
J. Chem. Phys. 156, 184111 (2022); https://doi.org/10.1063/5.0088127 156, 184111

© 2022 Author(s).

Slip and stress from low shear rate
nonequilibrium molecular dynamics:
The transient-time correlation function
technique
Cite as: J. Chem. Phys. 156, 184111 (2022); https://doi.org/10.1063/5.0088127
Submitted: 13 February 2022 • Accepted: 18 April 2022 • Accepted Manuscript Online: 18 April 2022 •
Published Online: 10 May 2022

Luca Maffioli,  Edward R. Smith,  James P. Ewen, et al.

ARTICLES YOU MAY BE INTERESTED IN

Fully periodic, computationally efficient constant potential molecular dynamics simulations
of ionic liquid supercapacitors
The Journal of Chemical Physics 156, 184101 (2022); https://doi.org/10.1063/5.0086986

A neural network-assisted open boundary molecular dynamics simulation method
The Journal of Chemical Physics 156, 184114 (2022); https://doi.org/10.1063/5.0083198

Systematic bottom-up molecular coarse-graining via force and torque matching using
anisotropic particles
The Journal of Chemical Physics 156, 184118 (2022); https://doi.org/10.1063/5.0085006

https://images.scitation.org/redirect.spark?MID=176720&plid=1735782&setID=378408&channelID=0&CID=634322&banID=520641639&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=c467814ad1e5f49acc6a9f43cc9f44a15094d667&location=
https://doi.org/10.1063/5.0088127
https://doi.org/10.1063/5.0088127
https://aip.scitation.org/author/Maffioli%2C+Luca
https://orcid.org/0000-0002-7434-5912
https://aip.scitation.org/author/Smith%2C+Edward+R
https://orcid.org/0000-0001-5110-6970
https://aip.scitation.org/author/Ewen%2C+James+P
https://doi.org/10.1063/5.0088127
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0088127
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0088127&domain=aip.scitation.org&date_stamp=2022-05-10
https://aip.scitation.org/doi/10.1063/5.0086986
https://aip.scitation.org/doi/10.1063/5.0086986
https://doi.org/10.1063/5.0086986
https://aip.scitation.org/doi/10.1063/5.0083198
https://doi.org/10.1063/5.0083198
https://aip.scitation.org/doi/10.1063/5.0085006
https://aip.scitation.org/doi/10.1063/5.0085006
https://doi.org/10.1063/5.0085006


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Slip and stress from low shear rate
nonequilibrium molecular dynamics:
The transient-time correlation function technique

Cite as: J. Chem. Phys. 156, 184111 (2022); doi: 10.1063/5.0088127
Submitted: 13 February 2022 • Accepted: 18 April 2022 •
Published Online: 10 May 2022

Luca Maffioli,1 Edward R. Smith,2 James P. Ewen,3 Peter J. Daivis,4 Daniele Dini,3
and B. D. Todd1,a)

AFFILIATIONS
1 Department of Mathematics, School of Science, Computing and Engineering Technologies,
Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia

2 Mechanical and Aerospace Engineering, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, United Kingdom
3Department of Mechanical Engineering, Imperial College London, South Kensington Campus, Exhibition Road,

London SW7 2AZ, United Kingdom
4School of Science, RMIT University, GPO Box 2476, Victoria 3001, Australia

a)Author to whom correspondence should be addressed: btodd@swin.edu.au

ABSTRACT
We derive the transient-time correlation function (TTCF) expression for the computation of phase variables of inhomogenous confined
atomistic fluids undergoing boundary-driven planar shear (Couette) flow at constant pressure. Using nonequilibrium molecular dynamics
simulations, we then apply the TTCF formalism to the computation of the shear stress and the slip velocity for atomistic fluids at realistic low
shear rates, in systems under constant pressure and constant volume. We show that, compared to direct averaging of multiple trajectories,
the TTCF method dramatically improves the accuracy of the results at low shear rates and that it is suitable to investigate the tribology and
rheology of atomistically detailed confined fluids at realistic flow rates.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0088127

I. INTRODUCTION
Nonequilibrium molecular dynamics (NEMD) simulations

have given unique insights into nanoscale fluid behavior in a range
of applications from tribology1 to hydraulic fracturing and polymer
processing.2,3 On the other hand, NEMD simulations are generally
limited to external fields, which are several orders of magnitude
larger than those encountered in experiments and applications. For
example, typical shear rates4 in automotive engines range from
105–108 s−1, while those in polymer processing and hydraulic frac-
turing are usually between 103–106 and 1–103 s−1, respectively.5,6

Even using massively parallelized MD software7,8 on modern high
performance computer (HPC) systems, the lowest accessible shear
rates by direct NEMD9 are >105 s−1.

