C2 (middle) and C3 (right). 

Figure 63 demonstrates excessively large columnar grains within the predicted microstructure 

for sample B which is unlike the experimental microstructure witnessed. Repeats have been 



run of this particular model to examine if this is due to the probabilistic aspects of the model. 

The various results are shown in Figure 67. The first two simulations show very similar 

structures, whilst the third shows the central columnar grain being broken up with other 

interspersed grains. The probabilistic aspects of the model clearly have some influence on the 

results, although over-prediction of the length of columnar grains in the scenario does not 

appear to be uncommon. 

 

Figure 67: Effects of probabilistic aspects on sample B with no bulk nucleation. 

As part of the comparison between simulated grain structures and those obtained 

experimentally, the angles of the elongated, epitaxial, grains that exhibit a zig-zag shape, 

within sample A, were measured. An average angle size of 105.9° was determined from the 

experimental EBSDs, as seen in Figure 68, compared to a value of 118.8° in the simulated 

microstructure, shown in Figure 69. This is an error of 12.1%, which demonstrated the model 

is capable of predicting the angle of the grain structure, as a result of the scan strategy and 

process parameters used here, to a suitable level of accuracy. 



 

Figure 68: Experimental measurements of the large zig-zag structures in EBSD images for sample A. 

 

Figure 69: Measurement of the large zig-zag structures within the simulated results for sample A. 

Unlike in powder bed fusion process, within direct energy deposition processes, when the 

material is deposited on top of existing material it is in a molten state. Hence, when 

solidification takes place, there is a lack of surrounding material on some surfaces of the melt 



pool, particularly at the edges of the build. For this reason, when nucleation is not included 

within the CA models of the deposition process, large boundary effects can be experienced. 

This is particularly true when modelling the thermal model with conduction-based, heat 

transfer methods. These types of models are not capable of accurately modelling the fluid flow 

within the process and therefore do not accurately represent the expected bead shape within 

DED processes, especially on the edges of the shape where the molten material often exhibits 

signs of tapering. Moreover, due to the specific deposition strategy implemented within this 

work, that utilises an offset within the even layers to fill in the troughs of the previous layer, 

idealistic continuum scale models will ultimately simulate the deposition of material within the 

following odd layer on to material that was not activated within the previous layer. This is a 

direct result of more scans being deposited within odd layers than in even layers. This is 

obviously not representative of the physical effects that would be experienced in reality, such 

as gravitational force and fluid flow. Whilst this assumption, made early on within this work, is 

necessary to be able to undertake the modelling activities on the desired scale with a 

reasonable amount of computational efficiency, it is a contribution to the boundary effects 

experienced. This means the results are not reliable close to the boundary.  

 

Figure 70: Equiaxed grains observed along the top surface of the deposit (taken from the XY EBSD for 

sample A1). 

Bulk nucleation is applied within these models. The bulk nucleation applied within these 

simulations is expected to account for some of the introduction of new grains within the plane 

as a result of crystal growth from out of the plane (or surrounding material if a smaller domain 

is considered). These 3D effects are otherwise not accounted for within the 2D model. 

Furthermore, as can be seen in the experimental EBSD maps, a border of equiaxed grains is 

observed along the top surface of the deposited part. This is shown more closely in Figure 70. 

It is expected that this is as a result of bulk nucleation that takes place within the melt pool 

before epitaxial growth throughout the melt pool is complete, or again 3D growth from out of 

plane. Throughout the build the same formations are not witnessed, most likely because the 

re-melting of material due to subsequent passes erases this microstructure. This explains why 

this phenomena is only seen on the outer most surfaces of the deposit. Hence, this suggests 



that the inclusion of bulk nucleation is a sensible conclusion. To address this observation and 

previous arguments about grain growth out of plane, two levels of nucleation density have 

been investigated; 1e2 and 1e4. These values were based on the value of nucleation density 

given by Lian et al (Lian, et al., 2019 )  of 1e6mm-3. As the models undertaken here are in 2D 

this is reduced to 1e4mm-2. A value of lower magnitudes have also been investigated for 

comparison purposes as part of a sensitivity study. The corresponding results for sample A, B 

and C are shown in Figure 71, Figure 72 and Figure 73 respectively. Repeats of the model 

with nucleation density of 1e2 are shown to demonstrate the effects of the probabilistic aspects 

of the model. 

 

Figure 71: Microstructure simulations for sample A in the XY plane with a nucleation density of  0, 1e2, 1e2  

and 1e4 from left to right. 



 

Figure 72: Microstructure simulations for sample B in the XY plane with a nucleation density of  0, 1e2, 1e2  

and 1e4 from left to right. 

 

Figure 73: Microstructure simulations for sample C in the XY plane with a nucleation density of  0, 1e2, 1e2  

and 1e4 from left to right. 



