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Time-Varying Systems Over Amplify-and-Forward
Relay Networks: Anf,, Quantized Framework

Xueyang Meng, Zidong Wang, Fan Wang, and Yun Chen

Abstract—This paper is concerned with the distributed fu- STF
sion filtering problem for a class of nonlinear time-varying R*
systems subject to quantization effects within a finite-horizon

H., framework. To improve the communication quality, the [yl
amplify-and-forward (AaF) relay mechanism, which accounts for ~ p{~}
phenomenon of missing measurements, is utilized to schedule

the data transmissions from the sensors to the remote filters.

The dynamic quantization, as a result of the inherent limit of Prob{a}
network bandwidth, is further considered in the communication ~ 4—1
process from the filters to the fusion center. The main objective _ ..

of this paper is to propose a distributed fusion scheme that

ensures both local and fusion H., performance indices over coly{yi}
a finite horizon. A sufficient condition is first established for diag{- - - }
guaranteeing a prescribed performance constraint on the local

filtering error dynamics, and then the corresponding filter gains ~ diagy{A4;}
are calculated by solving a set of recursive matrix inequalities.
Subsequently, with the help of the acquired local state estimates, I

the desired parameters of the fusion filters are designed in terms
of the solution to a convex optimization problem. Finally, the 0
effectiveness of the obtained theoretical results is testified by a A>0
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|. INTRODUCTION

In accordance to the rapidly growing popularity of large-
scale sensor networks, the information fusion techniques have

Abbreviations and Notations

NTVS Nonlilnear time-varying system been attracting a recurring research interest from both academy
AaF Amplify-and-forward and industry with great application potentials in engineering
DaF Decode-and-forward practice such as process control, target tracking, air-traffic
EFaF Filtering-and-forward control, and environment monitoring [12], [20], [23], [48],
AaFRN Amplify-and-forward relay network [54]. A fund_ame_ntal_issue with information _fusion is_ the mult_i—
: sensor fusion filtering that seeks to attain a reliable fusion

FC Fusion center . : .
AFES A d filteri estimate by integrating the local measurements collected from

ugmented filtering error system the sensors or the local state estimates from the individual
STR Sensor-to-relay filters. Till now, the fusion filtering issue has drawn consid-
RTF Relay-to-filter erable research attention and many efficient fusion schemes

_ _ _ _ have been proposed in the literature, see e.g. [5], [8]-[10],
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at the cost of sacrificing certain estimation accuracy. So fesignal to the remote filter, leading to distinctively easy-to-
much research effort has been devoted to the investigatiomplement feature [1], [41], [50]. The filtering problems over
on distributed fusion filtering problems especially for timeAaF relay networks (AaFRNs) have recently begun to gain
invariant systems [6], [28], [34], [36]. Note that almost alparticular research attention, see e.g. [26], [35], [37] for
practical systems are literally time-varying for various reasossme representative results. For instance, a recursive filtering
(e.g. magnetic field/temperature fluctuation and component ajgorithm has been proposed in [35] for a class of discrete
ing) and the distributed fusion filtering algorithms are typicallgystems with stochastic uncertainties over the AaF relay-based
implemented on théinite horizonin a recursive way [44].  protocol. To date, there have been very few results concerning

In view of the physical/resource constraints, missing metize distributed fusion filtering problems with missing mea-
surements (also called packet losses or dropouts) are ofsemements over AaFRNSs, not to mention the consideration of
encountered during the signal transmissions which, if ndynamic quantization, and this comprises the main motivation
properly handled, would give rise to undesired performancé this study.
degradation [22], [40]. As such, it is essential to take the influ- Concluding the literature review conducted so far, it is
ence of missing measurements into account when addresshmepretically significant and practically important to investigate
the filtering/control problems for networked systems [13], [19the distributed fusion filtering problem for nonlinear time-
[33], [52]. On the other hand, signal quantization is likely toarying systems (NTVSs) subject to dynamic quantizations
occur owing mainly to the limited network bandwidths, and thender the AaF relay-based mechanism catering for missing
guantization-induced errors are known to have adverse impatigasurements. In doing so, the following emerging challenges
on the system performance. In the past few years, sigreie identified: 1) how to construct a suitable local filter for
guantization has received an increasing research interest frilv@ underlying NTVS over AaFRNs with multiple missing
both communities of signal processing and control systemgeasurements taken into account? 2) how to analyze the
and many elegant results have been reported in the literattrensient behavior of the resultant filtering error dynamics
on networked systems with quantization effects [38], [47]. over a finite horizon so as to accommodate the time-varying

