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Abstract—In this paper, the security-guaranteed fuzzy net-
worked state estimation issue is investigated for a class of
two-dimensional (2-D) systems with norm-bounded disturbances.
Considering the structural specificity of the 2-D systems, the
membership function in the Takagi-Sugeno fuzzy model is
established to reflect the spatial information. Multiple sensor
arrays are utilized to improve the observation diversity and
overcome the measurement obstacle induced by geographical
restrictions. The network-based deception attacks, occurring in
a probabilistic fashion, are characterized by a set of Bernoulli
distributed random variables. By resorting to the 2-D fuzzy
blending and augmentation operations, the error dynamics of
the sth 2-D fuzzy estimator is formulated and, subsequently,
the globally asymptotical stability of the local error dynamics
is studied in virtue of Lyapunov stability theory, fuzzy theory,
and stochastic analysis technique. Then, sufficient conditions are
derived to ensure the so-called(̺1, ̺2, ̺3, ρs)-security of the local
error dynamics. Furthermore, the estimation fusion problem of
the local fuzzy estimators is discussed and the corresponding
(̺1, ̺2, ̺3, ρs)-security is also guaranteed. Finally, an illustrative
example is provided to demonstrate the rationality and the
effectiveness of the proposed state estimation algorithm.

Index Terms—Two-dimensional systems, Takagi-Sugeno fuzzy
model, state estimation, multiple sensor arrays, deception attacks,
estimation fusion.
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R
n Then-dimensional Euclidean space

R
n×m The set of alln×m real matrices

Z
+ The set of all nonnegative integers

Z
− The set of all negative integers

‖ · ‖ The Euclidean vector norm inRn

λmax(·) The maximum eigenvalue
λmin(·) The minimum eigenvalue
In The identity matrix of dimensionn× n

M−1 The inverse ofM
MT The transpose ofM
X ≥ Y X-Y is positive semi-definite
X > Y X-Y is positive definite

I. I NTRODUCTION

Ever since the seminal work in [1], the Takagi-Sugeno
(T-S) fuzzy model has been attracting a steadily growing
interest from the system science and control communities.
In particular, benefiting from its distinctive approximation
capability, the T-S fuzzy model is well known to be one of
the powerful tools to characterize the complicated nonlinear
systems. Briefly speaking, by resorting to the fuzzification and
defuzzification operations within the T-S framework, a nonlin-
ear system can be approximately described by a set of local
linear systems connected via nonlinear membership functions.
Such an approach is able to approximate any nonlinear systems
with any degree of accuracy in any convex compact region
[2], [3]. As a result, the T-S fuzzy model has found successful
applications in a variety of realms ranging from control, filter-
ing, parameter estimation, system identification, to model re-
duction. For example, theH∞ proportional-integral-derivative-
like control problems have been investigated in [4], [8] for T-S
fuzzy systems. In [9], an observer-based fuzzy output-feedback
controller has been developed for a class of strict-feedback
nonlinear systems, where both multiplicative process noises
and additive measurement noises are considered.

Over decades, the two-dimensional (2-D) systems have
gradually become a research hotpot owing primarily to their
extensive application potentials in many industrial fields which
include, but are not limited to, multidimensional digital filter-
ing, image processing, and thermal processes [10]–[13]. Up to
now, much effort has been devoted to the analysis and synthe-
sis issues for 2-D systems and a rich body of results has been
reported in the literature, see [14] and the references therein.
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For example, the robust state estimation problem has been
addressed in [15] for a class of 2-D systems within a finite-
horizon framework. The sufficient and necessary conditions
have been established in [16] to guarantee the stability of 2-D
linear systems in continuous, discrete and mixed cases. In [17],
the robustH∞ filtering issue has been investigated for a class
of uncertain 2-D discrete systems. In [14], the sliding mode
control law has been designed for the 2-D systems under the
event-triggered transmission mechanism. Nevertheless, limited
work has been done for the 2-D systems due probably to the
difficulty in physical modeling and mathematical analysis. As
such, it is imperative to build a paradigm for the study of 2-D
systems, which constitutes the first motivation of this paper.

Owing to the prominent advantages in light weight, simple
installation and easy maintenance, the networked systems
(NSs) have received considerable research attention from the
engineering and scientific communities [33]–[37]. According-
ly, there has been a great deal of elegant results available in the
literature, see e.g. [18]. For a typical NS, the information trans-
mission among system components (e.g. sensors, plants, con-
trollers, and actuators) is usually implemented over a shared
communication network [19], [20]. In practical scenarios, it
is often the case that the information interactions are prone
to the cyber-attacks due to the openness of communication
network. The network attacks (including, but are not limited to,
data tampering, spoofing, hijacking, and capture-replay) [44]–
[46], if not properly handled, would deteriorate the system
performance and even destroy the system stability. It is worth
pointing out that, compared with other kinds of cyber-attacks,
the so-called deception attack caused by tampering/spoofing
is more dangerous due to its stealthiness. To this end, the
security issue of NSs under deception attacks has begun to
attract particular research attention in recent years, see e.g.
[47], [48]. Nevertheless, the corresponding security-guaranteed
state estimation problem has not been investigated yet for the
2-D fuzzy systems, and this gives rise to another motivation
of the current study.

As pointed out in [24], a single sensor array would be
sufficient to obtain high-accuracy measurement under ideal
conditions. Nevertheless, in real-world applications, the ideal
conditions are less likely to be satisfied due to the effects of
certain adverse yet ineluctable factors such as non-calibration,
offset, and fault [23]. As such, it makes practical sense to
consider the case of multiple sensor arrays, where all sensors
are geographically distributed in an “array” configuration over
different regions of interest [25]. Particularly, the utilization of
multiple sensor arrays is capable of improving the observation
diversity and overcoming the measurement obstacles incurred
by geographical restrictions. Up to now, some elegant research
results have been reported on the investigation of multiple sen-
sor arrays. For example, a new technique has been presented
in [26] to determine the locations of multiple sensors, where a
tradeoff between the information redundancy, the sensor cost,
and the process information has been considered.

In the context of state estimation with multiple sensor
arrays, the step named estimation fusion has been playing
a paramount role in enhancing the authenticity and data
availability [27]. The basic idea behind estimation fusion is

to combine information from local sources to construct a
unified picture and thus achieve better performance than the
local setting [28]. In the past several decades, considerable
research effort has been devoted to the estimation fusion
issues [29]–[31], and some diversified fusion means can be
found in [40], [41]. For instance, the multi-sensor fusion
problem has been investigated in [32] for a class of clustered
sensor networks, where the sequential measurement fusion and
estimation fusion have been taken into account. The optimal
linear estimation fusion problem has been studied in [38], and
three estimation fusion architectures have been discussed. By
resorting to the Cholesky factorization and special approxi-
mation to the cross-covariance, two computationally effective
fusion algorithms have been provided in [39]. However, to the
best of our knowledge, the state estimation problem has not
been adequately discussed yet for 2-D fuzzy NSs with multiple
sensor arrays and deception attacks, not to mention the case
where the estimation fusion is also involved.

As is well known, state estimation is a fundamental issue in
the areas of systems science and control engineering because,
due to physical structure/constraints [5]–[7], some important
system states are unobservable from sensor measurements
that are likely to be contaminated by noises [21], [22]. So
far, a great deal of literature has been available on the
observer design for 2-D systems see e.g. [53]. Very recently,
the fuzzy-model-based state estimation problem has attracted
some initial research attention for nonlinear 2-D systems.
For example, with help of T-S fuzzy approximation, the
observer design problem has been discussed in [54]–[57]
for 2-D systems characterized by the Fornasini-Marchesini
model for the purpose of dynamic output-feedback control.
Similarly, in [51], [52], the state estimation problem for 2-D
Roesser systems has been examined based upon the T-S fuzzy
methodology. On the other hand, networked systems have now
become increasingly popular and, accordingly, it makes both
theoretical and practical sense to look into the fuzzy state
estimation problems for 2-D systems, and this motivates our
current study.

Summarizing the above discussions, in this paper, we en-
deavor to deal with the security-guaranteed state estimation
problem for a class of 2-D fuzzy NSs with multiple sensor
arrays and deception attacks. The main contributions of this
paper are highlighted as follows. 1) The security-guaranteed
state estimation problem is, for the first time, addressed for the
2-D NSs with multiple sensor arrays and deception attacks. 2)
An estimation fusion scheme is developed based on a set of
2-D fuzzy local state estimators. 3) Some sufficient conditions
are established to guarantee theglobally asymptotical stability
and the(̺1, ̺2, ̺3, ρs)-security of the local error dynamics,
as well as the(̺1, ̺2, ̺3, ρ)-securityof the fused counterpart.

The remainder of this paper is organized as follows. Sec-
tion II formulates the security-guaranteed state estimation
problem in the 2-D T-S fuzzy framework. In Section III,
the desired state estimator is proposed, and theglobal-
ly asymptotical stabilityand the prescribed(̺1, ̺2, ̺3, ρs)-
security/(̺1, ̺2, ̺3, ρ)-security are discussed. In Section IV,
a simulation example is provided to examine the validity of
the developed 2-D fuzzy estimation algorithm. Finally, this
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paper is concluded in Section V.

II. PROBLEM FORMULATION

Consider a class of T-S fuzzy systems of the following 2-D
form:

Plant Rule i:
IF θ

(p,q)
1 is Fi1, · · · , θ(p,q)j is Fij , · · · andθ(p,q)p is Fip,

THEN

x(p+ 1, q + 1) =A1ix(p, q + 1) +A2ix(p+ 1, q)

+B1iν(p, q + 1) +B2iν(p+ 1, q), (1)

where x(p, q) ∈ R
nx(p, q ∈ Z

+) denotes the state vector,
θ
(p,q)
j , [θj(p, q + 1), θj(p+ 1, q)] (j = 1, 2, · · · , p) is the

spatial premise variable at the location(p, q) (which might be
state or measurable variable),Fij is a spatial fuzzy set of rule
i corresponding to the spatial input vectorθ(p,q)j , I is defined
asI , {1, 2, · · · , R} with R being the number of IF-THEN
rules, ν(p, q) ∈ R

nν is the disturbance input, andA1i, A2i,
B1i andB2i are known real constant system matrices with
compatible dimensions.

Assumption 1. The disturbance inputν(p, q) is bounded by

‖ν(p, q)‖ ≤ ̺1, (2)

where̺1 is a given positive scalar.

