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Abstract-Unmanned Aerial Vehicles (UAVs) have emerged 

rnbidly as a new technology for crop farming promising to 

increase the productivity of a fa1•m, on the one hand, and to 

reduce its farmer's wo1·k.load, on the other hand, through their 

integration with other technologies such as Machine Learning 

(ML), and Intemet of Things (IoT). This a11icle aims at 

developing a framework for deploying an autonomous fleet of 

UAVs for regenerntive farming. Hence, the framework objective 

is twofold: firstly, is to develop an autonomous fleet of UAVs 

using Deep Reinforcement Leaming (DRL), and, secondly, is to 
synchronize their flying and schedule their tasks using Ant 

Colony Optimization (ACO). The implementation of the 

frnmework shows g1·e.at potential when using a set of indicators 

including, Normalized Difference Vegetation Index (NDVI), 

Mean Squared Enor (MSE) and Received Signal Strength 

Index (RSSI), to assess its perfo1·mance for Regenerative 

Farming. 
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I. lNTRODUCTION

With the standards rising on environmental aw,u-eness and 
education internationally, citizens are becoming increasingly 
aware of their carbon footprint, especially in relation to the 
food supply chain. Regenerative fanning methodologies are 
widely regarded as the next evolution in the agricultural 
sustainability cycle. The te1m regenerative is frequently used 
interchangeably with sustainable. It attempts to restore soil 
health while continuing to produce food. Fmthermore, 
regenerative farming is seen as a set of agricultural practices 
that help sequester carbon, improve soil quality, retain a lai·ge 
proportion of the rainwater, and reduce erosion arid water 
mnoffto provide a more sustainable way of growing food. All, 
in addition to reducing bai·e soil, encouraging plant diversity, 
increasing resilience and biodiversity in the ecosystem. 
However, adoption of such a model relies on farmer attitudes 
and perceptions. Moreover, there is a need to develop and 
integrate several advanced technologies to suppmt such a 
sustainable regenerative fa1ming model [l]. 

In relation to the fomth industrial revolution, agriculture 
takes the centre stage among other technologies and their 
applications. In many countries, a multitude of innovations 
compete with one another to yield to a more abm1dant 
production, one that will satisfy the growing needs of our 
generation. A smart approach to fanning could see the 
deployment of modem technologies at every stage of the 
farming cycle to enhance hat-vesting and achieve a healthier 
and more sustainable agricultural cycle. Fai1ning requires eyes 
finnly on the ground at almost eve1y phase of the fanning 
cycle, and the farmer's experience and swift action is cmcial. 

A bird's eye view from UAV(s) supported with ML to be 
autonomous could be a superlative alternative in relieving the 
farmer of some of his mundane workload whilst contributing 
to increasing a farm's productivity [2-4]. 

In consideration of their hai·dware arid software 
capabilities, UA Vs can find use in a wide range of roles and 
heterogeneous agliculture zones. Fig. 1 shows typical UA V 
uses in smart farming. For example, UAVs may be deployed 
in crop health and yield monitoring, soil quality assessment, 
and general aerial view inlaging, which for hai·d-to-reach ai·eas 
can be both convenient and timesaving [5]. 

Another example is iITigation management, where a UA V 
equipped with cutting-edge thermal and conventional cameras 
may be deployed to detect iITigation issues that ai·e invisible at 
the ground level, e.g., water pooling or cappiI1g. In such cases, 
UAVs may assume the function of crop and land iITigation. 
Moreover, UAVs may also assume the functions of sprayiI1g 
fertilizers and insecticides to nmture crops and provide them 
with much needed nutrients, on the one hand, and protecting 
the crops against disease, on the other hand. Another UA V 
usage is plantiiig seeds which can be fired iI1to the ground 
from high up in the sky [ 6]. 

The rest of this paper is organized as follows: Section II 
presents a review of related works from which we draw our 
motivation for a framework we propose iI1 section III. Section 
IV details the framework iniplementation and then discusses 
the initial results. Section V concludes. 