Pertaining to signal quantization, there have been two wellature of the overall system? and 3) how to design the local
known quantization mechanisms, namely, the static quantifdter gains and further develop a distributed fusion scheme to
tion [14], [43] and the dynamic quantization [4], [21], [25].achieve the expected filtering performances under the dynamic
Different from its static counterpart with fixed quantizatiomuantization effects?
parameters, the dynamic quantization is dependent on ad¥o overcome challenges highlighted above, the principal
justable quantizer parameters, and is therefore equipped witmtributions of this paper are outlined as follows: 1) the
more flexibility and less conservatism. To date, a great demldressed distributed fusion filtering issue is, for the first
of research attention has been drawn towards the analysise, investigated for a general class of NTVSs; 2) several
and synthesis problems for networked systems undergoimgfwork-traffic-related phenomena, which include the AaF
dynamic quantization, see e.g. [24], [39] and the referenceday communication, the missing measurement and dynamic
therein. For example, the distributed quantized state estimatiguantization, are simultaneously considered in the filter design;
problem has been studied in [39] for time-varying system8) a sufficient condition is provided to guarantee the prescribed
where a zoom variable is introduced to dynamically adjutite-horizon H., performance for the augmented filtering
the quantization region and the quantization error. Neverthesror system (AFES); 4) appropriate gain parameters of the
less, the dynamic-quantization-based distributed fusion filtdecal filters are obtained by solving some recursive linear
ing problem has not been fully investigated yet due mainly toatrix inequalities; and 5) a novel distributed fusion filtering
the mathematical difficulty of incorporating the fusion filteringsgcheme is established under i, quantized framework by
scheme, and this motivates the current study. resorting to the solution to a convex optimization problem.

In addition to missing measurements and signal quantiza-The rest of this paper is arranged as follows. In Section
tion, the network communication quality, which is greatlyl, the distributed quantized fusion filtering problem is formu-
affected by the transmission distance between the sendated for an array of NTVSs over AaFRNs. In Section IlI,
and the receivers, is another vitally important issue for nesuitable local filters are designed to guarantee the prescribed
worked systems. Clearly, the transmission distance cannotfgsformance constraint of the AFES, and the optimal fusion
infinite because of the limited transmission capability of thearameters are calculated by solving a certain convex opti-
sensors. To extend the propagation distance and enhancentization problem. Section IV provides a numerical example
communication quality, some efficient relay-based protocdis demonstrate the validity of the developed distributed fusion
have been put forward to facilitate the signal transmissiossheme. Finally, the conclusion is drawn in Section V.
over long-distance communication channels, and some widely
deployed protocols include the amplify-and-forward (AaF) !l PROBLEM FORMULATION AND PRELIMINARIES
protocol [17], [29], the decode-and-forward (DaF) protocdh. System model
[18], [32], and the filtering-and-forward (FaF) protocol [2], Consider the following NTVS:

[3].

It is worth mentioning that, compared with the DaF and FaF ot = f(2a) + Bavs
protocols, the AaF mechanism aims to receive and amplify the Yi,s = hi(zs) + Disvs (1)
signal observed by the sensor and then forward the amplified 2s = Myx,
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where, fors € [0,T] andi € S; £ {1,2,---,N} with T with 3;; being known positive scalars.
and N being known positive integers;s € R"*, y; s € R™ Defining g; s £ [r7, QQTLS}T, we obtain from (3) that

and z; € R" denote, respectively, the system state, the
measurement output and the output signal to be estimated;
vs € 12([0,T], R™) is the noise disturbance3,, D; s and where
M, are known time-varying matrices of suitable dimensions. ., . N T
The nonlinear functionsf(-) : R™ +— R™ and h,(:) : By = diag{ v EviEzil, v Esil ), s = [0 BaisI]'
R"* — R™ satisfy f(0) = 0, h;(0) = 0 and 0. 23 B a | VEI T 0
1,8 — ﬂll,sﬂm,& EQ’L - 0 0 I )
1f(z1) = fz2)|” < a®[|lzy — a2? A g A
(2) Cis=diag{Clis, Cais, Cais}y  02is = diag{f2i I, 1,1},
[hi(x1) = hi(x)[|* < 0F[|1 — 22| |7

Ui,s = E1i014,sYi,s + 23024 sCi 504, (%)

@i,s £ [Q,{i,s Q;‘,s Qgi,s
Remark 1:In this study, both the randomly occurring miss-
ing measurements and the channel noises are introduced
during the data transmissions over the STR channel, the RTF
B. Amplify-and-forward relay network channel, and the STF channel. Particularly, three sequences of
Bernoulli distributed variables with known statistic properties
are adopted to characterize the phenomenon of missing mea-
" _ surements. It is obvious to see from (3) that the measurement
Sensor | yop 7. T gy el g signalr; s (g2:,s, respectively) can be successfully received by
the filter i only if 51, s = B2i.s = 1 (B3:,s = 1, respectively).
Y , Remark 2:According to the AaF relay-based protocol un-
Sensors 1l N (), icr i OB der consideration, the measurements received at the filter side
are collected from both the relay and the sensor through
different communication channels, thereby complicating the
measurement model. In particular, by augmenting and
U2i,s, WE Obtain a new measuremept; as presented in (5),
- which will be used in the local filtef to estimate the system
Fig. 1: Distributed quantized fusion filtering over the AaFRNstate.

for any vectorsz;,zo € R"*, wherea and b; are known
positive scalars.