Considering the structural specificity of the premise variable
in 2-D systems, the following spatial membership function is
introduced [42]:

h
(p,q)
i = [hi(p, q + 1), hi(p+ 1, q)] , (3)

where

hi(p, q) ,
Ψi(p, q)

R∑
i=1

Ψi(p, q)

, Ψi(p, q) ,

p∏

j=1

Fij(θ
(p,q)
j ).

The componenthi(p, q) of the spatial membership function is
actually the normalized membership function.Fij(θ

(p,q)
j ) ≥ 0

is the grade of membership ofθ(p,q)j in Fij . It is not difficult
to see that

0 ≤ hi(p, q) ≤ 1,
R∑

i=1

hi(p, q) = 1, ∀ p, q ∈ Z
+. (4)
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Fig. 1: Block diagram of 2-D fuzzy networked estimation system.

In this paper, as illustrated in Fig. 1, multiple sensor arrays
are adopted to improve the observation diversity and overcome

the measurement obstacles caused by geographical restrictions.
Specifically, the measurement model of thesth sensor array
is given by

ỹs(p, q) = Cs
i x(p, q) +Ds

i ν(p, q), s ∈ S (5)

where ỹs(p, q) ∈ R
ny denotes the measurement output,Cs

i

and Ds
i are given coefficients with appropriate dimensions,

andS = {1, 2, · · · , S} with S being the number of sensor
arrays.

The measured data in the multiple sensor arrays are all
transmitted to the remote endpoint devices (i.e. local state
estimator) through a shared communication network (subject
to cyber-attacks), thereby achieving the so-called networked
deployment concerning the information acquisition process.
As such, the underlying system is referred to as thenetworked
2-D fuzzy systems. Note that the measurements transmitted
over an open network environment might suffer from the
deception attack launched by adversaries. In this case, the
actual measurement model can be described by

ys(p, q) =ỹs(p, q) + β(p, q)ȳs(p, q), (6)

where ȳs(p, q) , −ỹs(p, q) + ξ(p, q), ξ(p, q) ∈ R
ny is the

deception data injected by the attackers, andβ(p, q) is a
random variable with the following probability distribution:

Prob{β(p, q) = 1} = β̄, Prob{β(p, q) = 0} = 1− β̄ (7)

with β̄ ∈ [0, 1) being a known scalar. The measurements
passing through the network are stored in a set of zero-order-
holders (ZOHs), which provide the ready-made data for the
subsequent fuzzy state estimation procedure.

Assumption 2. The deception dataξ(p, q) satisfies

‖ξ(p, q)‖ ≤ ̺2, (8)

where̺2 is a prescribed positive scalar.

Remark 1. It is worth mentioning that the combination of
multiple sensor arrays and information fusion center would
enhance the diversity of available data, thereby improving the
reliability and accuracy as confirmed by engineering practice.
Compared with the ordinary sensor network, one clearly finds
from the construction (5) that characters of the multiple
sensor arrays take on large quantity, wide distribution and
multifarious collection. It will immediately degrade into the
ordinary sensor network onceS = 1. In terms of this view,
results obtained in this paper can be applied to ordinary
sensor network. On the other hand, the system measurements
transmitted via an open communication network are very
susceptible to deception attacks. In TCP/IP based network,
there are many forms of deception attacks which include,
but are not limited to, IP deception, ARP deception, DNS
deception, and route source deception. Generally speaking,
these various but random attacks can be characterized by the
unified model (6) through constructingξ(p, q) and β(p, q).
Such a formulation would facilitate the design and analysis of
the fuzzy state estimator under deception attacks.

In this paper, thesth full-order local fuzzy state estimator
is constructed of the following form:
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Local State Estimator Rulei:
IF θ

(p,q)
1 is Fi1, · · · , θ(p,q)j is Fij , · · · andθ(p,q)p is Fip,

THEN

x̂s(p+ 1, q + 1) =As
1fix̂

s(p, q + 1) +As
2fix̂

s(p+ 1, q)

+Bs
1fiy

s(p, q + 1)

+Bs
2fiy

s(p+ 1, q), (9)

where x̂s(p, q) is the state vector of thesth state estimator,
andAs

1fi, A
s
2fi, B

s
1fi andBs

2fi are the gain parameters to be
determined.

Assumption 3. The initial boundary conditions of the 2-D
fuzzy system (1) and thesth local state estimator (9) are
specified by

x(p, q) = x̂s(p, q) =





ψh(p, q); if (p, q) ∈ 0× [0, bh]

ψv(p, q); if (p, q) ∈ [0, bv]× 0

0; if (p, q) ∈ 0× (bh, ∞)

0; if (p, q) ∈ (bv, ∞)× 0

(10)

with ψh(0, 0) = ψv(0, 0), where bh and bv are prescribed
positive integers. For a known positive scalar̺2, ψh(p, q)
ψv(p, q) are given vectors satisfying

∥∥∥∥
[
ψh(p, q)
ψv(p, q)

]∥∥∥∥ ≤ ̺3. (11)

Based on the operation of fuzzy blending, the defuzzified
output of the 2-D fuzzy system (1) can be represented as





x(p+ 1, q + 1) =

R∑

i=1

hi(p, q + 1)
{
A1ix(p, q + 1)

+B1iν(p, q + 1)
}
+

R∑

i=1

hi(p+ 1, q)

×
{
A2ix(p+ 1, q) +B2iν(p+ 1, q)

}
,

ỹs(p, q) =

R∑

i=1

hi(p, q)
[
Cs

i x(p, q) +Ds
i ν(p, q)

]
.

(12)

It should be noted that the validity of the 2-D fuzzy model in
(1) with (12) were already studied in [59].

Similarly, the defuzzified output of thesth local state
estimator is readily obtained as

x̂s(p+ 1,l + 1) =

R∑

i=1

hi(p, q + 1)
{
As

1fix̂
s(p, q + 1)

+Bs
1fiy

s(p, q + 1)
}
+

R∑

i=1

hi(p+ 1, q)

×
{
As

2fix̂
s(p+ 1, q) +Bs

2fiy
s(p+ 1, q)

}
. (13)

For brevity, let’s choicehi , hi(p, q), h́i , hi(p, q + 1),
h̀i , hi(p+ 1, q) and

r∑

i1,i2,··· ,is=1

hi1hi2 · · ·his =

r∑

i1=1

hi1

r∑

i2=1

hi2 · · ·

r∑

is=1

his

for any s ∈ Z
+. Letting ẽs(p, q) , x(p, q)− x̂s(p, q), the sth

2-D fuzzy error dynamics can be calculated as follows:

ẽs(p+ 1, q + 1) =

R∑

i,j,n=1

h́ih́j h́n

[(
A1i −As

1fj

)
x(p, q + 1)

+As
1fj ẽ

s(p, q + 1) +B1iν(p, q + 1)

− (1 − β(p, q + 1))Bs
1fjC

s
nx(p, q + 1)

− (1 − β(p, q + 1))Bs
1fjD

s
nν(p, q + 1)

)

− β(p, q + 1)Bs
1fjξ(p, q + 1)

]

+

R∑

i,j,n=1

h̀ih̀j h̀n

[(
A2i −As

2fj

)
x(p+ 1, q)

+As
2fj ẽ

s(p+ 1, q) +B2iν(p+ 1, q)

− (1 − β(p+ 1, q))Bs
2fjC

s
nx(p+ 1, q)

− (1 − β(p+ 1, q))Bs
2fjD

s
nν(p+ 1, q)

)

− β(p+ 1, q)Bs
2fjξ(p+ 1, q)

]
. (14)

Define es(p, q) ,

[
xT (p, q)

(
ẽs(p, q)

)T ]T
and ξ̄(p, q) ,

[
νT (p, q) ξT (p, q)

]T
. Then, the augmented 2-D fuzzy error

dynamics is obtained as

es(p+ 1, q + 1) =

R∑

í,j́,ń,̀i,j̀,ǹ=1

h́íh́j́h́ńh̀ìh̀j̀ h̀ǹ

×
[
Ās

1́ij́
es(p, q + 1) + B̄1́iξ̄(p, q + 1)

− (1− β(p, q + 1))C̄s

1j́ń
es(p, q + 1)

− (1− β(p, q + 1))B̄s

1fj́
ξ̄(p, q + 1)

− β(p, q + 1)B̃s

1fj́
ξ̄(p, q + 1)

+ Ās

2̀ij̀
es(p+ 1, q) + B̄2̀iξ̄(p+ 1, q)

− (1− β(p+ 1, q))C̄s

2j̀ǹ
es(p+ 1, q)

− (1− β(p+ 1, q))B̄s

2fj̀
ξ̄(p+ 1, q)

− β(p+ 1, q)B̃s

2fj̀
ξ̄(p+ 1, q)

]
, (15)

where

Ās

1́ij́
,

[
A1́i 0

A1́i −As

1fj́
As

1fj́

]
, B̄1́i ,

[
B1́i 0
B1́i 0

]
,

Ās

2̀ij̀
,

[
A2̀i 0

A2̀i −As

2fj̀
As

2fj̀

]
, B̄2̀i ,

[
B2̀i 0
B2̀i 0

]
,

B̄s

1fj́
,

[
0 0

Bs

1fj́
Ds

ń 0

]
, B̄s

2fj̀
,

[
0 0

Bs

2fj̀
Ds

ǹ 0

]
,

B̃s

1fj́
,

[
0 0
0 Bs

1fj́
Ds

ń

]
, B̃s

2fj̀
,

[
0 0
0 Bs

2fj̀
Ds

ǹ

]
,

C̄s

1j́ń
,

[
0 0

Bs

1fj́
Cs

ń 0

]
, C̄s

2j̀ǹ
,

[
0 0

Bs

2fj̀
Cs

ǹ 0

]
.

Assumption 4. The initial boundary condition (10) as well as
the stochastic variablesν(p, q) and β(p, q) (p, q ∈ Z

+) are
mutually independent.

Now, let us present two relevant definitions.
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Definition 1. (Globally asymptotical stability) Thesth 2-D
fuzzy error dynamics (15) with̄ξ(p, q) ≡ 0 is said to be
globally asymptotically stable in the mean-square sense if

lim
p+q→∞

E

{∥∥es(p, q)
∥∥2
}
= 0 (16)

holds for the initial condition (10). In this case, the 2-D state
estimator (9) is said to be a globally asymptotically stable
fuzzy state estimator for the target system (1).

