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Abstract
Aerial scene recognition (ASR) has attracted great attention due to its increasingly
essential applications. Most of the ASR methods adopt the multi‐scale architecture
because both global and local features play great roles in ASR. However, the existing
multi‐scale methods neglect the effective interactions among different scales and various
spatial locations when fusing global and local features, leading to a limited ability to deal
with challenges of large‐scale variation and complex background in aerial scene images. In
addition, existing methods may suffer from poor generalisations due to millions of to‐be‐
learnt parameters and inconsistent predictions between global and local features. To
tackle these problems, this study proposes a scale‐wise interaction fusion and knowledge
distillation (SIF‐KD) network for learning robust and discriminative features with scale‐
invariance and background‐independent information. The main highlights of this study
include two aspects. On the one hand, a global‐local features collaborative learning
scheme is devised for extracting scale‐invariance features so as to tackle the large‐scale
variation problem in aerial scene images. Specifically, a plug‐and‐play multi‐scale
context attention fusion module is proposed for collaboratively fusing the context in-
formation between global and local features. On the other hand, a scale‐wise knowledge
distillation scheme is proposed to produce more consistent predictions by distilling the
predictive distribution between different scales during training. Comprehensive experi-
mental results show the proposed SIF‐KD network achieves the best overall accuracy
with 99.68%, 98.74% and 95.47% on the UCM, AID and NWPU‐RESISC45 datasets,
respectively, compared with state of the arts.

K E Y W O R D S
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1 | INTRODUCTION

Aerial scene is an organic combination of multiple ground
objects and their contextual information. Aerial scene recog-
nition (ASR) is to assign a specific semantic label for an aerial
image, which can be applied to various practical applications,
such as natural hazards detection [1], environmental monitoring
[2], urban planning [3] and so on [4, 5]. Due to the exhibited
huge value in practical applications, remarkable efforts

have been made to analyse and classify the scene of aerial
images [6, 7].

In the past decades, a large collection of ASR methods have
been proposed, which can be mainly divided into handcrafted
feature‐based and deep feature‐based ASR methods. The early
ASR methods are mainly based on handcrafted features, which
are extracted by designing different feature descriptors,
including scale‐invariant descriptors [8], colour descriptors [9],
texture descriptors [10], combinations of multiple feature
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descriptors etc. Although these methods perform well for ASR
on simple images, they may offer limited use for complicated
aerial scenes since hand‐crafted features are difficult to repre-
sent the intrinsic properties of complex aerial scenes.

Recently, due to the tremendous success of deep learning
[11, 12], deep learning feature‐based ASR methods, especially
the CNN‐based methods, have exhibited powerful abilities to
learn semantic information and have permeated many fields,
involving ASR [3, 6, 7]. Among CNN‐based ASR methods, the
early ones mainly learn global semantic features by stacking
multiple convolutional layers. For example, Nogueira et al. [13]
applied several existing convolutional neural network (CNN)
models to learn global features for ASR. Gong et al. [14] pro-
posed a deep structural metric learning method to capture the
structural information for ASR. Although these methods have
yielded fruitful results for ASR, the local object‐level features are
ignored, which hinders the further improvements of ASR per-
formance. To address this problem, extensive works focus on
learning both global and local features for ASR. Specifically,
Zheng et al. [15] proposed a deep scene representation to deal
with the lack of geometric invariance of global CNNs. Sun et al.
[16] proposed a gated bidirectional network to integrate hier-
archical features and eliminate the interference information for
ASR. Generally, these methods have reported promising results.
However, the effective interactions among different scales and
various spatial locations are not fully taken into account, which
may limit the further improvement of the performance for ASR.

1.1 | Motivation

Practically, there exist two main challenges degenerating the
performance of ASR, involving the large‐scale variation and
complex background, as shown in Figure 1. On the one hand,
important ground objects are often with large‐scale variation
due to different spatial resolutions [17]. For instance, Figure 1a
shows storage tanks (upper row) and aeroplanes (lower row)
with various scales, which are important cues for ASR. On the
other hand, the background of aerial scenes is quite complex
because of the complicated spatial arrangement, for example,

multifarious ground objects (upper row) and dense buildings
(lower row) in Figure 1b.

In the face of the above challenges, the intuitive method is
to leverage multi‐scale architecture learning discriminative fea-
tures by fusing both global and local information. However,
there remain two main issues to be addressed for existing multi‐
scale methods for ASR. First, most existing methods fuse global
and local information by performing oversimplified concate-
nation or bilinear fusion operation. In fact, the human cerebral
cortex enables multi‐scale information interaction with a quite
complex manner [18]. Hence, it is necessary to explore effective
interactions among different scales and various spatial locations.
Second, existing multi‐scale methods for ASR do not take the
consistent predictions between global and local features into
account and therefore result in limited generalisations. Practi-
cally, the predictions between global and local features should
be consistent [19]. For instance, the storage tanks in Figure 1a
(upper row) can be distinguished by both global images and
local objects simultaneously. The abovementioned two issues
limit the further improvement of ASR accuracy and efficiency.

1.2 | Overview

To address the aforementioned issues, this study proposes a
scale‐wise interaction fusion and knowledge distillation
(SIF‐KD) network to learn robust and discriminative features
with scale‐invariance and background‐independent informa-
tion. As shown in Figure 2, the proposed SIF‐KD network is
composed of two main branches, for example, global branch
(blue colour) and local branch (orange colour), which adopt the
same network architecture but inputs of different scales. First,
the global images are inputted into the global branch for
learning global context features. Secondly, the local images are
sampled by locating the most important cues in the global im-
ages with a structured key area localisation (SKAL) module [20].
Thirdly, the sampled local images are inputted into the local
branch for learning local context features. Fourthly, the global
and local context features are fed into the proposed multi‐scale
context attention fusion (MCAF) module to learn robust and
discriminative representations with scale‐invariance and
background‐independent information. Note that the scale‐wise
knowledge distillation (SKD) scheme is raised in the stage to
boost the consistency on the predictive distributions between
global and local context features. Finally, the fused robust and
discriminative representations are employed for ASR.