2 A Xyo . X
Sensor N gy . T Quantizer N

In this paper, the AaF relay-based protocol is adopted @ Local filter
facilitate the data transmissions from the sensors to the remotgqy notational simplicity, we denote
filters. The structure diagram of the underlying system over . . .
the AaFRN is presented in Fig. 1. It is observed from Fig. 1 fiis = fs = fis; fs = f (=),

that, based on the deployed AaF relay node, there are three f, 2 f(i;.), Bis 2 his— his,
transmission channels between the sensand the filter N S A s

. his = hi(xs), his = hi(#is),

7, namely, the sensor-to-relay (STR) channel, the relay-to- N ~ P g
filter (RTF) channel, and the sensor-to-filter (STF) channel. 01is = [0i sl Bsisl],  bis = 0;s — 0,

In addition, the phenomenon of missing measurement is taken 33“ 2 B3y — Bai, 0; 2 B1: B,

into account in all the three communication proceduresdueto ., = - _ T

probabilistic network congestions. fﬂ%s = diag{ 521,00}, 01 = [0 sl
Let 71, s be the signal received by the relayia the STR Bais = Bois — Bais d2; = diag{ 821, 1,1}.

channel,r; ; andy,; s be the signals received by the filtér _ .
via the RTF channel and then the STF channel, respectivqg/.Based on the augmented measuremgnt (i € 1), the

. . ¢al filter 7 is constructed as follows:
The dynamics ofyy; s, 7,5 andys; s are given by !

i o1 = fi,s + Ki s (§i,s — Eliglii%,s)
Yi,s = V E1iBri,s¥i,s + Clis01i,s { 20 = Mdi s (6)
Tiis =V E2iP2isP1is + Cis02is ®) wherei; , is the estimate of, %; . is the estimate of,, and

Y2i,s = JE_mﬁgi,Syi7s + Csi,503i,5 K, s is the gain matrix to be designed.

Sete; s = x5 — 4y, andz; s = z, — 2 ; as the local filtering
error and the output signal error, respectively. It is derived from
(1) and (6) that

whereE;; (I € {1,2,3}, i € Sy) is the known average signal
energy,oi. s € 12([0,7], R) is the channel noise, an@;; ; is

a known matrix with proper dimensions. Foe {1, 2,3} and -
i € S1, the random variables;; ; (governing the missing mea- €ist1 = fis + (Bs — K sE1i015,sD; s)vs
surement phenomena) are mutually independent with respect — Ki,s(Eligli,shi,s + E1301ihi
to [,7 ands, and satisfy the following Bernoulli distributions: i E2i52i,sci,s§i,s)

PrOb{Bli,s = 1} = Bliu PrOb{ﬁli,s = O} =1- Bli (4) 21’,5 - Msei,s-

()
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Furthermore, defining; , £ [«7 eZS]T, one has the follow- Here, fori € S; andn € {1,2,---,p},
ing AFES:
. o i 2 g, 4 0= Ddie
Cis+1 = Fis + (Ruiys + Rai s Nis) His =8 03 P
+ (Bi,s + R3i,sgli,sDi,s)vs (®) and
. - 5. . 5. n 2ndz j,S
+ (R4z,s + Roz,562z,s)cz,sgz,s d&]l = dij,s + Z S
Zz,s = Msgi,s p
wherep is a known positive integer implying that the quan-
where o . ; - .
tization interval [—d;; s, d;j 5] is uniformly divided into p
Fis 247 ;TS}T, ;s 2 [hT, EZS]T, segments, and;; , > 0 is the time-varying amplitude af;; (-)
A2 diag{gu,s,o}, Ryi,s 2 diag{0, — K; ;E1;01; }, described by
Rois 2 0 0 Rs . 2 0 dij o1 = Gij,stlis,s + 235, Qi s i s (12)
“s —K; Eqy 0] “s —K; sEq;
) B with a known initial valued,; o, a scalar;; s € (0,1), and a
N B A s O
Ms=[0 My, Bis= { B. — K, .Ey8.:D;. ] , matrix ng,s_> 0.
' By denoting
R A 0 _ R=. L 0
i = | —KisEoid; |’ E T =K sEe |