A considerable change can be seen with the results as a consequence of the introduction bulk 

nucleation within the models. In particular, by including nucleation, more significant variations 

between the samples as a change in travel speed is demonstrated. Specifically, relatively thin 

elongated structures are seen within the simulations of sample A irrespective of nucleation 

density. Nevertheless, the length of these, elongated grains in the build direction, does 

become shorter as the nucleation density is increased and new grain orientation are 

introduced. On the other hand, wide diamond shaped grain morphologies are exhibited within 

sample B. By introducing nucleation, the long columnar grains seen in the initial simulations, 

that were not representative of the experimental morphology is suppressed. In fact, the 

microstructure is now more representative of the experimental EBSDs with the inclusion of 

shorter bulkier grains. Finally, sample C shows a combination of the diamond shaped wide 

grains as well as the thin elongated grains seen in the other two samples. This is particularly 

clear in the simulated microstructure with a nucleation density of 1e2. Again, this is expected 

as the travel speed is mid-way between that of sample A and B, and a similar phenomena is 

seen experimentally.  

Another phenomena that is captured by the inclusion of nucleation is the clustering of equiaxed 

grains at the centre of the melt pool. This is shown clearly in all the simulations utilising a 

nucleation density of 1e4. Within these simulations clusters of nucleated grains can be seen 

at the centre of each melt pool, when bulk nucleation occurs within the undercooled material 

before epitaxial growth from surrounding grains is completed. This is representative of the 

equiaxed grains seen along the top surface of experimental samples, such as that seen in 

Figure 70. The introduction of these grains experimentally could also occur from epitaxial 

growth out of the plane. 

6.6.2 XZ plane 

Within this next section, the experimental and simulated microstructure of the planar cross 

section, XZ plane, are presented. Figure 74 shows the predicted solidification microstructure 

of all three samples without nucleation. It should be noted that this plane within the sample is 

more likely to be susceptible to epistemic uncertainty. Thus, the exact location of the EBSD 

cut, with respect to the build strategy, is subject to more uncertainty as the build strategy 

means that for various planes throughout the height of the build, different thermal profiles are 

experienced. This is not the case for the XY plane, as the build strategy is consistent through 

the travel direction. However, the EBSD results obtained will still be representative of the 

typical microstructures seen within these planes. In future work, multiple EBSD maps 

throughout the height of the sample would be beneficial to establish the influence of this 

uncertainty. 



 

Figure 74: Simulated solidification microstructure within XZ plane, with no bulk nucleation; Sample A (left), 

B (middle) and C (right). 

All of the predicted microstructures consistently show discrete tracks within the microstructure 

achieved by the bi-directional scan strategy. This feature is also observed within the 

experimental EBSD images shown in Figure 75 to Figure 77. Very little difference is seen 

within the simulated microstructures at this stage. The only slight variations, other than those 

that can be attributed to the probabilistic assignment of the initial microstructure, is the 

variation of the slope direction in the middle tracks of sample B compared to sample A and C. 

This is as a result of the reversed scanning direction within even layers due to the fact that 

each layer is deposited using one less scan. Moreover, these tracks appear to be slightly wider 

within this sample due to the increased track separation. It is also noted that occasionally 

within these models “a checker-boarding effect” between two grains is seen, this could suggest 

a finer incrementation or mesh may be beneficial. 

 

Figure 75: EBSD image of XZ plane for sample A2. 

 



Figure 76: EBSD image of XZ plane for sample B2. 

 

Figure 77: EBSD image of XZ plane for sample C2. 

Experimentally, clear tracks can be seen in both sample A and C, but are less obvious in the 

sample B EBSD. It is believed that these are caused by the epitaxial growth of red grains in 

the build direction at the centre of the melt pool, whilst the green grains show grain growth 

with a horizontal component, from the sides of the melt pool inwards, as in the XY plane. It is 

expected that these are less clear within sample B as the red columnar grains are also less 

pronounced within the corresponding XY EBSD (Figure 65). Similarly the tracks of red grains 

are much wider within sample A, as they also are within the corresponding XY plane (Figure 

64). As before, a sensitivity study considering the influence of bulk nucleation, has been 

included in the following results in an attempt to account for some of the epitaxial growth from 

out of the plane. These can be seen in Figure 78 to Figure 80. 

 

Figure 78: Microstructure simulations for sample A in the XY plane with a nucleation density of  0, 1e1, 1e2  

and 1e4 from left to right. 

 

Figure 79: Microstructure simulations for sample A in the XY plane with a nucleation density of  0, 1e1, 1e2  

and 1e4 from left to right. 



 

Figure 80: Microstructure simulations for sample A in the XY plane with a nucleation density of  0, 1e1, 1e2  

and 1e4 from left to right. 

The introduction of bulk nucleation has a clear effect on the simulation results across all three 

samples. As in the XY plane, it predicts that the nucleation of new grains at the centre of the 

melt pool, prior to growth from the surrounding material taking place. This results in tracks of 

nucleated equiaxed grains surrounded by tracks of columnar elongated grains, that are 

relatively horizontal, although are angled towards the scanning direction. This is similar to the 

phenomena observed experimentally, although the horizontal tracks are more or less 

perpendicular to the scanning direction within the EBSD images as opposed to angled. 

Furthermore the tracks of red grains typically have a much larger grain size than those 

simulated. This is likely because the red grains within the experimental images are actually 

introduced to the plane through epitaxial growth out of the plane, when the thermal gradient 

in the build direction is stronger, so they are already growing from established grains. 