1.3 | Contributions

To sum up, the main contributions of this study are threefold:

� To collaboratively fuse the context information between
global and local features, a plug‐and‐play MCAF module is
proposed by boosting the interactions among different
scales and various spatial locations. Note that the proposed
MCAF module can also be extended to other fusion tasks.

F I GURE 1 Large‐scale variation and complex background are two
major challenges that often degenerate the Aerial scene recognition (ASR)
performance. (a) Large‐scale variation. (b) Complex background.
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� To improve the generalisation of ASR, a SKD scheme is
raised by distilling the predictive distribution between global
and local context features, so as to produce more consistent
predictions in a scale‐wise manner.

� Extensive experimental results on three challenging ASR
datasets demonstrate that the proposed SIF‐KD network
can achieve the state‐of‐the‐art performance, and the raised
MCAF module and SKD scheme are powerful to learn
robust and discriminative multi‐scale context features for
ASR.

1.4 | Organisation

The remainder of this study is organised as follows. The related
work about ASR is reviewed in Section 2. Section 3 describes the
proposed SIF‐KD network in details. The experimental results
are shown in Section 4. Finally, Section 5 concludes the study.

2 | RELATED WORK

This study focusses on learning robust and discriminative
feature representation for ASR. Consequently, the related
work about ASR is reviewed according to the manner of

feature extraction, mainly including handcrafted feature‐based
methods and deep learning feature‐based methods.

2.1 | Handcrafted feature‐based ASR
methods

The handcrafted feature‐based methods extract image features
by various human‐engineering feature descriptors, involving
local or global ones. The local structure descriptors are applied
to model the local variations of structures in aerial scene im-
ages. For instance, Yang and Newsam [21] leveraged SIFT
descriptors and Gabor texture features for ASR and compared
their performance, finding SIFT features better. To depict the
spatial arrangements in aerial scene images, scholars investigate
different global distributions of certain spatial cues, such as
colour and texture. In particular, Santos et al. [22] leveraged
colour and texture image descriptors for ASR to comparatively
evaluate their potential. To boost the recognition performance,
various improved methods are developed by combining com-
plementary features. For example, Avramović and Risojević
[23] combined both Gist and SIFT descriptors for ASR. Chen
et al. [24] integrated structure, texture and colour features with
the bag‐of‐visual‐words (BoVW) model [25] for ASR. Gener-
ally, the handcrafted feature‐based methods perform well on

F I GURE 2 The overall architecture of the proposed scale‐wise interaction fusion and knowledge distillation (SIF‐KD) network. The global and local
branches are responsible for learning global and local context features, respectively. The structured key area localisation (SKAL) is leveraged to generate the local
image as the input of the local branch. The multi‐scale context attention fusion (MCAF) module is proposed to adaptively integrate the global and local context
features. Finally, the proposed scale‐wise knowledge distillation (SKD) scheme is applied to produce more consistent predictions by distilling the predictive
distribution between global and local context features.
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some aerial scene images with uniform structures, but it is
limited or even impoverished to capture non‐homogeneous
and high‐diversity spatial distributions due to poor ability to
learn semantic information.

2.2 | Deep learning feature‐based ASR
methods

In recent years, deep learning, especially CNN, has broken the
limits of traditional handcrafted feature‐based methods and
achieved great success in most fields, such as computer vision
[26], speech recognition [27], medical image analysis [28],
remote sensing [29] and so on. In the task of ASR, deep
learning feature‐based methods have become the mainstream
due to the powerful ability to discover intricate structures and
discriminative information hidden in aerial scene images [30].

In the beginning, most scholars concentrate on learning
global features from aerial images for ASR. Specifically, Zhang
et al. [31] introduced a saliency‐guided sparse autoencoder to
automatically learn the global features for ASR in an unsu-
pervised manner. Xia et al. [32] reported different CNN‐based
model for ASR by using various global features. Zhang et al.
[33] proposed an ASR architecture named CNN‐CapsNet to
capture the hierarchical structure and spatial information in
images. To minimise the within‐class diversity and enlarge the
inter‐class separation, Cheng et al. [34] developed a metric
learning regularisation constraint on the global CNN features
so as to improve the performance of ASR. Zhang et al. [35]
presented a convolutional neural architecture search method
to find the optimal network architecture and learn discrimi-
native feature representations. To tackle the issue of difficulty
in acquiring labelled data, Gu et al. [36] proposed a hierar-
chical prototype‐based ensemble framework for ASR, which
adopts a semi‐supervised training manner. Considering that
vanilla CNNs are with poor ability of geometric trans-
formation, Liu et al. [37] proposed the contourlet CNNs to
boost the ability of geometric transformations for better ASR.
Zhao et al. [38] designed an enhanced attention module to
learn more discriminative global features. To improve the
defensive ability of ASR models against unknown attacks,
Cheng et al. [39] developed a perturbation‐seeking generative
adversarial network for ASR. Although progress has been
made by aforementioned global features‐based ASR methods,
it is not appropriate to utilise global features of a single scale
since aerial scene images often have various scales of detailed
textures. Specifically, some local object‐level features should
be integrated with global features to enhance the discrimina-
tion of features for ASR.

