
https://ietresearch.onlinelibrary.wiley.com/action/showCampaignLink?uri=uri%3A879f362e-727a-4cf8-998c-ab9ca5601835&url=https%3A%2F%2Fietresearch.onlinelibrary.wiley.com%2Fhub%2Fjournal%2F20474962%2Fhomepage%2Fcfp%3Futm_medium%3Ddisplay%26utm_source%3Ddartads%26utm_content%3DIET_ePDF_call_for_papers_feb23%26utm_term%3DNTW2&pubDoi=10.1049/ntw2.12097&viewOrigin=offlinePdf


Received: 3 April 2023 - Revised: 19 June 2023 - Accepted: 28 June 2023 - IET NetworksDOI: 10.1049/ntw2.12097

OR I G INAL RE SEARCH

Optimal intelligent edge‐servers placement in the healthcare
field

Ahmed M. Jasim1,2 | Hamed Al‐Raweshidy1

1College of Engineering, Design and Physical
Sciences, Brunel University London, London, UK

2Department of Computer Engineering, College of
Engineering, University of Diyala, Baqubah, Iraq

Correspondence

Hamed Al‐Raweshidy, Brunel University London,
Kingston Lane, Uxbridge, London UB8 3PH, UK.
Email: hamed.al-raweshidy@brunel.ac.uk

Funding information

Brunel University London

Abstract
The efficiency improvement of healthcare systems is a major national goal across the
world. However, delivering scalable and reliable healthcare services to people, while
managing costs, is a challenging problem. The most promising methods to address this
issue are based on smart healthcare (s‐health) technologies. Furthermore, the combina-
tion of edge computing and s‐health can yield additional benefits in terms of delay,
bandwidth, power consumption, security, and privacy. However, the strategic placement
of edge‐servers is crucial to achieve further cost and latency benefits. This article is
divided into two parts: an AI‐based priority mechanism to identify urgent cases, aimed at
improving quality of service and quality of experience is proposed. Then, an optimal
edge‐servers placement (OESP) algorithm to obtain a cost‐efficient architecture with
lower delay and complete coverage is presented. The results demonstrate that the pro-
posed priority mechanism algorithms can reduce the latency for patients depending on
their number and level of urgency, prioritising those with the greatest need. In addition,
the OESP algorithm successfully selects the best sites to deploy edge‐servers to achieve a
cost‐efficient system, with an improvement of more than 80%. In sum, the article in-
troduces an improved healthcare system with commendable performance, enhanced cost‐
effectiveness, and lower latency.

KEYWORD S
computer network management, computer networks, medical computing, optimal edge‐servers/cloudlet
placement, priority mechanism

1 | INTRODUCTION

The importance of healthcare has increased worldwide due to
its direct relationship with the quality of human life. An
effective and robust healthcare system leads to a strong and
confident society. However, governments and the public sec-
tors face many challenges due to the rising number of patients
year after year, as well as growing epidemiological concerns.
These challenges become more serious with the elderly pop-
ulation requiring constant monitoring. As a result, it is
becoming increasingly difficult for traditional healthcare sys-
tems, which require one‐to‐one contact between the caregiver
and patient, to expand to accommodate the growing patient
population [1]. Moreover, the financial burden brought on by
administrative and operational expenses has a propensity to
lead to system burnout. Thus, smart healthcare (s‐health)

systems are becoming increasingly necessary to meet these
requirements. Furthermore, finding smart, cost‐efficient sys-
tems that have the ability to remotely monitor and supervise
patients is a significant advancement in medical science, of-
fering reasonable solutions to both current and future prob-
lems. These systems should provide high‐quality medical care
at a limited cost to guarantee their long‐term viability [2].

S‐health is anticipated to make a substantial contribution
towards reducing hospitalisation rates and delivering telehealth
services to remote patients at a reasonable cost. This is along
with other advantages, such as accuracy, scalability, energy ef-
ficiency, configurability, and maintainability. However, the
question is how to switch from conventional healthcare sys-
tems to s‐health systems [3].

The transition of conventional healthcare practices to s‐
health has been expedited by advancements in computational

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2023 The Authors. IET Networks published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Netw. 2023;1–15. wileyonlinelibrary.com/journal/ntw2 - 1

https://doi.org/10.1049/ntw2.12097
https://orcid.org/0000-0001-9276-577X
mailto:hamed.al-raweshidy@brunel.ac.uk
https://orcid.org/0000-0001-9276-577X
http://creativecommons.org/licenses/by/4.0/
https://ietresearch.onlinelibrary.wiley.com/journal/20474962
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fntw2.12097&domain=pdf&date_stamp=2023-07-09


intelligence, mobile communication technologies, and Internet
of Things (IoT) technologies [4]. The development of artificial
intelligence (AI) will have a great impact by enhancing the
intelligence, autonomy, dynamic nature, and adaptability of
healthcare systems. These services are predicted to revolu-
tionise healthcare by expediting diagnosis and treatment pro-
cedures, lowering the cost of doctor visits, and improving the
standard of patient care.

Moreover, combining edge computing with smart health is
so versatile that it can provide short delay, save network
bandwidth, lower power consumption, as well as deliver se-
curity and data privacy benefits [4]. The strategic placement of
edge‐servers plays a crucial role in achieving these advantages,
including reduced deployment cost, minimal latency, load
balance etc. That is, the question of where edge‐servers should
be placed within a network must be considered. Moreover, the
edge‐servers placement problem (ESPP) becomes much more
important when taking into account the utilisation of edge‐
servers in a wireless local area network.