(•) Monitoring and Aerial Imaging (b) Irrigation Management 

(c) Spraying (d) Seeds Planting 

Fig.I: UAVs deployed in smart farming 
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II. RELATED WORKS REVIEW

This section reviews related research works on UAVs 
from an agricultural perspective. To guarantee consistency 
within the scope, a set of criteria have been used to review 
related works. The criteria comprise of platform type, network 
configuration, AI approach, problem solved, and issues. The 
section concludes with a summary of our own findings, whose 
purpose is to bring to the fore research gaps and, in turn, to 
motivate our own work.  

The UAV ecosystem can greatly benefit from its 
simplicity, efficiency, flexibility, rapid deployment, negatable 
latency,  various positioning, line of sight (LOS) connectivity, 
and wide applicability. Researchers are striving to participate 
in employing advanced technology that is associated with 
UAVs to achieve a better life for our planet [7, 8].  

Lagkas et al. [9] argue that what is most common with 
UAVs in precision smart farming is remote sensing, and 
monitoring to assess and monitor crops. The agricultural 
industry is very inquisitive when it comes to learning more 
about the land that they manage and, naturally, have 
researched aerial systems like UAVs and satellite technology 
to capture or sense new farmland information, or even 
efficiently target the application of fertilisers and pesticides 
[10]. Pinto et al. [11] highlight some missions namely, 
scouting, monitoring, and inspection, that would greatly 
benefit from using UAVs.  

Fleets of cooperative UAVs are presented in [12] for the 
purpose of monitoring including agricultural land by using a 
multi-trip task assignment and optimization approach to serve 
their objectives. The results ensure that many benefits have 
been gained including wide coverage, noticeable reductions in 
latency and energy consumption.  

Louta et al. [13] present the use of a fleet of semi-
autonomous UAVs to support decision-making for efficiently 
managing pesticides, irrigation, and task scheduling. A case 
study presented in [14] uses satellite systems to provide 
connectivity to smart farms in remote regions of Australia. 
The space-based system can deliver a seamless Machine-to-
Machine (M2M) communication and support IoT applications 
in farms.  

Poudel and Bevilacqua [15] consider a UAV with a point 
clouds method to assess red pine seedlings. The detection and 
estimation of the seedlings' height proves promising. 
However, deep learning and machine learning algorithms are 
recommended for better results. A UAV is presented in [16] 
for sensing data in an olive farm via wireless sensor nodes 
(WSNs) at the ground level. The results indicate that the 
topology is both reliable and robust.  

A path planning for UAVs in open areas like farms is 
introduced in [17], which aims at reducing travel time using 
an optimization framework. Their proposed model opts for a 
charging station across large areas. A route planning in 
agricultural zones using an automated and optimized UAV is 
presented [18] to deal with multispectral image processing and 
vegetation index calculation and visualization.  

A study in [19] presents an efficient cluster head selection 
for WSNs in smart farming. A proposed framework aims at 
mapping network nodes to increase the wireless sensors’ 
lifespan. The results confirm a good level of sensor energy 
optimisation via focusing on prioritized scheduling.  

Liang and Delahaye [20] present the case for a fleet of 
UAVs for large scale agriculture and forestry surveying to 
reduce mission time. Their classification of the optimization 
parameters either as primary, i.e., path planning, or secondary, 
i.e., altitude and UAV speed, is key to their process.

Savkin et al. [21] present an autonomous UAV in a 3D
trajectory optimization and transmission scheduling on 
uneven terrains. The work considers collision avoidance with 
multiple cooperating UAVs. Bromo et al. [22] use 
reinforcement learning for coverage planning of UAV fleets.  

Berger et al. [23] present an integration between an 
autonomous robot and a UAV for insect monitoring. The 
authors argue that complexity and time management would 
increase when utilizing a UAV fleet. Teshome et al. [24] 
combine UAV imaging and AI for plant phenotyping and 
immediate resolution of issues identified.  