For atomic fluids, the viscosity remains Newtonian up to high
shear rates;10 however, for molecular fluids, non-Newtonian shear
thinning behavior can dominate the viscous response at shear rates
well below those accessible to direct NEMD simulations.9,11 A com-
parison of NEMD results with experimental viscosity measurements

is, thus, generally restricted to extrapolation9,12 or time–temperature
superposition9,11 methods.

One approach that allows for the study of fluid rheology at real-
istic shear rates is the transient-time correlation function (TTCF)
technique,13–17 which is based on the time correlation between
the initial rate of energy dissipation and the transient response
of any arbitrary phase variable after an external field is activated.
TTCF has been applied to investigate the rheology of a range of
fluids at low shear rates, usually in homogenous systems with-
out confining walls.18 These studies have progressed from atomic
fluids16,17,19 to molecular fluids20 and even liquid metals.21,22 In
addition to the viscosity, TTCF has also been used to monitor the
electrical conductivity,23–25 thermal conductivity,26 color conductiv-
ity,27 and normal stress differences.28 The TTCF method has also
been extended from shear flow to elongational flow29,30 and mixed
shear and elongational flow.31 Relatively fewer studies have applied
TTCF to boundary-driven simulations of confined, inhomogeneous
systems.32–34
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Boundary-driven NEMD was introduced by Ashurst and
Hoover35 and further developed by Bitsanis et al.36 who included
the confining walls. In boundary-driven confined NEMD simu-
lations, shear is usually applied by moving the walls in opposite
directions and the temperature inside the channel is controlled by
using a thermostat applied either on the whole system or only
to the wall atoms, as in experiments.37–39 This approach enables
the study of new dynamic behavior, which emerges when fluids
are strongly confined40–43 or subjected to very high pressure.44–46

Delhommelle and Cummings32 used TTCF to study the frictional
response of a Weeks–Chandler–Anderson (WCA)47 fluid confined
to a film of about five molecular diameters over a wide range of
shear rates (103–1011 s−1

). However, the wall atoms lacked ther-
mal motion and the fluid atoms were thermostatted, which makes
an analytical derivation of the dissipation function difficult. Bernardi
et al. used TTCF to study friction in WCA and Lennard-Jones (LJ)
fluids confined between wall atoms with thermal motion.33 This
meant that there was no ambiguity in the definition of the dissi-
pation, which was analytically derived following its mathematical
definition.48 More recently, Bernardi and Searles34 used TTCF to
study the low shear rate rheology of confined polymer chains of
several lengths (1, 2, 4, 8, and 12 beads) represented by the finite
extensible nonlinear elastic (FENE) potential.49

In all previous TTCF studies of confined systems,32–34 fixed
channel widths have been employed with a constant fluid volume.
Experimentally, the channel width can often vary dynamically in
response to pressure, shear, and temperature. Certain important
behavior, such as shear dilatancy,50 can only be captured in confined
NEMD simulations if the channel width can change.43 This can be
achieved by applying a barostat to the confining walls.51,52 Quanti-
tatively different flow and friction behavior has been observed for
systems at constant pressure rather than fixed channel width, i.e.,
constant volume.52 In this study, we use TTCF to investigate the
friction of confined LJ and WCA fluids at low shear rates under the
conditions of both constant volume and pressure. The temperature
and pressure are controlled using a thermostat and barostat acting
only on the wall atoms to closely mimic experimental conditions. In
what follows, we first outline our methodology and establish the gov-
erning equations of motion and their associated TTCF expressions.
Next, we present results for our TTCF computations for the shear
pressure (negative of the shear stress) and slip velocity and compare
them with their standard direct average NEMD values. We end with
some concluding remarks and present the TTCF derivation in the
Appendix.