Definition 2. ((̺1, ̺2, ̺3, ρs)-security) [43], [49] Given the
positive constant scalars̺1, ̺2, ̺3 and ρs. The sth error
dynamics (15) with̄ξ(p, q) 6= 0 is said to be(̺1, ̺2, ̺3, ρs)-
secure in the mean-square sense if

E

{∥∥∥∥
es(T , q + 1)
es(p+ 1, T )

∥∥∥∥
2
}
< T ρs

2, p, q ∈ Z
+, s ∈ S (17)

holds for any given integerT ∈ Z
+ under the conditions (2),

(8) and (11).

The input-to-state stability, which was introduced in [58],
has been widely used in analyzing nonlinear systems with
exogenous inputs. Such a concept bridges the gap between
input-output and state-space approaches, and has therefore
gained a growing popularity in recent years. In this paper,
Definition 2 can be considered to be a security-adapted version
of the traditional notion of input-to-state stability. Similar to
input-to-state stability (with bounded input and bounded state),
in Definition 2, the trajectories of the error dynamics (15)
are bounded in terms of size of the input (i.e.̺1, ̺2 and̺3)
for sufficiently large times. Actually, the bounded state can
also be regarded as a sort of stability criterion (i.e. the so-
called security), which is a very important performance index
for cyber-physical systems against malicious attacks. In this
sense, the security notion (reflected in Definition 2) is of clear
engineering insight.

The main purpose of this paper is to design a set of full-
order local fuzzy state estimators of the form (9) for the 2-
D T-S model (1). More specifically, we are looking for a
set of estimator gain parameters to guarantee theglobally
asymptotical stabilityand the(̺1, ̺2, ̺3, ρs)-security of the
2-D fuzzy error dynamics (15).

Before ending this section, the following lemma is intro-
duced, which will be used in the subsequent analysis.

Lemma 1. Let R ∈ R
n×n be a symmetric positive definite

matrix. For any real vectorsXíj́ḿìj̀m̀ ∈ R
n andX

áb́ćàb̀c̀
∈ R

n

with í, j́, ḿ, ì, j̀, m̀, á, b́, ć, à, b̀, c̀ ∈ S, we have

R∑

í,j́,ḿ,á,b́,ć,̀i,j̀,m̀,à,b̀,c̀=1

h́íh́j́h́ḿh́áh́b́h́ćh̀ìh̀j̀h̀m̀h̀àh̀b̀h̀c̀

×XT

íj́ḿìj̀m̀
RX

áb́ćàb̀c̀

≤

R∑

í,j́,ḿ,̀i,j̀,m̀=1

h́íh́j́ h́ḿh̀ìh̀j̀ h̀m̀X
T

íj́ḿìj̀m̀
RXíj́ḿìj̀m̀,

whereh́t ≥ 0, h̀t ≥ 0, and
r∑

t=1
h́t =

r∑
t=1

h̀t = 1 with t ∈ S.

III. M AIN RESULTS

In this section, we first derive some sufficient condi-
tions to ensure theglobally asymptotical stabilityand the
(̺1, ̺2, ̺3, ρs)-securityof the 2-D fuzzy error dynamics (15).
Then, we discuss the design of the desired local state estima-
tors as well as the corresponding estimation fusion problem.

A. Stability and(̺1, ̺2, ̺3, ρs)-security

The following theorem presents a sufficient condition un-
der which the closed-loop 2-D fuzzy system (9) isglobally
asymptotically stable in the mean-square sense.

Theorem 1. Let the sate estimator gainsAs
1fi, A

s
2fi, B

s
1fi

and Bs
2fi be given. Thesth 2-D fuzzy error dynamics (15)

with ξ̄(p, q) ≡ 0 is globally asymptotically stable in the mean-
square sense if there exist matricesQh > 0 andQv > 0 such
that the following matrix inequalities hold:

Λs,́i,j́,ń,̀i,j̀,ǹ < 0, í, j́, ń, ì, j̀, ǹ ∈ I, s ∈ S (18)

where

Λs,́i,j́,ń,̀i,j̀,ǹ ,

[
Λ11 ∗
Λ21 Λ22

]
,

Λ11 ,

(
Ās

1́ij́
+ (β̄ − 1)C̄s

1j́ń

)T

×
(
Qh +Qv

)(
Ās

1́ij́
+ (β̄ − 1)C̄s

1j́ń

)

+ β̄(1− β̄)
(
C̄s

1j́ń

)T(
Qh +Qv

)
C̄s

1j́ń
−Qh,

Λ21 ,

(
Ās

2̀ij̀
+ (β̄ − 1)C̄s

2j̀ǹ

)T(
Qh +Qv

)

×
(
Ās

1́ij́
+ (β̄ − 1)C̄s

1j́ń

)
,

Λ22 ,

(
Ās

2̀ij̀
+ (β̄ − 1)C̄s

2j̀ǹ

)T(
Qh +Qv

(
Ās

2̀ij̀

)

+ (β̄ − 1)C̄s

2j̀ǹ

)
+ β̄(1− β̄)

(
C̄s

2j̀ǹ

)T

×
(
Qh +Qv

)
C̄s

2j̀ǹ
−Qv.

Proof: Choose a Lyapunov-like functional of the follow-
ing form

V (p, q) = V h(p, q) + V v(p, q), (19)

where

V h(p, q) , (es(p, q))TQhes(p, q),

V v(p, q) , (es(p, q))TQves(p, q).

Letting ξ̄(p, q) ≡ 0, along the trajectory of error dynamics
(9), the difference ofV (p, q) can be obtained by

I(p, q) = ∆V h(p, q) + ∆V v(p, q), (20)

where

∆V h(p, q) ,E
{
V h(p+ 1, q + 1)− V h(p, q + 1)

∣∣~(p, q)
}
,

∆V v(p, q) ,E
{
V v(p+ 1, q + 1)− V v(p+ 1, q)

∣∣~(p, q)
}
,

~(p, q) ,{es(p, q + 1), es(p+ 1, q)}.
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Considering Lemma 1, it follows from (15) and (20) that

∆V h(p, q) =(es(p+ 1, q + 1))TQhes(p+ 1, q + 1)

− (es(p, q + 1))TQhes(p, q + 1)

=

R∑

í,j́,ń,̀i,j̀,ǹ=1

h́íh́j́ h́ńh̀ìh̀j̀h̀ǹ

× E

{[
Ās

1́ij́
es(p, q + 1)

− (1− β(p, q + 1))C̄s

1j́ń
es(p, q + 1)

+ Ās

2̀ij̀
es(p+ 1, q)

− (1− β(p+ 1, q))C̄s

2j̀ǹ
es(p+ 1, q)

]T
Qh

×
[
Ās

1́ij́
es(p, q + 1)

− (1− β(p, q + 1))C̄s

1j́ń
es(p, q + 1)

+ Ās

2̀ij̀
es(p+ 1, q)− (1− β(p+ 1, q))

× C̄s

2j̀ǹ
es(p+ 1, q)

]
− (es(p, q + 1))TQh

× es(p, q + 1)
∣∣∣~(p, q)

}
, (21)

∆V v(p, q) =(es(p+ 1, q + 1))TQves(p+ 1, q + 1)

− (es(p+ 1, q))TQves(p+ 1, q)

=

R∑

í,j́,ń,̀i,j̀,ǹ=1

h́íh́j́ h́ńh̀ìh̀j̀h̀ǹ

× E

{[
Ās

1́ij́
es(p, q + 1)

− (1− β(p, q + 1))C̄s

1j́ń
es(p, q + 1)

+ Ās

2̀ij̀
es(p+ 1, q)

− (1− β(p+ 1, q))C̄s

2j̀ǹ
es(p+ 1, q)

]T
Qv

×
[
Ās

1́ij́
es(p, q + 1)

− (1− β(p, q + 1))C̄s

1j́ń
es(p, q + 1)

+ Ās

2̀ij̀
es(p+ 1, q)− (1− β(p+ 1, q))C̄s

2j̀ǹ

× es(p+ 1, q)
]
− (es(p+ 1, q))TQv

× es(p+ 1, q)
∣∣∣~(p, q)

}
. (22)

Then, we arrive at

E{I(p, q)}

≤
R∑

í,j́,ń,̀i,j̀,ǹ=1

h́íh́j́ h́ńh̀ìh̀j̀ h̀ǹcE
{[
Ās

1́ij́
es(p, q + 1)

− (1− β(p, q + 1))C̄s

1j́ń
es(p, q + 1) + Ās

2̀ij̀
es(p+ 1, q)

− (1− β(p+ 1, q))C̄s

2j̀ǹ
es(p+ 1, q)

]T
Qh
[
Ās

1́ij́
es(p, q + 1)

− (1− β(p, q + 1))C̄s

1j́ń
es(p, q + 1) + Ās

2̀ij̀
es(p+ 1, q)

− (1− β(p+ 1, q))C̄s

2j̀ǹ
es(p+ 1, q)

]
+
[
Ās

1́ij́
es(p, q + 1)

− (1− β(p, q + 1))C̄s

1j́ń
es(p, q + 1) + Ās

2̀ij̀
es(p+ 1, q)

− (1− β(p+ 1, q))C̄s

2j̀ǹ
es(p+ 1, q)

]T
Qv

×
[
Ās

1́ij́
es(p, q + 1)− (1− β(p, q + 1))C̄s

1j́ń
es(p, q + 1)

+ Ās

2̀ij̀
es(p+ 1, q)− (1− β(p+ 1, q))C̄s

2j̀ǹ
es(p+ 1, q)

]

− (es(p, q + 1))TQhes(p, q + 1)

− (es(p+ 1, q))TQves(p+ 1, q)
∣∣∣~(p, q)

}

=

R∑

í,j́,ń,̀i,j̀,ǹ=1

h́íh́j́ h́ńh̀ìh̀j̀ h̀ǹ

× E

{
ηT (p, q)Λs,́i,j́,ń,̀i,j̀,ǹη(p, q)

}
, (23)

whereη(p, q) ,
[
(es(p, q + 1))T (es(p+ 1, q))T

]T
.