However, within the simulation these are new grains that are nucleated, so the growth 

envelope assigned to them is much smaller. Furthermore, as these are randomly nucleated 

grains this will affect the texture of the simulated microstructures, as predominantly red grains 

are seen within these tracks experimentally as this is the crystal orientation aligned with the 

build direction. 

As a result of the nucleation within this model actually being more representative of crystal 

growth out of plane, rather than bulk nucleation within the melt pool, this suggest different 

nucleation densities may be more suitable for different process parameters, based on  how 

prominently columnar growth within the build direction features within the XY plane. A high 

nucleation density would be required for sample A, compared to a much lower nucleation 

density for sample B. 

6.6.3 YZ plane 

Finally, the predicted microstructures for the longitudinal cross section, YZ plane, are shown. 

As with the previous comparisons, initial results without the inclusion of bulk nucleation are 

shown in Figure 81. Again, the exact location of the EBSD plane will have more effect on this 

analysis because of the variation of scan strategy out of plane. Again, due to epistemic 



uncertainty, the exact location of the plane with respect to the build strategy is unknown, but 

the EBSD results are still indicative of the microstructure within this plane. 

 

Figure 81: Simulated solidification microstructure within YZ plane, with no bulk nucleation; Sample A (left), 

B (middle) and C (right). 

Elongated, columnar grains are predicted through the total build height of the samples. Zig 

zag formations are shown in sample A whilst vertical structures are shown for sample C. This 

is not representative of the structures seen experimentally. The EBSD maps within the YZ 

plane are shown in Figure 82. 

 

Figure 82: EBSD images of YZ plane for sample A2 (left), B2 (middle) and C2 (right). 



The experimental microstructure within sample A shows consistently textured vertical 

columnar grains, aligned with the build direction. On the other hand, sample B and C show 

bands of different grains throughout the build height, although these are more prominent in 

sample B than sample C, which exhibits large regions of green grains which would be oriented 

at approximately 45 degrees to the build direction. The results of the simulations including 

nucleation with varying densities are presented in Figure 83 to Figure 85. 

 

Figure 83: Microstructure simulations for sample A in the YZ plane with a nucleation density of  0, 1e1, 1e2  

and 1e4 from left to right. 

 



Figure 84: Microstructure simulations for sample B in the YZ plane with a nucleation density of  0, 1e1, 1e2  

and 1e4 from left to right. 

 

Figure 85: Microstructure simulations for sample C in the YZ plane with a nucleation density of  0, 1e1, 1e2  

and 1e4 from left to right. 

By including nucleation within the simulations, the models begin to predict the development of 

banded structures throughout the build height. These bands vary in size between samples 

based on the changes in layer height. As the nucleation density increased, the bands become 

more prominent across the simulations of all three samples. Between bands columnar grains 

are predicted, as is shown in the experimental EBSD images. However, distinct angles are 

simulated across all three samples within the elongated grains. This is not representative of 

the grains seen experimentally. It is thought that the nucleation here is again related to the 

epitaxial growth out of plane that is not captured by the 2D model. Particularly, because as 

with the XZ planes, different values of nucleation density appear to best suit different samples. 

For example, as columnar grains without much banding is observed within sample A, a low 

nucleation density is expected, however a high nucleation density was assumed within the XZ 

planes. Similarly, a high value of nucleation density is more suitable here for sample B, 

however a low nucleation density was chosen for the XZ plane. Therefore, it is concluded that 

the nucleation density is actually accounting for the significance of the thermal gradient out of 

plane. And hence a different value is required depending on the plane being simulated. This 

could be connected to the ratio of melt pool depth to length. This is expanded on further within 

the conclusions. 

 



 

6.7  Conclusion 

Within this case study three LMD IN718 samples have been deposited with varying values of 

travel speed, whilst all other key parameters remained fixed. EBSD images have been 

obtained to reveal the as deposited solidification structure within all three principal planes. 

Analytical thermal models have been implemented for efficiency, due to unforeseen 

circumstances limiting the computational resources available.  The Rosenthal solution was 

implemented within the 2D CA model to determine if the microstructure modelling approach 

was capable of predicting variations in microstructure as a result of changes in process 

parameters. Simulations were undertaken within all three principal planes for each sample. 

Varying levels of nucleation were included within the models. Representations of the 3D 

microstructures using the simulated 2D planes can be seen in Figure 86 to Figure 88. Note, 

these images have been constructed to get an idea of the overall grain structure in 3D, they 

are not to scale. The corresponding nucleation density values that have been chosen for each 

plane are given in Table 22. 

 

Figure 86: Comparison of representative 3D microstructure for sample A, constructed form 2D EBSD maps 

(left) and 2D simulations (right). 



 

Figure 87: Comparison of representative 3D microstructure for sample B, constructed form 2D EBSD maps 

(left) and 2D simulations (right). 

 

Figure 88: Comparison of representative 3D microstructure for sample C, constructed form 2D EBSD maps 

(left) and 2D simulations (right). 