II. METHODOLOGY AND COMPUTATION DETAILS
We first note that all our simulations were performed using our

own in-house code. Lupkowski and van Swol51 invented a boundary-
controlled barostat for controlling the normal pressure in molecular
dynamics simulations of liquids confined between planar fluctuating
walls, where a wall is represented by a solid block with one degree
of freedom. Extensions of this barostat were derived by Gattinoni
et al.52 who incorporated an atomistic description of the wall and
where the atoms are tethered to an underlying “virtual” rigid lattice,
which plays a similar role to the Lupkowski and van Swol baro-
stat wall. In this work, we adopt a mixed approach, where for our
three-dimensional system, the wall particles are bound to a set of

virtual lattice sites free to move along the y-direction (the confine-
ment direction) and on which an external constant force is applied.
The shear is likewise exerted on the system by applying a constant
velocity to the lattice sites along the x-direction. The geometry of the
system is depicted in Fig. 1, and the resulting equations of motion
are as follows:
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ṙ f
i =

p f
i

mi
,
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Here, the superscripts f , w, and l denote, respectively, the fluid, wall,
and lattice particles. F2B

i = −∑i≠j∇ϕij is the interatomic two-body
force with

ϕ(rij) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

4ε
⎡
⎢
⎢
⎢
⎢
⎣

(
σ
rij
)

12

− (
σ
rij
)

6⎤
⎥
⎥
⎥
⎥
⎦

+ ϕc if rij ≤ rc,

0 if rij > rc

(2)

and FH
i = −k(rw

i − rl
i) is the harmonic force tethering the wall par-

ticles and the lattice sites (see Fig. 2), while σ and ε are the effec-
tive diameter and potential well, respectively. The cut-off radius is
rc = 21/6σ for Weeks–Chandler–Andersen47 (WCA) particles and

FIG. 1. Schematic of the system and location of the planes across the channel.
The z-direction is normal to the page. The diagram is merely representative, and
the size of the particles may not be proportionate to the actual system size.
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FIG. 2. Schematic of the external field acting on the lattice sites (black dots). The
lattice is subjected to both the tethering force (only some wall particles are actually
shown, for the sake of clarity) and the external force. The action of the force occurs
only along the y (vertical) direction, and it does not affect the dynamics in the x or
z directions.

rc = 2.2σ for the Lennard-Jones53 (LJ) ones. The shift term ϕc elim-
inates the discontinuity in the potential at r = rc and ϕc = ε for the
WCA potential and ϕc ≃ 0.34ε for the LJ. As will be clear from
the following results, systems composed of simple atomistic WCA
particles hardly exhibit any slip velocity at the wall–fluid interface.
In order to provide a useful example of the TTCF formalism in
the study of the slip velocity, we investigated an analogous system
with particles interacting with a Lennard-Jones potential where the
parameters σ and ε have been set in order to promote a slip at the
fluid–wall interface. In what follows, all quantities are expressed
in reduced units, with σ = ε = 1 for the WCA systems and σ f

= 1,
σw
= 0.5, and ε f

= εw
= 1 for the LJ one. In the latter, the inter-

action between fluid and wall particles has been modeled via the
Lorentz–Berthelot mixing rule. For the case of constant volume,
the lattices sites are fixed, and an initial velocity ±v (positive for
the upper wall and negative for the lower one) is imposed in the
x-direction. For the systems at constant pressure, the sites are free
to move along the y-direction and are subjected to the mean har-
monic force and to an additional external constant force Fext applied
homogeneously to each site, which must be set to match the desired
pressure. Since each site is subjected to the same force, the lattice
sites move collectively as a single rigid body.

For any generic phase variable B(t), the TTCF formalism is
based on the following identity:33,48

⟨B(t)⟩ = ⟨B(0)⟩ +∫
t

0
⟨Ω(0)B(s)⟩ds, (3)

which relates the phase-space average of B at time t with the
time integral of the correlation with the dissipation function Ω(0)
= βḢ ad, where β = 1/kBT and kB is the Boltzmann constant., i.e.,
the rate of energy dissipation without accounting for the thermostat
term at t = 0, when the external force is switched on.31 For our sys-
tem, we find that Ω = −β∑ik(r

w
xi − rl

xi)v for both the constant volume
and the constant pressure case. See the Appendix for a brief deriva-
tion of the dissipation function in the presence of a barostat (the
constant volume derivation results in the same expression, and its
derivation is analogous).