This article aims to explore the potential of using AI in
conjunction with edge computing to enhance healthcare sys-
tems and make them more sophisticated. Firstly, an intelligent
priority mechanism is proposed to identify critical patients who
require urgent medical assistance. The authors build upon their
previous HMAN environment [5] as a baseline to achieve better
Quality of Service (QoS) and Quality of Experience (QoE)
when utilising AI with edge/fog computing in the healthcare
sector. The HMAN system [5] treated all data equally, without
considering urgency, which could cause delays in treating criti-
cally ill patients. By categorising users' data into different classes,
based on patients' conditions, it becomes easier to identify and
prioritise themost severe cases, enabling them to receive prompt
and appropriate services such as sending an ambulance or
preparing necessary medical staff. The ultimate objective of this
study is to develop intelligentmonitoring and healthcare systems
for medical facilities that can dynamically regulate patient flow
based on each individual health status.

Secondly, strategic placement of edge‐servers in the
HMAN environment can significantly reduce deployment
costs and minimise the overall delay between patients and
edge‐servers, thus enhancing the performance of healthcare
applications. In regions where multiple MCs exist, it is not
necessary to deploy edge‐servers at each MC due to financial
limitations. However, it is essential to ensure that the delay
requirements for each task are met. Since all MCs are identical,
any MC can be a potential location for placing edge‐servers.
Nonetheless, a subset of the MCs can be selected to reduce the
deployment budget while maintaining an acceptable level of
delay. The question that arises now is how to select the best
MCs subset to achieve the research objectives.

As human life takes precedence in research pertaining to
the design and proposal of healthcare systems, the top research
priority is to ensure that health services arrive as quickly as
possible with minimal cost. The key objective is to design an
intelligent healthcare system while reducing the cost of server
deployment and maintaining acceptable latency. The following
is a summary of the contributions of this paper:

1) We introduce a priority processing/offloading mechanism
based on AI, aimed at identifying critical patients who
require urgent medical assistance, thereby enhancing QoS
and QoE.

2) We investigate the edge‐server placement problem and
propose an optimal edge‐servers placement (OESP) algo-
rithm, which aims to achieve cost‐efficient architecture with
lower delay and comprehensive coverage. The main
objective is to deploy edge‐servers to subsets of MCs
within a given area, providing edge health services to
monitored patients.

3) Finally, we conduct simulations to evaluate the perfor-
mance of the proposed algorithms. The results demonstrate
favourable outcomes, showcasing a cost‐effective system
with lower latency when compared to existing algorithms in
the literature.

1.1 | Paper organisation

The remainder of this paper is organised as follows: Section 2
reviews the related work; Section 3 presents the proposed
priority mechanism; Section 4 introduces the optimal edge‐
servers problem formulation; Section 5 describes the pro-
posed OESP; Section 6 presents and discusses the simulation
results; and finally, Section 7 draws the conclusions along with
discussing avenues for future work.

2 | RELATED WORK

As our study can be divided into two parts, we have divided the
related work section into two subsections: priority mechanism
and edge‐servers placement approaches.

2.1 | Priority mechanism approach

In recent years, significant advancements in IoT and body
sensor devices, along with the integration of emerging tech-
nologies such as edge or fog computing with the cloud, have
spurred numerous research projects dedicated to developing
IoT‐based smart health monitoring frameworks. However,
existing healthcare systems, exemplified by studies [6–15] and
the baseline paper [5], often adopt a uniform approach to
processing and predicting data, following a first‐in‐first‐out
concept, without considering the urgency of cases. As a
result, patients with severe illnesses may encounter delays in
receiving timely treatment. To tackle this challenge, this study
proposes enhancements to the HMAN healthcare system [5]
by incorporating an AI‐based data classification method. The
main objective is to establish a priority mechanism based on
the urgency of patients, with the aim of improving both the
QoS and the QoE in healthcare delivery. By introducing a
prioritisation framework that considers the urgency of cases,
this approach seeks to ensure that critical patients receive
prompt attention and care.

2 - JASIM and AL‐RAWESHIDY

 20474962, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ntw

2.12097 by B
runel U

niversity, W
iley O

nline L
ibrary on [04/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2.2 | Edge‐servers placement approach

The placement of edge‐servers, commonly referred to as
cloudlets, is a crucial factor that significantly impacts the effi-
ciency of a system. However, this topic has received limited
attention in the existing literature, with only a few studies
addressing it. The key question revolves around determining
the optimal placement of edge‐servers in a system to maximise
benefits while considering different goals, such as reducing
costs or minimising latency.

Several papers have explored server placement in large‐
scale environments, specifically the wireless metropolitan area
network (WMAN), and are particularly relevant to our study.
Jia et al. [16] investigated how to place a number of cloudlets
and allocate users among them in a way that minimises the
average system response time. To address this issue, they also
suggested the density‐based clustering approach. To reduce the
average cloudlet access delay, Zhao et al. [17] suggested using a
ranking‐based heuristic for K cloudlets deployment. In order
to reduce the latency between the users and cloudlets, Xu et al.
[18] proposed an exact solution to the problem by placing K
cloudlets in strategic locations within a large‐scale WMAN.