A remote-sensing task is presented in [25] for inspecting 
possible infected maize leaves using UAV imagery and 
convolutional neural networks (CNN). The proposed 
approach shows high efficiency and accuracy in identifying 
infected maize leaves from an altitude of 5m from the ground. 
Patrik et al. [26] introduce an autonomous UAV to apply 
pesticide in farms using a rout navigation algorithm. The 
navigation uses a fixed starting and landing position for the 
UAV. This results in a recommendation of a more adaptive 
navigation to avoid obstacles in real time.  

In [27] a fleet of aerial and ground vehicles that optimizes 
path routing is deployed over agricultural fields for crop 
management. Whilst the proposed method emphasises the 
importance of developing multi-agent vehicles for precision 
farming, it, nevertheless, offers no guarantees on worst- or 
best-case scenarios.  

A particle swarm algorithm for UAVs is used in [28] to 
optimize route planning and task allocation in agricultural 
fields and an acceptable energy consumption is achieved. A 
combined geographic information system with aerial imaging 
using a UAV is proposed in [29] for rice crop counting and 
soil health assessment. Counting is carried out in semi-
automated mode in case of clusters and the results confirm 
good accuracy.  

TABLE I shows a comparison between related studies 
against the proposed model. The table has helped identify 
research gaps from which we draw our own research 
motivation to inform our proposed model.  

TABLE I.  RELATED RESEARCH AGAINST THE PROPOSED MODEL 

Ref. Config. AI Problem Solved Issues 

[12] Fleet √ 
• Aerial monitoring 

• Task assignment 
• No autonomy 

[13] Fleet √ 
• Semi-autonomous 

• Irrigation & pesticides 

• Not fully 

autonomous 

[14] 
Stand-
alone 

x 
• Wireless comms. 

• M2M and IoT 

• Cost 

• Complexity 

• No intelligence 

[15] 
Stand-

alone 
x 

• Remote sensing 

• Assess red pine 

seedlings 

• No intelligence or 
autonomy 

• Not with fleets 

[16] 
Stand-

alone 
x • Gathering sensed data 

• No intelligence or 

autonomy 

• Not with fleets 

[17] 
Stand-

alone 
√ 

• Path plaining 

• Nodes selection 

• Not fully 
autonomous 

• Not with fleets 
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[18] 
Stand-

alone 
√ 

• Route plaining 

• Multispectral image 
processing 

• Not with fleets 

• Time consuming 

[19] 
Stand-

alone 
√ 

• Wireless sensing 

• Prioritize scheduling 

• Not fully 
autonomous 

• Not with fleets 

[20] Fleet √ 
• Surveying 

• Path plaining 

• No task 

scheduling 

[21] 
Stand-

alone 
√ 

• Transmission 
scheduling 

• Not with fleets 

[22] Fleet √ • Coverage planning 
• Not fully 

autonomous 

[23] 
Stand-
alone 

√ • Insect monitoring 

• No task 
scheduling 

• No with fleets 

[24] 
Stand-

alone 
√ • Insect monitoring 

• No task 

scheduling 

• No with fleets 

[25] 
Stand-

alone 
√ • Inspect infected leaves 

• Not autonomous 

• Not with fleets 

[26] 
Stand-

alone 
√ 

• Spray pesticide 

• Rout navigation 

• Not with fleets 

• Fixed navigation 

[27] Fleet √ 
• Crop monitoring 

• Path plaining 
• Complexity 

[28] Fleet √ 
• Route planning 

• Task allocation 

• No in-field 

operations 

• Not fully 
autonomous 

[29] 
Stand-

alone 
√ 

• Crop counting 

• Soil health assessment 

• Not fully 
autonomous 

• Not with fleets 

Propo

sal 
Fleet √ 

• Synchronization of fleet flying 

• Task scheduling 

Our main motivation focuses on fleet autonomy and 
synchronisation, and once achieved, fleet task scheduling. We 
aim to demonstrate the novelty of our approach in arboreal 
regenerative farming cycles, from seed to irrigation to 
harvesting with minimal intervention. 