To solve the above problem, most of the subsequent
methods adopt multi‐scale architecture to synthetically leverage
both global and local context information for ARS. In these
works, some researchers adopted the decision‐level fusion for
integrating the global and local results. In particular, Xu et al.
[40] designed a global–local dual‐branch structure in which the
decision‐level fusion is adopted for fusing the global and local
results. Wang et al. [20] presented joint global and local feature

representation to deal with the large‐scale variation in aerial
scene images. Note that a SKAL module is proposed in Ref.
[20], which is applied in our study due to its efficiency in
locating the most important area in aerial scene images.
Actually, the decision‐level fusion methods fail to consider the
scale correlation, which may hinder the further improvement
of ASR. To this end, the feature‐level fusion manner is applied
for integrating both global and local information. Specifically,
Li et al. [41] raised an asymmetric filter bank, which can
effectively capture key regions and retain global information
simultaneously. To preserve more discriminative and local se-
mantic features, Bi et al. [42] developed a densely connected
CNN based on residual attention. Subsequently, Bi et al. [43]
presented a multi‐scale stacking attention pooling method for
ASR, which can enhance the representation ability of local
semantic information. Mei et al. [44] constructed a sparse
representation framework to fuse multi‐scale features. To
improve feature discrimination capacity, Li et al. [45] developed
a feature fusion framework for integrating multi‐scale features
in which a multi‐scale Fisher kernel coding method is designed
to extract middle‐level feature representations. Lv et al. [46]
proposed a multi‐scale attentive region adaptive aggregation
learning method, which can boost the semantic representation
by combining cross‐scale spatial semantic features.

Although existing feature‐level fusion methods have ach-
ieved great classification performance, the effective in-
teractions among different scales and various spatial locations
are not fully explored, which may limit the further improve-
ment of ASR accuracy. To this end, this study focuses on
collaboratively fusing the context information between global
and local features. In addition, existing multi‐scale methods
cannot fully model the problem of inconsistent predictions
between global and local features, resulting in limited gener-
alisations of ASR models. Therefore, this study aims to distill
the predictive distribution between global and local context
features.

3 | THE PROPOSED METHOD

As depicted in Figure 2, a SIF‐KD network is proposed for the
ASR task. In particular, a dual‐branch architecture is adopted to
learn both global and local context features with inputs of
different scales. The MCAF module is designed to integrate
both global and local context features, so as to enhance the
interactions among different scales and various spatial locations.
The SKD scheme is developed to produce more consistent
predictions in a scale‐wise manner. The details about each
component and the optimisation strategy are elaborated in the
following subsections.

3.1 | Global and local context features
extraction

As shown in Figure 2, the dual‐branch architecture consists of
a global convolutional network for learning global scene
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information, a SKAL module [20] for local object localization
and a local convolutional network for capturing local
discriminative information. The details about global branch,
SKAL module and local branch are described as follows.

3.1.1 | Global branch and local branch

According to the previous works [47, 48], the global context
feature plays an important role in the ASR task. The current
mainstream deep learning methods extract the global context
feature by stacking multiple neural network layers, which
greatly improves the performance of ASR methods. However,
the parameters to be learnt increase dramatically as the number
of network layers increases, and huge amounts of data with
manual annotations are required for learning parameters from
scratch. Unfortunately, large‐scale image dataset with manual
annotation in the field of remote sensing is unavailable. To
address the problem, the transfer learning strategy is adopted
for extracting high‐quality global context features. Specifically,
this study exploits the convolutional layers in the original
ResNet18 [49] with initial weights trained from ImageNet
dataset as the main architecture of the global branch. Let Ig
represent the input global image, the global context feature
map Fglobal ∈ RH�W�C can be obtained by

Fglobal ¼ fg Ig; θg
� �

; ð1Þ

where fg stands for the global convNet, and θg means the to‐
be‐learnt parameter in fg.

The local branch shares the same architecture with the
global branch, and the local context feature map Flocal ∈
RH�W�C can be obtained by

Flocal ¼ f l Il; θlð Þ; ð2Þ

where Il represents the input local image, fl stands for the local
convnet and θl means the to‐be‐learnt parameter in fl.

3.1.2 | Structured key area localization module

In order to sample the local input image Il, this study follows
the previous work [20] and exploits the SKAL module to
localise the local object. The SKAL module is composed of
three successive steps, including energy aggregation, energy
map structuration and greedy‐like boundary search, for gener-
ating a bounding box and sampling the local input image. Firstly,
the operation of energy aggregation is conducted to quantita-
tively describe the importance of the degree of each spatial
element in the global context feature map Fglobal as

Me ¼
XC

i
Fglobalði;H ;W Þ; ð3Þ

where Me ∈ RH�W represents the energy map, i indexes the
channel and C is the channel number of Fglobal. To remove the

interference of the negative element and achieve more accurate
localisation, the elements of Me is scaled into the range of [0, 1]
with min‐max scaling and upsampled, obtaining a scaled en-
ergy map M̂e.

Secondly, for the sake of optimisation, the operation of
energy map structuration is performed to aggregate the 2‐D
M̂e into 1‐D structured energy vectors along the spatial
height and width as

Vh ¼
XW

j¼0
M̂eðj;HÞ

Vw ¼
XH

k¼0

M̂eðW ; kÞ;

8
>>>>><

>>>>>:

ð4Þ

where Vh and Vw denote the 1‐D structured energy vectors
along the spatial height and width, respectively. j and k index
the spatial width and height of the scaled energy map M̂e,
respectively.