Similarly, a cost‐aware cloudlet deployment technique was
suggested by Fan et al. [19] to improve the trade‐off between
deployment cost and latency. To minimise communication la-
tency, Meng et al. [20] proposed some algorithms for deploying
cloudlets in a group of access points and routing mobile task
requests. Firstly, they derived an approximation algorithm to
choose candidate locations based on historical data. Then, they
presented an iterative algorithm to select the best locations to
deploy cloudlets in. Finally, an online job routing algorithm was
proposed to route the request to the cloudlet with minimum
latency. Yao et al. [21] proposed a low‐complexity heuristic al-
gorithm to cost‐effectively deploy cloudlets without compro-
mising a pre‐determined QoS. They essentially assumed that the
cloudlet servers are heterogeneous, meaning that they have
different cost and resource capacities. A novel framework named
EdgeON was presented by Santoyo‐Gonzalez et al. [22], which
was aimed at reducing the total cost when placing and operating
the edge‐servers network. To reduce the average response time,
Li et al. [23] suggested two methods for edge‐servers placement:
flat and hierarchical. They found that the hierarchical approach
has a better performance in reducing system response time. A
different solution by Li et al. [24] presented the problem of an
energy‐aware edge‐servers problem as a multi‐objective opti-
misation one. Then, they suggested a particle swarm‐based
energy‐aware algorithm for reducing energy consumption in
computing resource utilisation.

There are also other studies in edge‐servers placement. The
edge‐server placement problem was formulated, firstly, by
Lahderanta et al. [25] as a constrained optimisation mode to
reduce the sum of weighted distances between the edge‐servers
and access points. Then, they designed the PACK algorithm to
minimise the distances while balancing the load among servers.
Lovén et al. [26] proposed a new algorithm to choose the
optimal number of edge‐servers to be placed and optimally re‐
allocate access points, accordingly, in order to improve QoS.

In addition to the aforementioned studies, recent papers
have made significant contributions to the field of edge‐server
placement. For instance, [27] proposed novel approaches for
addressing the challenges in deploying edge servers. Their work
focused on optimising the placement of edge servers in order to
minimise latency and enhance network performance. Through
innovative algorithms and techniques, they achieved improved
efficiency and effectiveness in edge‐server deployment, paving
the way for further advancements in this area. In [29], cloudlet
deployment in IoT networks was investigated with the aim of
optimising deployment cost and network latency. The authors
proposed a fault‐tolerant cloudlet deployment scheme based on
software‐defined network technology. Their binary‐based dif-
ferential evolution cuckoo search algorithm showed promising
performance in terms of cost and latency optimisation. Lastly
[29] focused on deploying edge servers effectively and
economically in wireless metropolitan area networks. They
addressed the problemofminimising the number of edge servers
while ensuring specific QoS requirements by extending the
definition of dominating set and formulating it as a graph theory
problem. Their proposed greedy‐based algorithms showed
feasibility and effectiveness in achieving efficient edge‐server
deployment. These papers contribute to the advancement of
edge‐server placement and offer valuable insights for future
research in this area.

To summarise, the reviewed research studies present
innovative methods for placing edge‐servers, showcasing
notable achievements in terms of cost and/or time. The
literature has explored four main perspectives regarding edge‐
server placement:

1. Minimising response time (latency) by employing various
distance measures.

2. Minimising the cost of server deployment while maintaining
a maximum acceptable delay.

3. Optimising the trade‐off between delay and costs.
4. Maximising coverage, that is, the number of users served.

In comparison, this study introduces a novel approach that
involves placing a flexible number of servers to minimise costs
while ensuring acceptable latencies based on patient conditions
through a priority mechanism. It presents a fresh perspective
on selecting and locating edge‐servers within a specific area,
considering different variables such as the number of con-
nections between competing sites, distances, and historical
workloads. Furthermore, this study stands out in the literature
as the first to address the problem of edge‐server placement
specifically in the healthcare domain.

3 | PRIORITY MECHANISM BASED ON
ARTIFICIAL INTELLIGENCE

This work involved the creation of an intelligent healthcare
system for data classification of patients, which would increase
data collection effectiveness and streamline processing. By
prioritising data based on the urgency of patients, we can

JASIM and AL‐RAWESHIDY - 3

 20474962, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ntw

2.12097 by B
runel U

niversity, W
iley O

nline L
ibrary on [04/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



achieve better QoS and QoE. The proposed model, illustrated
in Figure 1, comprises two main levels: the patient level (IoT
layer) and the local MC level (Edge/Fog Layer).

The patient level (a smartphone or watch) has two func-
tions: data collection and filtering (preprocessing). At the local
MC level, the arriving data is processed through three steps:
classification, prioritisation, and decision‐making.

At the patient level, a wearable device (smartphone or
watch) collects data and performs initial data preprocessing
and analysis (i.e. aggregation, fusion, filtering, and classifica-
tion). As a result, based on a predetermined threshold assigned
according to the patient's condition, the collected data are
classified as normal or abnormal. While the abnormal data is
offloaded to the next layer for additional actions, the normal
classified data are temporarily stored locally without requiring
any further action.

At the local MC level, the received data undergoes three
steps to determine the appropriate course of action. Firstly, an
AI method, such as machine learning or deep learning, is
employed to classify the data into multiple categories enabling
the determination of the level of risk associated with each
patient. Subsequently, a priority processor assigns a priority
level to each patient based on their historical record, which is
stored in a database. Finally, a decision is made regarding
whether the data should be processed locally or offloaded to
other units based on their priority levels. For example, if the
local MC receives a simultaneous influx of 100 patients, but
can only provide medical services for 50, it prioritises the first
50 patients on the list, while the remaining patients are

offloaded to other units within the architecture using the
HOSSC algorithm outlined in ref. [5]. Algorithm 1 represents
the proposed priority processing/offloading scenario, which
dynamically updates patient lists based on their priority levels.
This ensures that the most urgent cases receive medical
attention at the local MC, while other cases are handled by
other units in the architecture.

