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Abstract
Many papers claim that a Log Periodic Power Law (LPPL) model fitted to

financial market bubbles that precede large market falls or ‘crashes’, contain
parameters that are confined within certain ranges. Further, it is claimed that
the underlying model is based on influence percolation and a martingale con-
dition. This paper examines these claims and their validity for capturing large
price falls in the Hang Seng stock market index over the period 1970 to 2008.
The fitted LPPLs have parameter values within the ranges specified post hoc by
[Johansen and Sornette(2001)] for only seven of these 11 crashes. Interestingly,
the LPPL fit could have predicted the substantial fall in the Hang Seng index
during the recent global downturn. Overall, the mechanism posited as underly-
ing the LPPL model does not do so, and the data used to support the fit of the
LPPL model to bubbles does so only partially.

Keywords: Financial time series; bubbles and crashes; nonlinear time series;
robustness; log periodic power law.
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1 Introduction

Financial crashes and the bubbles associated with them have generated much
research interest particularly during the last few years. Since during bubbles
prices appear to move away from the fundamental value of securities, financial
bubbles are often attributed to the irrational exuberance of investors. If past
earnings are high and investors use past earnings to predict future earnings,
then it is likely that prices can contain long memory leading to stock price
bubbles. However, the evidence for long memory in financial prices is essentially
mixed (see, e.g., [Ambrose et al.(1993), Hays et al.(2010)]). Similarly, financial
bubbles seem much more substantial than one would expect. The price falls and
volatility that follow when prices are unsustainably high, lead to prices that are
below fundamental value. Such extreme movements in prices have important
implications for risk management and valuation of financial securities. Not
surprisingly, there is ongoing debate in both the academic and business press on
the extent to which financial regulation can curb such extreme price movements.

Two broad finance theories make predictions about stock price changes.
They are the efficient market hypothesis (EMH) and the rational bubbles view
(RBV). Both theories begin from the standpoint that an asset has a fundamen-
tal value, defined as the market’s expected discounted present value of the firm’s
future cash flow that impacts on the value of the firm’s stock price. Empirical
tests of both the EMH and the RBV often fail to explain large market price falls
or ‘crashes’, since such financial crashes are not usually associated with any spe-
cific news item.1 For example, [Cutler et al.(1989)] find that of the 50 largest
daily price falls in aggregate stock prices for the period 1946-1987, the majority
are not accompanied by external news of specific importance.2 However, recent
empirical work shows that external news might have a role to play in giving
rise to financial crashes. Indeed, in a related study, Rangel (2011) finds that
it is the surprise element of macroeconomic announcements that gives rise to
significant jumps and volatility intensity, but only in respect of inflation shocks
represented in the Producer Price Index.

Empirical tests of the RBV have also had limited success in identifying
price bubbles prior to large price falls (see [Blanchard and Watson(1982)] and
[West(1987)]). [Donaldson and Kamstra(1996)] estimate a non-linear ARMA-
ARCH artificial neural network model that enables them to reject the claim
that the 1929 stock market crash was the outcome of a bubble. One reason for
the failure of tests of the RBV is the difficulty of explicitly isolating an asset’s

1 Our definition of a stock market crash is similar to that of [Hong and Stein(2003)], in that
they represent unusual large market falls that are not followed by large public news events
and where such falls are market wide in nature. This definition accords with certain empirical
work.

2 Recently, several specific theoretical models of stock market crashes have been put for-
ward. In [Romer(2001)] symmetric rational asset-price model, neither rational behavior nor
external news plays an important part in giving rise to stock market crashes. Both the
[Hong and Stein(2003)] and [Barlevy and Veronesi(2003)] models assume that economically
significant differences in the views of investors can lead to stock market crashes when they
are revealed.
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fundamental value from the component of the bubble tied to the asset’s market
price. Recently, [Kaizoji(2010a)] put forward a theoretical explanation for the
origin of bubbles, their persistence and the reason for the crash that follows.
[Kaizoji(2010b)] demonstrates that financial crashes originate primarily from
the herding behavior of noise traders and the increase/decrease in the associated
momentum in noise trading during the life cycle of noise trading activity.

Empirical researchers employ a variety of approaches to model financial
crashes or unusual price movements. [Bali(2007)] developed a conditional ex-
treme value theory (EVT) in terms of value at risk (VaR) that appears to
outperform traditional approaches that rely on the skewed t or normal distribu-
tion for modeling unusual price movements (see also [Harmantzis et al.(2006)]).
However, the distributional form of EVT based on VaR does not lead to a semi-
martingale process so that, when seeking to predict stock price movements, the
model seems inappropriate. [Kim et al.(2011)] employ several different distribu-
tional assumptions for the conditional errors of their ARMA(1,1)-GARCH(1,1)
model. They find that the predictive ability of their ARMA(1,1)-GARCH(1,1)
model depends on the distributional assumptions that underly the conditional
errors. Indeed, versions of the ARMA(1,1)-GARCH(1,1) model which assume
non-normally distributed conditional errors performed better than those that
assume a normal distribution. Specifically, their classical tampered stable dis-
tribution ARMA(1,1)-GARCH(1,1) model performs best, providing early warn-
ing signals of up to one year of financial crashes, including the September 29,
2008 crash. [Kumar et al.(2003)] apply logit models to both microeconomic
and financial data and show that currency crashes can be predicted. Simi-
larly, [Markwat et al.(2009)] use an ordered logit regression to predict financial
crashes. Their results show that the global crashes tend to follow local and
regional crashes in which interest rates and market volatility play an important
part.

In this study we employ an alternative approach to model the financial
bubbles prior to crashes. We fit a Log-Periodic Power-Law (LPPL), due to
[Sornette et al.(1996)], to the Hang Seng index . The LPPL approach has at-
tracted a lot of attention in recent years. An important advantage of the LPPL
model relative to other approaches is that it seeks to predict both the con-
tinuation and termination of a bubble in the same estimation. The notion
that financial crashes are manifestations of power law accelerations essentially
suggests that endogenously induced stock market crashes might obey a partic-
ular power law, with log-periodic fluctuations. This approach contrasts with
[Ragel(2011)] where crashes are considered to be exogenously induced. Follow-
ing [Sornette et al.(1996)], and [Lillo and Mantegna(2004)], many papers claim
to show that this model is able to capture a shift over time in the log-periodic
oscillations of financial prices that are associated with market crashes. Given
the manner in which the estimation is performed, shifts over time log-periodic
oscillations are not directly captured but depend on the window that is searched.