For any positive integersTh andTv, summing up both sides
of (23) for p andq varying from0 to, respectively,Th andTh,
one has

Tv∑

q=0

Th∑

p=0

E{I(p, q)} ≤ λmax

(
Λs,́i,j́,ń,̀i,j̀,ǹ

) Tv∑

q=0

Th∑

p=0

×

R∑

í,j́,ń,̀i,j̀,ǹ=1

h́íh́j́h́ńh̀ìh̀j̀ h̀ǹE
{∥∥η(p, q)

∥∥2
}
. (24)

Then, it follows from the nonnegativeness ofV (p, q) that

Tv∑

q=0

Th∑

p=0

r∑

í,j́,ń,̀i,j̀,ǹ=1

h́íh́j́ h́ńh̀ìh̀j̀ h̀ǹE
{∥∥η(p, q)

∥∥2
}

≤
1

λmax

(
Λs,́i,j́,ń,̀i,j̀,ǹ

)E
{

N∑

q=0

V h
1 (0, q + 1)

+

M∑

p=0

V v
1 (p+ 1, 0)

}
.

Furthermore, based on the finite initial boundary condition
(10), we conclude that

lim
Tv ,Tv→+∞

Tv∑

q=0

Th∑

p=0

r∑

í,j́,ń,̀i,j̀,ǹ=1

h́íh́j́ h́ńh̀ìh̀j̀ h̀ǹ

×E

{∥∥η(p, q)
∥∥2
}
<∞, (25)

which infers lim
p+l→∞

E

{∥∥es(p, q)
∥∥2
}

= 0. Therefore, the

sth 2-D fuzzy error dynamics (15) with̄ξ(p, q) ≡ 0 is
globally asymptotically stable in the mean-square sense, which
completes the proof.

Theorem 1 provides a sufficient condition to guarantee the
globally asymptotical stabilityof the sth error dynamics. In
what follows, we are going to discuss the(̺1, ̺2, ̺3, ρs)-
security with the help of stochastic analysis techniques and
matrix theory.

Theorem 2. Let the sate estimator gainsAs
1fi, A

s
2fi, B

s
1fi

and Bs
2fi be given. Thesth 2-D fuzzy error dynamics (15)

with ν(p, q) 6= 0 is (̺1, ̺2, ̺3, ρs)-secure in the mean-square
sense if there exist matricesQh > 0 andQv > 0 such that
the following matrix inequalities hold for anýi, j́, ń, ì, j̀, ǹ ∈ I
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and s ∈ S:





Λ
s,́i,j́,ń,̀i,j̀,ǹ

< 0, (26a)

¯̺21,2 +max
{
λmax

(
Qh
)
, λmax

(
Qv
)}
̺23

min
{
λmin

(
Qh
)
, λmin

(
Qv
)} < ρ2s, (26b)

where ¯̺1,2 ,
√
2̺21 + 2̺22,

Λ
s,́i,j́,ń,̀i,j̀,ǹ

,




Λ11 ∗ ∗
Λ21 Λ22 ∗
Λ31 Λ32 Λ33 ∗
Λ41 Λ42 Λ43 Λ44


 < 0,

Λ31 ,

(
B̄1́i + (β̄ − 1)B̄s

1fj́
− β̄B̃s

1fj́

)T(
Qh +Qv

)

×
(
Ās

1́ij́
+ (β̄ − 1)C̄s

1j́ń

)
,

Λ32 ,

(
B̄1́i + (β̄ − 1)B̄s

1fj́
− β̄B̃s

1fj́

)T(
Qh +Qv

)

×
(
Ās

2̀ij̀
+ (β̄ − 1))C̄s

2j̀ǹ

)
,

Λ33 ,

(
B̄1́i + (β̄ − 1)B̄s

1fj́
− β̄B̃s

1fj́

)T(
Qh +Qv

)

×
(
B̄1́i + (β̄ − 1)B̄s

1fj́
− β̄B̃s

1fj́

)

+ (β̄ − β̄2)
(
B̄s

1fj́

)T(
Qh +Qv

)
B̄s

1fj́

+ (β̄ − β̄2)
(
B̃s

1fj́

)T(
Qh +Qv

)
B̃s

1fj́
− I,

Λ41 ,

(
B̄2̀i + (β̄ − 1)B̄s

2fj̀
− β̄B̃s

2fj̀

)T(
Qh +Qv

)

×
(
Ās

1́ij́
+ (β̄ − 1)C̄s

1j́ń

)
,

Λ42 ,

(
B̄2̀i + (β̄ − 1)B̄s

2fj̀
− β̄B̃s

2fj̀

)T(
Qh +Qv

)

×
(
Ās

2̀ij̀
+ (β̄ − 1))C̄s

2j̀ǹ

)
,

Λ43 ,

(
B̄2̀i + (β̄ − 1)B̄s

2fj̀
− β̄B̃s

2fj̀

)T(
Qh +Qv

)

×
(
B̄1́i + (β̄ − 1)B̄s

1fj́
− β̄B̃s

1fj́

)
,

Λ44 ,

(
B̄2̀i + (β̄ − 1)B̄s

2fj̀
− β̄B̃s

2fj̀

)T(
Qh +Qv

)

×
(
B̄2̀i + (β̄ − 1)B̄s

2fj̀
− β̄B̃s

2fj̀

)

+ (β̄ − β̄2)
(
B̄s

2fj̀

)T(
Qh +Qv

)
B̄s

2fj̀

+ (β̄ − β̄2)
(
B̃s

2fj̀

)T(
Qh +Qv

)
B̃s

2fj̀
− I.

Proof: Recalling Assumptions 1-2, it is not difficult to
see that

{
−νT (p, q)ν(p, q) + ̺21 >0,

−ξT (p, q)ξ(p, q) + ̺22 >0,

⇐⇒ −ξ̄T (p, q)ξ̄(p, q) + ̺1 + ̺2 > 0. (27)

Similar to the proof of Theorem 1, the difference ofV (p, q)
along the trajectories of error dynamics (9) with̄ξ(p, q) 6= 0
can be calculated as

I(p, q) = ∆V h(p, q) + ∆V v(p, q), (28)

where

∆V h(p, q)

,E
{
(es(p+ 1, q + 1))TQhes(p+ 1, q + 1)

− (es(p, q + 1))TQhes(p, q + 1)
∣∣~(p, q)

}

=

R∑

í,j́,ń,̀i,j̀,ǹ=1

h́íh́j́h́ńh̀ìh̀j̀ h̀ǹ

× E

{[(
Ās

1́ij́
+ (β̄ − 1)C̄s

1j́ń

)
es(p, q + 1)

+
(
B̄1́i + (β̄ − 1)B̄s

1fj́
− β̄B̃s

1fj́

)
ξ̄(p, q + 1)

+
(
Ās

2̀ij̀
+ (β̄ − 1))C̄s

2j̀ǹ

)
es(p+ 1, q)

+
(
B̄2̀i + (β̄ − 1)B̄s

2fj̀
− β̄B̃s

2fj̀

)
ξ̄(p+ 1, q)

]T
Qh

×
[(
Ās

1́ij́
+ (β̄ − 1)C̄s

1j́ń

)
es(p, q + 1)

+
(
B̄1́i + (β̄ − 1)B̄s

1fj́
− β̄B̃s

1fj́

)
ξ̄(p, q + 1)

+
(
Ās

2̀ij̀
+ (β̄ − 1))C̄s

2j̀ǹ

)
es(p+ 1, q)

+
(
B̄2̀i + (β̄ − 1)B̄s

2fj̀
− β̄B̃s

2fj̀

)
ξ̄(p+ 1, q)

]

+ (β̄ − β̄2)(es(p, q + 1))T
(
C̄s

1j́ń

)T
QhC̄s

1j́ń
es(p, q + 1)

+ (β̄ − β̄2)ξ̄T (p, q + 1)
(
B̄s

1fj́

)T
QhB̄s

1fj́
ξ̄(p, q + 1)

+ (β̄ − β̄2)ξ̄T (p, q + 1)
(
B̃s

1fj́

)T
QhB̃s

1fj́
ξ̄(p, q + 1)

+ (β̄ − β̄2)(es(p+ 1, q))T
(
C̄s

2j̀ǹ

)T
QhC̄s

2j̀ǹ
es(p+ 1, q)

+ (β̄ − β̄2)ξ̄T (p+ 1, q)
(
B̄s

2fj̀

)T
QhB̄s

2fj̀
ξ̄(p+ 1, q)

+ (β̄ − β̄2)ξ̄T (p+ 1, q)
(
B̃s

2fj̀

)T
QhB̃s

2fj̀
ξ̄(p+ 1, q)

− (es(p, q + 1))TQhes(p, q + 1)
∣∣∣~(p, q)

}

and

∆V v(p, q)

,E
{
(es(p+ 1, q + 1))TQves(p+ 1, q + 1)

− (es(p+ 1, q))TQves(p+ 1, q)
∣∣~(p, q)

}

=
R∑

í,j́,ń,̀i,j̀,ǹ=1

h́íh́j́ h́ńh̀ìh̀j̀h̀ǹ

× E

{[(
Ās

1́ij́
+ (β̄ − 1)C̄s

1j́ń

)
es(p, q + 1)

+
(
B̄1́i + (β̄ − 1)B̄s

1fj́
− β̄B̃s

1fj́

)
ξ̄(p, q + 1)

+
(
Ās

2̀ij̀
+ (β̄ − 1))C̄s

2j̀ǹ

)
es(p+ 1, q)

+
(
B̄2̀i + (β̄ − 1)B̄s

2fj̀
− β̄B̃s

2fj̀

)
ξ̄(p+ 1, q)

]T
Qv

×
[(
Ās

1́ij́
+ (β̄ − 1)C̄s

1j́ń

)
es(p, q + 1)

+
(
B̄1́i + (β̄ − 1)B̄s

1fj́
− β̄B̃s

1fj́

)
ξ̄(p, q + 1)

+
(
Ās

2̀ij̀
+ (β̄ − 1))C̄s

2j̀ǹ

)
es(p+ 1, q)
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+
(
B̄2̀i + (β̄ − 1)B̄s

2fj̀
− β̄B̃s

2fj̀

)
ξ̄(p+ 1, q)

]

+ (β̄ − β̄2)(es(p, q + 1))T
(
C̄s

1j́ń

)T
QvC̄s

1j́ń
es(p, q + 1)

+ (β̄ − β̄2)ξ̄T (p, q + 1)
(
B̄s

1fj́

)T
QvB̄s

1fj́
ξ̄(p, q + 1)

+ (β̄ − β̄2)ξ̄T (p, q + 1)
(
B̃s

1fj́

)T
QvB̃s

1fj́
ξ̄(p, q + 1)

+ (β̄ − β̄2)(es(p+ 1, q))T
(
C̄s

2j̀ǹ

)T
QvC̄s

2j̀ǹ
es(p+ 1, q)

+ (β̄ − β̄2)ξ̄T (p+ 1, q)
(
B̄s

2fj̀

)T
QvB̄s

2fj̀
ξ̄(p+ 1, q)

+ (β̄ − β̄2)ξ̄T (p+ 1, q)
(
B̃s

2fj̀

)T
QvB̃s

2fj̀
ξ̄(p+ 1, q)

− (es(p, q + 1))TQves(p, q + 1)
∣∣∣~(p, q)

}
.