Algorithm 1 Priority processing/offloading
algorithm

Input: λsum, λmax
Output: Priority mapping patient offloading
For a given situation at a particular time
instant t the following will be done.
If λsum ≤ λmax
All patients can be served by the local MC
else % The priority mechanism will be
turned on
λsum is classified into classes by the AI

classifier
ClassA → Priority = 0 //Normal cases,
Discarded
ClassB → Priority = 1 //Mild case
ClassC → Priority = 2 //Moderate case
ClassD → Priority = 3 //Severe case
….
…. // (if needed depending on the type of

disease)

F I GURE 1 Model of the proposed priority mechanism.

4 - JASIM and AL‐RAWESHIDY

 20474962, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ntw

2.12097 by B
runel U

niversity, W
iley O

nline L
ibrary on [04/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SortedPatientsMatrix = [a high_priority_
patient … a less_priority_patient]
Then:
The Local MC will serve patients based on
their order in SortedPatientsMatrix

end if statement

4 | OPTIMAL EDGE‐SERVERS
PROBLEM FORMULATION

Our goal is to effectively deploy edge‐servers to specific MCs
within a region to meet the needs of all patients under
monitoring. We represent the area as a two‐dimensional space
(grid) in which patients (IoT devices) and MCs may coexist.
The patients can be everywhere in the area.

For a simple representation of our system, we made a few
of assumptions. The first is that all MCs inside the grid are
candidates to be placed with edge‐servers. Next, we assume
that all MCs are connected virtually with each other, if and only
if, the d (MCi,MCj) = K, in which, d (a,b) is a distance function
for calculating the distance between two points (a and b), and
K is the largest possible distance to connect the neighbours
(MCs). The last assumption is that all MCs have different
volume and distribution of user requests (historical loads) over
a long period.

The set of MCs (candidate points) Is, hence, defined as
MCs = {mc1, mc2, …; mcn}, where each refers to a pre-
selected, feasible placement location in the grid (in coordinate
axes) and noMCs = number of MCs in that area. A set of edge
servers is denoted by ES (es1, es2, …; esk) and Nes = number
of edge‐servers needed to be placed for full coverage. We as-
sume all edge servers are identical (homogeneous). A set of
patients requiring edge computing services is denoted by
p = (p1, p2, …; pm), where m = number of patients. A cost
function Cost (esj, mck) is defined to refer to the incurred cost
of placing an edge server es ∈ ES at an MC mck ∈ MCs.

We define two latency functions, Lij and D, that represent
the latency when patient pi is served by edge servers placed at
mcj of the grid and the latency between two edge servers
respectively. We assume a homogeneous bandwidth across the
grid in our model and as a result, latency is predominantly
affected by distance. Our main objectives are to reduce the cost
of deploying edge‐servers in the region and reduce the latency
in accessing edge services with full coverage to all patients.

We now formulate the ESPP as a multi objectives opti-
misation model. We define the following decision variables:

‐ X represents the placement of edge‐servers at MCs

X ¼ xj
�
� 1 ≤ j ≤ n

� �

where:

xj ¼
1 if esi placed at mcj
0 otherwise

�

‐ Y represents the assignment of patents to MCs

Y ¼ yij
�
�
� 1 ≤ i ≤m; 1 ≤ j ≤ n

n o

where:

yij ¼
1 if pi is assigned to mcj
0 otherwise

�

‐ E represents the links between MCs

E ¼ eab j; 1 ≤ a; b ≤ n; a ≠ bf g

where:

eab ¼
1 if mca and mcb are directly connected
0 otherwise

�

Let λsum be the set of task arrival rate of patients,

λsum ¼
Xm

1¼1
λi ð1Þ

The SRT is calculated based on [5]:

SRT ¼

Pn

i¼1
tpi

n
ð2Þ

where:

tpi ¼ Twi þ EAP ∗ TAP þ c1 þ 1ð Þ ∗ tGP þ c1 ∗ V
þ c2 ∗ S þ c2 ∗ tGH þ c3 ∗ Lþ c3 ∗ tGH þ c4 ∗ B
þ c4 ∗ tCloud

ð3Þ

The ESPP is defined as follows. Given a system model
parameter (G, noMCs [points], K, Nes, m, L, D, λMAX), the
problem is to find X (the placement of edge‐servers) among
the MCs, such that the system response time SRT is minimised,
that is,

min
X

Costðesj;mckÞ : Xj ð4Þ

min SRT ð5Þ

min
X

E ð6Þ

Subject to:

1) Nes >¼ 3: to ensure that at least three edge‐servers are
placed at 3 MCs to preserve previous achievements in [5].

JASIM and AL‐RAWESHIDY - 5

 20474962, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ntw

2.12097 by B
runel U

niversity, W
iley O

nline L
ibrary on [04/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2) d mca;mcbð Þ ¼ k: to ensure a shorter distance between a
patient and an MC and to avoid the colocated problem.

3)
P
Eij ¼ 1 or 2: to ensure that a patient either connects

directly with an edge‐servers site or through only 1 MC to
minimise the latency.

4)
P
yij ¼ 1 ð1 ≤ j ≤ nÞ: to guarantee that all patients must

be served, and each is served from exactly one candidate
point.

5 | OPTIMAL EDGE‐SERVERS
PLACEMENT (OSEP)

The main idea is how to determine the best MC locations for
deploying edge servers in order to provide services to all pa-
tients in a given area. The number of selected MCs depends on
the total number of MCs in a certain area, that ensure that
services are provided to all patients, and how they are
distributed and connected to each other. This algorithm is built
based on several stages, as follows.