In summary, for the application of the TTCF method in com-
puter simulations, one must generate a number Ns of uncorrelated
equilibrium (v = 0) phase state points, which act as initial conditions
of Ns nonequilibrium systems (v ≠ 0) on which B(t) is computed.
The multiple time series are, then, averaged over the Ns measure-
ments and integrated according to Eq. (3). To improve the statistics,
it is useful to generate several different nonequilibrium trajectories
from the same starting point, by generating transformed, or mapped,
initial conditions from each starting point. In this work, we adopt
four sets of phase-space mappings: for each particle i, the mappings
are generated by the following rules, taken from previous works:32

(xi, yi, zi, pxi, pyi, pzi)→ (xi, yi, zi, pxi, pyi, pzi),
(xi, yi, zi, pxi, pyi, pzi)→ (xiyi, zi,−pxi,−pyi,−pzi),
(xi, yi, zi, pxi, pyi, pzi)→ (−xi, yi, zi,−pxi, pyi, pzi),
(xi, yi, zi, pxi, pyi, pzi)→ (−xi, yi, zi, pxi,−pyi,−pzi),

(4)

where the first transformation is the simple identity, which leaves
the initial state unchanged. It is straightforward to verify that the
above transformations are compatible with the canonical ensemble,
which is symmetric by any of those transformations. This proce-
dure ensures that ⟨Ω(0)⟩ is identically 0, as expected theoretically,
and thus, the integral of the time correlation will converge. Fur-
ther details of the TTCF methodology and the use of phase-space
mappings can be found in the specialist books on nonequilibrium
statistical mechanics and nonequilibrium molecular dynamics.54,55

We computed the Pxy component of the local pressure ten-
sor (the negative of the shear stress, or shear pressure) using the
method of planes (MoP) technique56 at different locations across the
channel, according to Fig. 1 for the WCA systems. For constant pres-
sure simulations, the planes themselves are instantaneously adjusted
since the channel width can fluctuate. While the absolute plane posi-
tions can fluctuate in time, their relative positions with respect to
channel width remain constant. The wall–fluid interfaces, which also
represent the channel borders, are set to be at half of the particles’
diameter away from the average y coordinate of the inner wall layer.
In addition, we generated velocity and density profiles of both WCA
and LJ cases. Since the dissipation function Ω is strongly localized
in the wall region, the calculation of any of the TTCF quantities at
various distances from the walls also allowed us to verify whether the
correlation ⟨Ω(0)B(t)⟩ decays when B(t) is computed far from the
wall region, potentially making the TTCF method less effective.

NEMD simulations for WCA systems composed of 3200
fluid particles and 800 wall particles were performed. Each wall
was composed of two layers. All systems had initial density
ρ = 0.8442, L ≃ 16σ = 16 and were thermostatted with a
Nosé–Hoover thermostat57,58 at temperature T = 1 at the walls. For
the case of constant pressure, we analyzed systems at relatively high
pressures of P = 10 and P = 11. Higher pressures than this might
activate a phase transition where the fluid region becomes solid,44–46

a condition for which the TTCF formalism fails or becomes highly
inefficient. This phenomenon might also be promoted by a small
system size along the x-direction. For the LJ case, we investigated
systems at fluid density ρ f

= 0.8 and ρw
= 8 and a channel width of

≃ 10σ. The high density of the wall is due to the reduced diameter
of the wall particles and corresponds to ρw

= 1 if the quantities
were normalized, assuming σw

= 1. A recent work59 pointed out
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that small inhomogeneous systems, under certain conditions, tend
to underestimate the solid–liquid friction. However, in this work,
we have not accounted for this effect, as we focused solely on the
derivation and application of the TTCF formalism under constant
pressure conditions for the study of highly confined fluid systems.
The reduced mass of each particle and lattice site was set to 1,
and the stiffness of the spring was set as k = 150 for the WCA
systems and k = 75 for the LJ ones.60 These values are common
in the literature and represent a good compromise between two
requirements: to have walls rigid enough to keep the fluid particles
confined in the channel and, at the same time, allow for large
fluctuations in the wall particles, which facilitate thermalization.