A Lij,s N
Hij.s = Wig,sQij \ = | = Lij,s

17,8

We are now in the position to state the first objective of this

paper as follows. as the component quantization error and = col,, {11},
O1: For the target plant (1) with missing measurements oVghe derives that

AaFRNs, we aim to design a local filter of form (6) such that

the following H,, performance constraint |ij.s] < Uiy i (13)
D
a SN2 A2 2, 1 (12 Y = &6 + pis. (14)
ZZE{H%,SH =7 (lvsl* + ll2i,s %) } e =T, "
Remark 3:0n account of the limited bandwidths, the dy-
—%5 ToWigio <0 (9 namic quantizer (10)-(12) is applied to the communication

is satisfied for the AFES (8) over the finite horizéh 77, channels betweer_lthe individual filters and the FC. Particular]y,
the local state estimates are subjected to the dynamic quantiza-
tion effects, where the amplitudg; ; is iteratively updated by
the difference equation (12), and then the quantized estimates
are transmitted to the FC. Compared with the extensively
D. Distributed fusion filter utilized static quantization [14], [43], the dynamic quantization
To improve the estimation accuracy of the local staténder consideration exhibits remarkable flexibility because of
estimate, we intend to adopt a distributed fusion scheme unéfe® dynamical evolution of/;,;.
which the local estimates; , for all i € S; are delivered to ~ Remark 4:1t follows from (13) that the component quanti-
the FC in hope of acquiring a fusion estimate with desireZtion erroru;; s is seriously affected by the values of; ,
estimation accuracy. d;;,s andp. Notice that the quantization error becomes smaller
Note that, in many practical situations, the communicatighith & smaller value ofu; ., whereas such a value af;
channels between the local filters and the FC are likely to Baéight resultin the quantizer saturation, namely, the 5@'@'
bandwidth-constrained. In this paper, the following quantizée be quantized is out of the interviatd;; s, d;; s ). Therefore,

wherev; > 0 is a prescribed disturbance rejection lewal; >
0 is a known matrix, and; o (¢ € S1) is a given initial value.

tion effect onz; ; is considered: it is of importance to select an appropriatg s at each time
R step with aim to achieve a trade-off between the quantization
;zgqs 2 col,, {uij,SQij (wijvS)} (10) error and.the quantizer saturatjon. o o
WUij,s According to (14), the following distributed fusion filter is
constructed:
wherexgqs) is the quantized signal of; s, u;;s > 0 (j N
{1,2,---,n,}) is an adjustable parametet;; , is the j- th . — Zc,@(fﬁ
S 1.5
component of the state estimate,, andg;;(-) is a scalar i1 (15)
guantization of the following uniform type: 5, = M.7,
— dijis, Tijs < —dijs wherez, and Z, are, respectively, the fusion estimatesaQf
() = dij,s, Zijs > dijs and z,, andc; (Zfil ¢; =1 and0 < ¢; < 1) are the fusion
ij\ij.s ; (2n — 1)dy;., ) ) parameters to be designed.
— dijs + 1 dij's < Tijs < dy s Denotinge, = z, — Z, and z, £ z, — 2, as the fusion

p __ . . .
(11) filtering error and the fusion output signal error, respectively,
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one has v Pio < v2W; (19)
= Z (€i,s — hi,s) where
o (16) oW 0 0 0 0
= Z Cz Zis — Msp, s) * (I)E,QSQ) (1)1(,283) CI)1(,254) (I)E,Qj)
i=1 D, S % % (I)(_33) @(34) @(_35) ’
The second objective of this paper is presented as follows. * * * 1(454) <I>E4S5)
02: By resorting to the designed local filter @1, we shall * % % « oY
determine the fusion parameters such that the fusion f||ter|ng11) s ) . vs
error system (16) satisfies D} ) £ N o0 T + Mo b1 + MIM, — P,
‘I’l(-?f) £ Psi1 — Misl, ‘1’1(,253) £ P sy1Ruis,
_ 512 _ 22 2 ~ 12 A _
Jo = Z B{IEI7 =32 (losll +12:I%) = 2NR} 0 0@0 2 b By, 880 2 By RulC
— 7T WE < 0 O 2 Ryi e — Aoy o,
i iti . oY 2 RT P 1By + 0 ATRL P 1Ry i D;
with a pOSltlve Scalar)/ > O! where i, 1i,st i,5+1%,s +0; 15124, s 7i,s+1 434,541 M5