The analogy of financial crashes as being similar in their statistical signatures
to critical points as depicted in natural phenomena has, however, been argued to
be unrealistic. [Laloux et al.(1999)] express doubts about the validity of fitting
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a seven-parameter model to highly noisy data. They argue that such a model
would suffer from severe over-fitting. Also, some log-periodic precursors do not
always lead to crashes but to a smooth draw-down or even a greater draw-up.
This suggests that there is no universal manner in which financial bubbles man-
ifest themselves. Indeed, some evidence (see, e.g., [Feigenbaum(2001)]) shows
that the predicted time of a crash is sensitive to the size of the event-window
used to predict the crash. We also find the size of the event-window places an
important constraint on our empirical results.

Whilst the LPPL model is not perfect, it is empirically appealing as it pro-
vides a forecast of the date by which a financial crash might occur.3 This is
an important attribute relative to other methods of financial risk assessment.
For example, [Novak and Beirlant(2006), p. 461] argue that EVT provides a
means of predicting “. . . the magnitude of a market crash but not the day of
the event.” Furthermore, the LPPL model contains a component that captures
the market’s excessive volatility prior to a crash. This feature is consistent with
several theoretical models of financial crashes as well as with empirical results
[Levy(2008), Choudhry(1996)]. Indeed, [Kaizoji and Kaizoji(2004)] show that
the tail of the cumulative distribution function of ensembles of changes in stock
prices is well described by a power-law distribution. As such, the LPPL model
provides a reasonably good fit to the data (see also, [Kaizoji(2006)]). Overall,
the LPPL model appears to contain important statistical attributes that re-
quire serious empirical consideration and we explore some of those features in
this study.

There are several critical considerations associated with fitting an LPPL
model to financial data: first, studies that support the LPPL model (see e.g.,
[Johansen et al.(2000)]) show that the parameter estimates of the LPPL model
are confined within certain ranges and that it is these ranges that are the in-
dicators of market crashes. This approach considerably restricts the number of
classes of permissible LPPL fits to just those fits with parameters that fall within
the specified ranges rather than to LPPLs with any values for their seven pa-
rameters. This means that the choice of the parameters for determining a crash
does not rely on some p-value; this is an important weakness in using the LPPL
to identify financial crashes.

Second, the mechanism underlying the LPPL model is such that prices must
be expected to increase throughout the bubble, which is largely in line with
the rational bubbles literature, but which is not what has been found in early
empirical fits of the LPPL model (see Section 3.5). Finally, there has been
neither sufficient critical analysis of the LPPL model nor sufficient assessment
of its goodness-of-fit to available data. In particular, a goodness-of-fit test is
rarely applied in empirical work and the sensitivity of the parameters of the
fitted LPPL model is usually not reported (see Section 5.6).

The remaining main sections of this paper are as follows: Section 2 introduces

3 [Laloux et al.(1999), p. 4] report two instances when financial crashes were predicted ex
ante. The prediction was correct in one case but not in the other despite both predictions
being published prior to the expected crash date. Indeed, they conclude that “. . . recent claims
on the predictability of crashes are at this point not trust worthy.”
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the LPPL model; Section 3 describes the mechanism underlying the LPPL model
and evaluates prior work; Section 4 gives some details of the procedure used for
identifying the parameters of an LPPL that best fits the data; Section 5 presents
the fits obtained for the pre-crash bubbles of the Hang Seng index, compares
the parameters obtained with those of prior work as well as tests whether the
parameters obtained have values that do in fact predict their following crashes.
We provide a summary of our results and conclude in the last section.

2 The LPPL

The simplest form of the LPPL model can be written as:

yt = A+B(tc − t)β {1 + C cos(ω log(tc − t) + φ)} , (1)

where:
yt > 0 is the price (index), or the log of the price, at time t;
A > 0 is the value that yt would have if the bubble were to last until

the critical time tc;
B < 0 is the decrease in yt over the time unit before the crash if C is

close to zero
C is the magnitude of the fluctuations around the exponential

growth, as a proportion;
tc > 0 is the critical time;
t < tc is any time into the bubble, preceding tc;
β = 0.33± 0.18 is the exponent of the power law growth;
ω = 6.36± 1.56 is the frequency of the fluctuations during the bubble;
0 ≤ φ ≤ 2π is a shift parameter.

The ranges of values given for both β and ω are based on the observed param-
eters of crashes for many stock markets [Johansen(2003)]. Researchers tend to
rely on established ranges for β and ω, rather than any goodness-of-fit test, to
identify the bubbles that precede crashes.

Empirical studies that fit the LPPL model to financial data make a number
of claims:

1. The mechanism that characterizes traders on financial markets is one in
which they mutually influence each other within local neighborhoods. This
leads, in turn to coordinated behavior through a martingale condition,
which in the extreme can lead to a bubble and then a crash (see e.g.,
[Johansen et al.(2000)]).

2. Endogenously induced financial crashes are preceded by bubbles with fluc-
tuations. Both the bubble and the crash can be captured by the LPPL
model when specific bounds are imposed on the critical parameters β and
ω (see e.g., [Johansen(2003), Johansen and Sornette(2001)]).

3. The values of the parameters α and ω for the empirically fitted LPPL
are sufficient to distinguish between LPPL fits that precede a crash from
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those that do not (see e.g., [Sornette and Johansen(2001)]).4

In this paper, we examine the first two of the above claims and suggest a new
approach for testing them. The third claim is more controversial; it only makes
sense to evaluate it once we have a positive evaluation of the second claim.

3 Is the Underlying Mechanism Correct?

3.1 The underlying mechanism

The mechanism driving the change in price during a bubble as posited in
[Johansen et al.(2000)] is based on rational expectations, namely, that the ex-
pected price rise must compensate for the expected risk. The mechanism is a
stochastic process such that the conditional expected value of the asset at time
t+ 1, given all previous data before and up to t, is equal to its price at time t.
The martingale condition as formulated by [Johansen et al.(2000)] is:

dp← κp(t)h(t)dt, (2)

where: dp is the expected change in price, conditional on no crash occurring
over the next time interval dt, at equilibrium;

p(t) is the price at time t;
κ is the proportion by which the price is expected to drop during

a crash, if it were to occur;
h(t) is the hazard rate at time t, i.e. the chance the crash will occur

in the next unit of time, given that it has not occurred already.
Under this martingale condition, investors will buy shares at time t if they expect
the price at time t+1 will exceed the price at t by more than the associated risk.
That is: E(p(t+ 1)) > p(t) + dp. This buying would drive up today’s price. So
the expected rise in price between today and tomorrow will be less (assuming
that the expected price tomorrow remains constant); this buying will continue
until the expected rise is in line with the perceived risk according to Eq. 2.
Alternatively, if investors believe that the expected rise in price tomorrow will
be insufficient to compensate for the risk, i.e. E(p(t+ 1)) < p(t) +dp, then they
will sell today, going short if necessary, thus driving today’s price down.