Step 1: Locate all coordinates on the map.
‐ This step involves identifying and recording the
coordinates of all relevant points on the map.

‐ Ensure that the map is valid and that there are no
repeated points.

In this step, the algorithm focuses on locating and
recording the coordinates of all relevant points on the map. It
is important to ensure that the map is valid, meaning it accu-
rately represents the desired area or region, and that there are
no repeated points. The uniqueness of points is crucial to
prevent any duplication or confusion during subsequent stages
of the algorithm.

Step 2: Generate important matrices:
1) Distance Matrix (DistancesBtAll): Generate a ma-

trix that represents the distances between all pairs
of points. This matrix helps quantify the proximity
between points.

2) Connectivity Matrix (ConnectivityMatrix):
Generate a matrix that indicates the connectivity
between points, where 1 represents a connection
and 0 represents no connection.

After that, establish virtual connections between neigh-
bouring points based on a specified maximum distance
threshold (Max_DistanceToConnect).

Step 3: Finding and selecting the first, second and third best
points.

In this step, the algorithm evaluates points based on mul-
tiple criteria, including the number of links per point (Sum-
Links), the sum of distances to other points (SumDistances),
and historical loads (Load_History). The objective is to select

the best points that ensure connectivity to the highest possible
number of points.

The algorithm generates a matrix of points sorted based on
these three criteria. The primary criterion is the number of
links per point (SumLinks), which prioritises points that can
establish connections with the greatest number of other points.
In cases where two or more points have the same number of
connections, the algorithm applies the second criterion, which
is the sum of distances to other points (SumDistances). This
criterion focuses on selecting points that are closest to other
points in terms of distance. If a tie persists even after
considering the second criterion, the algorithm resorts to the
third criterion, which is historical loads (Load_History).

By sorting the points in the matrix according to these
criteria, the algorithm aims to identify and select the first,
second, and third best points. To ensure optimal connectivity, it
is important to consider the following conditions for the sec-
ond and third best points:

1. Direct Connection to the First Best Point: The second and
third best points must be directly connected to the first best
point, establishing a direct link between them.

2. No Connection between Second and Third Best Points:
The second and third best points should not be connected
to each other. This arrangement ensures that the second
and third best points are chosen on both sides of the first
best point, maximising the number of points connected on
both sides.

By adhering to these conditions, the algorithm guarantees
that the selected points promote effective connectivity and
facilitate the connection of as many points as possible to the
three best points in the network.

Step 4: Test Connectivity 1

In this step, the algorithm performs a connectivity test to
evaluate the network's current state and identify connected and
disconnected points. The goal is to determine if all points are
successfully connected or if there are any points that remain
unconnected.

The algorithm carries out the following actions:

1. Determine the Connected Points.
2. Determine the NotConnected Points.

By analysing the connectivity status of the points based on
the previous selections, the algorithm can assess the network's
current state. If all points are connected, indicating that every
point is successfully linked to the network, the algorithm ter-
minates as it has achieved its goal. However, if there are still
unconnected points, the algorithm proceeds to the next stages
to address and resolve the connectivity issues.

Step 5: Identify Points Unreachable for Connection (Distant
Points) and Update the Unconnected Ones.

6 - JASIM and AL‐RAWESHIDY

 20474962, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ntw

2.12097 by B
runel U

niversity, W
iley O

nline L
ibrary on [04/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



In this step, the algorithm focuses on identifying points
that are too far away to establish connections with other points
in the network. These distant points are unlikely to be reach-
able and cannot be effectively integrated into the current
network configuration. The algorithm subsequently updates
the list of unconnected points based on this assessment.

This step is significant as it helps determine which points
are geographically distant and cannot be connected. By
isolating these distant points, it becomes possible to consider
alternative strategies, such as integrating them with other
working regions or adjusting the network configuration to
accommodate their unique circumstances.

Step 6: Determine the Other_Best points from the Con-
nected points.

In this step, the algorithm identifies additional best points
from the pool of connected points, one by one, to further
enhance the network's connectivity. After each selection, the

algorithm updates the list of unconnected points based on the
newly established connections. The number of these additional
best points is not fixed, but rather, a sufficient number should
be chosen to achieve full network connectivity while ensuring
that the previously mentioned conditions and constraints are
met.

Step 7: Test Connectivity 2

In this step, the algorithm performs a second connectivity
test to evaluate the network's current state and ensure that all
points, except those previously determined as unreachable, are
connected. The goal is to verify that the number of discon-
nected points is zero, indicating successful network connec-
tivity. If there are still disconnected points remaining, the
algorithm repeats Step 6 to further enhance the connectivity.
Algorithm 2, the OESP algorithm, represents the proposed
algorithm for optimising the placement of intelligent edge‐
servers in the healthcare field.