 



Sample XY Plane XZ Plane YZ Plane 

A 0 1e4 0 

B 1e2 1e2 1e2 

C 1e2 1e2 1e2 

Table 22: Chosen nucleation densities (mm-3). 

Throughout the results shown in this work the effect of varying nucleation density within each 

plane has been discussed. As can be seen in Table 22, the most suitable nucleation density 

varies depending not only on the travel speed but also on the plane being investigated. It is 

thought that the nucleation within these models is more closely related to 3D crystal growth 

from out of the plane, than bulk nucleation within the melt pool. This is similar to the nucleation 

sites introduced by Akram et al. to account for 3D growth (Akram, et al., 2018). Hence, it is 

expected that the value of the density is determined by the strength of the growth from out of 

the plane. By looking at the ratio of the melt pool width and length, given in Table 20, we can 

begin to understand the relationship between the nucleation density and melt pool dimensions. 

For example, sample A has the smallest ratio, implying that the tail of the melt pool is much 

longer than the depth. Hence, it makes sense that when considering the XY plane growth out 

of plane is less likely to occur, as one could expect the thermal gradient through the depth of 

the melt pool to be much stronger than that through the length. This is supported by the more 

prominent columnar growth seen within the EBSD images. However, in the XZ plane a high 

nucleation density is used as growth perpendicular to this plane is more likely due to the 

stronger thermal gradient. The converse is true for sample B, as a larger ratio is seen. 

Therefore, increasing the likelihood of crystal growth perpendicular to the XY plane. However, 

whilst the inclusion of nucleation, with the appropriate density, helps account for these 3D 

aspects the size of the grains is not accurately predicted as the model assumes new growth, 

as opposed to epitaxial growth from existing grains. 

Overall, the work presented within this chapter demonstrates the capabilities and the 

limitations of a 2D analytical-CA approach. The model was able to achieve a good level of 

agreement with EBSD images, including the simulation of a number of phenomena 

demonstrated within the experimental grain structures, including equiaxed growth at the top 

of the melt pool, and banding formations within the longitudinal plane.  Whilst high fidelity 

models would provide deeper accuracy within the predictions, the modelling approach 

implemented here is sufficient to understand the expected solidification microstructure at a 

design level.  

  



 

7 Fine to Coarse Microstructure Transitions 

Following the validation of the modelling strategy, within the AMB2018-02 case study, and the 

application of the cellular automata method using the Rosenthal solution to assess the model’s 

capability to predict microstructural changes as a result of changes in process parameters, 

work has been undertaken to apply the modelling approach to more complex additive 

manufacturing scenarios, including functionally graded materials. Introduced in section 1.1, 

functionally graded materials are highly desirable due to the added element of design they 

offer. This chapter focuses on the prediction of microstructure within multi-layer powder bed 

fusion systems involving an in situ process parameter change within the build process, causing 

a microstructure transition. Existing literature is used as the experimental validation within this 

study. 

7.1 Experimental Paper 

As mentioned within the literature review, one of the major benefits of additive manufacturing 

is the freedom of design. As understanding surrounding the physical processes increases, this 

extends to the tailoring of microstructures within the material through the alteration of process 

parameters. Such an example can be seen in the work presented by Popovich et al (Popovich, 

et al., 2017), which will be used as the source of experimental data for this case study. Within 

this piece of experimental work, the authors manufactured a number of samples using powder 

bed fusion of IN718, with different combinations of process parameters whilst maintaining 

energy density. This demonstrates that although energy density is an important factor in the 

design of additively manufactured parts, transitions in microstructure can be induced whilst 

maintaining a good quality of build. The sample of interest within this project was  a 70 x 20 x 

10 mm cuboid with alternating sections using two sets of parameters (Table 23) from which 

tensile samples were machined. It was stated that the parts were built using a scanning 

direction 45° between the X and Y axis, where the Z axis represents the build direction. Note, 

this coordinate system notation will be used in the model set up also. Although no detail is 

given within the paper, upon examination of the macrographs it appears that the scanning 

strategy rotated by 90° on alternate layers, therefore this rotation has been considered when 

undertaking the microstructure predictions. However, as the experimental detail is taken from 

literature there is minimal information by which to perform a thorough calibration of the thermal 

models. 

 

 



Section Power 

(W) 

Scan 

Speed 

(mm/s) 

Hatch 

Spacing 

(mm) 

Layer 

Thickness 

(mm) 

Beam 

Diameter  

(μm)  

Beam 

Profile 

Energy 

Density 

(J/mm3) 

1 250 700 0.12 0.05 80  Gaussian 59.5 

2 950 320 0.5 0.1 100  Flat Top 59.4 

Table 23: Experimental process parameters (Popovich, et al., 2017). 

The sample seen within the EBSD map below (Figure 89), shows a tensile specimen extracted 

from a part built using predominantly section 1 parameters with two 6mm high section 2 

regions within the build. This sample in particular is used as the subject of this study, as it is 

the only sample within the paper for which EBSD data is included. The EBSD shows a 

magnified region of a single transition from section 1 to section 2 parameters and back. Upon 

transition between sections a clear change is seen between fine and coarse grains. Section 2 

exhibits large columnar grains, all of similar orientation within the EBSD map, whereas section 

1 shows a more chaotic grains structure, showing smaller grains with varying orientations. 