Then, it follows from (27) that

I(p, q) ≤∆V h(p, q) + ∆V v(p, q)− ξ̄T (p+ 1, q)ξ̄(p, q + 1)

− ξ̄T (p+ 1, q)ξ̄(p+ 1, q) + ¯̺21,2

=E

R∑

í,j́,ń,̀i,j̀,ǹ=1

h́íh́j́ h́ńh̀ìh̀j̀h̀ǹ

(
η̄(p, q)T (p, q)

× Λ
s,́i,j́,ń,̀i,j̀,ǹ

η̄(p, q)(p, q) + ¯̺21,2

∣∣∣~(p, q)
)
, (29)

whereη̄(p, q) ,
[
ηT (p, q) ξ̄T (p, q + 1) ξ̄T (p+ 1, q)

]T
.

Based on the fact thatΛ
s,́i,j́,ń,̀i,j̀,ǹ

< 0, one has

I(p, q) ≤

R∑

í,j́,ń,̀i,j̀,ǹ=1

h́íh́j́ h́ńh̀ìh̀j̀ h̀ǹE
{

− λmin

(
− Λ

s,́i,j́,ń,̀i,j̀,ǹ
)
‖η(p, q)‖2 + ¯̺21,2

}
. (30)

Recalling the definition of the Lyapunov-like functional in
(19), it is not difficult to verify that

E{V (p, q)} ≤E

{
λmax

(
Qh
)
‖es(p, q + 1)‖2

+ λmax

(
Qv
)
‖es(p+ 1, q)‖2

}

≤max
{
λmax

(
Qh
)
, λmax

(
Qv
)}

‖η(p, q)‖2 (31)

and

E{V (p, q)} ≥E

{
λmin

(
Qh
)
‖es(p, q + 1)‖2

+ λmin

(
Qv
)
‖es(p+ 1, q)‖2

}

≥min
{
λmin

(
Qh
)
, λmin

(
Qv
)}

‖η(p, q)‖2. (32)

For any integerT ∈ Z
+, summing up both sides of the

inequality (30) forp andq varying from0 to T − 1 yields

T −1∑

q=0

T −1∑

p=0

E{I(p, q)}

=E

{
T −1∑

q=0

(
V h(T , q + 1)− V h(0, q + 1)

)

+
T −1∑

p=0

(
V v(p+ 1, T )− V v(p+ 1, 0)

)}

≤E

{
T −1∑

q=0

T −1∑

p=0

R∑

í,j́,ń,̀i,j̀,ǹ=1

h́íh́j́ h́ńh̀ìh̀j̀ h̀ǹ

×
[
− λmin

(
− Λ

s,́i,j́,ń,̀i,j̀,ǹ
)
‖η(p, q)‖2 + ¯̺21,2

]}
, (33)

which can be rewritten as

E

{
R∑

í,j́,ń,̀i,j̀,ǹ=1

h́íh́j́ h́ńh̀ìh̀j̀ h̀ǹE

{
T −1∑

q=0

(
V h(T , q + 1)

− V h(0, q + 1)
)}

+

T −1∑

p=0

(
V v(p+ 1, T )− V v(p+ 1, 0)

)}

≤E

{
R∑

í,j́,ń,̀i,j̀,ǹ=1

h́íh́j́ h́ńh̀ìh̀j̀ h̀ǹ

T −1∑

q=0

T −1∑

p=0

[

− λmin

(
− Λ

s,́i,j́,ń,̀i,j̀,ǹ
)
‖η(p, q)‖2 + ¯̺21,2

]}

or, equivalently,

E

{
T −1∑

q=0

(
V h(T , q + 1)− V h(0, q + 1)

)

+

T −1∑

p=0

(
V v(p+ 1, T )− V v(p+ 1, 0)

)}

=E

{
T −1∑

q=0

T −1∑

p=0

1

T

(
es(T , q + 1)Qhes(T , q + 1)

+ es(p+ 1, T )Qves(p+ 1, T )

− es(T , 0)Qhes(T , 0)− es(0, T )Qves(0, T )
)}

≤E

{
T −1∑

q=0

T −1∑

p=0

[
− λmin

(
− Λ

s,́i,j́,ń,̀i,j̀,ǹ
)
‖η(p, q)‖2

+ ¯̺21,2

]}

≤

T −1∑

q=0

T −1∑

p=0

¯̺21,2. (34)

From (11), (26b), (31), (32) and (34), we obtain

E

{
T −1∑

q=0

T −1∑

p=0

(
‖es(T , q + 1)‖2 + ‖es(p+ 1, T )‖2

)}

≤
1

min
{
λmin

(
Qh
)
, λmin

(
Qv
)}E

{
T −1∑

q=0

T −1∑

p=0

(
T ¯̺21,2

+max
{
λmax

(
Qh
)
, λmax

(
Qv
)}

×

(
‖es(0, q + 1)‖2 + ‖es(p+ 1, 0)‖2

)}
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≤E

{
T −1∑

q=0

T −1∑

p=0

(
T

(
¯̺21,2 +max

{
λmax

(
Qh
)
, λmax

(
Qv
)}

× ̺23

))/
min

{
λmin

(
Qh
)
, λmin

(
Qv
)}
}

<E

{
T −1∑

q=0

T −1∑

p=0

T ρ2s

}
, (35)

which implies

E

{∥∥∥∥
es(T , q + 1)
es(p+ 1, T )

∥∥∥∥
2
}
< T ρ2s. (36)

Therefore, according to Definition 2, we can conclude that the
error dynamics (15) with̄ξ(p, q) 6= 0 is (̺1, ̺2, ̺3, ρs)-secure
in the mean-square sense. The proof is now complete.

Up to now, some sufficient conditions have been derived in
Theorems 1-2 to guarantee theglobally asymptotic stability
and the(̺1, ̺2, ̺3, ρs)-security of the local error dynamics.
Next, we shall deal with the estimation fusion issues of these
local state estimators. In this regard, an estimation fusion
scheme will be provided in the next corollary. Meanwhile,
it should be pointed out that the matrix inequalities (26a)
are actually unsolvable due to the product terms of matrix
variables. To address such a problem and design the gain
parameters, a new theorem (Theorem 3) will be offered in
the following subsection.

B. Fusion of local state estimators and parameter design

In this paper, the fused state estimate at fusion center is
expressed by

x̂(p, q) =

S∑

s=1

αsx̂
s, (37)

whereαs (0 ≤ αs ≤ 1) are the fusion coefficients satisfy-

ing
S∑

s=1
αs = 1. Similar to the definitions of̃es(p, q) and

es(p, q), we let x̃(p, q) , x(p, q) − x̂(p, q) and e(p, q) ,[
xT (p, q)

(
x̃(p, q)

)T ]T
.

Corollary 1. Let the positive scalars̺1 in (2), ̺2 in (8), ̺3
in (11), ρs in (17) and ρ be given. Based on thesth local
2-D fuzzy state estimator (9) with the globally asymptotical
stability and(̺1, ̺2, ̺3, ρs)-security, the fused state estimation
error e(p, q) obtained from the fusion mechanism (37) is
(̺1, ̺2, ̺3, ρ)-secure if there exist parametersαs (0 ≤ αs ≤ 1
and s ∈ S) such that the following constraint holds

S∑

s=1

αsρs
2 < ρ2. (38)

Proof: In light of (37), the augmented error vectore(p, q)
can be rewritten as

e(p, q) =

[
x(p, q)

x(p, q)− x̂(p, q)

]

=




x(p, q)

x(p, q) −
S∑

s=1
αsx̂

s





=




S∑
s=1

αsx(p, q)

S∑
s=1

αsx(p, q)−
S∑

s=1
αsx̂

s




=

S∑

s=1

αs

[
x(p, q)

x(p, q)− x̂s(p, q)

]

=

S∑

s=1

αse
s(p, q). (39)

Then, it is easy to obtain that
∥∥∥∥
e(T , q + 1)
e(p+ 1, T )

∥∥∥∥
2

=

∥∥∥∥∥∥∥∥

S∑
s=1

αse
s(T , q + 1)

S∑
s=1

αse
s(p+ 1, T )

∥∥∥∥∥∥∥∥

2

=

[ (
S∑

s=1
αse

s(T , q + 1)

)T (
S∑

s=1
αse

s(p+ 1, T )

)T
]T

×




S∑
s=1

αse
s(T , q + 1)

S∑
s=1

αse
s(p+ 1, T )




=

( S∑

s=1

αse
s(T , q + 1)

)T S∑

s=1

αse
s(T , q + 1)

+

( S∑

s=1

αse
s(p+ 1, T )

)T S∑

s=1

αse
s(p+ 1, T ). (40)

By using Lemma 1 again, we have
∥∥∥∥
e(T , q + 1)
e(p+ 1, T )

∥∥∥∥
2

≤

S∑

s=1

αs

[(
es(T , q + 1)

)T
es(T , q + 1)

]

+

S∑

s=1

αs

[(
es(p+ 1, T )

)T
es(p+ 1, T )

]

=
S∑

s=1

αs

[(
es(T , q + 1)

)T
es(T , q + 1)

+
(
es(p+ 1, T )

)T
es(p+ 1, T )

]

=

S∑

s=1

αs

∥∥∥∥
es(T , q + 1)
es(p+ 1, T )

∥∥∥∥
2

. (41)

Note that the(̺1, ̺2, ̺3, ρs)-securityof the sth local state
estimator is guaranteed under the conditions (26a)-(26b) in
Theorem 2. Then, it follows from (17) that

∥∥∥∥
e(T , q + 1)
e(p+ 1, T )

∥∥∥∥
2

≤

S∑

s=1

αsT ρs
2 = T

S∑

s=1

αsρs
2. (42)

Subsequently, it is obtained from condition (38) in Corollary 1
and (42) that

∥∥∥∥
e(T , q + 1)
e(p+ 1, T )

∥∥∥∥
2

≤T ρ2, (43)
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which implies that the fused state estimation errore(p, q) is
(̺1, ̺2, ̺3, ρ)-secure. The proof is complete.