• Development of an artificial brain for managing fleet
autonomy and synchronisation,

• Development of an artificial brain for scheduling fleet
tasks over the farmland, and

• Validation of the proposed work with a proof-of-
concept scenario in a smart farm.

III. THE PROPOSED FRAMEWORK

In executing complex tasks, cooperative UAVs can deliver 
greater efficiency and reliability. However, any clustering of 
UAVs would raise the primary issues of autonomy and 
synchronization in their functioning. Thus, an intelligent 
framework is almost necessary in setting up a fleet of UAVs 
that is functioning efficiently and effectively. This section 
describes our proposed conceptual framework, shown on 
Fig.2, which includes its mathematical formulation, the link 
budget predictions, and the machine learning (ML) framework 
within. 

Fig. 2: The proposed conceptual framework
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The framework workflow consists of 4 stages. At stage 
1 the ML framework within enables the UAVs to fly 
autonomously and synchronized and supports prioritised 
task scheduling. The ML framework within feeds to the sky 
segment at stage 2, which maintains the leader-follower 
fleet topology through use of two signals between the 
UAVs: a routing signal, and a UAV2UAVsignal. The 
ground segment at stage 3 uses a Ground Control Centre 
(GCC) to communicate with the UAV leader through a 
control signal. Data collected by all UAVs are fed to fog 
computing at stage 4 for analysis and storage.  

The Received Signal Strength Index (RSSI) is a vital 
link budget parameter, which is seen as a performance 
indicator that helps with monitoring the network topology, 
reception connectivity, and coverage [30]. RSSI is 
expressed in equations (1) and (2). 

RSSI =  (Pt + ht+ hr − PL − L) () 

PL = 20 log
4 π (f)(d)

c
() 

where PL denotes free-space path loss in dB, d denotes 
distance of transmission (km), f denotes carrier frequency 
(GHz), c denotes speed of light, ht denotes altitude, Pt
denotes transmitter power, hr  denotes receiver antenna
height, and L denotes system losses. The rest of this section 
details the two-brain ML framework within. One brain uses 
Deep Reinforcement Learning (DRL) to enable UAV fleet 
autonomy and the other brain uses Ant Colony Optimization 
(ACO) to enable UAV synchronization and task scheduling 
[31-33]. 

A. Brain 1: Fleet autonomy with DRL

This brain’s aim is to enable a fully autonomous UAV
to have a safe flight without any human intervention using 
ML. This enables the autonomous UAVs to manage all sorts
of unforeseen and unpredictable emergency situations. This
work uses the DRL technique to achieve this and this relies
on three mains parameters. Firstly, deep agents that will
learn the best course for rewards, states, and actions based
on previous experience; secondly, flight path planning to set
clear goals; thirdly, avoiding obstacles using distance
sensors or depth information using front-facing cameras.
The DRL for UAV fleet autonomy is expressed in equations
(3) to (12).

r(s, a) = 𝔼 [Rt|St−1 = s, At−1 = a] ()

Gt = Rt+1 + Rt+2 + Rt+3 +⋯ .+RT ()

vπ(s) = 𝔼 [Gt|St =s] ()

vπ(s) = r vπ(s
′) ()

P(s′, r|s, a) =  Pr{St = s′, Rt = r, St−1 = s, At+1 = a} ()

Gt = E[∑ ykRt+k+1
∞
k=0 ] ()

Q(s, a) = Eπ[∑ ykRt+k+1|St = s, At = a
∞
k=0 ] ()

Q∗(a, a) = Qπ(s, a)π
max () 

Q∗(s, a) = E[ Rt+1 + y Q∗(s
′, a′)a′

max () 