Notice that all the terms on the right side of Eq. 2 are positive, so dp > 0, i.e.,
the price must always be expected to be increasing during a bubble. This condi-
tion was not treated as a constraint in early work (see, e.g., [Johansen et al.(2000)])
and as such gives us the opportunity of treating this requirement as a testable
prediction.5

We now follow the consequences of Eq. 2 for the behavior of prices. Re-

4 [Lin et al.(2009)] carried out such an evaluation on a variant of the LPPL model.
5 [Sornette and Zhou(2006)] does treat this condition as a constraint on the permissible

parameter values.
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arranging Eq. 2 gives us:

1

p(t)
dp = κh(t)dt,

log p(t) = κ

∫ t

t0

h(t′)dt′. (3)

To capture the behavior of the price, the hazard rate, h(t), needs to be
specified. Here, [Johansen et al.(2000)] posit a model in which each trader i is
in one of two states, either bull (+1) or bear (-1). At the next time step, the
position of trader i is given by:

sign

K ∑
j∈N(i)

sj + σεi

 , (4)

where: K is the coupling strength between traders;
N(i) is the set of traders who influence trader i;
sj is the current state of trader j;
σ is the tendency towards idiosyncratic behavior for all traders;
εi is a random draw from a normal distribution with zero mean

unit variance.
The relevant parameter determining the behavior of a collection of such traders
is the ratio K/σ, which determines a critical value of K, say Kc. If K � Kc

then the collection is in a disordered state. However, as K approaches Kc order
begins to appear in the collection, with a majority of traders having the same
state. As the value of K approaches Kc from below, the system becomes more
sensitive to small initial perturbations. At the critical value, Kc, all the traders
will have the same state, either +1 or -1. [Johansen et al.(2000)] further assume
that: i) the coupling strength ofK increases smoothly over time up toKc; and ii)
the hazard rate is proportional to K. They do not justify these assumptions but
the first one might be based on assuming that, as the frequency of fluctuations
increases, traders become less sure of their own judgment and rely more on the
judgment of their neighbors. In the next sections, we consider the evolution of
K over time.

3.2 Simple power law hazard rate

In the simplest scenario, K evolves linearly with time. Assuming that each
trader has four neighbors arranged in a regular two dimensional grid, then the
susceptibility of the system near the critical value, Kc, can be shown to be given
by the approximation:

χ ≈ B′′(Kc −K)−γ , (5)

where B′′ > 0 and 0 < γ < 1 (see [Johansen et al.(2000)]). The three assump-
tions taken together give:

h(t) ≈ B′(tc − t)−α, (6)
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where 0 < α < 1. Substituting in Eq. 3 for h as given by Eq. 6 and integrating
gives:

log p(t) = κ

∫ t

t0

B′(tc − t′)−αdt′ =
−κB′

1− α
[
(tc − t)1−α

]t
t0

=
−κB′

1− α
(
(tc − t)1−α − (tc − t0)1−α

)
.

At t = tc, log p(tc) =
−κB′

1− α
(
0− (tc − t0)1−α

)
.

So log p(t) = log p(tc)−
κB′

1− α
(tc − t)1−α

= A+B(tc − t)β , (7)

where: A = log p(tc), B = −κB′/(1 − α) and β = 1 − α. This is a simple
faster-than-exponential growth model.

3.3 Log periodic hazard rate

To introduce log periodic fluctuations into the growth function, we need a dif-
ferent form of interconnected structure. Such a structure is assumed to be
equivalent to one created by: i) starting with a pair of linked traders; ii) re-
placing each link in the current network by a diamond with four links and two
new nodes diagonally opposite each other. This process continues until some
stopping criterion is met. Then (see [Johansen et al.(2000)]):

χ ≈ B′′(Kc −K)−γ + C ′′(Kc −K)−γ cos(ω log(Kc −K) + φ′) + . . . .

So h(t) ≈ B′(tc − t)−α{1 + C ′ cos(ω log(tc − t) + φ′)]}, from Eq. 6. (8)

Substituting for h in Eq. 3 from Eq. 8 and integrating gives (see appendix for
details):

log p(t) = A+B(tc − t)β {1 + C cos(ω log(tc − t) + φ)} , (9)

which is the LPPL of Eq. 1 with yt = log(pt).

3.4 Index: raw versus log

Note from Eq. 9 that it is the log of the price index that needs to be fitted to the
LPPL, although in practice the LPPL model has often been fitted to the raw
index data. [Johansen and Sornette(2001)] recommend the use of the raw data
when the price drop in the crash is proportional to the price over and above the
fundamental value rather than being proportional simply to the price. That is,
they replace the condition 2 by:

dp← κ(p(t)− p1)h(t)dt, (10)

where p1 is the fundamental value (which they do not further define).
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[Johansen and Sornette(2001)] introduce the assumption that the rise in
price since the beginning of the bubble is much less than the amount by which
the price at the beginning of the bubble is above the fundamental value. Thus

p(t)− p(t0)� p(t0)− p1, (11)

where t0 is the time of the beginning of the bubble. Even if the asset’s fun-
damental value is not estimated in the model, the above assumption is weakly
testable. If the price rise during the bubble is greater than the price at the
beginning of the bubble, i.e. p(t) > 2p(t0), then the condition of Eq. 11 cannot
be fulfilled unless the fundamental price is negative. We assume that this is not
what is intended. So we can test whether or not this assumption is met.