Now, we are in a position to design the gain parameters and
the fusion coefficients.

Theorem 3. Let the positive scalars̺ 1 in (2), ̺2 in (8),
̺3 in (11), ρs in (17) and ρ, as well as the nonzero slack
matrix S be given. The gain matrices of the local 2-D fuzzy
state estimator (9) satisfying globally asymptotical stability
and (̺1, ̺2, ̺3, ρs)-security in the mean-square sense can
be readily obtained if there exist matricesQh and Qv, and
parametersAs

1fi, A
s
2fi, B

s
1fi, B

s
2fi, and α̃s (0 ≤ α̃s ≤ 1 and

s ∈ S) such that the following matrix inequalities hold:





Θs,́i,j́,ń,̀i,j̀,ǹ < 0, (44a)

¯̺21,2 +max
{
λmax

(
Qh
)
, λmax

(
Qv
)}
̺23

−min
{
λmin

(
Qh
)
, λmin

(
Qv
)}
ρ2s < 0, (44b)

−Qh < 0, (44c)

−Qv < 0, (44d)


−ρ2 ∗ ∗ ∗ ∗
α̃1ρ1 −1 ∗ ∗ ∗
α̃2ρ2 0 −1 ∗ ∗

· · ·
. .. ∗

α̃SρS 0 0 0 −1



< 0, (44e)

where í, j́, ń, ì, j̀, ǹ ∈ I, s ∈ S and

Θs,́i,j́,ń,̀i,j̀,ǹ ,

[
Θs,́i,j́,ń,̀i,j̀,ǹ

11 ∗

Θs,́i,j́,ń,̀i,j̀,ǹ
21 Θs,́i,j́,ń,̀i,j̀,ǹ

22

]
,

Θs,́i,j́,ń,̀i,j̀,ǹ
11 ,




−Qh ∗ ∗ ∗ ∗ ∗
0 −Qv ∗ ∗ ∗ ∗
0 0 −I ∗ ∗ ∗
0 0 0 −I ∗ ∗

Θ5,1 Θ5,2 Θ5,3 Θ5,4 Θ5 ∗
Θ6,1 0 0 0 0 Θ6



,

Θs,́i,j́,ń,̀i,j̀,ǹ
21 ,




0 0 Θ7,3 0 0 0
0 0 Θ8,3 0 0 0
0 Θ9,2 0 0 0 0
0 0 0 Θ10,4 0 0
0 0 0 Θ11,4 0 0



,

Θs,́i,j́,ń,̀i,j̀,ǹ
22 ,diag{Θ6,Θ6,Θ6,Θ6,Θ6}, Θ8,3 , B̃s

1fj́
,

Θ5,1 ,Ās

1́ij́
+ (β̄ − 1)C̄s

1j́ń
, Θ6,1 , C̄s

1j́ń
,

Θ5,2 ,Ās

2̀ij̀
+ (β̄ − 1))C̄s

2j̀ǹ
, Θ7,3 , B̄s

1fj́
,

Θ5,3 ,B̄1́i + (β̄ − 1)B̄s

1fj́
− β̄B̃s

1fj́
,

Θ5,4 ,B̄2̀i + (β̄ − 1)B̄s

2fj̀
− β̄B̃s

2fj̀
,

Θ5 ,S
(
Qh +Qv

)
ST − ST − S,

Θ6 ,
S
(
Qh +Qv

)
ST − ST − S

β̄ − β̄2
,

Θ9,2 ,C̄s

2j̀ǹ
, Θ10,4 , B̄s

2fj̀
, Θ11,4 , B̃s

2fj̀
.

In this case, the(̺1, ̺2, ̺3, ρ)-security of the fused estimation
is ensured, and the fusion coefficientsαs in (37) are derived
by lettingαs = α̃2

s.

Proof: With the help of Schur Complement [50], the

matrix inequalitiesΛ
s,́i,j́,ń,̀i,j̀,ǹ

< 0 in Theorem 2 can be
rewritten as

Θ
s,́i,j́,ń,̀i,j̀,ǹ

< 0, (45)

where

Θ
s,́i,j́,ń,̀i,j̀,ǹ

,

[
Θ

s,́i,j́,ń,̀i,j̀,ǹ

11 ∗

Θ
s,́i,j́,ń,̀i,j̀,ǹ

21 Θ
s,́i,j́,ń,̀i,j̀,ǹ

22

]
,

Θ
s,́i,j́,ń,̀i,j̀,ǹ

11 ,




−Qh ∗ ∗ ∗ ∗ ∗
0 −Qv ∗ ∗ ∗ ∗
0 0 −I ∗ ∗ ∗
0 0 0 −I ∗ ∗

Θ5,1 Θ5,2 Θ5,3 Θ5,4 Θ5 ∗
Θ6,1 0 0 0 0 Θ6



,

Θ
s,́i,j́,ń,̀i,j̀,ǹ

21 ,




0 0 Θ7,3 0 0 0
0 0 Θ8,3 0 0 0
0 Θ9,2 0 0 0 0
0 0 0 Θ10,4 0 0
0 0 0 Θ11,4 0 0



,

Θ
s,́i,j́,ń,̀i,j̀,ǹ

22 ,diag{Θ6,Θ6,Θ6,Θ6,Θ6},

Θ5 , −
(
Qh +Qv

)−1
,

Θ6 , −
1

β̄ − β̄2

(
Qh +Qv

)−1
.

Noting thatQh > 0 andQv > 0, one has
(
Qh +Qv

)−1
+ S

(
Qh +Qv

)
ST − ST − S

=
[
S −

(
Qh +Qv

)−1
](
Qh +Qv

)
ST

−
[
S −

(
Qh +Qv

)−1
]

=
[
ST −

(
Qh +Qv

)−1
]T (

Qh +Qv
)

×
[
ST −

(
Qh +Qv

)−1
]

>0

⇐⇒−
(
Qh +Qv

)−1
< S

(
Qh +Qv

)
ST − ST − S, (46)

which impliesΘ
s,́i,j́,ń,̀i,j̀,ǹ

< Θs,́i,j́,ń,̀i,j̀,ǹ. Then, the condi-
tion (26a) in Theorem 2 is ensured by (44a). Meanwhile, it
is easy to see that the scalar inequality (26b) in Theorem 2
is equivalent to (44b). The positivity of matricesQh andQv

in Theorem 2 is satisfied according to the constraints (44c)
and (44d). In other words, the conditions in Theorem 2 are all
guaranteed by (44a)-(44d). As such, the globally asymptotical
stability and the(̺1, ̺2, ̺3, ρs)-securityof the sth local 2-D
fuzzy error dynamics (15) are simultaneously ensured.

On the other hand, by noting thatαs = α̃2
s, it can be easily

checked from (44e) and Schur Complement [50] that

S∑

s=1

α̃2
sρs

2 =

S∑

s=1

αsρs
2 < ρ2, (47)

which implies that the(̺1, ̺2, ̺3, ρ)-security of the fused
estimation is guaranteed. The proof is now complete.
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Remark 2. It is worth mentioning that the product terms of
matrix variables have been avoided in Theorem 3 by utilizing
the slack matrix technique. In this paper, the slack matrix
is selected prior to solving the linear matrix inequalities
(44a)-(44d). The main advantages of such a manipulation
are twofold. Firstly, it is not necessary to choose a special
structure for the slack matrixS since there is no product term
composed ofS and the gain matrices (e.g.SĀs

1́ij́
, SB̄s

1fj́
,

and SzC̄s

1j́ń
). Secondly, the gain matrices of thesth local

fuzzy estimator can be directly derived without any extra
manipulations such as the contragradient transformation and
the reversible transformation. In this sense, the known slack
matrix can facilitate the gain design of the desired 2-D fuzzy
estimator. More specifically, theS is required to be nonzero
in Theorem 3, and its simple structure (e.g. diagonal form)
could further reduce the computational burden. In other words,
the matrix S should be chosen to be nonzero, structurally
simple and practically meaningful. It is seen from Theorem
2 that the security of thesth 2-D fuzzy error dynamics
(15) is heavily dependent on the amplitudes of bothν(p, q)
and ξ(p, q), which means that an excessive large intensity
of the disturbance/deception signals (e.g.‖ν(p, q)‖ > ̺1 or
‖ξ(p, q)‖ > ̺2) might result in the undesired insecurity for
the estimation error system.

Remark 3. In this paper, we have dealt with the security-
guaranteed state estimation problem for a class of 2-D
fuzzy NSs with multiple sensor arrays and deception attacks.
Compared to the existing results, our main results exhibit
the following distinct characteristics: 1) a novel security-
guaranteed state estimation problem is investigated where an
estimation fusion scheme is developed based on a set of 2-D
fuzzy local state estimators; and 2) the information about the
globally asymptotic stability, the(̺1, ̺2, ̺3, ρs)-security of the
local error dynamics, and(̺1, ̺2, ̺3, ρ)-security of the fused
counterpart are all reflected in Theorems 1-3.

IV. I LLUSTRATIVE EXAMPLE

Consider a 2-D T-S fuzzy system in the form of (1) with
the number ofIF-THEN rules beingR = 2. The detailed
parameters are given as follows:

A11 =

[
−0.52 0.02
0.02 −0.51

]
, A12 =

[
−0.43 0.11
0.08 −0.54

]
,

A21 =

[
−0.33 0.05
0.03 −0.32

]
, A22 =

[
−0.30 0.04
0.02 −0.41

]
,

B11 =

[
−0.25 0.05
0.07 −0.53

]
, B12 =

[
−0.23 0.12
0.01 −0.62

]
,

B21 =

[
−0.34 0.14
0.02 −0.32

]
, B22 =

[
−0.45 0.01
0.01 −0.52

]
.

The number of multiple sensor arrays is taken asS = 3,
and the coefficient matrices in the measurement model (5) are
given by

C11 =

[
−0.26 0.06
0.02 −0.41

]
, C12 =

[
−0.18 0.01
−0.03 −0.26

]
,

C13 =

[
−0.39 0.02
0.01 −0.33

]
, C21 =

[
−0.30 0.02
0.03 −0.62

]
,

C22 =

[
−0.15 0.01
0.02 −0.41

]
, C23 =

[
−0.27 0.03
0.01 −0.30

]
,

D11 =

[
−0.42 0.02
−0.04 −0.56

]
, D12 =

[
−0.13 0.01
−0.02 −0.24

]
,

D13 =

[
−0.21 0.02
0.01 −0.12

]
, D21 =

[
−0.32 0.03
−0.12 −0.21

]
,

D22 =

[
−0.21 0
0.01 −0.32

]
, D23 =

[
−0.43 0.01

0 −0.21

]
.