E[ Rt+1 + y Q∗(s
′, a′)a′

max − Eπ[∑ ykRt+k+1
∞
k=0 ] () 

where r(s, a) denotes expected immediate reward from 
state s after action a, 𝔼 denotes expectation of a random 
variable, Rt denotes reward at time t, At denotes action at
time t, St  denotes stochastic state at time t, and likewise,

St−1and At−1, Gt denotes return of total reward earned over
the course of time, vπ(s)  denotes value of state s under
policy π  (expected return), r  denotes a reward, vπ(s

′)
denotes value of transition to state s′  under policy π ,
P(s′, r|s, a) denotes probability of transition to state s′ with
reward r from state s and action a, k denotes number of 
actions, Q(s, a) denotes array’s Q estimates of taking action 
a at state s and policy π, Q∗(s, a)  denotes array’s Q
estimates of taking action a at state s under optimal policy. 

B. Brain 2: Synchronization and task scheduling with ACO

This brain’s aim is to enable synchronization and task
scheduling among the UAV fleet using ML. This enables 
the autonomous UAVs to fly in formation and at the same 
time carry out scheduled tasks as a fleet.  This work uses the 
ACO technique to achieve this, inspired by three key 
features: multi-agents, social learning, and dynamic leader 
selection. Every UAV, by being part of a self-organizing 
swarm, learns from its surroundings and adjusts its 
movement and velocity accordingly. A leader and its 
followers first synchronise as a colony and then begin to 
carry out scheduled tasks commensurate with their fleet size 
and always striving to accelerate convergence and avoid 
stagnation. The ACO for UAV fleet synchronisation and 
task scheduling is expressed in equations (13) to (25). 

pij
m(t) =

τij
αηij

β

∑ τij
αη

ij
β

c∈allowedi

() 

Ja,k(t) =
1

k
∑ Ja,m(t)
k
m=1 () 

τij(t + 1) = (1 − ρ) × τij(t) + ∑ ∆τij
m(t)k

m=1  () 

τij(t) = {

τmax ;    τij(t) ≥ τmax       

τij(t)  ;  τmin < τij(t) < τmax
τmin  ;  τij(t) ≤ τmin       

() 

∆τij
m(t) =

{

Q

Lo
 ;  rout(i, j) referes to optimum rout

−Q

Lw
 ;  rout(i, j) referes to worst rout 

0  ; o    otherwise 

 () 

Xa
Nc = Xa

Nc−1 + Va
Nc () 

Va
Nc = Va

Nc−1 × e−R.Nc + rand × c × (Xmod −
Xa
Nc−1)        ()

c = 1 − log (
Nc

m
) () 

Na(t) = {b|dab(t) < r} () 

xa(t + 1) = xa(t) + v cos θa(t) () 

ya(t + 1) = ya(t) + v sin θa(t) () 

v ≤
d (1/N)N

2π
() 

d = r − maxa,b∈ε0dab ()

where pij
m(t) denotes probability of transition of mth ant at

node I on time t, τij
α denotes pheromone on the edge (i, j), 

ηij
β

denotes transit feasibility from node i to node j, allowedi
denotes set of nodes that are neighboring i, α and  β denote 
constants influencing, Ja,k(t) denotes average path cost, k

denotes total ants, ρ denotes rate of pheromone evaporation 
at every node, cycle, ∆τij

m(t) denotes pheromone rate of the

edge, τmin and τmax denote pheromone on each route to a
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specified minimum and maximum values, L0 denotes most
optimal route length, Lw  denotes the current iteration’s
worst route length,  Xi  and Vi  denote locations and
velocities of ants respectively, Nc denotes current number
of iterations, c denotes learning behavior factor, Xmod
denotes demonstrator ant superior to current ant (i.e., a 
leader), R denotes map and compass factor (between 0 and 
1), Na(t) denotes neighbor of agent a, r denotes circle of
radius of colony, xa(t)  and ya(t)  denote coordinates of
agent at time t, and θa(t) denotes heading angle of agent a.