Integrating Eq. 10 from the moment when the bubble starts, t0, and using
Eq. 11 gives:

p(t) = p(t0) +

∫ t

t0

dp

= p(t0) + κ

∫ t

t0

(p(t′)− p1)h(t′)dt′

≈ p(t0) + κ(p(t0)− p1)

∫ t

t0

h(t′)dt′. (12)

Provided the assumption in Eq. 11 is met, Eq. 12 can be used to fit the LPPL
to raw price (as done, e.g., in [Johansen and Sornette(2001)]) rather than the
log price data.

3.5 Tests of the underlying mechanism

[Chang and Feigenbaum(2006)] tested the mechanism underlying the LPPL model
using S&P index data for the bubble preceding the 1987 crash. They compared
the predictions of a LPPL fitted to the data with a random walk model. To do
so, they first extended the LPPL model as given in Eq. 1, by adding:

• a random term with zero mean and variance estimated from the data. This
noise term is necessary to compute a likelihood for the observed data devia-
tions from the predicted LPPL model.

• a positive upward drift term estimated from the data. This addition to the
LPPL model, while frequently made in financial time series, is unnecessary
here, as faster-than-exponential growth is posited in the LPPL model.

Then they estimated the likelihood of the observed change in price since the
previous day, t − 1, and selected parameters that maximized the sum of these
likelihoods over the entire bubble.

With a time series there is a choice of which next point to take as be-
ing the most likely: either the predicted value or the predicted change since
t− 1. Using the model’s prediction of the value at t ignores the value at t− 1;
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this is what [Johansen et al.(2000)] implicitly assume when they minimize the
root mean square error for the fitted LPPL against the data. On the other
hand, using the predicted change since t − 1 ignores any deviation that the
price at t − 1 already has, from the model’s prediction for t − 1. This is what
[Chang and Feigenbaum(2006)] explicitly do to specify the mechanism under-
lying their adaptation of the LPPL model. Not surprisingly, when judged for
each time point separately, their method is not to be preferred to the random
walk model [Chang and Feigenbaum(2006)].

While most of the assumptions underlying the mechanism from which the
LPPL model is derived are untestable (or even questionable), there is one that
is testable: the hazard rate h must be positive. This implies that the expected
price must always rise. If the fitted LPPL does not have this property, then the
assumption that h(t) in Eq. 2 is a probability, must be rejected.

As proposed by [Graf v. Bothmer and Meister(2003)], it is possible to force
the hazard rate to be positive, . The condition for the hazard rate to be positive
is, from Eq. 8, that:

h(t) ≥ 0 ⇔ B′(tc − t)−α{1 + C ′ cos(ω log(tc − t) + φ′)} ≥ 0

⇔ 1 + C ′ cos(ω log(tc − t) + φ′) ≥ 0, since B′ = −βB/κ ≥ 0 and tc ≥ t
⇔ |C ′| ≤ 1, since | cos | ≤ 1

⇔ |C| ≤ β/
√
β2 + ω2, since C = βC ′/

√
β2 + ω2, (13)

a condition that was used by [Sornette and Zhou(2006), equation 3]. Requiring
the slope of y(t), as given in Eq. 1, to be positive, i.e. dy/dt ≥ 0, gives the same
condition as Eq. 13. [Graf v. Bothmer and Meister(2003)], using a the three-
year data window on the Dow Jones index between 1912 and 2000, found that
the condition 13 together with 7 < ω < 13, predicts that a crash would occur
within a year on only a quarter (65/229) of the windows which were actually
followed by a crash within a year. So forcing the hazard rate to be positive here
led to poor predictions.

4 Fitting the LPPL Parameters

The seven parameters of the LPPL in Eq. 1 have to be estimated from the
window of data points in the bubble. The chosen values of these parameters
should be the ones that minimize the root mean squared error (RMSE) between
the data and the LPPL model’s prediction for each day of the bubble. The
squared error between the prediction from the fitted curve from Eq. 1 and the
data is:

SE =

tn∑
t=t1

(yt− ŷt)2 =

tn∑
t=t1

{
yt −A−B(tc − t)β (1 + C cos(ω log(tc − t) + φ)

}2
,

(14)

10



where: yt is the data point, either the price index or its log;
ŷt is the data point as predicted by the model;
n is the number of weekdays in the bubble;
ti is the calendar day date of the ith weekday

from the beginning of the bubble.
Partially differentiating Eq. 14 with respect to the parameters A,B and C
gives us three linear equations from which the values of A,B and C that
minimize the RMSE are derived, given the other four parameters: β, ω, tc
and φ. To find suitable values for these four parameters a search method
is required. This search method used in [Johansen and Sornette(2001)] and
[Sornette and Johansen(2001)], hereafter collectively called the JS studies, was:

• First to make a grid of points for the parameters ω and tc, from each of which
a Taboo search was conducted to find the best value of β and φ, i.e. the ones
for which, with A,B and C chosen to minimize the RMSE, gave the lowest
RMSE.

• To select from these points those for which 0 < β < 1.

• From these points, i.e. those points that were found to minimize the RMSE
for which 0 < β < 1, conduct a [Nelder and Mead(1965)] Simplex search,
with all the four search parameters free (and A,B and C chosen to minimize
the RMSE).

We presume that the reason that any fit with β ≥ 1 was rejected is because the
increase in the index is exponentially declining whereas the underlying mecha-
nism requires it to be increasing. An alternative technique would have been to
place no restriction on the value of β, and if a value of β ≥ 1 is found, to reject
the model, as we have done for the requirement that the fitted LPPL never
decreases (see Section 5.1).

Similar to the JS studies, we use a preliminary search procedure based on a
grid to provide seeds for the Nelder-Mead Simplex method, as implemented in
Matlab [Lagarias et al.(1998)]. It is based on choosing different values for the
two parameters ω and β, as these are the critical parameters for determining
whether the fitted LPPL model is a crash precursor or not (see Eq. 1). The
algorithm and the parameter values used are shown in the Appendix. Note that
instead of the crash date, tc, we use t2c, the number of days between the day
on which the estimate is being made and the predicted critical date.

5 Empirical Results

5.1 Test of the underlying mechanism

In this section we test whether or not the underlying mechanism, as described
in Section 3.5, applies to the raw Hang Seng index data. The observations for
the Hang Seng index were obtained from Datastream. We analyze the Hang
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Figure 1: LPPL fit to the bubble preceding the 1989 crash on Hang Seng.