Each system underwent an equilibration of 400 time units, and
subsequently, 105 initial conditions were sampled for a total 4 × 105

starting points for the TTCF calculation due to the mappings, with a
delay of 2 time units between each sample along the equilibrium sim-
ulations. Each nonequilibrium trajectory was followed for 10 time
units. Since the TTCF method is based on a time correlation at time
t = s and t = 0, it is essential that the equations of motion are inte-
grated with a self-starting integrator; this means that the popular
Gear predictor-corrector would not be suitable for the purpose. A
fourth-order Runge–Kutta is typically used,26,28 which, on the other
hand, makes the simulation computationally expensive. We found
that the faster velocity Verlet performs equally well. The equations
of motion of both the equilibrium and nonequilibrium systems were,
therefore, integrated using a velocity Verlet algorithm61 with time
step δt = 0.004.

III. RESULTS
Figure 3 shows the comparison between the direct average

(DAV) and the TTCF methods in computing the shear pressure
Pxy(y) as a function of time for WCA systems at the fluid/wall inter-
face for the case of a constant volume system and reduced shear
rates ranging between γ̇ = 10−2 and 10−5, which correspond approx-
imately to ≃ 5 × 109 and 5 × 106 s−1 in MKS units, assuming that
the fluid is composed of monatomic argon atoms.62 The DAV data
are obtained by simply averaging the time dependent relevant phase
variable (in this case, the negative of the shear stress σxy, where
σxy ≡ −Pxy) over multiple independent NEMD trajectories. The
number of these trajectories is simply the number of initial con-
ditions (i.e., 1 × 105), whereas the number of TTCF trajectories, as
described in Sec. II, is 4 × 105 trajectories due to the phase-space
mappings required. Even though the number of TTCF trajectories
is four times more than the number of DAV trajectories, we do
not average over all four phase-space mappings for the DAV data.
The reason for this is that at short times, the DAV trajectories are
highly correlated and fluctuations in statistical error cancel due to
mapping symmetry. However, Lyapunov instability leads to a rapid
de-correlation as time increases. In the long-time limit (and certainly
in the steady-state), the standard error would only be improved by
a factor of two if we were to use all 4 × 105 trajectories for DAV.
A factor of two is still insignificant compared to the improvement
in statistics we find with the TTCF results, as we will demonstrate
shortly.

We observe at early times the negative shear stress overshoots,63

followed by damping oscillatory behavior, similar to that observed
by Bernardi et al.,33 due to the atomic vibrations in wall atoms

FIG. 3. Pxy at the fluid/wall interface, obtained by averaging over planes 2 and
6 (see Fig. 1), for the WCA systems at constant volume and for different shear
rates. The size of the error bars is four times the standard error. For the sake of
clarity, the error bars of the DAV method for the two lowest shear rates are not
displayed and are roughly an order of magnitude larger than the signal itself. A
constant reduction of the uncertainty in the TTCF time series indicates that this
method would be highly accurate for even lower shear rates.

(Fig. 3). For the highest shear rate, the statistical accuracy of the two
methods is comparable. The data show that, for the systems ana-
lyzed, the standard error of the signal Pxy computed with the DAV
method is in the order of 10−2 or higher and roughly constant for
each level of the external force. This means that for γ̇ < 10−2, the time
evolution of Pxy is either inaccurate or totally indistinguishable from
random noise, as can be seen in the last two plots. On the other hand,
the TTCF method produces an extremely accurate and clean signal
for arbitrarily low shear rates, with a standard error εstd decreasing
with the shear rate and spanning from approximately εstd ≈ 10−2 for
γ̇ = 10−2 to εstd ≈ 10−5 for γ̇ = 10−5. The constant reduction of the
uncertainty in Pxy computed with the TTCF method indicates that
an exceptionally good signal-to-noise ratio (SNR) can be achieved at
shear rates lower that those adopted in this work.