+B31A R215 ZS+1R31512D157

N ne .2 g2 ‘I)Z(-?SS) = (Rli,s P o1 Ry s + @'AlTiRgi s i,s+1R5i,sI3)Ci,s;
A2 Z/_X» A s 2trd MT M ZM (44) A 2 CONN 2
° — n e s ° ) p2 ' (I) = RQis — 7 I, R3’LS ’YIv

os £ coly{ais}, & =coly{&o}, W £ diagy{W;},

1,8 K2

(40) 'y T p. ) )
Remark 5:In this paper, the dlstrlbuted fusion flltermgq)zs B; o Pisr1Rai s Cis

problem is considered for the NTVS (1), and we are interested + @iDT I{ R P s1Rsi s15C; s,

in the transient behaviors of the filtering error dynamics oveg,, & 2 R1Tz Pioi1Riis + 9*AszRsz JPiss1Roi oAy
a prescribed time period. To this end, the local and fusion 5 ATRT R A

performance indices (9) and (17) are introduced to characterize + B3 2i,s 051 R2iy s By
the transient characteristics of error systems (8) and (1&®pi.s = Bl Pis+1Bi s+ D (0;1] RS, (P o1 Rsi Iy
r_espectlvely. Specifically, _the index (9) is defined for each +63lITR3wPi s+lR3isI2)Di,sa

filter to assess the transietf., performance of the local a CT RT p. R O

filtering error dynamics, and the constraint (17) is put forward"* i ;S“ 4i,57,8
to describe the robustness of the distributed fusion filter against + B5,C IE RS, (P sy Roi T3C s,

the noise disturbances and quantization errors over the finitg ,, £ diag{I;,0}, Ay £ diag(I,,0}, I, 2[I 0],
horizon 0, 7. L2 17, Ip2dag0,0}, B2 Aol — fu),
I11. M AIN RESULTS 5= B?ﬂ’(l - 331')’ 0; = 91‘(1 - B%)v 0; = 91‘(1 - 9i)~
The distributed quantizeff ., fusion filtering issue is tack- Proof: DenoteV, = §T P; s& 5. Then, along the trajec-

led in this section. To be more specific, a sufficient conditiairy of (8), we have that
is first established to guarantee that the finite-horiZog
performance (9) is satisfied for the AFES (8), and then the E{AV,}

proper local filter parameters are calculated by resorting to2 E{Viy1 — Vi}

the solutions to a set of recursive matrix inequalities. After — E{& i1 Pist1&ist1 — @Tspi oEis}

acquiring the local filters, the distributed fusion filter subject T

to dynamic quantization effect is designed by solving a certain™ E{( i,s + B, SH% s+ Bisvs + RaisCi s, s) Pist1
convex optimization problem. (]'-‘1-_,S + Rli,sHi75 + Bi,svs + R41-,SC’1-_,591-_,5)

+ (RQi,sAi,s}zi,s + R3i,sgli,sDi,svs

A'TIZOO fpﬁrforman:e analysis 4 i dition 1 + R5i,s(§2i,scz‘,s@i,s)TPi,erl(Rm',sAi,ﬂ:li,s
e following theorem provides a sufficient condition for i i N T e
(8) to satisfy theH., performance constraint (9). + Raios01i.sDisvs + Rsi 5025 Cis0i.s) 51-753,551,5(}2.0)
Theorem 1:Consider the NTVS (1) with the local filter (6).

Let the positive scalary;, the positive definite matriXdW,, According to the statistic properties of the variablgs,,
and the filter gaink; s (i € S1, s € [0,T]) be given. The it is easy to verify that

H,, performance constrainf;; < 0 is achieved if there exist T RT

a positive definite matrixP; ;11 = diag{Pr; s11, Poi s41} E{H A RQZS Py a1 Rai s A, SH”}

and positive scalarg\1; s, A2i s} satisfying the following = E{h* 14, SE1T1KZ Paj s 11K, sE1:01;, shzs}
inequalities = B{tr{E], K] Poi s 11 Ki JB1ibui ohi b 01 (1}