Initial thoughts when considering the phenomena within this experimental work, was that an 

equiaxed grain structure was being achieved with the section 1 parameters, whilst the process 

parameters involved in section 2 were triggering a columnar growth formation on a G-R 

solidification diagram similar to that presented by DebRoy et al (Debroy, et al., 2018). 

However, upon analysis of the process parameters and comparison against a G-R diagram 

for IN718, it was determined that both structures are in fact likely to be columnar. The chaotic 

structure is actually the truncation of columnar growth due to the subsequently deposited layer. 

 

Figure 89: Experimental EBSD showing transition in microstructure upon change of process parameters. 

Figure 5 in (Popovich, et al., 2017). 

7.2 Modelling Approach 

Due to the relatively large size of the test parts built within the experimental study described 

above, it was impossible to efficiently model the entire build. In total there were over 800 layers 

in the original tensile samples builds and still 100 layers within the EBSD domain shown in 

Figure 89. Each layer had a dimension of 10mm by 20mm, which meant even the analysis of 



a single layer on a fine enough scale to achieve accurate melt pool geometry and cooling rate 

through the use of a transient finite element model would be too computationally expensive. 

A number of approaches were taken to try and model a smaller domain. It was decided that 

as with the LMD study, the most suitable and computationally efficient approach would be to 

utilise an analytical thermal field to simulate the microstructural development within a 2D cross 

sectional plane. As this approach was capable of predicting changes in microstructure within 

the XY plane, it is expected that the same approach will be capable of demonstrating the 

changes in grain morphology as the result of in situ parameter changes. 

The final modelling approach that was used is representative of 10 layers of the section 1 

parameters followed by 10 of the section 2 layers, with an excess substrate layer at the base 

of the build, which was made to be 0.2mm thick. The width of the domain was chosen to allow 

sufficient material to model the solidification of three scans within the section 2 region, 

providing enough opportunity to witness the effects of the melt pool overlap as well as 

providing a suitable amount of the domain where there will be little influence from any 

boundary effects. A mesh size of 5µm was used as this was the same as the step size used 

within the experimentally obtained EBSD map.  

The Rosenthal solution, as shown in section 6.4, has been used as an analytical thermal 

model, within this study, to represent the stable melt pool region. It was sensible to assume 

that the melt pool would be at steady state for this domain as the assumption was made that 

the simulations were predicting microstructure development from the centre of the build. The 

inherent assumption made by using the Rosenthal, which assumes the use of a steady-state 

point heat source, means the difference between the Gaussian and top hat laser distributions 

will not be specifically accounted for within this work. The same constant thermal properties 

were used for IN718 as previously specified in Table 19. Further detail on the calibration of 

the thermal model is given in the subsequent section. 

The same validated modelling approach was used as that in the previous case study. 

However, adjustments to the model had to be made to represent the powder bed fusion 

process. Layers were activated in relation to the specified layer thicknesses. This was done 

through the use of the extra state variable values. Inactive material was assigned a physical 

state of -2, which stopped these cells being taken into account within the CA calculations. 

Once activated, the physical state was changed to -1 representing powder material. Powder 

already has an existing grain orientation within in the powder particles. This must be taken 

into consideration within the model as this introduces new grain orientations that would 

otherwise not exist. This is done by initialising the layers separately with an existing grain 

structure with a similar grain size to the particle size reported within the experimental work 



(20-64 um). A similar approach can be seen in the work by Koepf et al (Koepf, et al., 2019; 

Koepf, et al., 2018). In addition, as the nucleation parameters featured heavily within the 

previous study and showed some beneficial contribution to the 2D predictions, simulations 

within this case study will be completed with and without nucleation. This helped to 

demonstrate the importance of their inclusion within powder bed fusion simulations. The same 

nucleation parameters for IN718 are used as before, a critical undercooling of 9.5 and a 

standard deviation of 2.0. A nucleation density of 1e2 has been assumed throughout. 

7.3 Heat source  

As stated earlier, the Rosenthal solution has been used as the thermal model within this study 

for computational efficiency. However, the efficiency of the heat source is an unknown 

parameter that requires determination. An alternative value to that within the previous study 

was to be expected because of the change in AM process and also the variation in process 

parameters. Two strategies were applied; first, a value of 0.4 was assumed for both parameter 

sets as this was found to be a typical value in literature for L-PBF processes (Irwin, et al., 

2021; Lee & Zhang, 2016; King, et al., 2015), second an attempt was made to determine the 

melt pool dimensions from the available macrographs and use these to determine the 

efficiency of each parameter set individually. Efficiency values of approximately 0.21 and 0.68 

were calculated for section 1 based on estimated melt pool width and depth respectively. 

Similarly, values of approximately 0.55 and 0.16 were determine for section 2 based on width 

and depth respectively. However, it should be noted that estimating the melt pool depth, or 

width, accurately from a macrograph is extremely difficult due to the overlap of melt pools, and 

angle of the scan strategy. Furthermore, the Rosenthal solution predicts a semi-circular melt 

pool, physically this is not always representative of the melt pool shape. Ultimately, a value of 

0.3 was chosen for the section 1 parameters compared to a value of 0.55 for the section 2 

parameters. These values ensured that no evidence of lack of fusion was witnessed and 

complete melting of the required material was achieved. The melt pool dimensions achieved 

are given in Table 24 for reference. 