Thirdly, the greedy‐like boundary search is completed to
determine the bounding box of the local object. Let E[0:W] stand
for the energy sum of Vw and E x1:x2½ � means the energy from x1
to x2 along the spatial width, and they can be calculated by

E½0:W � ¼
XW

s¼0
VwðsÞ

E x1:x2½ � ¼
Xx2

s¼x1

VwðsÞ:

8
>>>><

>>>>:

ð5Þ

Here, the width boundary x1 and x2 can be solved by
determining the smallest [x1: x2] area under the constraint
E x1:x2½ �=E½0:W � > ξ, where ξ represents a pre‐defined energy
threshold.

The height boundary y1 and y2 can be solved similarly.
Once the entire boundary [x1, x2, y1, y2] is obtained, the input
local image Il can be sampled from the input global image Ig.
Figure 3 shows the bounding box for sampled local images in
the original images, which validates the efficiency of the SKAL
module for local object localisation.

3.2 | Multi‐scale context attention fusion

In order to boost the interactions among different scales and
various spatial locations, a MCAF module is proposed for
collaboratively aggregating the context information between
global and local features. The workflow of the MCAF module
is shown in Figure 4.

Firstly, the global context feature map Fglobal and the local
context feature map Flocal are concatenated and compressed
via channel reduction by

Fcm ¼ ℏ Fglobal; Flocal
� �� �

; ð6Þ

where Fcm ∈ RH�W�C0 is the compressed feature, ℏ(⋅) means
the 1 � 1 convolutional layer followed by batch normalisation

1182 - NING ET AL.
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and ReLU for channel reduction, and [⋅; ⋅] denotes the
concatenation operation of two features.

Secondly, row pooling and column pooling are conducted
along the spatial width and height of Fcm, respectively, obtaining
row pooled feature Frp ∈ RH�1�C 0 and column pooled feature
Fcp ∈ R1�W�C0 . The operations are achieved by

Frp
m ¼max Fcm

m;n∣1 ≤ n ≤ W
n o

; ð7Þ

Fcp
n ¼max Fcm

m;n∣1 ≤ m ≤ H
n o

; ð8Þ

Thirdly, based on the pooled features Frp and Fcp, the
transformation matrices U ∈ RH�H�C0 and V ∈ RW�W�C0 are
estimated by

U¼ rearrange Frp ∗ Wrpð Þ; ð9Þ

V¼ rearrange Fcp ∗ Wcpð Þ; ð10Þ

where * denotes the convolution operation, Wrp represents the
convolutional kernel with a size of H � 1, Wcp represents the

convolutional kernel with a size of 1 � W, and rearrange
means the reshape operation for adjusting the shape of
generated matrix.

Fourthly, the global‐aware interaction feature FGI ∈
RH�W�C and local‐aware interaction feature FLI ∈ RH�W�C

are acquired from the global context feature map Fglobal and
local context feature map Flocal respectively, using bilinear
attentional transform by

FGI ¼U ⋅ Fglobal ⋅ V; ð11Þ

FLI ¼U ⋅ Flocal ⋅ V; ð12Þ

where ⋅ stands for the matrix product operation. For conve-
nience, the matrix transposed in Equation (11) and Equa-
tion (12) are omitted.

Finally, the fused feature Ffuse ∈ RH�W�C is learnt by
combining the global‐aware interaction feature FGI and local‐
aware interaction feature FLI as

Ffuse ¼ FGI ⊕ FLI ; ð13Þ

where ⊕ denotes the point‐wise addition operation of two
matrices.

Based on the MCAF module, the interactions between the
global context feature and local context feature can be effec-
tively boosted. Note that the proposed MCAF module is plug
and play and can be extended to various fusion tasks of multi‐
scale features. To validate the efficiency of the proposed
MCAF module, the ablation study is conducted in Section 4.2.

3.3 | Scale‐wise knowledge distillation and
loss function

3.3.1 | Scale‐wise knowledge distillation

In order to mitigate the inconsistent predictions between
global and local features, a SKD scheme is presented to pro-
duce more consistent predictions in a scale‐wise manner.
Specifically, let X and y denote the input image and the cor-
responding class label, respectively. The predictive distribution
P(y∣X; W, T) can be expressed by

Pðy∣I; W;TÞ ¼
exp fyðI; WÞ=T
� �

PK
k¼1exp fkðI; WÞ=Tð Þ

; ð14Þ

where fk represents the logit of the network for class k and W
is the parameter. T > 0 indicates the temperature parameter of
distillation. To match the predictive distributions between the
local image and glocal of the same class, a scale‐wise regular-
isation loss is proposed and written as

Lkd Ig; Il; W;T
� �

¼ KL P y∣Il; Wlb;Tð ÞkP y∣Ig; Wgb;T
� �� �

;

ð15Þ

F I GURE 3 Visualisations of local object localisation by the structured
key area localisation (SKAL) module.

F I GURE 4 The workflow of the proposed multi‐scale context
attention fusion (MCAF) module.
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where KL(⋅‖⋅) means the Kullback–Leibler (KL) divergence.
Wlb and Wgb are the parameters in the local branch and global
branch, respectively. In the implementation, the gradient is not
propagated through Wlb to avoid the problem of model
collapse [50].

Under the constraint of the SKD loss, the inconsistent
predictions between different scales can be effectively miti-
gated, and the ablation study is conducted in Section 4.2.