Seng index since it is commonly believed that this stock market has had several
crashes, thus giving us ample opportunity to test the LPPL model.6

As an initial test, we show the LPPL fitted to the raw Hang Seng in-
dex data for the bubble preceding the 1989 crash. We use this crash period
for the Hang Seng index in order to closely match this part of our results
with those of [Sornette and Johansen(2001)]. The plots of the LPPL model
are shown in Figure 1. The fit of our LPPL model is similar to Figure 8 of
[Sornette and Johansen(2001)]. Notice that the LPPL in Figure 1 has a nega-
tive slope some of the time. The same is true in 18 of the 30 cases reported
in [Johansen and Sornette(2001)] and [Sornette and Johansen(2001)].7 That is,
the fitted LPPL predicts that on average the price should decrease at some
time points. This empirical fact is sufficient to reject the martingale condition
as being the mechanism underlying the LPPL fit to pre-crash bubbles.
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Table 1: Descriptive statistics for changes in the log of the Hang Seng
stock index.

N Mean Variance Skew Kurtosis
Jarque-Bera

statistic
10152 0.00045b 0.00035 -1.25934a 31.58011a 424542.78.9a

Note: The mean and variance are multiplied by 100
a denotes statistical significance at the 1 percent level
b denotes statistical significance at the 5 percent level

5.2 Data and descriptive statistics

To perform more rigorous tests on the fits of the LPPL model, we extend the
daily prices for the Hang Seng to cover the period 1st January 1970 to 31st

December 2008. Descriptive statistics, shown in Table 1, reveal that the mean
log changes of the Hang Seng index series are significantly different from zero.
Both skewness and (excess) kurtosis are significant such that the Jarque-Bera
test rejects the null of normality at a 1 percent level. Notice that skewness is
highly significant and negative. This finding suggests that the Hang Seng stock
market can be very sensitive to stock market crashes. That is, volatility feedback
can increase the probability of large negative returns and in turn, increase the
potential for crashes [Campbell and Hentschel(1992)].

5.3 Identifying a crash

To test whether or not the LPPL can predict crashes we first need to identify
the crash itself. Usually a stock market crash is taken to mean a very large and
unusual price fall. In our application, a crash can span more than one day. This
is consistent with the October 1987 stock market crash.

There are two situations when we might falsely claim that a crash has oc-
curred. One is when the index is on the way up in a bubble and then there is a
large drop, but it turns out that the drop is temporary and the bubble contin-
ues. The other is when, on the way down during a crash, the index experiences
a recovery and so we identify the beginning of a new bubble but the recovery
is temporary and the anti bubble is still in effect. To avoid those situations, we
identify a peak as one initiating a crash as follows:

• a period of 262 weekdays prior to the peak for which there is no value higher
than the peak,

6 This suggests that stock market crashes can be common. Indeed, using a statistical
method to identify outliers, [Schluter and Trede(2008)] show that the 1987 stock market crash
of the Dow Jones Industrial index was not a structurally unusual event.

7 These 16 pre-crash bubbles are: the Dow Jones (1929, ’62), S & P (’37, ’87), Hang Seng
(’80, ’89, ’94, ’97), Argentina (’91, ’92, ’97) and various other stock market crashes of 1994
(Indonesia, Korea, Malaysia, Philippines) and 1997 (Indonesia, Mexico, Peru).
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Figure 2: The Hang Seng index 1970 to 2008, showing those peaks that are
initiators of crashes.

• a drop in price of 25%, i.e. down to 0.75 of the peak price, which is in line
with the 1987 crash,

• a period of 60 weekdays within which the drop in price needs to occur.

We first tested whether the application of these criteria enables us to capture
the eight crashes on the Hang Seng index, as identified in the JS studies. Indeed,
we identify crashes at the same time points as in the JS studies, except for one
additional crash in 1981 (see Figure 2). To exclude the price fall in 1981 from
being classified as a crash, we would have to increase the drop-to criterion
or reduce the drop-by criterion. Doing either would also exclude some of the
other peaks as initiating crashes, viz. those peaks that immediately preceded
the crashes of 1978, 1994, 1997, all of which are identified as crash initiators
in the JS studies (see Figure 3). Thus the rule they apply seems somewhat
imprecise. It is true that the 1981 crash occurs shortly after the 1980 crash,
so we might exclude the 1980 peak as initiating a crash, but rather being a
part of the bubble preceding the 1981 crash, but this is not what was done in
[Sornette and Johansen(2001)]. It would also be possible to exclude fitting an
LPPL model to the bubble preceding the 1981 crash on the grounds that this
bubble is too short – just 7 months long. However, another bubble (the one
preceding the crash 1971) was fitted even though it lasted only 6 months. As
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such, the bubble preceding the 1981 crash should have been included in the JS
studies, unless one insists on having more than say 7 months of data preceding a
crash. On balance, we believe that it is appropriate to include the 1981 crash we
have identified, giving us nine crashes for the period of the JS studies. Overall,
the criteria for identifying a crash does not appear to be consistently applied in
the JS studies.

In the period after the JS studies, i.e. between 2000 and 2008, our criteria
identify two additional peaks as initiating crashes; these are in 2000 and in
2007. The two bubbles preceding these crashes provide a post-hoc test of the
hypothesis underlying the LPPL model (see Eq. 1).

5.4 Troughs and bubble beginnings

Having decided that a peak is the initiator of a crash, the data window to be
used for fitting the LPPL model to the preceding bubble needs to be carefully
selected. In the JS studies the start of the data window is taken to be the
day on which the index reaches its lowest value “prior to the change in trend”
[Johansen and Sornette(2001)]. In real time matters are not so simple, since
one does not know if the index will drop still further in the future. So for real
time analysis we would need to take as the end of the previous crash the lowest
point since the last crash, up until now.

Moreover, [Johansen and Sornette(2001)] sometimes move the beginning of
the bubble from the lowest point since the previous crash to a later time as
in their Asian and Latin-American study. This was done if “at the trough the
next bubble had not yet begun” (Johansen, personal communication). From
the JS studies, we deduce that this was done for four of the eight crashes they
identified on the Hang Seng:

• 1971 crash: forward 2 months, from 5/1/1971 to 10/3/1971,

• 1978 crash: forward 3 years and 1 month, from 10/12/1974 to 13/1/1978,

• 1987 crash: forward 1 year and 8 months, from 2/12/1982 to 23/7/1984,

• 1994 crash: forward 2 years and 2 months, from 5/6/1989 to 19/8/1991.