Section Efficiency Approx. Width (mm) Approx. Length (mm) 

1 0.3 0.146 0.799 

2 0.55 0.571 5.564 

Table 24: Resultant melt pool dimensions. 

Moreover, the scan strategy used for the build of this part involved scanning at 45 degrees to 

the X and Y axes. Therefore, in order to simulate the microstructural development on a 2D 

cross section perpendicular to the Y axis, a coordinate transformation must be applied to the 

Rosenthal solution to account for this. Figure 90 shows the traditional Cartesian coordinate 



system and the XZ plane representing the simulation domain. Another coordinate system (p,q) 

is also shown. This is a 2D coordinate system set up such that p is the scan direction at 45° 

to the X and Y axes, and q the normal to this. Through matrix calculations of this specific 

coordinate transformation, p and q are given as functions of x and y in Equation 27. This allows 

the Rosenthal solution to be defined in the (p,q) coordinate system with respect to the scan 

direction as it is traditionally defined and converted back into Cartesian coordinates for 

projection onto the XZ plane. Within Figure 90 the scan direction is defined as the p-axis, 

however the scan direction can also be changed from being parallel to the p-axis to parallel to 

the q-axis to account for the 90° rotation on even layers.  

 

Figure 90 Visual representation of the coordinate transformation required to transform Rosenthal solution by 45°. 

 

𝑝 =
𝑥 + 𝑦

√2
 

𝑞 =
𝑥 − 𝑦

√2
 

Equation 27 Coordinate transformations required to simulate Rosenthal solution at 45°. 

A visual representation of the effects on the melt pool shape predicted by the Rosenthal 

simulation, within in the 2D cross-section, as a result of this transformation is shown in Figure 

91. 



 

Figure 91: Comparison of melt pool shape with and without 45 degree rotation. 

 

7.4 Modelling Results 

Unidirectional models, with a scanning direction along the y-axis, were initially set up for 

simplicity. These were representative of a part being built using the same process parameters 

without the assumed rotation between layers and without scanning at 45 degrees within the 

plane. The result of these simulations with and without bulk nucleation are shown in Figure 

92. Note, within all the simulation results presented here, the bottom few layers shows the un-

affected substrate, demonstrating the initial microstructure assumed for the substrate and 

powder material. 

 

Figure 92: Unidirectional, scanning at 0°, microstructure prediction, with no nucleation (left) and nucleation 

(right). 

Within the images shown here, the model domain has been reduced to be representative of a 

similar width of the build as that shown within the experimental EBSD, approximately 0.645mm 



based on the step size and grid dimensions. Figure 92 clearly shows a transition in grain 

morphology upon transition between parameters. Similar to that in the experimental EBSDs, 

a fine structure is seen within section 1 region, changing to much more elongated grain 

structures within section 2 in the direction of the melt pool solidification. The grain morphology 

within section 1 frequently shows ‘V’ shape grains. These can also be seen in the experimental 

EBSD. This grain morphology is not seen within the section 2 region of the experimental 

EBSD, instead elongated grains are seen, with a very consistent texture. However, a slight 

slope is seen within the angle of the grain morphology. Elongated epitaxial growth is predicted 

within section 2 by the microstructure models, although the growth direction clearly follows the 

thermal gradient during melt pool solidification, resulting in angled grains towards the centre 

of the domain shown. The inclusion of nucleation within the results presented on the right of 

Figure 92 has little effect on the predicted morphology. Whilst there are some differences 

between the two images, it is expected this is more likely to be due to the probabilistic aspects 

of orientation assignment to both the substrate and unfused powder, than because of the 

inclusion of bulk nucleation. 

The next step in increasing model complexity was to introduce the 90° rotation on alternate 

layers. Hence, within this simulation, on odd layers the scanning direction was along the y-

axis, out of the plane, whilst on even layers it was along the x-axis, parallel to the plane.  The 

results obtained with and without nucleation are shown in Figure 93. 

 

Figure 93: Predicted solidification microstructure scanning at 0°, with 90° rotation on alternate layers, with 

no nucleation (left) and nucleation(right). 



A clear visual difference is seen between the Figure 92 and Figure 93. Firstly, within the 

section 1 region the ‘V’ shape grains are still prominent, however, the introduction of the 

perpendicular scanning direction, on alternate layers, has resulted in the coarsening of these 

grains. This is a good demonstration of the models capability to pick up changes to the 

structure as a result of changes in scan strategy. Secondly, as a result of the introduction of 

perpendicular scans, the epitaxial growth within section 2 is much more columnar and 

elongated. This could be as a result of the lack of 3D effects that would capture out of plane 

grain growth. Specifically, within the layers where the scan direction is parallel to the 2D plane, 

there is a lack of new powder particles accounted for within the simulation for the introduction 

of new grains. However, the application of bulk nucleation that could contribute to the 

nucleation of new grains has been accounted for in the right hand image. Whilst, this result 

seems very similar to the EBSD, with the sloped columnar grains within section 2, the 

modelling set up is still not representative of the experimental set up as the 45° scanning 

direction between the x and y axis has not yet been accounted for. This is introduced in the 

following results in Figure 94 and Figure 95. 