The success probability of the deception attacks is assumed
to be β̄ = 0.32. The constants in conditions (2), (8), (11) and
(38) are, respectively, set asρ1 = 1.2, ρ2 = 0.7, ρ3 = 1.1 and
ρ = 2.

Let us defineS = diag{S11, S22}, where

S11 =

[
−0.0008 0

0 −0.0009

]
, S22 =

[
−0.0006 0

0 −0.0007

]
.

By solving the matrix constraints (44a)-(44e) in Theorem 3
with the help of control toolbox of MATLAB software, we
can obtain

Qh11 =

[
36.19 −8.95
−8.95 59.95

]
, Qh21 =

[
6.56 −7.96
−7.96 27.90

]
,

Qh22 =

[
35.72 −8.79
−8.79 59.20

]
, Qv11 =

[
33.14 −1.81
−1.81 48.57

]
,

Qv21 =

[
4.05 −1.46
−1.46 16.95

]
, Qv22 =

[
32.93 −1.72
−1.72 48.18

]
.

Meanwhile, the gain matrices of three local state estimators
are readily obtained as follows:

A1
1f1 =

[
−0.27 0.04
0.04 −0.35

]
, A2

1f1 =

[
−0.28 0.04
0.04 −0.35

]
,

A3
1f1 =

[
−0.29 0.05
0.02 −0.41

]
, A1

1f2 =

[
−0.25 0.07
0.06 −0.35

]
,

A2
1f2 =

[
−0.26 0.10
0.14 −0.56

]
, A3

1f2 =

[
−0.26 0.08
0.06 −0.40

]
,

A1
2f1 =

[
−0.14 0.04
0.02 −0.24

]
, A2

2f1 =

[
−0.15 0.03
0.03 −0.24

]
,

A3
2f1 =

[
−0.15 0.03
0.02 −0.28

]
, A1

2f2 =

[
−0.15 0.04
0.02 −0.19

]
,

A2
2f2 =

[
−0.17 0.06
0.01 −0.37

]
, A3

2f2 =

[
−0.16 0.04
0.03 −0.20

]
,

B1
1f1 =

[
−0.38 0.03
0.15 −0.47

]
, B2

1f1 =

[
−0.46 0.13
0.26 −0.77

]
,

B3
1f1 =

[
−0.20 0.06
0.20 −0.51

]
, B1

1f2 =

[
−0.32 0.07
0.12 −0.41

]
,

B2
1f2 =

[
−0.54 0.13
−0.01 −0.85

]
, B3

1f2 =

[
−0.27 0.09
0.17 −0.45

]
,

B1
2f1 =

[
−0.50 0.01
0.17 −0.34

]
, B2

2f1 =

[
−0.77 0.10
0.21 −0.62

]
,

B3
2f1 =

[
−0.38 0.06
0.18 −0.66

]
, B1

2f2 =

[
−0.43 0.01
0.11 −0.19

]
,

B2
2f2 =

[
−0.58 0.15
0.81 −0.97

]
, B3

2f2 =

[
−0.32 0.09
0.10 −0.37

]
.
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The fusion coefficients are acquired asα1 = 0.23, α2 =
0.44 andα3 = 0.33, and the condition (38) is thus satisfied
with

∑S

s=1 αsρs
2 = 0.9461 < ρ2 = 4.

To simulate the dynamic process of the fuzzy state estima-
tors, the normalized membership functions are chosen as

h1(p, q) =
sin(x1(p, q)) + pq

2 + cos(x1(p, q)) + pq
, h2(p, q) = 1− h1(p, q).

The disturbance input and deception signal are, respective-

ly, selected asν(p, q) = [arccot(
1

pq
) arccot(

1

p+ q
)]T

and ξ(p, q) =
[
0.23 0.56

]T
. In addition, we have

ψh(p, q) = 30n(p, q)
[
arccot(pq) cos(pq)

]T
andψv(p, q) =

30n(p, q)
[
arccot(pq) cos(p+ q)

]T
, wheren(p, q) is a nor-

mally distributed stochastic variable with mean zero and
varianceσ2 = 1. ψh(0, 0) = ψv(0, 0) = 0. Moreover, we
setbh = 45 andbv = 50. It can be verified that the conditions
(2), (8) and (11) are met under the aforementioned disturbance
input, deception attack and boundary conditions.
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Fig. 2: The binary white sequenceβ(p, q).

The value of the random binary white sequenceβ(p, q) is
shown in Fig. 2, whereβ(p, q) = 1 means that the deception
attack is successful. The error trajectory of the fused estima-
tion is depicted in Fig. 3, which also implies the(̺1, ̺2, ̺3, ρ)-
securityof the 2-D fuzzy error dynamics (15). To demonstrate
the advantages of the proposed estimation fusion scheme,
the fused estimation error in case of nonconvergent error of
the 3rd local estimator (Fig. 4) is shown in Fig. 5, which
clearly illustrates that the fusion approach can still function
even though one of the local estimators lost efficacy. In order
to analyze the impact of the intensity of the network attack
on the system performance, the fused estimation results in
different probabilities of occurrence ofβ(p, q) (i.e. β̄ = 0.12
and β̄ = 0.92) are revealed in Fig. 6, where the indexp
is fixed to 40 for sake of examination convenience. Fig. 7
shows the actual occurrence ofβ(p, q) whenp = 40. Figs. 6-
7 visibly indicate that the fused estimation error is inferior to
the case of higher̄β. To implement a comparison with the
case of no multiple sensor arrays, the matricesC1

1 , C3
1 , C1

2 ,
C3

2 , D1
1, D3

1, D1
2 andD3

2 are all set to be zero, which means
only a single sensor array is used during the measurement
procedure. Fig. 8 illustrates the state trajectories of the fuzzy
estimation error under such case, from which we see a single
sensor measurement may induce a nonconvergent estimation
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Fig. 3: Estimation error under the proposed fusion scheme.
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Fig. 4: Nonconvergent estimation error of local fuzzy estimator (s=3).

error. Performance improvement offered by the technique of
multiple sensor arrays is confirmed by the result comparison
on Fig. 3 and Fig. 8. Moreover, the emanative state plotted in
Fig. 9 is the estimation error by overlooking deception attacks
and fuzzy rules, and the comparison effects substantiate the
studied fuzzy estimation solution.
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Fig. 5: Estimation error under the proposed fusion scheme in case of
nonconvergent error of the 3rd local estimator.
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V. CONCLUSIONS

In this paper, the security-guaranteed fuzzy state estimation
problem has been tackled for a class of 2-D NSs with multiple
sensor arrays and deception attacks. In order to enhance the
observation diversity and overcome the measurement obsta-
cles, multiple sensor arrays have been employed in this paper.
A Bernoulli distributed white sequence with known statistical
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Fig. 7: The binary white sequenceβ(p, q) with different β̄.
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Fig. 8: Estimation error under a single sensor.

property has been introduced to characterize the deception
attacks launched by malicious attackers. Accordingly, a set
of local 2-D fuzzy state estimators has been constructed, and
some sufficient conditions have been derived to guarantee the
globally asymptotical stabilityand (̺1, ̺2, ̺3, ρs)-securityof
the local error dynamics in the mean-square sense. Moreover,
the estimation fusion problem has also been considered for the
developed local fuzzy estimators, and a sufficient condition
has been established to ensure the(̺1, ̺2, ̺3, ρ)-security of
the fused estimation system. Finally, the proposed 2-D fuzzy
state estimation scheme has been validated via a numerical
example.
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worked fusion estimation with multiple uncertainties and time-correlated
channel noise,Information Fusion, vol. 54, pp. 161-171, 2020.

[30] D. Ciuonzo, A. Aubry, and V. Carotenuto, Rician MIMO channel- and
jamming-aware decision fusion,IEEE Transactions on Signal Process-
ing, vol. 65, no. 15, pp. 3866-3880, 2017.

[31] S. Sun, F. Peng, and H. Lin, Distributed asynchronous fusion estimator
for stochastic uncertain systems with multiple sensors of different fading
measurement rates,IEEE Transactions on Signal Processing, vol. 66,
no. 3, pp. 641-653, 2018.

[32] W. A. Zhang and L. Shi, Sequential fusion estimation for clustered
sensor networks,Automatica, vol. 89, pp. 358-363, 2018.

[33] Z. Lu and G. Guo, Control and communication scheduling co-design for
networked control systems: a survey,International Journal of Systems
Science, vol. 54, no. 1, pp. 189-203, 2023.

[34] X. Wang, Y. Sun, and D. Ding, Adaptive dynamic programming for
networked control systems under communication constraints: a survey
of trends and techniques,International Journal of Network Dynamics
and Intelligence, vol. 1, no. 1, pp. 85-98, Dec. 2022.

[35] Y. H. Liu, F. H. Huang, and H. Yang, A fair dynamic content store-based
congestion control strategy for named data networking,Systems Science
& Control Engineering, vol. 10, no. 1, pp. 73-78, 2022.

[36] Y. Yuan, X. Tang, W. Zhou, W. Pan, X. Li, H.-T. Zhang, H. Ding, and
J. Goncalves, Data driven discovery of cyber physical systems,Nature
Communications, vol. 10, no. 1, pp. 1-9, 2019.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/TFUZZ.2023.3262609, IEEE Transactions on Fuzzy Systems



FINAL VERSION 15

[37] X. Luo, H. Wu, Z. Wang, J. Wang, and D. Meng, A novel approach to
large-scale dynamically weighted directed network representation,IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 44,
no. 12, pp. 9756-9773, Dec. 2022.

[38] X. R. Li, Y. Zhu, J. Wang, and C. Han, Optimal linear estimation fusion-
Part I: Unified fusion rules,IEEE Transactions on Information Theory,
vol. 49, no. 9, pp. 2192-2208, 2003.

[39] S. Lee and V. Shin, Computationally efficient multisensor fusion estima-
tion algorithms,Journal of Dynamic Systems, Measurement and Control,
vol. 132, no. 1, art. no. 024503, 2010.

[40] D. Yang, J. Lu, H. Dong, and Z. Hu, Pipeline signal feature extraction
method based on multi-feature entropy fusion and local linear embed-
ding, Systems Science & Control Engineering, vol. 10, no. 1, pp. 407-
416, 2022.