3.3.2 | Loss function

The SKD loss makes the model produce more consistent
predictions between different scales during training. Except for
the consistency of the predictive distribution, the accuracy of
predictions also needs to be considered. As a result, the cross‐
entropy loss is applied on the outputs of the global branch, the
local branch and the MCAFmodule, respectively. Formulaically,

Lce Ig; Il; Wgb;Wlb;Wgþl
� �

¼ w1CE y; σ fglobal
� �� �

þ w2CE y; σ f localð Þð Þ þ w3CE y; σ f fusion
� �� �

¼ w1CE y; σ fgb Ig; Wgb
� �� �� �

þ w2CE y; σ f lb Il; Wlbð Þð Þð Þ

þ w3CE y; σ fgþl Fglobal; Ilocal; Wgþl
� �� �� �

;

ð16Þ

where CE(⋅, ⋅) represents the cross‐entropy loss for classifica-
tion problems. fglobal, flocal and ffusion are the outputs of the
global branch, the local branch and the MCAF module,
respectively. σ means the softmax activation function. fgb, flb,
and fg + l indicates the global branch, local branch and MCAF
module, respectively. Wgb, Wlb and Wg + l are the corresponding
parameters. w1, w2 and w3 denote the trade‐off coefficients.

With the above definitions, the final loss function of the
proposed SIF‐KD network is obtained as

Lfinal Ig; Il; Wgb;Wlb;Wgþl;T
� �

¼ w1CE y; σ fgb Ig; Wgb
� �� �� �

þ w2CE y; σ f lb Il; Wlbð Þð Þð Þ

þ w3CE y; σ fgþl Fglobal; Ilocal; Wgþl
� �� �� �

þ w4KL P y∣Il; Wlb;Tð ÞkP y∣Ig; Wgb;T
� �� �

;

ð17Þ

where w4 means the trade‐off coefficient. Considering that the
expensiveness to tune these trade‐off coefficients, the strategy
of multi‐task learning with homoscedastic uncertainty [51] is
adopted to learn optimal trade‐off coefficients. Details of the
proposed SIF‐KD network are shown in Algorithm 1.

Algorithm 1 The proposed SIF-KD network

Input:
Training images I and their
corresponding labels y;
Testing images Itest;
The pre-defined energy threshold ξ

Output:
Testing aerial scene classes ytest;
All parameters Wgb in the global branch;
All parameters Wlb in the local branch;
All parameters Wg + l in the MCAF module.

Initialisation:
The weights of the global convnet θg and
the local convnet θl are initialised
from the original ResNet18, and the
remaining weights are randomly
initialised.

Repeat:
1: Learn the global context feature Fglobal

based on Equation (1);
2: Generate the input local image Il based

on Section 2;
3: Obtain the local context feature Flocal

based on Equation (2);
4: Combine the global context feature

Fglobal and the local context feature
Flocal to learn the fused feature Ffuse
based on Section 3.2;

5: Calculate the final loss Lfinal according
to Equation (17);

6: Update the parameters Wgb, Wlb and Wg + l by
utilising the Adam optimiser.

Until: A fixed number of iterations.
7: Predict the testing aerial scene classes

ytest from the output of the MCAF module.
Return: ytest, Wgb, Wlb, Wg + l.

4 | EXPERIMENT AND RESULTS

The proposed SIF‐KDnetwork is evaluated on three challenging
ASR datasets, including UCM [52], AID [32] and NWPU‐
RESISC45 [30]. The ablation study is conducted to analyse the
effectiveness of each component of the proposed method. In
addition, several state of the arts are selected for comparison to
demonstrate the superiority of the proposed SIF‐KD network.

4.1 | Experimental setup

4.1.1 | Datasets

This study adopts three widely used ASR datasets for verifying
the performance of the proposed SIF‐KD network. (1) The
UCM dataset [52] is a small‐scale ASR dataset, which includes
21 types of scene classes. Each scene class contains 100 images
with the pixel size of 256 � 256. (2) The AID dataset [32] is a
medium‐scale ASR dataset, which consists of 30 categories of
scene images with 600 � 600 pixels. Each category includes
200–300 samples. (3) The NWPU‐RESISC45 dataset [30] is a
large‐scale ASR dataset, which contains 45 types of scene
classes. Each scene class contains 700 images with the pixel
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size of 256 � 256. Note that the NWPU‐RESISC45 dataset is
more challenging due to the higher inter‐class similarity.

4.1.2 | Implementation details

Following the previous work [53], the training ratio is set to
80% for the UCM dataset, 20% and 50% for the AID dataset,
10% and 20% for the NWPU‐RESISC45 dataset. To avoid the
problem of overfitting, the data enhancement strategy is uti-
lised, including random rotation, random flipping and so on.
The input images are all resized to 224 � 224.

The proposed SIF‐KD network is optimised using the
Adam optimiser, and the learning rate is initialised to 1e‐4. The
cosine decay with warmup strategy is adopted. The batch size
is set to 64, and the training epoch is set to 100. The pre‐
defined energy threshold ξ in the SKAL module is set as 0.8.
The learnt values of [w1, w2, w3, w4] on the UCM, AID and
NWPU‐RESISC45 datasets are [0.327, 0.397, 0.298, 0.959],
[0.353, 0.470, 0.294, 1.119] and [0.373, 0.559, 0.298, 1.123],
respectively. The experiments are conducted with a 24 GB
NVIDIA GeForce RTX 3090 GPU.