In Fig. 4, we see Pxy at the various locations across the chan-
nel for γ̇ = 10−5, computed with the TTCF method under conditions
of constant volume. The shear pressure in the fluid region (planes
3, 5, and 4) converges to a constant value across the channel, as
expected theoretically. However, the transient region (t < 6) shows
little or no oscillatory behavior found close to the wall. In the wall
region (planes 1 and 7), the average shear pressure is essentially null
due to the constant drag of the lattice sites; however, the oscillatory
behavior due to the vibrating wall atoms is still apparent. The signal
is particularly stable inside the walls and at the wall–fluid interface
(planes 2 and 6) due to the absence of the kinetic contribution, which
is inherently noisier. Each curve retains similar levels of uncertainty.
This indicates that a strong correlation between Ω(0) and the fluid
evolution holds arbitrarily far from the walls. We also note that
the steady-state shear pressure in the fluid region close to the wall
(planes 3 and 5) is reached more quickly than that near the channel
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FIG. 4. Pxy at various locations in the system (see Fig. 1) under constant volume
for γ̇ = 10−5, computed with the TTCF formalism. The size of the error bars is four
times the standard error.

center (plane 4) due to the time it takes for momentum transfer from
the walls into the bulk of the fluid.

Figures 5(a) and 5(b) show the comparison between the DAV
and TTCF methods in the computation of the streaming velocity
profile at low shear rates (γ̇ = 10−5

) for the systems at constant
volume and constant pressure, defined as

v(rbin, t) =
⟨∑i∈binmivi⟩

⟨∑i∈binmi⟩
, (5)

where the sum ranges over all fluid atoms within a bin of finite width
with mid-point located at rbin. The standard error of the velocity
computed via DAV is in the order of 10−2, which is more than two
orders of magnitude larger than the signal itself. The velocity profile
is critical in the calculation of the slip velocity and the corresponding
slip length. In confined boundary-driven systems on smooth sur-
faces, the velocity profile of the fluid deviates from the linear, no-slip
velocity profile imposed by the motion of the walls. In particular,
the average velocity of the fluid particles in proximity of the wall is
smaller than that of the wall and lower than the theoretical one.64 Of
particular significance in these results is that TTCF for the first time
has been used to determine accurate velocity profiles for a confined
fluid under very low (from an NEMD simulation perspective) rates
of shear that approach those values achievable under laboratory con-
ditions.65 The direct average (DAV) of the signal is simply too noisy,
and no information can be gleaned. However, the TTCF velocity
profiles, as seen from the insets in Figs. 5(a) and 5(b), demonstrate
that the signal can be clearly distinguished from the noise. This in
itself is a significant achievement and has never been seen before.
It finally opens the way for the use of NEMD to precisely com-
pute stresses, velocities, or any other phase variable whatsoever, at
physically meaningful and accessible laboratory shear rates.

Figures 6 and 7 more clearly show the slip velocity, defined
here as the difference in the velocity between the inner layer of the
wall particles and the first layer of the fluid particles for WCA and

FIG. 5. Velocity profile of the WCA system at constant pressure (a) at t = 10 and
LJ system (b) at t = 7.6 for γ̇ = 10−5. The wall region is included and can be
recognized from the structured peaks in the velocity at the borders of the region.
The vertical black dashed lines indicate the positions of the wall–fluid interface.
The standard error of the DAV method has been omitted, and it has a magnitude
in the range of 10−2. Note the clearly defined linear velocity profile observed in
the TTCF signal (magnified in the insets), as opposed to the direct average signal,
which is too noisy to allow for the observation of any meaningful profile. The time
t = 7.6 for the LJ system has been chosen to show the slip in the velocity profile
(compare with Fig. 7).

LJ systems, respectively. In our systems, the layers have a width of
roughly σ. The value has been taken as the average of the two inter-
faces, with the convention that the velocities are positive, i.e., a slip
velocity greater than zero indicates that that streaming velocity of
the wall is larger than that of the fluid. The data show again the
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FIG. 6. Slip velocity at the interface for the WCA system at constant volume (a)
and pressure (b) for γ̇ = 10−5. The error bars for the DAV measurements have
been omitted since they are at least an order of magnitude larger than the signal.
The insets display the TTCF signal alone.