[41] Z. Hu, J. Hu, H. Tan, J. Huang, and Z. Cao, Distributed resilient fusion
filtering for nonlinear systems with random sensor delay under round-
robin protocol,International Journal of Systems Science, vol. 53, no. 13,
pp. 2786-2799, 2022.

[42] Y. Luo, Z. Wang, J. Liang, G. Wei, and F. E. Alsaadi,H∞ control
for 2-D fuzzy systems with interval time-varying delays and missing
measurements,IEEE Transactions on Cybernetics, vol. 47, no. 2,
pp. 365-377, 2017.

[43] D. Wang, Z. Wang, B. Shen, and F. E. Alsaadi, Security-guaranteed
filtering for discrete-time stochastic delayed systems with randomly
occurring sensor saturations and deception attacks,International Journal
of Robust and Nonlinear Control, vol. 27, no. 7, pp. 1194-1208, 2017.

[44] H. Tao, H. Tan, Q. Chen, H. Liu, and J. Hu,H∞ state estimation
for memristive neural networks with randomly occurring DoS attacks,
Systems Science & Control Engineering, vol. 10, no. 1, pp. 154-165,
2022.

[45] Z.-H. Pang, L.-Z. Fan, K. Liu and G.-P. Liu, Detection of stealthy false
data injection attacks against networked control systems via active data
modification, Information Sciences, vol. 546, pp. 192-205, 2021.

[46] Z.-H. Pang, L.-Z. Fan, Z. Dong, Q.-L. Han, and G.-P. Liu, False
data injection attacks against partial sensor measurements of networked
control systems,IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 69, no. 1, pp. 149-153, 2022.

[47] Z. H. Pang, L. Z. Fan, H. Guo, Y. Shi, R. Chai, J. Sun, and G. Liu,
Security of networked control systems subject to deception attacks:
a survey, International Journal of Systems Science, vol. 53, no. 16,
pp. 3577-3598, 2022.

[48] J. Wu, C. Peng, H. Yang, and Y. L. Wang, Recent advances in event-
triggered security control of networked systems: a survey,International
Journal of Systems Science, vol. 53, no. 12, pp. 2624-2643, 2022.

[49] D. Zhao, Z. Wang, D. W. C. Ho, and G. Wei, Observer-based PID
security control for discrete time-delay systems under cyber-attacks,
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51,
no. 6, pp. 3926-3938, 2021.

[50] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan,Linear Matrix
Inequalities in Systems and Control Theory. Philadelphia: Society for
Industrial and Applied Mathematics (SIAM), USA, 1994.

[51] Z. Duan, I. Ghous, and J. Shen, Fault detection observer design for
discrete-time 2-D TS fuzzy systems with finite-frequency specifications,
Fuzzy Sets and Systems, vol. 392, pp. 24-45, 2020.

[52] Z. Duan, I. Ghous, S. Huang, and J. Fu, Fault detection observer
design for 2-D continuous nonlinear systems with finite frequency
specifications,ISA Transactions, vol. 84, pp. 1-11, 2019.

[53] D. Li, J. Liang, and F. Wang, Observer-based output feedbackH∞

control of two-dimensional systems with periodic scheduling protocol
and redundant channels,IET Control Theory & Applications, vol. 14,
no. 20, pp. 3713-3722, 2020.

[54] L. Li, K. Tanaka, Y. Chai, and Q. Liu,H∞ tracking control of two-
dimensional fuzzy networked systems,Optimal Control Applications
and Methods, vol. 41, no. 5, pp. 1657-1677, 2020.

[55] W. Ji, J. Qiu, S. F. Su, and H. Zhang, Fuzzy observer-based output
feedback control of continuous-time nonlinear two-dimensional systems,
IEEE Transactions on Fuzzy Systems, to be published, doi: 10.1109/T-
FUZZ.2022.3201282

[56] W. Ji and J. Qiu, Observer-based output feedback control of nonlinear
2-D systems via fuzzy-affine models,IEEE Transactions on Instrumen-
tation and Measurement, vol. 71, pp. 1-10, 2022.

[57] L. Li, Observer-basedH∞ controller for 2-D T-S fuzzy model,Inter-
national Journal of Systems Science, vol. 47, no. 14, pp. 3455-3464,
2016.

[58] E. D. Sontag, Smooth stabilization implies coprime factorization,IEEE
Transactions on Automatic Control, vol. 34, no. 4, pp. 435-443, 1989.

[59] L. Li and W. Wang, Fuzzy modeling andH∞ control for general 2D
nonlinear systems,Fuzzy Sets and Systems, vol. 207, pp. 1-26, 2012.

Yuqiang Luo was born in Guizhou Province, China,
in 1985. He received the B.Sc. degree in mechanism
design, manufacturing and automatization, the M.Sc.
degree in control engineering, and the PhD degree
in control science and control engineering in 2009
and 2015, 2018, respectively, all from the University
of Shanghai for Science and Technology, Shanghai,
China.

Dr. Luo is now a Senior Engineer in the Network
Center of the University of Shanghai for Science and
Technology, Shanghai, China. His current research

interests include nonlinear stochastic control and filtering theory, multidimen-
sional systems, and network communication systems. He is a very active
reviewer for many international journals.

Zidong Wang (SM’03-F’14) received the B.Sc. de-
gree in mathematics in 1986 from Suzhou Uni-
versity, Suzhou, China, and the M.Sc. degree in
applied mathematics in 1990 and the Ph.D. degree
in electrical engineering in 1994, both from Nanjing
University of Science and Technology, Nanjing, Chi-
na.

He is currently Professor of Dynamical Systems
and Computing in the Department of Computer
Science, Brunel University London, U.K. From 1990
to 2002, he held teaching and research appointments

in universities in China, Germany and the UK. Prof. Wang’s research interests
include dynamical systems, signal processing, bioinformatics, control theory
and applications. He has published more than 700 papers in international
journals. He is a holder of the Alexander von Humboldt Research Fellowship
of Germany, the JSPS Research Fellowship of Japan, William Mong Visiting
Research Fellowship of Hong Kong.

Prof. Wang serves (or has served) as the Editor-in-Chief forInternational
Journal of Systems Science, the Editor-in-Chief forNeurocomputing, the
Editor-in-Chief for Systems Science & Control Engineering, and an Asso-
ciate Editor for 12 international journals including IEEE Transactions on
Automatic Control, IEEE Transactions on Control Systems Technology, IEEE
Transactions on Neural Networks, IEEE Transactions on Signal Processing,
and IEEE Transactions on Systems, Man, and Cybernetics-Part C. He is a
Member of the Academia Europaea, a Member of the European Academy
of Sciences and Arts, an Academician of the International Academy for
Systems and Cybernetic Sciences, a Fellow of the IEEE, a Fellow of the Royal
Statistical Society and a member of program committee for many international
conferences.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/TFUZZ.2023.3262609, IEEE Transactions on Fuzzy Systems



FINAL VERSION 16

Jun Hu received the B.Sc. degree in information and
computation science and M.Sc. degree in applied
mathematics from Harbin University of Science and
Technology, Harbin, China, in 2006 and 2009, re-
spectively, and the Ph.D. degree in control science
and engineering from Harbin Institute of Technolo-
gy, Harbin, China, in 2013.

From September 2010 to September 2012, he was
a Visiting Ph.D. Student in the Department of Infor-
mation Systems and Computing, Brunel University,
U.K. From May 2014 to April 2016, he was an

Alexander von Humboldt research fellow at the University of Kaiserslautern,
Kaiserslautern, Germany. From January 2018 to January 2021, he was a
research fellow at the University of South Wales, Pontypridd, U.K. He is
currently Professor in the Department of Mathematics, Harbin University
of Science and Technology, Harbin 150080, China. His research interests
include nonlinear control, filtering and fault estimation, time-varying systems
and complex networks. He has published more than 80 papers in refereed
international journals.

Dr. Hu serves as a reviewer for Mathematical Reviews, as an editor for
Neurocomputing, Journal of Intelligent and Fuzzy Systems, Neural Processing
Letters, Systems Science and Control Engineering, and as a guest editor for
International Journal of General Systems and Information Fusion.

Hongli Dong Hongli Dong (Senior Member, IEEE)
received the Ph.D. degree in control science and
engineering from the Harbin Institute of Technology,
Harbin, China, in 2012.

From 2009 to 2010, she was a Research Assistant
with the Department of Applied Mathematics, City
University of Hong Kong, Hong Kong. From 2010
to 2011, she was a Research Assistant with the De-
partment of Mechanical Engineering, The University
of Hong Kong, Hong Kong. From 2011 to 2012,
she was a Visiting Scholar with the Department of

Information Systems and Computing, Brunel University London, London,
U.K. From 2012 to 2014, she was an Alexander von Humboldt Research
Fellow with the University of Duisburg-Essen, Duisburg, Germany. She is
currently a Professor with the Artificial Intelligence Energy Research Institute,
Northeast Petroleum University, Daqing, China. She is also the Director of
the Heilongjiang Provincial Key Laboratory of Networking and Intelligent
Control, Daqing. Her research interests include robust control and networked
control systems.

Dr. Dong is a very active reviewer for many international journals.

Dong Yue is currently a professor and dean of the
Institute of Advanced Technology and College of
Automation& AI, Nanjing University of Posts and
Telecommunications. He is the Chair of IEEE IES
Technical Committee on NCS and Applications and
Chair of IEEE PES Smart Grid & Emerging Tech-
nologies Satellite Committee-China. He has served
as the Associate Editor of IEEE Industrial Elec-
tronics Magazine, IEEE Transactions on Industrial
Informatics, IEEE Transactions on Systems, Man
and Cybernetics: Systems, IEEE Transactions on

Neural Networks and Learning Systems, J. of the Franklin Institute and
International Journal of Systems Sciences, the Guest Editor of Special Issue
on New Trends in Energy Internet: Artificial Intelligence-based Control,
Network Security and Management, IEEE Transactions on Systems, Man,
and Cybernetics: Systems. He is a Fellow of the IEEE for his contribution
to network-based control and its applications to power systems. Up to now,
he has published more than 250 papers in international journals and 4 books
in Springer. He holds more than 90 patents. His research interests include
analysis and synthesis of networked control systems, multi-agent systems,
optimal control of power systems, and internet of things.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/TFUZZ.2023.3262609, IEEE Transactions on Fuzzy Systems