Algorithm 2 Optimal Edge_Servers placement (OESP) algorithm—pseudo code

Input: noMCs, X = {xi, 1 ≤ I ≤ noMCs} , Y = {yi, 1 ≤ I ≤ noMCs}, Max_DistanceToConnect,
Load_History
Output: Find the best points (Best_Points)
Constraints: Best_Points ≥ 3, no. hops to the Bests = 1
% Step 1: Determine the coordinates
% Step 2: Generate important matrices:
index ← 1
for k ← 1 to noMCs
for m ← 1 to noMCs
DistancesBtAll(index) ← point k—point m
if DistancesBtAll(index2) ≤ DistanceToConnect then:
ConnectivityMatrix(k,m) ← 1

else
ConnectivityMatrix(k,m) ← 0

end if statement
index++

end for statement
end for statement
%% Step 3: Find Best three points
- Create: Point_Features ← [SumLinks SumDistances Load_History]
- Sort: Point_Features ← [SumLinks(desc) SumDistances(asc) Load_History(desc)]

a- Find: First_ Best ← First member of Point_Features (sorted).
b- Find: Second Best
for I ← 2 to noMCs then
if Point_Features (I,1) is connected to First_Best_Point
Second_Best ← Point_Features (I,1)
break for loop

end if statement
end for statement
c- Find: Third Best
if Point_Features (I,1) in connected to First_Best_Point AND not connected to

Second_Best_Point
Third_Best ← Point_Features (I,1)

JASIM and AL‐RAWESHIDY - 7

 20474962, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ntw

2.12097 by B
runel U

niversity, W
iley O

nline L
ibrary on [04/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



break for loop
else
Third_Best ← Point_Features (I,1);

end if statement
% Step 4: Test Connectivity 1
i ← 1 , k ← 1
for j = 1:noMCs
if j ~ = First_Best AND j ~ = Second_Best AND j ~ = Third_Best
if ConnectivityMatrix(j,First_Best) ~ = 1 AND ConnectivityMatrix(j,Second_Best) ~ = 1

AND
ConnectivityMatrix(j,Third_Best) ~ = 1
NotConnected(i) ← j
i++

else
Connected(k) ← i
K++

end if statement
end if statement

end for statement
% Step 5: Find Never connected Points (Distant points) → NeverConnected
k ← 1
for i ← 1 to no_Notconnected
for j ← 1 to no_connected
if ConnectivityMatrix(i,j) = = 0
NeverConnected(k) ← i

NotConnected(i) []←
K++

end for statement
end for statement
% Step 6: Find other Best point (if needed)
while 1
if no_NotConnected ≥1
k = 1
for s ← 1 to no_Connected
if s is connected to NotConnected
Current_Best(k) ← s % This matrix identifies the candidate point that has the

potential to be among the best points.
k++

end if statement
end for statement
k = 1
for i ← I to no_NotConnected
for j ← 1 to no_Current_Best
if ConnectivityMatrix(I,j) = = = 1
Choose a one with a shorter distance.
Other_Best(k) ← j (with a shorter distance)
k++

end if statement
end for statement

end for statement
else
break while loop

end if statement
end while statement
% Stage 7: Test Connectivity 2
i← 1 ,k ← 1
for j = 1:noMCs

8 - JASIM and AL‐RAWESHIDY

 20474962, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ntw

2.12097 by B
runel U

niversity, W
iley O

nline L
ibrary on [04/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 | RESULTS

In this section, we randomly create data to evaluate the per-
formance of the proposed algorithms. Table 1 summarises the
simulation parameters to calculate the SRT, which represents
the average system latency required to deliver patient data to
one of the health facilities within the HMAN architecture [5].
Additional parameters will be introduced later.

6.1 | Priority mechanism based on artificial
intelligence

The initial step in processing the collected data involves
wearable devices worn by patients to filter the data and
transmit any abnormal data to the local MC for further pro-
cessing. Upon reaching the local MC, priority is given to pa-
tients with the most severe conditions. In our simulation, three

if j ! = NeverConnected
if j ! = First_Best AND Second_Best AND Third_Best
if ConnectivityMatrix(j,First_Best) ~ = 1 AND ConnectivityMatrix(j,Second_Best)

~ = 1 AND
ConnectivityMatrix(j,Third_Best) ~ = 1 AND ConnectivityMatrix(j,Other_Best)
NotConnected(i) ← j , i++

else
Connected(k) ← i , k++

end if statement end if statement
end if statement

end for statement
If no_NotConnected = = 0
Print("ALL Points are connected Except the Never Connected one because they are far way")
Display(NeverConnected)
else Repeat Step 6.

end if statement

TABLE 1 SRT simulation parameters.
Symbol Parameter Value

Ps Number of patients 100, 200, 300

n Number of servers in each GP 5, 6, 7

m Number of servers in each GH 10, 12, 14

rWi Link rate between IoT device and AP 54 Mbps

rAP Link rate between AP and the local GP 100 Mbps

rFib Link rate between the GPs and GHs Up to 10 Gbps

λi Packet size 30 KB

Twi Wireless delay 4 ms

TAP Delay between AP and the local GP 2 ms

V Delay between two neighbouring GPs 1 − K1ð Þ:λGPsum/10 Gbps

S Delay between the GPs and GHs K2:λGHsum/10 Gbps

L Delay between two neighbouring GHs 1 − K2ð Þ:λGHsum/10 Gbps

B Internet delay 20 ms

μGP/μGH Each GP/GH server service rate 100/200 KB per ms

μCloud Cloud service rate 1000 KB per ms

λGPmax Maximum GP workload 200 � n KB

λGHmax Maximum GH workload 200 � m KB

JASIM and AL‐RAWESHIDY - 9

 20474962, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ntw

2.12097 by B
runel U

niversity, W
iley O

nline L
ibrary on [04/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



scenarios were conducted to evaluate the performance of the
proposed priority mechanism. To assess the effectiveness of
the algorithm, a comparison was made between the SRT for
accessing the service with and without the application of the
algorithm.