These are indicated by squares in Figure 4.
It is clear why [Johansen and Sornette(2001)] moved the beginning of the

bubbles for the 1978 and 1987 crashes to times later than the trough proceeding
the crash. For 1978 there was a long period of stable prices which is clearly
not part of a bubble. For 1987, the year and 8 months following the trough
are characterized by two mini bubbles and two peaks (which with other crash
criteria would themselves be considered initiators of crashes). It is not so clear
why they moved the start points of the other two bubbles (preceding the 1971
and 1994 crashes) forward.

In the JS studies, a model fit is only made if there are at least 131 weekdays
of data between the trough and the crash. Changing the number of days could
lead to different bubbles being considered as crash precursors. To illustrate this
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Figure 4: Troughs and other beginnings of bubbles on Hang Seng 1970 to 2008.
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for the Hang Seng data, there are only 155 weekdays between the end of the
1980 crash and the peak in 1981 when it appears that another crash occurred.
To require (say) 262 weekdays would result in insufficient data, and thus exclude
the bubbles before both the 1981 and the 1971 crashes, thus affecting the results.
This means that one needs to be very careful in implementing the rule, given
the data under consideration.

5.5 Fitting to the raw index

Table 2: Ratio of raw Hang Seng index on the last day to index
at the beginning of the bubble.

Bubble: Raw Hang Seng: Ratio:
beginning at t0 ending on te p(t0) p(te) p(te)/p(t0)

*10-Mar-1971 20-Sep-1971 201 406 2.02†

22-Nov-1971 09-Mar-1973 279 1775 6.36†

*13-Jan-1978 04-Sep-1978 383 707 1.85
20-Nov-1978 13-Nov-1980 468 1655 3.54†

12-Dec-1980 17-Jul-1981 1222 1810 1.48
*23-Jul-1984 01-Oct-1987 747 3950 5.29†

07-Dec-1987 15-May-1989 1895 3310 1.75
*19-Aug-1991 04-Jan-1994 3723 12201 3.28†

23-Jan-1995 07-Aug-1997 6968 16673 2.39†

13-Aug-1998 28-Mar-2000 6660 18302 2.75†

23-Apr-2003 30-Oct-2007 8520 31638 3.71†

Note: t0, the day the bubble began; te, the last day of the
bubble
* Bubble beginning moved to later than the trough between
peaks
† p(te)/p(t0) > 2, so the raw index should not be used

In the JS studies, for all but the 1973 crash, the LPPL model has been fitted
to the bubble in the raw index rather than to the log of the index. For this to be
justified, the inequality in Eq. 11 must hold. That is, the price rise during the
bubble must be considerably less than the difference between the price at the
beginning of the bubble and the fundamental price. If we make the reasonable
assumption that the fundamental price cannot be negative, then at any time
during the bubble the expected price must at the very least not be more than
double that at the beginning of the bubble. This condition is met for only two
of the eight bubbles found in the JS studies (see Table 2). For the remaining six
bubbles this condition does not hold, i.e. the expected price more than doubled
during the bubble, so the inequality in Eq. 11, which is the assumption upon
which the raw rather than the log of the index can be chosen, was violated.
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Figure 5: Sensitivity of the RMSE to the parameters of the LPPL for 1989 Hang
Seng crash.

Despite this, in the JS studies five of these six fits of the LPPL model are made
to the raw index rather than to its log; they should not have been.

5.6 Sensitivity to search parameter values

Identifying an LPPL model fit to a bubble as one that precedes a crash depends
on the values found for the two critical parameters β and ω; so it is important to
examine how sensitive the RMSE of the fit is to variations in these parameters.
We use the bubble preceding the 1989 crash on the Hang Seng to examine the
sensitivity of the LPPL fit to variations in each of the four search parameters
(β, ω, φ and tc); the other three parameters (A,B and C) are always set using
these four (see Section 4). The results are shown in Figure 5. The circle indicates
the chosen parameter value. While the chosen values of the search parameters
are at global minima, the RMSE is highly sensitive to small fluctuations in the
value chosen for ω [Brée et al.(in press)]. The sensitivity diagrams for the other
Hang Seng bubbles listed in Table 2 are similar to those shown in Figure 5.
Consequently the value found by the search procedure for ω may not be the
one that leads to the minimum RMSE. It might be thought that the search
space could nevertheless be smooth: if a local minimum has been found, small
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variations in one or more of the other parameters might lead to a smooth surface
and avoid the search procedure getting trapped. However, the sensitivity to
other search parameters would then have to also fluctuate greatly, and they do
not. So the multi-dimensional surface is unlikely to be smooth. As the value of
ω is used in predicting whether or not the bubble will be followed by a crash,
this would be a serious problem.
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Table 3: The bubbles and crashes of the Hang Seng index and LPPL fits to the
raw bubble data.

Parameter: A B C β ω t2c φ RMSE
Units: HSI HSI rads days rads HSI

Predicted low: 0.15 4.80 1 0
range: high: 0 0.51 7.92 ? π

From/to Note
10-Mar-1971 *[SJ] 594 -132 -0.033 0.20 4.30 7 0.50 7.58
20-Sep-1971 539 -101 -0.047 0.22 4.30 3 0.25 6.11
22-Nov-1971 [SJ] 11 -3 0.003 0.11 8.70 2 0.05 0.0722

09-Mar-1973 log 65 -56 -0.001 0.01 11.1 20 1.32 0.0538
log 8 -0 -0.177 0.57 1.47 2 3.14 0.0549

raw 2443 -485 -0.114 0.26 1.45 2 3.14 40.91
13-Jan-1978 *[SJ] 816 -50 -0.053 0.40 5.90 6 0.17 10.09

04-Sep-1978 741 -23 0.072 0.51 5.30 1 0.00 10.12
20-Nov-1978 [SJ] 1998 -231 -0.044 0.29 7.24 3 1.80 46.72

13-Nov-1980 41164 -38080 0.001 0.01 7.51 52 3.06 35.02
7929 -5352 0.008 0.05 6.79 26 1.55 35.55
1998 -231 -0.044 0.29 7.24 3 2.63 37.00

12-Dec-1980 –
17-Jul-1981 1753 -0 -0.890 2.41 3.02 1 3.14 40.46

1817 -3 -0.567 1 4.75 12 0.35 49.24
1946 -11 -0.399 0.76 5.89 36 0.00 54.95

23-Jul-1984 *[JS] 5262 -542 -0.007 0.29 5.60 22 1.60 133.86
01-Oct-1987 5779 -711 0.048 0.27 5.68 34 2.63 68.47
07-Dec-1987 [SJ] 3403 -32 -0.023 0.57 4.90 34 0.50 133.21