4.1.3 | Evaluation metrics

Two typical evaluation metrics are utilised for quantitatively
evaluating the experimental results. (1) Overall Accuracy (OA):
OA is calculated via dividing the number of correctly classified
samples by the number of total testing samples. The value of
OA indicates the overall performance of classification models.
(2) Confusion Matrix (CM): CM is a 2‐D informative table in
which each row represents the predicted class and each column
indicates ground‐truth class. Based on CM, it is easy for re-
searchers to analyse the inter‐class classification errors. In this
study, the value of OA is reported by averaging three trials with
standard deviation to eliminate the effects of random sampling.

4.2 | Ablation studies

In this subsection, three different variations except for the
proposed SIF‐KD network are performed for examining: (1)
the effectiveness of the proposed MCAF module and (2) the
importance of the raised SKD scheme. The detailed imple-
mentations of ablation studies are as follows.

First, the single‐branch baseline without SIF‐KD is
implemented (Variation A). Second, the global and local
context feature maps are combined with the proposed MCAF
module, while the SKD scheme is not applied for distilling the
predictive distribution (Variation B). Third, the SKD scheme is
conducted between the predictive distributions, while the
global and local context feature maps are aggregated in the
concatenation manner instead of the proposed MCAF module
(Variation C). Finally, the full version of the proposed SIF‐KD
network is implemented. The experiments are conducted on
UCM, AID and NWPU‐RESISC45 datasets, respectively, using
80%, 50% and 20% of them for training and the rest for

testing. Table 1 reports the experimental results, and two main
observations can be made.

(1) The proposed MCAF module plays a significant role in
boosting the feature representation ability for ASR. From the
comparison in Table 1, it can be intuitively found that the
recognition performance drops dramatically when the MCAF
module is removed. The OA score drops from 99.68% to
98.34%, from 98.74% to 96.81% and from 95.47% to 93.71%
on the UCM, AID and NWPU‐RESISC45 datasets, respec-
tively. This is because the proposed MCAF module can learn
robust and discriminative representations with scale‐invariance
and background‐independent information by boosting the in-
teractions among different scales and various spatial locations.
In addition, the comparison results between the single‐branch
baseline (Variation A) and the proposed SIF‐KD network
further demonstrate the effectiveness of the proposed MCAF
module in aggregating global and local information for ASR.

(2) The raised SKD scheme can effectively integrate the
predictive distributions between global and local context
features. According to Table 1, the results of Variation B and
the proposed SIF‐KD networks differ substantially. The OA
score improves from 99.68% to 98.62%, from 98.74% to
97.17% and from 95.47% to 94.26% on the UCM, AID and
NWPU‐RESISC45 datasets, respectively. This is mainly
because the predictive distributions between the global and
local context features are inconsistent sometimes when the
SKD scheme is omitted, which results in the limited gener-
alisations of ASR models. In contrast, the proposed SIF‐KD
network can achieve this effectually, which demonstrates that
the proposed SKD scheme is able to produce more consis-
tent predictions.

4.3 | Comparison with state of the arts

To demonstrate the advancement of the proposed SIF‐KD
network, 13 state‐of‐the‐art networks are applied for

TABLE 1 Evaluation results for ablation experiments.

Datasets Networks MCAF SKD OA (%)

UCM Variation A 96.39 � 0.20

Variation B ✓ 98.62 � 0.24

Variation C ✓ 98.34 � 0.26

SIF‐KD ✓ ✓ 99.68 ± 0.17

AID Variation A 95.45 � 0.16

Variation B ✓ 97.17 � 0.14

Variation C ✓ 96.81 � 0.16

SIF‐KD ✓ ✓ 98.74 ± 0.13

NWPU‐RESISC45 Variation A 91.12 � 0.15

Variation B ✓ 94.26 � 0.11

Variation C ✓ 93.71 � 0.19

SIF‐KD ✓ ✓ 95.47 ± 0.10

Note: The bold values indicate and highlight the results of our method.
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comparison, including six single‐branch and seven multi‐
branch networks. (1) D‐CNN [34], SCCov [54], T‐CNN [55],
LGRIN [56], SCViT [53] and ET‐GSNet [57] are single‐branch
networks. Specifically, the D‐CNN [34] network leverages the
metric learning scheme to learn discriminative features. SCCov
[54] network adopts the skip‐connection and covariance
pooling strategy to tackle the problem of large‐scale variance in
aerial scene images. The T‐CNN [55] network is based on meta
networks for transferring knowledge from heterogeneous
models. LGRIN [56] exploits the spatial priors in aerial scene
images to construct a lightweight and robust model for ASR.
The SCViT [53] network proposes a spatial‐channel feature
preserving vision transformer model for ASR. ET‐GSNet [57]
employs a vision transformer as a teacher to guide small net-
works for ASR. (2) MG‐CAP [1], KFB [41], CNN‐MS2AP
[43], C‐CNN [37], ACR‐MLFF [58], MF2CNet [4] and
SKAL‐CNN [20] adopt multi‐branch networks. MG‐CAP [1]
network introduces a multi‐granularity canonical appearance
pooling strategy for capturing the latent ontological structure
of aerial scene images. The KFB [41] network presents a key
filter bank without the attention mechanism for capturing the
features from key regions in aerial scene images. The CNN‐
MS2AP [43] network proposes a multi‐scale stacking atten-
tion pooling scheme for ASR. The C‐CNN [37] network
combines the contourlet transform with CNN to learn abun-
dant information for ASR. The ACR‐MLFF [58] network
adopts the multilevel feature fusion network and adaptive
channel dimensionality reduction mechanism for ASR.
MF2CNet [4] proposes a multi‐scale feature fusion covariance
network to learn multi‐scale and multi‐frequency features to
classify aerial scene images. The SKAL‐CNN [20] network
designs a SKAL module to locate the most important local area
in aerial scene images.