power of the TTCF method. The computation of the slip velocity at
low shear rates would be unfeasible if the direct average method was
used, and it is typically difficult to estimate directly even at high shear
rates, particularly for high-slip systems,66 due to the large fluctua-
tions occurring in the velocity profile. It is precisely for such reasons
that equilibrium molecular dynamics methods have been developed
to compute the friction coefficients for such systems67,68 and have
been shown to be more reliable than NEMD for systems of high slip,
such as water confined to graphene or carbon nanotubes.66,69 The
TTCF results generated here now arm us with a powerful NEMD

FIG. 7. Slip velocity at the interface at constant volume for γ̇ = 10−2 (a) and
γ̇ = 10−5 (b) for the LJ system (TTCF signal in the inset).

technique to obtain slip velocities, slip lengths, and friction coeffi-
cients under actual nonequilibrium conditions. We further note that
the oscillatory behavior of the slip velocity is most likely due to the
vibrations of wall atoms tethered to their lattice sites, rather than evi-
dence of stick-slip behavior such as that seen previously.41 A more
detailed analysis of this oscillatory behavior will follow in a future
publication.

In Fig. 8, the slip velocity, computed with the TTCF method
for all the WCA systems, is displayed. The drop in the slip velocity
is approximately proportional to the shear rate, and it is apparently
not affected by the pressure imposed on the system except for the
lowest shear rate. Tables I–III summarize the data. As can be seen,
the error of the direct average rapidly dominates the signal for both
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FIG. 8. Slip velocity for all the systems investigated, computed with the TTCF
method. P ≃ 7.7 represents the systems at constant volume. There is no apprecia-
ble change in the behavior of the systems at the interface in the various systems,
which means that none of them show slip velocity. Error bars are four times the
standard error.

the quantities measured. It is useful to compare the signal-to-noise
ratio (SNR) for the DAV and the TTCF signals, defined as the ratio
between the absolute value of the average of the signal and its stan-
dard error, at t = 10. As can be seen in Fig. 9, the SNR remains

TABLE I. Summary of the estimated slip velocity for the systems analyzed. The sys-
tem at P ≃ 7.7 is the case at constant volume. Aside from the values itself, the
superiority of the TTCF method can be appreciated by the reduced uncertainty in
the final estimate. The n values in brackets are twice the standard error and are the
error in the last n digits of the slip velocities quoted.

P ≃ 7.7

γ̇ DAV TTCF

0.01 0.0018(44) −0.001 2(55)
0.001 0.0004(46) 0.000 08(5)
0.000 1 −0.0005(45) −0.000 01(6)
0.000 01 0.0003(45) 0.000 00(0)

P 10

γ̇ DAV TTCF

0.01 0.0005(49) 0.000 6(96)
0.001 0.0000(48) −0.000 3(4)
0.000 1 0.0001(48) 0.000 01(3)
0.000 01 0.0000(50) 0.000 00(0)

P 11

γ̇ DAV TTCF

0.01 −0.0004(47) 0.001 2(80)
0.001 0.0000(47) −0.000 3(3)
0.000 1 0.0003(46) −0.000 00(2)
0.000 01 0.0000(50) 0.000 00(0)

TABLE II. Summary of the estimated slip velocity for the LJ system. Aside from the
values itself, the superiority of the TTCF method can be appreciated by the reduced
uncertainty in the final estimate. The n values in brackets are twice the standard error
and are the error in the last n digits of the slip velocities quoted.

γ̇ DAV TTCF

0.01 0.016 88(3733) 0.015 84(1088)
0.001 0.001 75(3817) 0.001 72(120)
0.000 1 0.000 15(3723) 0.000 19(12)
0.000 01 0.000 04(3880) 0.000 01(1)

TABLE III. Summary of the estimated shear pressure (negative shear stress) in the
fluid region, as the average over planes 2–6. The system at P ≃ 7.7 is the case at
constant volume. The n values in brackets are twice the standard error and are the
error in the last n digits of the shear pressures quoted.