The first scenario assumed that 100 patients (data or
workload) arrived at the local MC at the same time. The first
step is to check whether the local MC is capable of handling
the received data or not. If it can, the data is processed at the
local MC and the services are delivered to the patients without
needing to send out the data to other units. However, if it is
determined that the MC cannot handle the data of all 100
patients, then it must offload a part of it to other units based
on the HOSSC algorithms in ref. [5]. The main task of the
proposed priority mechanism is to determine which patients
are served by the local MC and which ones should be off-
loaded. In this scenario, the algorithm classified the received
data into four classes and then, served the patients accordingly.
Patients with the highest priority and greatest need are served
in a shorter time compared to those with less severe condi-
tions. The same approach is applied in the 200 and 300 patient
scenarios, where the algorithm categorises the data and pri-
oritises the patients accordingly.

It is worth noting that the absence of a priority mechanism,
the timing of service provision to patients would be uncertain
since the HMAN architecture does not distinguish between
patients. Table 2 shows the results obtained from applying
the above scenarios and demonstrates the effectiveness of the
proposed algorithm in providing services with less delay to the
patients with the highest level of urgency. In the case of
HMAN [5], it is not possible to determine which patient
should be treated first, because the system handles data equally
without taking urgency into account. This could potentially
have negative consequences on the treatment of patients with
severe conditions.

6.2 | Optimal edge‐servers placement
algorithm

In this section, we report the conducting of several simulations
to evaluate the performance of the suggested algorithms. We
investigated the algorithm on randomly generated points.
Every point represented an MC site. A number of parameters
were defined for the OESP algorithm, as listed in Table 3. To
demonstrate the effectiveness of our algorithm, we started by
applying 10 randomly generated points and explained the steps
in detail to reach the result of finding the best points to place
edge‐servers in. Subsequently, we present the final results ob-
tained when applying the algorithm to 20 and 30 randomly
generated points.

‐ Scenario 1 (10 nodes)

Firstly, a MATLAB code generated 10 points in a
geographic area of 100 km � 100 km. Every point was
considered as an MC site, as mentioned before. Then, these
points were assigned to their respective locations on a virtual
map, as depicted in Figure 2.

The subsequent task involved establishing virtual con-
nections between these points based on the first constraint,
which specified a maximum distance of 40 km to connect

TABLE 2 SRT with each class with/without applying the proposed priority mechanism.

No. patients

Classes SRT (n = 5, m = 10)

Type No. patients No priority mechanism (HMAN [5]) With priority mechanism

100 A 3 N/A Discarded

B 61 18–19 ms

C 28 8–9 ms

D 8 5–6 ms

200 A 5 N/A Discarded

B 103 25 ms

C 63 16–17 ms

D 29 7–8 ms

300 A 4 N/A Discarded

B 181 32 ms

C 73 19–20 ms

D 42 9–10 ms

TABLE 3 Optimal edge‐servers placement simulation parameters.

Symbol Definition Value

A The region dimensions 100 km � 100 km

noMCs Number of points (MCs) 10, 20, 30

x, y Coordinates Randomly created

Dmax Max. Distance between two neighbours 40 km

10 - JASIM and AL‐RAWESHIDY

 20474962, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ntw

2.12097 by B
runel U

niversity, W
iley O

nline L
ibrary on [04/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



two points. As depicted in Figure 3, there were multiple
redundant links between certain points. The objective of the
proposed algorithm was to minimise the number of these
connections while ensuring that the entire network remained
connected.

The next step involved determining the best three points
based on the number of links per point, proximity to other
points, and the historical loads per point, which were assumed
randomly in this simulation. Referring to Table 4, which ranks
the point according to these three parameters, it is clear that
the point 4 is the first‐best one, because it has more links than
the others. The second‐best point is 10, as it is directly con-
nected to point 4 and has more links compared to the
remaining points. In order to enhance network coverage, the
algorithm disregarded point 2 (or point 9) as the third‐best
point, despite its higher rank compared to the others. This

decision was based on the fact that point 2 (or point 9) shares a
direct link with point 10, causing them to fall on the same side
of the best point. Instead, point 5 was chosen as the third‐best
point, fulfilling the specified conditions and situated on a
distinct side from the best point. After choosing these three
best points, the algorithm establishes connections between all
the other points and its closest best point while removing all
other links. Figure 4 depicts the network after applying the
previous steps. Note that the point 8 remains unconnected as it
is located more than 40 km away from all the best points.
Therefore, the next algorithm task will be to identify other best
points to ensure complete connectivity.

Before moving on to the next step, it is crucial to highlight
that the algorithm generated four matrices that depict the
current state of the points within the network. These matrices
are as follows:

TABLE 4 Sorted 10 points (Ms) based on the number of links per
point, how close the point is to all others, and the historical loads per point.

Points Number of links Distance to all Historical loads

4 7 307.3874 711

10 5 303.4536 211

2 5 329.8995 459

9 4 383.7702 253

5 4 409.7863 602

6 4 420.9528 718

7 4 449.8674 847

3 3 373.1516 393

1 3 456.99 424

8 1 615.2826 879

F I GURE 4 A network of 10 points after choosing the first, second,
and third best points (MCs): Green points = Best points, Black
points = connected points and Cyan = Not‐connected points.

F I GURE 3 A virtual network of 10 connected points (MCs) based on
distances between neighbours (Dmax = 40 km).

F I GURE 2 10 disconnected points (MCs) on a map.