 

Figure 94: Unidirectional, scanning at 45°, microstructure prediction, with no nucleation (left) and 

nucleation (right). 



 

Figure 95: Predicted solidification microstructure scanning at 45°, with 90° rotation on alternate layers, with 

no nucleation (left) and nucleation(right). 

Again the model is undertaken with and without the 90° rotation of the scan direction on 

alternate layers; Figure 94 and Figure 95 show the predicted grain morphology with and 

without this rotation, respectively. For both, simulating the inclusion of bulk nucleation had little 

effect as with the previous models within this study. Therefore, it is suggested that this 

highlights that the inclusion of nucleation is much less important for PBF processes, where 

nucleation of new grain orientations can be initiated from the surrounding powder material. 

Furthermore, there is much less variation between the predicted grain structures with and 

without the alternating scan direction, than that seen in Figure 92 and Figure 93. This is to be 

expected as a 90° rotation on alternate layers when a 45° scanning direction is applied results 

in a -45° scanning direction and therefore there is much less significance in the variation of 

the melt pool shape seen within the plane between layers, especially when compared to the 

variation between a scanning direction perpendicular to the plane and parallel to the plane. 

For this reason, the results shown utilising the 45° scan strategy are much more similar to the 

uni-directional, 0° scan strategy than with the alternate layer rotation applied. A comparison of 

the experimental EBSD and most representative microstructure simulation (45° scanning 

direction with a 90° rotation on alternate layers, without bulk nucleation) is shown in Figure 96. 



Within this image the EBSD and simulations results have both been reduced to represent the 

same size domain of 1mm by 1.5mm. 

 

Figure 96: Comparison of microstructure predictions; Experimental EBSD, adapted from (Popovich, et al., 

2017) (left) and simulation (right). 

A strong agreement can be seen between the morphology in the EBSD and the simulated 

result, with a clear transition to larger, more elongated grains upon the in situ change of 

parameters. However, it is clear that the elongated grains within the simulation are much more 

angled than those in the experimental EBSD. It is unclear why this is, but it is suggested that 

this could be as a result of difference between the melt pool shape obtained experimentally 

and that simulated by the Rosenthal. Furthermore, due to the small size of EBSD data 

available it is likely that deeper experimental analysis would benefit this investigation. 

7.5 Conclusion  

Within this chapter, the previously validated modelling approaches were implemented for the 

application of functionally graded materials. Experimental data was taken from literature 

demonstrating the use of in situ parameter changes to initiate a microstructural transition within 

the deposition of L-PBF parts. These experimental details were used as the basis of 

microstructure simulations.  

The complexity of the models was built up incrementally allowing for the comparison of the 

prediction of similar microstructures for variations on the scan strategy. A large change in 

microstructure is seen when comparing a constant scan strategy perpendicular to the plane 

with a scan strategy that introduces a 90 degree rotation on alternate layers, such that the 

scan direction becomes parallel to the plane. This is not seen when an alternating 90 degree 



rotation is applied to a scanning direction at 45 degrees within the XY plane. Furthermore, the 

inclusion of bulk nucleation has little effect on the simulation throughout this study. 

The final microstructure simulations achieved a good level of agreement with the experimental 

EBSD. Fine, textured grain structures were seen in the region deposited using the section 1 

parameters both experimentally and within the model. Meanwhile, elongated grains were 

witnessed within the section 2 region. Whilst epitaxial growth within the model clearly shows 

the microstructural transition to elongated grains, the simulated grains seem to be slightly 

more angled than those witnessed experimentally. It is unknown why this is possibly the case, 

but it is suggested that further experimental data would be required to investigate this fully. 

 

  



8 Conclusions 

Within this work, microstructure modelling methods have been used as a method of increasing 

the understanding of the relationship between process parameters and the solidification 

microstructure for metal additive manufacturing. Ultimately, the work presented here aims to 

contribute to the process-structure-property relationships that are fundamental to 

understanding the behaviour, and increasing the reliability, of additively manufactured parts 

for use within industry. Cellular automata (CA) methods have been implemented due to their 

relative computational efficiency compared to other methods such as phase field modelling, 

whilst still being based on physical solidification laws and providing visual representations of 

the simulated microstructure. For the ease of the reader, the objectives identified for this work 

are reiterated here: 

 Contribute to the smaller catalogue of work available for the application of cellular 

automata (CA) to direct energy deposition (DED) processes, particularly for multi-layer 

builds. 

 Implement CA methods with experimentally-validated thermal models.  

 Improve the computational efficiency of the required models to achieve sensible run 

times with practical hardware requirements, suitable for use in industry. 

 Apply CA models to investigate the influence of process parameters, with experimental 

validation. 