15-May-1989 3575 -53 -0.195 0.52 4.95 31 1.74 76.33
19-Aug-1991 *[JS] 21421 -7614 0.024 0.12 6.30 4 0.60 322.80
04-Jan-1994 212635 -194575 -0.002 0.27 5.95 1 3.13 272.82

14038 -1717 -0.028 0.26 6.43 4 3.14 281.36
23-Jan-1995 [JS] 20359 -1149 -0.019 0.34 7.50 51 0.80 531.79

07-Aug-1997 20255 -1201 -0.048 0.33 7.47 51 2.29 438.79
13-Aug-1998 –

28-Mar-2000 21918 -16 0.073 1.00 18.35 290 0.00 710.99
24095 -97 -0.057 0.76 17.51 264 3.14 720.17
19503 -372 0.111 0.52 5.7 9 2.07 744.15

23-Apr-2003 –
30-Oct-2007 38940 -6408 0.019 0.20 5.41 1 3.14 693.61

Notes: * Bubble beginning moved to a later time
[JS]/[SJ] From [Sornette and Johansen(2001)]/[Johansen and Sornette(2001)]

t2c number of days from date of the fit until predicted crash date, t2c = tc - today

β = 0.01 indicates that the optimal value of β ≤ 0.01

Bold values of β and ω are well outside the range specified in Eq. 1
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5.7 The ‘best’ fits of the LPPL model

We now fit the LPPL model to the raw data for each of the bubbles preceding
the 11 crashes identified for the Hang Seng index over the period 1970 to 2008
(as selected by the criteria in Section 5.3). We use the minimum RMSE as the
criterion for best fit. For each crash:

• The first line of Table 3 shows the parameters of the LPPL model fit as given
in the JS studies, but with the linear parameters A,B and C recalculated for
time expressed in days rather than years. As the RMSE was not reported for
the JS studies (except for the LPPL fitted to the bubble preceding the 1997
crash) this too has been recalculated by us.

• The second line shows the parameters for our best fit to the raw data. The
results are based on the raw data, despite our reservations about its appro-
priateness (Section 5.5), because we want to compare our results with those
of the JS studies.8

• If this is not within the bounds for a crash prediction, then subsequent lines
show the next best fit that is (or might be).

Variation in the values of the critical parameters β and ω sufficiently large
to take them across their acceptable boundaries lead to only quite small fluc-
tuations in the RMSE. This can bee seen, for example, for the crashes of 1973
and 1980 (see Table 3).

We were interested in comparing our LPPL fits to those found in the JS
studies. However, given the high sensitivity of the RMSE to small changes in
the value of ω (see Section 5.6) and as the values for β and ω were reported
to only one decimal place in the JS studies, our re-calculated RMSEs will be
different from those that were obtained in these studies. We can see this in the
bubble ending in the crash of 1997, where we have not only our recalculated
RMSE using the parameters rounded to one decimal place, but also the RMSE
using the unrounded parameter values as found by [Johansen et al.(2000)]; the
latter fit is considerably better than our recalculation (RMSE=436 rather than
532 Hang Seng Index units). This improvement is almost certainly due to using
the exact rather than the rounded value of ω. So caution needs to be taken
when comparing the RMSEs for the fits reported in the JS studies and our fits.

Of the eight pre-crash bubbles fitted in the JS studies we find virtually the
same parameters for the LPPL model for six of them; namely, those preceding
the crashes of 1971, 1978, 1987, 1989, 1994 and 1997. However, for their other
two bubbles we found different parameters as follows:

1973: For this bubble, [Sornette and Johansen(2001)] report the fit to the log of
the Hang Seng index, rather than to the raw index. We have used both the
log and the raw index. When we fit the log of the index we find a better fit

8 For the crash of 1973 [Johansen and Sornette(2001)] used the log instead of the raw
index, so we report both log and raw fits specifically for that year.
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than that reported in [Sornette and Johansen(2001)] with values of both β
and ω outside their acceptable ranges. For comparison with other bubbles
we also fitted the raw index; we find that the best fitting LPPL model has
a value for β = 0.26, which is within the acceptable range of 0.15 – 0.51,
but for ω = 1.45, which is well below the lower bound of its critical range
of 4.8 – 8.0 (see Equation 1).

1980: We were able to reproduce the fit reported in [Sornette and Johansen(2001)],
with a crash predicted 3 days later, but it was not the best fit that we
found. Our best fit predicted a crash after 52 days, and had critical pa-
rameter values ω = 7.51, which is acceptable, but β = 0.01, which is
outside the acceptable range.

There are three pre-crash bubbles that were not considered in the JS studies;
one, in 1981, they did not consider a crash (but see Section 5.3), and two others
were later than their period:

1981: We find a best fit for which both β(= 2.41) and ω(= 3.02) are well outside
their acceptable ranges. As β > 1, this fit would have been rejected by
the criteria used in the JS studies (see Section 4). The first fit that has a
β <= 1 has ω = 4.75, which is just acceptable, but with a β = 1, i.e. no
power law, so well outside its acceptable range. It might be argued that
this peak was too soon (8 months) after the trough following the previous
crash of 1980 for an LPPL model to be fitted on the grounds of there
being insufficient data. But, as we have argued in Section 5.3, we believe
it should have been.

2000: Our best fit to the bubble has both critical parameters β(= 1.00) and
ω(= 18.35) well outside their respective acceptable ranges. There is a
fit that does have these parameters within their acceptable ranges, and
predicts a crash after only 9 days; but it is not the best fit.

2007: Our best fit to this bubble has parameters well within the ranges required
for a crash and the crash is predicted for the day it actually occurred.

6 Conclusion

The LPPL model for pre-crash bubbles on stock markets, as reported in the JS
studies, has important consequences. Our analysis has led us to the following
conclusions.