P ≃ 7.7

γ̇ DAV TTCF

0.01 −0.0274(251) −0.020 5(117)
0.001 −0.0027(259) −0.003 9(11)
0.000 1 −0.0003(247) −0.000 3(1)
0.000 01 0.0000(261) −0.000 03(0)

P 10

γ̇ DAV TTCF

0.01 −0.044 3(284) −0.047 6(134)
0.001 −0.004 5(283) −0.005 2(4)
0.000 1 −0.000 4(283) −0.000 5(1)
0.000 01 0.000 03(274) −0.000 05(0)

P 11

γ̇ DAV TTCF

0.01 −0.0563(290) −0.047 5(151)
0.001 −0.0057(268) −0.006 2(016)
0.000 1 −0.0006(286) −0.000 6(2)
0.000 01 0.0000(274) −0.000 06(0)

FIG. 9. Signal-to-noise ratio for the shear pressure Pxy of the WCA systems and for
the slip velocity of the LJ system at the various shear rates. The results of the slip
velocity for the WCA systems have been omitted since the signal itself is close to
0. The quality of the signal drops rapidly for low shear rates for the direct average
but remains unchanged for the TTCF.
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constant for the TTCF method for each level of the external field.
This is clear and promising evidence that accurate measurements
can be achieved with the same system size and number of samples
for shear rates lower than studied in this work, approaching values
that are practical.

IV. CONCLUSIONS
We have derived the analytical TTCF expression for boundary

sheared systems at constant pressure and have shown that it is equal
to that at constant volume as long as the barostat is modeled via a
conservative force. We have studied systems at different pressures
and for various driving boundary velocities at realistic shear rates.
For all the quantities monitored, we observed an increasing level of
noise in the DAV signal, making the signal-to-noise ratio rapidly
decay to zero. On the other hand, the signal-to-noise ratio remained
constant with the TTCF method and was substantially higher, indi-
cating that accurate measurements can be obtained for much weaker
external driving forces. Our results show that the correlation with
the dissipation function and both the shear pressure (negative of the
shear stress) and the streaming velocity does not substantially decay
when moving far from the wall. Although the limited size of the sys-
tems along the x-direction could affect the final value of the shear
pressure, we have shown that the TTCF method can be applied in
the study of friction in nanochannels at realistic rates of shear. The
generality of the TTCF approach and its simplicity make it readily
expandable to more complex systems, such as molecular fluids and
mixtures, and open up a new frontier in the use of NEMD simula-
tion to study the underlying physical processes that determine the
tribology of highly confined systems at realizable shear rates.
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APPENDIX: DERIVATION OF THE DISSIPATION
FUNCTION

In this appendix, we provide a derivation of the dissipation
function for barostatted systems, and we show that it is equivalent to
that of a system with fixed walls. We recall the equations of motion,

ṙ f
i =

p f
i

mi
,

ṗ f
i = F2B

i ,

(A1)

ṙw
i =

pw
i

mi
,

ṗw
i = F2B

i + FH
i − αpw

i ,
(A2)
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where FH
i = −k(rw

i − rl
i) and the sign of the external force is negative

because we are moving the upper wall (i.e., the sign depends on the
direction of the wall that is being driven). The difference between
upper and lower wall velocity is ignored since it does not affect the
calculations.

The total energy U = K +V can now be expressed as
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with Nt
= N f

+Nw, ϕH
i =

1
2 k(rw
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2, and rl
yi0 being the arbitrary

reference position of the lattice site i. The total time derivative of
the energy U, which is proportional to the dissipation function we
require (Ω), is
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⋅ ṗw

i )U +
N l

∑
i
(

∂

∂rl
i
⋅ ṙl
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⋅ ṗl

i)U.

(A5)

Recalling that for any generic particle k we have
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then the total time derivatives of the kinetic and potential energy are
given as
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and
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⋅ ṙi)V =

N f

∑
i

p f
i

mi
⋅ (−F2B

i )

+
Nw

∑
i

pw
i

mi
⋅ (−F2B

i − FH
i ) +

N l

∑
i

ṙl
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With the assumption that all the masses mi are identical and equal
to m, Eq. (A8) can be simplified and combined with the kinetic
contribution into
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Recalling that for a particle k of the lattice
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we finally have
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Hence,

Ω = β
dU
dt
= β

N l

∑
i

k(rw
xi − rl

xi)v. (A12)

We note that the dissipation function derived is identical to that of a
system with fixed walls. This property follows immediately from the
conservative nature of the forces involved in barostatting the system,
and hence, its generality is quite wide and immediately applicable
to several other methods of pressure control for inhomogeneous
systems.
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