;<0 (18) = E{0;h] B[ K] P o11K; E1ilihi
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+ B5ihi IS EL K] Poi 11 K; JE1ilahi o} Combining (18), (27) and (28) yields
= E{H],(6; AiRm sPist1Rai s A E{AV,}
+ B5:82:R3; o Piot1 Rai, Do) His }- (21) < E{nf @i omis — Mo (FlFis — €l 60 s)
Similar to (21), we have _ /\21',5(7:[?,57:[1',5 —u2les)
E{vI DX 3T, \RY, Py o11Rs; 10114 Di s} + [1Z0,s 1P = 22 (los1? + 125 1%)]
—E{UTDT 55 SETKT P s+ 1Ki sE1i014 6 D; svs} - [Hgi,s||2—%‘2(|‘vs||2+ ||§zs”2)“
= E{tr{EiKz P2 s 41K, SEMCSM sDj sVsV; DT 511 5}} = E{niT,s(I)i,sni,s - [”51',8”2 - %‘Q(HUsHQ + H@zs||2)]}
= E{0;v] D] T EL K] Poi o1 K s T D s < =B{{lIZsl1* = (lvsl® + ll2i,s1%)] }- (29)
+ B30 STDT I Ef, KT oPoi o1 Ki (BT D vg} Summing up both sides of (29) with respectstérom 0 to
= E{UTDT (9*ITR31 P op1Rsi Iy T, we have
T T
ceoton (o ot e G ot TP A ) < o
{gZ sCis 521 SREn <Pist1Rs, 552Z sCi s0i, S} Then, it is easily obtained from (19) and (30) that
=B{ _szCsz52z JEL K] Pai s 11K JF2:02i 5Ci s 0is }
= B{H{EL KT, Py 1 Eidi o Cinas.087CT.06T 1) Z:E{Ilz-,sl\Q}
= E{ﬁZQ?SCZT L EL K] Poi o1 K EoilsCi s 0i s | T
= E{ﬁikl@sz IsTRm,s P s11R5:,515C; 50i,5 - (23) < ZO%'QE{H%”Q + l@i,sII?} + fiT,OPi,ofz‘,o
On the basis of the stochastic analysis technique, we obtain T
E{#H], AT B3 o Pisi1Rai 50105 Disvs < §7EE{|‘US||2 +lois 2} +A7E o Wiio- (31)

_ ] T
- E{h“ L, sEii K Pt G, sE1idisDi s} Hence, theH., performance constrainf;; < 0 is verified,

= BE{H], (9*A1T1R21 sPis+1R3is1 which ends the proof. ]
+ B ALR 2, SPz',s+1R3i,512)Di,sUs}- (24)
In addition, it is readily derived that B. Local H filter design
E{HT AT R%; Pisi1Rs;, 5521, o8 S} _ In this subsectio'n, we proceed to design the desired local
T T T T filter for each node € S; to guarantee thé/., performance
- E{h 611 SE K P2z s+1Kz 5E2152z sCz st s} (9)
= E{0©; HT ATR 215 Pi s11R5:,15C; 5015 } (25) Theorem 2:Consider the NTVS (1) with the local filter
and (6). For the given scalatf; > 0 and the weighted matrix
; W; > 0 (i € S1), the H,, performance constrainfy; < 0
E{v!I D], 511 oR3; P o1 Rsi,502:,sCi s 01,5 | is achieved if there exist the positive scaldisy; s, A2 s},
_ E{,UTDT 511 . KT Paisir K. SIE21521 Ciuo: S} the positivg definit.e matrix; s+1 = diag{L_li,sH, Lois+1}
o o and the gain matrixs; ; (s € [0,7]) satisfying (19) and the
- E{® Us D Nk RSz sPis+1R5i s13C5 50i, s} (26) foIIowing inequality
Substituting (21)-(26) into (20) results in
g (21)-(26) (20) I T R S
E{AV.} = E{n] @ nis} (27) L T S Sl S Sl
where S T<34> T<35> 1 (36)
~ . ) . 7,8 (44) 7,8 < 0
Ni,s £ [5;1:5 ]:ZS HZ:S U? QZS] ’ : : - T ((:35) !
—P, 0 0 0 0 * * * LI 0
* Pi,erl (1)57253) (1)5254) (1)1(,255) - * * * * * TZ(?SG) -
(i)i.s £ * * Riis @(34) (I)(-35) . (32)
% % £ Ry, O where the matrice§P;; ., Pz .} (s € [1,T + 1]) involved in
* * * *  Rais d)l(}sl) are determined by
I_3ased on the properties of nonlinear functions in (2), we Priy = le W Pu.= L21 .
arrive at
‘/—?T‘/—? f .fs+ f’LSSa gi,s; and
i . . N (28) (22) s
H; His = hjhis+ h Jhis < b 517551-,5. diag{—A1isI, —AaisI},
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(24) o [T 0 Hence, substituting (35) into (34) yields
Ti,s R’ﬂs ATR%;S]’ g( ) ( )y
@5 a | 0 0 zl Tz <2N z $Zis + N 36
Ti,s B A,{;RQZ s A;RQZ s :| ’ Z ) ( )
(33) &
i = d|ag{ I, =1}, It is easily checked from (33) thatV YV | ¢392 < 72
MICOIN [ BT DI I RS, , Therefore, based on (9) and (36), we have
i, CT RZ; . CT ITR%; . ) ’
T(35) AL DT ITR3zs DT ITR3zs ZE{EZES}
i,8 I 0 0 y
N T
TR 210 ReTsCial”, <3S oNES Bz + A
T 2 diag{ — L o1, -7 'Lisi1}, =
! i N T
55 H * s — * | —
YL & digl = (67 - 00 Laor () Masnth < 32N (X Bl + g} + €L Witio)
T & (85— ©) ' Lisi1. =t °=0
Proof: With the aid of P, = Ly, , P21 ' = Ly s and + 2NZ]&S

the Schur Complement Lemma the mequallty (32) ensures

the validity of (18) in Theorem 1. Then, it follows immedi- T B B

ately from Theorem 1 that thél.. performance index (9) < Y_ E{37*(llvs|® + llas|1?) + 2NA.} + 3% W&o, (37)

is achieved, and the desired local filter gafify , can be s=0

calculated by solving the matrix inequality (32). The proofvhich guarantees thél., performance index (17) and thus

of this theorem is thus complete. B concludes this proof. ]
Next, by solving a certain convex optimization problem,