A core farming process is the calculation of a 
Normalized Difference Vegetation Index (NDVI) which 
may be carried out by a fleet of autonomous UAVs 
synchronizing in flight over different zones and taking a 
sequence of high-resolution pictures to evaluate the health 
of trees and leaves [34-36]. The NDVI verifies and 
quantifies the presence of live green vegetation using a 
reflected light in the visible and near-infrared bands. The 
use of aerial imagery for NDVI allows a higher degree of 
granularity, efficiency, and pace in assessing plant health 
during a crop inspection. The NDVI and Mean Squared 
Error (MSE), as performance indicators are expressed in 
equations (26) and (27). 

NDVI =
NIR−RED

NIR+RED
() 

MSE =
1

N
∑(y − y′)2 () 

where NIR denotes light reflected in the near-infrared 

spectrum, RED denotes light reflected in the red range of 

spectrum, n denotes sample size, y denotes actual value, 

and 𝑦′ denotes predicted value.

IV. FRAMEWORK IMPLEMENTATION

This section presents the predicted results and discusses 
the main highlights of the proposed solution for regenerative 
farming. The proposed framework was validated for 
comprehensive monitoring using the NDVI approach. Fig.3 
shows a simulation that uses a set of primary data collected 
in September 2022 at Al Jouf, Saudi Arabia. Eight 
regenerative crops are monitored in a circular pattern from 
an altitude of 500m. These crops vary in size and have a 
radius of up to 1.5km. Such regenerative farms aim at 
restoring soil health while continuing with food production 
and relying almost exclusively on rainwater. 

Fig. 3: Crop monitoring in regenerative farms 

Fig.4 illustrates the use of a Mission Planner tool to 
sweep over crops (across yellow lines). These crops exhibit 
a visibly livelier green colour against the dusty sand colour, 
which is representative of regenerative farming. The target 
of each colony of UAVs is one crop which aims at making 
efficiencies both in monitoring time and power 
consumption.  

Fig. 4: Crop monitoring using a Mission Planner tool 

Fig.5 shows three colonies of UAVs on a leader-follow 
topology. Leaders led and maintained communications for 
synchronization and task scheduling. The time to complete 
sweeping is relatively the same across fleets at 19.4 mins. 
The proposed process starts with calibrating the UAVs’ 
devices. These include electronic speed controllers (ESCs), 
motors, propellers, flight controller (Pixhawk-4) in case of 
emergencies, BME280 sensor, battery, and Raspberry Pi 3 
microcontroller, and communication module. Then, the 
leader of each colony establishes a direct communication 
link with its counterpart in another colony for autonomy, 
synchronization, and task scheduling using the ML 
framework. A control signal for data transfer is established 
between leaders and the GCC. Data gets transferred to fog 
computing for further analysis and storage. 

Fig. 5: Leader-follower topology 

Fig.6 shows the accumulated reward of the DRL 
network, which is tuned via a trial-and-error procedure. A 
considerable amount of UAV training cycles has been done 
on obstacle avoidance and on reaching the designated goal 
efficiently and with a high reward point. Light colour refers 
to the actual reward value for each iteration, whilst dark 
colour refers to the mean reward after 50 steps. At the 
beginning of each training cycle during which UAVs 
establish a correct flying behaviour, rewards fall below zero. 
This may include crashes, which is an expected normal 
outcome during early training cycles. Flight behaviour 
improves over time and reward values steadily increase 
towards positive rewards with no further crash episodes 
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after the first 1670 steps. Training iterations come to an end 
when UAVs either meet their training goals, or the level of 
their rewards becomes steady, or the number of iterations 
reach the pre-set limit.  

Fig. 6: Accumulated reward of the DRL network 

Fig.7 shows the convergence of the ACO network. This 
presents the average path cost in relation to the number of 
iterations and reveals a stable average path cost for the ACO 
network, which in turn reflects on the effectiveness of the 
technique and its three key features of multi-agents, social 
learning, and dynamic leader selection. 