First, the comparison experiments are conducted on the
UCM dataset, and Table 2 reports the experimental results. It
can be seen that the performance of the proposed SIF‐KD
network is better than all comparison single‐branch net-
works. This is because the local object‐level features and global
features are integrated to enhance the discrimination of fea-
tures for ASR. In addition, the OA score of the proposed SIF‐
KD network is superior to the ones of almost multi‐branch
networks. The OA score of KFB is higher than the one of
SIF‐KD network by about 0.20% (OA = 99.68%). In fact, the
recognition accuracy of the proposed SIF‐KD network is only
slightly lower than KFB for the UCM dataset, but has better
recognition performance on more challenging AID and
NWPU‐RESISC45 datasets, as shown in Tables 3 and 4. It
demonstrates that the proposed SIF‐KD network is more
suitable for hard samples and has better generalisation ability.

Second, the comparison experiments are carried out on the
AID dataset, and Table 3 reports the experimental results. It
can be seen in Table 3 that the proposed SIF‐KD network is
better than all these comparison state‐of‐the‐art networks.
Especially, when the training ratio is set as 20%, the proposed
SIF‐KD network achieves 98.74% OA score, which surpasses
KBF by 1.34%. It is notable that the proposed SIF‐KD
network is better than other methods with complex models

on the recognition performance, such as Transformer‐based
SCViT and ET‐GSNet networks, even though merely small
parameters network is employed. As a result, the proposed
SIF‐KD network has excellent ability of feature extraction
since (1) it enhances the feature interaction among different
scales and various spatial locations; (2) it can learn both global
and local context features and boost their consistency on the
predictive distributions.

TABLE 2 Overall accuracy and standard deviation (%) on UCM
Dataset.

Networks Year Published source Training ratios 80%

D‐CNN [34] 2018 IEEE TGRS 98.93 � 0.10

T‐CNN [55] 2022 IEEE TGRS 99.33 � 0.11

LGRIN [56] 2022 IEEE TGRS 98.97 � 0.31

SCViT [53] 2022 IEEE TGRS 99.57 � 0.31

ET‐GSNet [57] 2022 IEEE TGRS 99.29 � 0.34

MG‐CAP [1] 2020 IEEE TIP 99.00 � 0.10

KFB [41] 2020 IEEE TGRS 99.88 � 0.12

CNN‐MS2AP [43] 2021 Neurocomputing 99.01 � 0.42

C‐CNN [37] 2021 IEEE TNNLS 98.97 � 0.21

MF2CNet [4] 2022 IEEE TGRS 99.52 � 0.25

SKAL‐CNN [20] 2022 IEEE TNNLS 99.52 � 0.24

SIF‐KD (proposed) 2022 – 99.68 ± 0.17

Note: The bold values indicate and highlight the results of our method.

TABLE 3 Overall accuracy and standard deviation (%) on AID
Dataset.

Networks Year
Published
source

Training ratios

20% 50%

D‐CNN [34] 2018 IEEE TGRS 90.82 � 0.16 96.89 � 0.10

SCCov [54] 2020 IEEE TNNLS 93.12 � 0.25 96.10 � 0.16

T‐CNN [55] 2022 IEEE TGRS 94.55 � 0.27 96.72 � 0.23

LGRIN [56] 2022 IEEE TGRS 94.74 � 0.23 97.65 � 0.25

SCViT [53] 2022 IEEE TGRS 95.56 � 0.17 96.98 � 0.16

ET‐GSNet [57] 2022 IEEE TGRS 95.58 � 0.18 96.88 � 0.19

MG‐CAP [1] 2020 IEEE TIP 93.34 � 0.18 96.12 � 0.12

KFB [41] 2020 IEEE TGRS 95.50 � 0.27 97.40 � 0.10

CNN‐MS2AP [43] 2021 Neurocomputing 92.19 � 0.22 94.82 � 0.20

C‐CNN [37] 2021 IEEE TNNLS – 97.36 � 0.45

ACR‐MLFF [58] 2022 IEEE GRSL 92.73 � 0.12 95.06 � 0.33

MF2CNet [4] 2022 IEEE TGRS 95.54 � 0.17 97.02 � 0.28

SKAL‐CNN [20] 2022 IEEE TNNLS 93.89 � 0.52 96.04 � 0.68

SIF‐KD
(proposed)

2022 – 96.53 ± 0.22 98.74 ± 0.13

Note: The bold values indicate and highlight the results of our method.
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Finally, to comprehensively evaluate the superiority of the
proposed SIF‐KD network, the comparison experiments are
also carried out on the most challenging NWPU‐RESISC45
dataset, which has high intra‐class diversity and inter‐class
similarity. Table 4 reports the experimental results. It can be
seen that the proposed SIF‐KD network makes the state‐of‐
the‐art performance with training ratios 10% and 20%.

Compared with KFBNet, the proposed SIF‐KD network
achieves 0.76% and 0.36% improvements under training ratios
of 10% and 20%, respectively. This is because the proposed
SIF‐KD network not only captures global and local features
but also enables multi‐scale information interaction. In addi-
tion, it is worth mentioning that the proposed SIF‐KD
network is a follow‐up method to SKAL‐CNN, but our

TABLE 4 Overall accuracy and standard deviation (%) on NWPU‐RESISC45 Dataset.