C. Distributed H, fusion filter design the fusion parameters are designed in the following theorem

In this subsection, the distributed,, fusion filter design to g_uarante_e theél, performange con;stralrﬁg < 0 with the
minimum disturbance attenuation leviel

issue is to be discussed in terms of the solvability of CertamTheorem 4:0n the basis of Theorem 3, if the following
matrix inequalities. To begin with, the following theorem

presents the determination of the fusion parameters to achi \r/gblem
the fusion performance requirement (17). Amin = min ¥ (38)
Theorem 3:Consider the NTVS (1) with the local filter of G102, ON

form (6). For the given scalay; > 0 (i € S;), the H,, subject to (33) is solvable, then there exist optimal fusion
performance constraint (17) is achieved for the fusion filterirgarameters with which the fusion filtering error dynamics (16)
error system (16) if there exist solutiofis;, 7} satisfying the satisfies the prescribet,, performance with the minimum
following inequality scalarymin.

Remark 6:Up to now, the distributed quantizdd.. fusion

Tay Mmoo ez ottt ONON filtering problem has been thoroughly investigated for NTVSs

171 -1 0 s 0 . ..

. 0 1 0 subject to missing measurements over AaFRNs. Based on
272 <0 (33) the stochastic analysis technique, the completing-the-square
: : : : : technique and the matrix inequality approach, sufficient con-

enyy 0 0o .- -1 ditions have been established to pledge the expected local

performance index over the finite horizon, and the desired
local filters are determined by recursively solving some ma-
trix inequalities. By means of the designed local filters, the

with 7 =52 and 2 ¢ = 1.
Proof: We have from (16) that

. N distributed fusion filtering with dynamic quantization has
5Tz, = [Zci(ii,s - sui,s)] [Zci(ii,s - Ms/li7s):| been further tackled, and the optimal fusion parameters for
i=1 i=1 guaranteeing the finite-horizdi., performance (17) with the
N minimum valueymi, are calculated in terms of the solution to
SN FEe = Maptis)" (is — Maptis) the optimization problem (38).
i=1 Remark 7:Compared with the existing literature on dis-
N 9 tributed fusion filtering problems, the distinguishing features
< 2NZC@ (ZisZis + g, M M ). (34)  of this study are exhibited as follows: 1) the addressed
=t distributed fusion filtering problem is new for the considered
Recalling (13), we immediately derive that nonlinear systems undergoing time-varying system parameters,
1 MT M s missing measurements, AaF relay protocols, and dynamic

guantization effects; 2) multiple relays are deployed in com-

_ Taf . T Tyr T v 1tizd ! yer
=t { M, Mapispi ) < UM Mopi it < Nis. (35 munication networks to facilitate the data transmissions from
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the sensors to the remote filters to improve the communicati
quality and enhance the signal transmission distance; 3) 1
local filter parameters are derived in a recursive form by mea
of the solutions to some linear matrix inequalities; and 4) tt

25

s The actual state
= = =The state estimate iy,
s The actual state a
2 = = =The state estimate &5, | 7

optimal fusion parameters are designed by solving a speci
convex optimization problem.

IV. A NUMERICAL EXAMPLE
This section provides a numerical example to demonstre
the effectiveness of the proposed distributed fusion filterir
method.
Consider the system (1) with the following parameters:
Dl,s = 037 D2,s = 015, D375 = 01, D475 = 025,
By, =[-0.15 0.15]", M, =1[0.05 0.05],

[ 0.721,5c080.1z2 )
flas) = 0.75 4SiN(s21,5)

hl(l's) = 0.15,@1)5 + 0.151‘275, hg(xs) = 0.21'175 + 0.2%2)5,
hs(zs) = 0.2521 5 + 0.25x2 5, hy(zs) = 0.321 5 + 0.322 5

Actual system states and their estimates of filter 1

Time(s)

Fig. 2: z; s and its estimate:;; , (j = 1,2).