Fig.7: Average path cost of the ACO network 

Fig.8 shows the NDVI performance using the RED and 
NIR bands of the 8 evaluated crops. Fig.9 displays the 
NDVI numerical performance of these crops. The NDVI 
values combine the information in the red and NIR bands 
into a single and representative value by subtracting the 
reflectance in the RED spectral band from that in the NIR 
and then dividing this by the sum of the NIR and red 
reflectance. Healthy vegetation absorbs more red and blue 
light and seems green to our sight. NDVI ranges between -
1 and 1, where -1 denotes that there are probably no green 
leaves present or dead plants, whilst 1 denotes dense green 
foliage. NDVI values ranging between -1 and 0 denote dead 
plants or inanimate objects with no green leaves, values 
ranging between 0 and 0.33 denoted unhealthy plants, 
values ranging between 0.33 and 0.66 denote moderately 
healthy plants, and values ranging between 0.66 and 1 
denote very healthy plants. 

Fig. 8: NDVI results using the RED and NIR bands 

Fig. 9: NDVI numerical results 

Fig.10 illustrates the predicted RSSI results in relation 
to distance.  RSSI predictions is vital since it monitors 
system performance, network planning, and coverage in 
achieving perfect reception and in our case, evaluating the 
connectivity between the leader UAVs and GCC. The 
predicted RSSI value is less than -73dBm, which is 
acceptable for LoS connectivity. Moreover, the RSSI is 
linked to path loss, so a higher RSSI denotes improved 
wireless connectivity with the smallest attenuated signal. 
This helps with delivering collected data from the leader 
UAVs to the cloud for analysis and storage in an efficient 
and timely manner. 

Fig.11 shows the MSE performance of the proposed 
framework. The process verifies in 12 iterations, after which 
error rates do not fall any lower. During the 13th iteration, 
training stops as the error rate starts to increase. The result 
is fitting because, firstly, the final MSE is small, secondly, 
the test set error and the validation set error have 
comparable attributes, and thirdly, no key overfitting 
happens before iteration 13, when the best validation 
performance is recorded.  

Fig. 10: RSSI predictions of leader UAVs  
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Fig. 11: MSE of the proposed work 

V. CONCLUDING DISCUSSION AND FUTURE WORK

Regenerative farming has been around since the dawn of
civilization, but it is only recently that it has started moving 
into mainstream agriculture when healing and restoring soil 
health and fertility has risen in priority. Agricultural 
engineers and researchers are striving to use advanced 
technologies such as UAVs, ML, and IoT to help optimize 
farms operations, monitor crop growth, improve crop 
production, and establish a sustainable food supply chain.  

Smart farming could prove to be the ultimate solution to 
food security and environmental challenges. This article 
presents a framework whose focus is twofold: an 
autonomous fleet of UAVs synchronised for task scheduling 
using DRL and ACO. The implementation of the framework 
reveals promising predictions when evaluating using 
performance indicators such as NDVI, MSE and RSSI. The 
parameters adopted are widely considered, and used, as the 
baseline for carrying out evaluation of frameworks such as 
the one proposed in this paper.  

Naturally, the framework and its implementation may be 
extended to include a Wireless Sensor Network (WSN) that 
will support an IoT topology on the ground with live aerial 
imaging in the sky [37-40] for the holistic management of a 
smart farm. Such a holistic management approach to smart 
farming adopts systems thinking to managing resources and 
provides a support framework for adapting to, and 
balancing, the four basic ecosystem processes whose 
successful management is crucial for sustaining a heathy 
farm: the water cycle, the mineral cycle which naturally 
includes the carbon cycle, the energy flow, and the 
community dynamics, i.e., the relationship between all 
organisms that are integral for the health of any farm 
ecosystem. 
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