The mechanism proposed to lead to the LPPL fluctuations as reported in
[Johansen et al.(2000)] must be incorrect as it requires the expected price to be
increasing throughout the bubble (as recognized later by [Sornette and Zhou(2006)]).
In about half the studies they reported the LPPL model fitted to the index (or
its log) decreases at some point during the bubble. Hence, either another ex-
planation is required or the fits have to be redone with a constraint on the
parameters that leads to LPPL fits that never decrease. Also, in the JS studies
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the fits were made to the raw rather than the log of the index for all but one
(1973) of the eight bubbles, even though the assumption upon which the use of
the raw rather than the log should be used was certainly not met in six of these
seven bubbles. So, on both counts, these studies should no longer be used to
support a conclusion that the proposed mechanism underlies the LPPL model.

Identifying crashes and bubble beginnings was not well specified in the JS
studies. In particular, it is not clear why one peak, that of 1981, was not identi-
fied as a crash initiator. Moreover, moving the trough that marks the beginning
of a bubble forward by ‘eye’ in half the data sets is not really satisfactory. While
we have taken more care in identifying those peaks that initiated crashes, we
have still, for comparison, used the same bubble beginnings as used in the JS
studies. In future, empirical studies need to establish a clear criterion for this
procedure.

In the JS studies, the fits of the LPPL to the data were only accepted if
the exponential parameter β was < 1. That is, the fits showed an exponential
increase. It would be stronger to reject the LPPL model if a β ≥ 1 is found.

In our study the two critical parameters of the fitted LPPL models, β and
ω, do fall within acceptable ranges in 7 of the 11 bubbles. Of the remaining
four bubbles, an LPPL model with critical parameters within their respective
acceptable ranges could be found for all but one crash (1973). However, these
LPPL models did not have the best fits (minimum RMSE). For one crash (1980)
the best fit would be acceptable if the lower end of the acceptable range of β
was decreased, i.e. a range of 0.01 – 0.51. For another (1981), a fit with β > 1
would also have to be ruled out to save the hypothesis. For two crashes (1973
and 2000), there seems to be no saving strategy. That the bubbles leading to
the 1981 and 2000 crashes do not satisfy the criteria is particularly negative as
these are two of the three crashes for which the ranges on the critical parameters
were not set post hoc in the JS studies.

Finally, while the objection that with seven parameters a curve can be fitted
to any data [Laloux et al.(1999)] is not directly relevant, since no goodness of
fit is measured here, it is indirectly highly relevant. The RMSE of the fit of the
LPPL model (Eq. 1) to the data is highly sensitive to small but not to large
fluctuations in one of the critical parameters (ω); this makes the search for the
LPPL that minimizes the RMSE unreliable. Moreover, substantial fluctuations
in both parameters together can result in quite small changes in the RMSE
[Brée et al.(in press)]. This suggests that the permissible ranges for these pa-
rameters should not be independent of one another.

Despite these criticisms, and because of the partial success of correctly pre-
dicting the 2007 crash, we believe that it is worth investigating whether fitted
LPPL models with critical parameters in acceptable non-independent ranges
can be used to give a probabilistic, rather than an all-or-none prediction of an
impending crash. Furthermore, the use of the stock price alone is unlikely to be
the only input for predicting stock market crashes. Using both trading volume
and the log returns of stock prices in a spin model of heterogeneous agents,
[Kaizoji et al.(2008)] are able to explain the origins of bubbles and crashes.
Their approach, which appears promising, suggests a close correspondence be-
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tween the magnetization of the spin model and trading volume, thereby enabling
them to interpret the switch between bull and bear markets.
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Appendices

A Derivation of Log Periodic Power Law

To derive the LPPL from Eq. 3, substitute for h as given in Eq. 8:

log p(t) = κ

∫ t

t0

B′(tc − t′)−α{1 + C ′ cos(ω log(tc − t′) + φ′)}dt′.

Substituting β for 1− α and ψ(t′) for ω log(tc − t′) + φ′ and integrating gives:9

log p(t) = −κB′
[
(tc − t′)β

{
1

β
+

C ′

β2 + ω2
(ω sinψ(t′) + β cosψ(t′))

}]t
t0

= κB′
[
(tc − t0)β

{
1

β
+

C ′

β2 + ω2
(ω sinψ(t0) + β cosψ(t0))

}
−(tc − t)β

{
1

β
+

C ′

β2 + ω2
(ω sinψ(t) + β cosψ(t))

}]
.

∴ log p(tc) = κB′(tc − t0)β
{

1

β
+

C ′

β2 + ω2
(ω sinψ(t0) + β cosψ(t0))

}
∴ log p(t) = log p(tc)− κB′(tc − t)β

{
1

β
+

C ′

β2 + ω2
(ω sinψ(t) + β cosψ(t))

}
= log p(tc)−

κB′

β
(tc − t)β

{
1 +

βC ′√
β2 + ω2

cos(ψ(t) + φ′′)

}
= A+B(tc − t)β {1 + C cos(ω log(tc − t) + φ)} ,

where A = log p(tc), B = −κB′/β, C = βC ′/
√
β2 + ω2 and φ = φ′+φ′′, which

is the LPPL of Eq. 1 with yt = log(pt).

9Using Wolfram’s Mathematica online integrator
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B Search algorithm

0. For each of the four parameters β, ω, t2c and φ, fix the lower L and upper
U bounds for the seeds. For a subset P of selected parameters (β and ω),
fix the minimum width W to continue searching.

1. Choose as the current seed S1← (L+U)/2, the mid point of the current
lower and upper bounds.

2. Run the unbounded Nelder-Mead Simplex search from the current seed
S1, which will return a solution S2.

3. Construct a hypercube in the space of P using S1 and S2, with their
minimum as the bottom corner: B ← min(S1, S2); and their maxima as
the top corner: T ← max(S1, S2).

4. For p← 1 : size(P), i.e. for each of the selected parameters, do:

if Bp − Lp < Wp i.e. if there is too little space under the hypercube
on the pth dimension in P, set Bp ← Lp, i.e. set the bottom of the
hypercube on the pth dimension to its lower bound,
else recursively search from step 1, with L′ ← L and U ′ ← U,U ′p ←
Bp, i.e. search under the hypercube;

if Up−Tp < Wp, i.e. if there is too little space above the hypercube on
the pth parameter, set Tp ← Up, i.e. set the top of the hypercube on
the pth parameter to its upper bound,
else recursively search from step 1, with L′ ← L,L′p ← Tp and
U ′ ← U , i.e. search above the hypercube.

Initial bounds on the four parameters for selecting seeds

β ω t2c φ
rads days rads

lower 0 0 1 0
upper 2 20 260 π
minimum width 0.2 2 - -
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