25

s The actual state z;
= = =The state estimate Ty ,

wherez; ; (j € {1,2}) is thej-th element of the system state
x,. Itis easy to check that = 0.7, b; = 0.15v/2, by = 0.2V/2,
bs = 0.25v/2 and by = 0.3v/2.
Set the initial system state, and its estimates as follows:
zo=1[2.0 157, &10=[.7 1.6]7,
Foo=[21 14T, i30=1[22 177,
Z40=[16 13]T.

e The actual state z,

2 = = =The state estimate |

In this example, the parameters; s gl = 1,2, 3) are
selected as3;; = 0.8, B2; = 0.75 and 83; = 0.7, which
result in 57, = 0.16, 33, = 0.1875 and g5, = 0.21. The noise
disturbances are given by

vs = 0.4c090.8s)/v/s, 0115 = 0.1/Vs + 1,
02is = 0.15/v/s + 1, 03i.s = 0.2/vs + 1.

The other parameters are chosen to be

Actual system states and their estimates of filter 2

Time(s)

Fig. 3: 2, and its estimatey; , (j = 1,2).

25
Y1 = 18, Y2 = 17, Y3 = 18, Y4 = 19, —Ewactuul state z
= = =The state estimate 23 ,
p=40, wijs =1, <ijs =06, dijo=3, 2]\ T The are ot e | {
QU)S:O.ll, Wl:15I, Ellzl, Elel,
Es; =2, T=15, Cy;s=0.1, Cy =01,
Csis = 0.15, Pig =101

Utilizing the Matlab software, the desired local filter pa:
rametersk; s (i = 1,2, 3,4) are designed at each time instan
s € [0,15], and then the fusion parametefsand the minimum
value of4 are calculated as

c1=0.2635, co = 0.2634,
cr = 0.2237, 7 = 2.5419.

Actual system states and their estimates of filter 3

c5 = 0.2493,

Time(s)

Let us denoteE, = ./|&,||?> as the Euclidean norm of
the fusion filtering errore,. With the proposed distributed
fusion filtering scheme, the simulation results are exhibited
in Figs. 2-10. Figs. 2-5 plot the first and second components
of the actual system states and their estimates of the loitalfusion estimate. Figs. 7-9 depict the occurrences of miss-
filters. Fig. 6 shows the trajectories of the system state aimdj measurements in different transmission channels. Fig. 10

Fig. 4:z; s and its estimates; , (j = 1,2).
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25 T 2 2
<
5 == The actual state z;
f: = = =The state estimate 2 , 1.5 15
5 mm The actual state - w
2 2 = = =The state estimate &, | ~§ 1H  KKEKK KKK KKK XX § LHK KK KKK KKK KKK
©
£ 05 0.5
7]
[}
= 0 b * 0 * * *
2 0 5 10 15 0 5 10 15
% Time(s) Time(s)
2 2 2
g
& 1.5 1.5
§
I SOLpROoRkR kkk Rokdok kT 1L k% kRO Rk Kk
2 | &
El 05 05
Q
<
0 * * * O¥K——KF —
0 5 10 15 0 5 10 15
Time(s) Time(s) Time(s)
Fig. 5: z;,s and its estimate:y; , (j = 1,2). Fig. 8: The values ofy; s (i =1,2,3,4).
25 ‘ 2 2
g wes The actual state )
T = = =The fusion estimate 7, , 1.5 1.5
E mm The actual state s, N "
‘g 2 = = =The fusion estimate Z,., | ] ZO1k KK KKKKK kkx¥ ¥ & 1kx * KK K KRN
& &
5
@ 0.5 0.5
=]
T 0 bk— * * 0 L—kskk—ok—x—x
s 0 5 10 15 0 5 10 15
e} . .
= Time(s) Time(s)
0
o} 2 2
©
@
£ 1.5 1.5
2 .
% é LF¥ kXK ¥ HK KK K ¥ ﬁ 1§ K KK ¥ EE N 3
El
2 05 0.5
<
i Hoxk 0 D e 1
0 5 10 15 0 5 10 15
Time(s) Time(s) Time(s)
Fig. 6: 2, and its estimate of fusion filter. Fig. 9: The values ofis; s (i =1,2,3,4).
2 2 0.2
1.5 1.5 0.18 1 1
é TAKKK KKK Kk KKKKK Qﬁ' LK KK K 3K 3K K KKK K K K K K 0.16 | 1
0.5 0.5 0.14 b
0 e 0 0.12 1
0 5 10 15 0 5 10 15
Time(s) Time(s) g 01 B
2 2
1.5 1.5
1;: LERKKKK KKK KK KK KK é LK KK KRKKK KX ¥
05 0.5
0 * 0 —k—% S
0 5 10 15 0 5 10 15
Time(s) Time(s) Time(s)
Fig. 7: The values offy; s (i = 1,2,3,4). Fig. 10: The trajectory ofE, under dynamic quantization

effects.

shows the trajectory o, which verifies that the developed
distributed fusion filter works well for the considered NTVS. To further evaluate the influence of quantization mechanism
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