Networks Year Published source

Training ratios

10% 20%

D‐CNN [34] 2018 IEEE TGRS 89.22 � 0.50 91.89 � 0.22

SCCov [54] 2020 IEEE TNNLS 89.30 � 0.35 92.10 � 0.25

T‐CNN [55] 2022 IEEE TGRS 90.25 � 0.14 93.05 � 0.12

LGRIN [56] 2022 IEEE TGRS 91.91 � 0.15 94.43 � 0.16

SCViT [53] 2022 IEEE TGRS 92.72 � 0.04 94.66 � 0.10

ET‐GSNet [57] 2022 IEEE TGRS 92.72 � 0.28 94.50 � 0.18

MG‐CAP [1] 2020 IEEE TIP 90.83 � 0.12 92.95 � 0.13

KFB [41] 2020 IEEE TGRS 93.08 � 0.14 95.11 � 0.10

CNN‐MS2AP [43] 2021 Neurocomputing 87.91 � 0.19 90.98 � 0.21

C‐CNN [37] 2021 IEEE TNNLS 85.93 � 0.51 89.57 � 0.45

ACR‐MLFF [58] 2022 IEEE GRSL 90.01 � 0.33 92.45 � 0.20

MF2CNet [4] 2022 IEEE TGRS 92.07 � 0.22 93.85 � 0.27

SKAL‐CNN [20] 2022 IEEE TNNLS 90.04 � 0.41 92.79 � 0.11

SIF‐KD (proposed) 2022 – 93.84 ± 0.09 95.47 ± 0.10

Note: The bold values indicate and highlight the results of our method.

F I GURE 5 Confusion Matrix (CM) of the proposed scale‐wise
interaction fusion and knowledge distillation (SIF‐KD) network on the
UCM dataset under the training ratio of 80%.

F I GURE 6 Confusion Matrix (CM) of the proposed scale‐wise
interaction fusion and knowledge distillation (SIF‐KD) network on the
AID dataset under the training ratio of 50%.

NING ET AL. - 1187

 24682322, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12208 by T

est, W
iley O

nline L
ibrary on [05/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



network yields much better results than SKAL‐CNN. This
further demonstrates the superiority of the proposed SIF‐KD
network in terms of features fusion and improving inconsistent
predictions.

4.4 | Confusion Matrix analysis and
visualisation experiment

To further intuitively evaluate the confusion degree, the confu-
sion matrices for the proposed SIF‐KD network on three ASR

datasets are provided in Figures 5–7, respectively. As shown in
Figure 5, accuracies of almost all categories on the UCM dataset
reach 100%, except for the class of forest. The results demon-
strate that the proposed SIF‐KD network is significantly effec-
tive on small‐scale ASR datasets. From Figure 6, the impressive
performance is displayed on the AID dataset. Specifically, there
are 26 categories with an accuracy rate above 98%, and the rest of
the categories are all over 93%. The Square category is mistak-
enly identified as Park and Centre due to the similarity of these
three classes in spatial and spectral characteristics. From the
diagonal elements of the CM in Figure 7, the proposed SIF‐KD
network performs well in most categories, and the average OA
reaches 91.2%. The most likely to be misclassified categories are
the church, medium_residential, palace and railway_station
because they contain overly confusing objects. On thewhole, the
performance of the proposed SIF‐KD network on the three
types of datasets are considerable.

To better explain the classification mechanism of the
proposed SIF‐KD network for ASR, the Grad‐CAM++ [59]
is applied to visualise the class‐specific position of objects in
aerial scene images. The fused feature Ffuse output by the
proposed MCAF module is utilised for visualisation. Figure 8
exhibits four sets of samples, including simple samples, sam-
ples with large‐scale variation, samples with complex back-
ground and ambiguous samples. From the visualisation results,
it can be found that class‐specific regions can be accurately
located for various types of samples. Especially, class‐specific
regions in samples with large‐scale variation and complex
background are identified, which demonstrates that the pro-
posed SIF‐KD network can learn discriminative representa-
tions with scale‐invariance and background‐independent
information. Furthermore, Figure 8d shows the visualisation
results for sparse_residential, medium_residential and den-
se_residential. It shows the proposed SIF‐KD network
can automatically locate the class‐specific regions, such as
the individual building for sparse_residential samples, the

F I GURE 7 Confusion Matrix (CM) of the proposed scale‐wise
interaction fusion and knowledge distillation (SIF‐KD) network on the
NWPU‐RESISC45 dataset under the training ratio of 20%.

F I GURE 8 Visualisation results with Grad‐CAM++. (a) Simple samples. (b) Samples with large‐scale variation. (c) Samples with complex background.
(d) Ambiguous samples.
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interface of buildings and trees for medium_residential
samples and arranged houses next to each other for
dense_residential samples. Overall, the proposed SIF‐KD
network performs well in locating class‐specific regions for
various scenes.

5 | CONCLUSIONS

In this study, a SIF‐KD network is proposed for ASR. The
proposed SIF‐KD network consists of two important compo-
nents, including the MCAF module and SKD scheme. The
MCAF module can collaboratively aggregate global and local
features by boosting the interactions among different scales and
various spatial locations. The SKD scheme can mitigate the
inconsistent predictions between global and local features by
imposing a scale‐wise regularisation constraint. Experimental
results on the UCM, AID and NWPU‐RESISC45 datasets
demonstrate that the proposed MCAF module and SKD
scheme are effective for learning robust and discriminative
features with scale‐invariance and background‐independent
information. In addition, the proposed SIF‐KD network ach-
ieves superior performance compared with other state‐of‐the‐
art networks, manifesting its superiority.

Although the proposed SIF‐KD network has achieved su-
perior performance, it is not lightweight enough, which hinders
its practical application. In the subsequent work, more light-
weight and efficient ASR models will be explored to facilitate
the deployment of ASR models on low‐resource devices.
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