A 2D weakly-coupled CA model has been implemented throughout this work. Three case 

studies have been undertaken to investigate the capabilities of the modelling approach. Firstly, 

open source experimental data was used to validate the simulation approach for laser scans 

on a bare Inconel 625 substrate. A statistical analysis of the microstructure model was 

undertaken to determine the influence of probabilistic aspects of the model.  

Secondly, the approach was applied to laser metal deposition (LMD) Inconel 718 deposits with 

3 varying travel speeds. The aim of this case study was to evaluate the ability of the model to 

predict differences in microstructure as a result of changes in process parameters. Whilst 

unforeseen circumstances resulting in a lack of computational resources meant that the 

planned finite element models could not be completed, microstructure predictions were 

undertaken using an analytical Rosenthal solution. In fact, this provided an extremely 

computationally efficient approach to investigate the resultant microstructure as a result of 

process parameters. Simulated microstructures were undertaken in all 3 principal planes and 

showed strong agreement with the experimental EBSD maps. Varying levels of nucleation 



density were investigated and it was observed that different levels of nucleation density were 

more suitable for different travel speeds and plane of simulation. It is suggested that this is 

linked to the ratio of melt pool dimensions, based on the likelihood of out of plane crystal 

growth.  

Finally, this approach was applied to a powder bed fusion application, with an in situ change 

in parameters. This was based upon experimental data found within literature. This 

demonstrated the capability of the model to predict microstructure transitions for the 

application of functionally graded materials. 

The main outcomes of this project are summarised here: 

 Development of experimentally validated thermal models for additive manufacturing 

applications including, contributions to an NIST Benchmark award winning submission, that 

used the Abaqus AM plug-in to provide part level thermal models for residual stress 

predictions. 

 Successful implementation of a 2D CA model weakly coupled to a finite element thermal 

model that was validated with experimental data. Probabilistic effects on the simulations 

were also investigated. 

 An efficient method, that can be used at the design level, with minimal hardware 

requirements, has been established through the use of 2D CA with an analytical heat source 

within MATLAB. 

 Whilst the 3D transient finite element models were unable to be completed within this work, 

an approach for a combined integrated and conical heat source was suggested. This aims 

to improve efficiency of fine level thermal models by allowing the analyst to change the 

spatial and temporal resolution of the model within regions of interest. 

 Experimental Inconel 718 LMD samples have been manufactured with thermocouple 

recordings for thermal model validation. Furthermore, EBSD imaging has been undertaken 

to reveal the solidification structure in all 3 principal planes, for experimental validation of 

the microstructure predictions. 

 Microstructure predictions have been undertaken on all 3 principal planes for multilayer LMD 

Inconel 718 deposits with varying values of travel speed. Certain features of the 

solidification microstructures have been captured well by the 2D models. The results have 

been compared to experimental EBSD images and show a good level of agreement. 

 Different nucleation densities have been investigated. It is thought that the presence of 

nucleation within this work is related to crystal growth from out of the 2D plane. Links 

between this and the melt pool geometry have been proposed. 



 The ability of the modelling approach to simulate microstructural transitions as a result of in 

situ changes in process parameter, within powder bed fusion (PBF) applications, was 

demonstrated. This was based on and compared to experimental results within literature. 

It is suggested here that future work within this topic requires the establishment of reliable and 

widely accepted material parameters for microstructure models, including critical undercooling 

and nucleation density. For use at the design level, well established material properties must 

be available for a range of common alloys used for additive manufacturing. Increased 

understanding of how these parameters can be derived experimentally would also be useful. 

Further investigation of the link between process parameters and melt pool geometry could 

improve the efficient use of 2D models, whilst accounting for out of plane growth. If an 

established method of determining a reliable and appropriate correction factor for the 

nucleation density, which accounted for the contribution of out of plane growth within 2D 

models, this would increase the accuracy and practicality of 2D CA methods for industry. On 

the other hand, improvements on computational efficiency of 3D CA methods, that achieve 

suitable run times with practical hardware requirements, would be the ultimate goal within CA 

models, as they can more accurately account for crystallographic texture and 3D growth, 

without having to introduce any assumptions. 

Moreover, the application of these approaches to more complex geometries representative of 

industrially relevant components would be beneficial. Currently, the majority of work is 

undertaken on test sample geometries such as walls and cubes. In order for this methodology 

to be used effectively within industry, application to industrial geometries is essential. Due to 

the large amount of process parameters available within AM processes, a wider investigation 

of various process parameter influences would also be suggested.  

In addition, the implementation of the combined integrated and conical heat source approach 

to improve the efficiency of fine level finite element thermal models should be investigated. 

This approach provides the potential to increase efficiency of fine level thermal models that 

can be undertaken on a part scale but still provide a melt pool level thermal profile for 

implementation within CA models.  Computational efficiency of accurate models is key to 

making models accessible and practical within industry. 

Finally, further work is required to establish relationships between the outcomes of the 

simulated solidification microstructures, such as those presented here, to the behaviour and 

material properties within additively manufactured parts. This will complete the links between 

process, structure and properties, and hence provide greater understanding surrounding the 



reliability of additively manufactured parts, ultimately resulting in an increase of AM parts within 

industry. 
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