JASIM and AL‐RAWESHIDY - 11

 20474962, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ntw

2.12097 by B
runel U

niversity, W
iley O

nline L
ibrary on [04/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



� Best = [4 10 5]
� Connected = [2 9 6 7 3 1]
� NotConnected = [8]

The subsequent step involves determining which points
should be selected to be the best ones. The algorithm does not
impose any limitation on the number of these points. The
primary objective is to achieve full network connectivity while
minimising costs and adhering to all constraints. The remaining
unconnected points need to be checked for the possibility of
connecting them or not. If the distance between an uncon-
nected point and any connected points is less or equal to the
maximum distance (constrain 1), then this point can be con-
nected. Subsequently, the algorithm selects the closest Con-
nected point to it and includes this Connected point among the
Other‐Best points. Conversely, if this condition is not met, it is
isolated from the group and marked as a never‐connected
point. Figure 5 illustrates that point 8 is connected to point
1 which is selected as an Other‐Best point.

After completing this step, the matrices have been updated
as follows:

� Best = [4 10 5]
� Other_Best = [1]
� Connected = [2 9 6 7 3]
� NotConnected = Ø
� Never_Connected = Ø

With the current configuration, all points are connected,
and no points remain unconnected. This indicates that com-
plete coverage has been achieved in the network, fulfilling the
objective of the algorithm.

Upon observing Figure 5, it becomes evident that there is a
noticeable difference between the network configuration
before and after the algorithm was applied. The algorithm was
able to successfully select 4 points out of 10 to achieve

complete network connectivity. Each point is now within one
hop distance from the nearest Best point and with not more
the maximum distance constraint. Through this process, we
have achieved several goals, including reducing cost and delay.
Instead of deploying servers at all 10 points, they are now
strategically placed at only four points, leading to a significant
reduction in the number of connections required. Additionally,
the algorithm has successfully reduced latency to the greatest
extent possible by considering the distance and number of
hops required to reach the servers. By strategically placing the
servers at selected points, the algorithm ensures that data
transmission distances are minimised, resulting in reduced la-
tency. This optimisation of network infrastructure contributes
to improved overall performance and responsiveness of the
system.

‐ Scenarios 2 and 3 (20 and 30 points respectively)

To demonstrate the effectiveness of the proposed algo-
rithm, Figures 6 and 7 show two different scenarios involving
the selection of the Best points to position edge‐servers among
a pool of 20 and 30 points respectively. Figures 6 and 7 b present
the final shape of the networks of 20 and 30 points after
applying the algorithm. The initial steps of the algorithm involve
the identification of the Best three points and assessing the
network's connectivity. Subsequently, the algorithm proceeds to
select additional Other‐Best points to attain complete network
connectivity, while adhering to predefined constraints.

The crucial point that needs to be emphasised, and can be
clearly seen when examining the results, is that the selection of
the best points and determination of their number depends on
the shape of the network and the proximity of the points to each
other. There is no fixed method or specific number of points
that must be chosen in all cases. For instance, in the 20‐point
networks, seven points were selected as the best points, while
the 30‐point network only required five points to be chosen as
the best for full connectivity (see Figures 6 and 7). Furthermore,
this algorithm ensures minimal delay in accessing services. Users
can directly connect to an MC with edge‐servers or through an
MC that is one hop away from the edge‐servers. By applying this
algorithm, we have achieved several benefits, including a sig-
nificant reduction in cost while maintaining low latency. The
proposed algorithm ensures that the delay, which was a key
achievement of the HMAN [5] system, is preserved. Figure 8
illustrates the comparison of latency before and after imple-
menting the algorithm, demonstrating that the algorithm suc-
cessfully maintains the low delay achieved by the HMAN
system. This preservation of low delay ensures efficient access
to services for users. As a result, the suggested algorithm not
only reduces costs but also minimises latency, enhancing the
overall performance and efficiency of the network.

Table 5 provides a comparison that highlights the cost
difference’ between the HMAN system [5] before and after the
application of the proposed algorithm. It is worth noting that
these percentages may vary across different networks, as they
are influenced by the number of points selected as the Best
points. This selection process is dependent on the shape of the

F I GURE 5 The final network of 10 points: Green points = Best
points, Blue pints = Other best points, Black points = connected points.

12 - JASIM and AL‐RAWESHIDY

 20474962, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ntw

2.12097 by B
runel U

niversity, W
iley O

nline L
ibrary on [04/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



network on which the algorithm is to be applied, as explained
earlier. However, in all cases, there is a significant improvement
in cost while preserving the previously achieved benefits out-
lined in ref. [5].

In short, this study introduces a novel algorithm for edge
server placement in health monitoring frameworks. By
considering the shape of networks and proximity of nodes, the
OESP algorithm overcomes limitations observed in existing
literature reviews. Unlike previous approaches, such as refs.
[27–29], that rely on network size for edge server selection, it
offers a more robust and tailored solution. In addition, one
significant advantage of this study is the careful selection of
sites, ensuring that they are located within one hop from the
connected sites. This strategic placement of edge servers
minimises latency and contributes to the overall effectiveness
of the proposed algorithm. By reducing the distance and
number of hops required to reach the servers, the latency is
kept to a minimum, resulting in improved performance and a
seamless user experience. The findings of this research

F I GURE 7 A network of 30 points before (a) and after (b) choosing the best points (MCs): Green points = Best points, Blue pints = Other best points,
Black points = connected points.

F I GURE 6 A network of 20 points before (a) and after (b) choosing the best points (MCs): Green points = Best points, Blue pints = Other best points,
Black points = connected points.

F I GURE 8 A comparison of latency before and after implementing
optimal edge‐servers placement (OESP) algorithm on HMAN architecture.

JASIM and AL‐RAWESHIDY - 13

 20474962, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ntw

2.12097 by B
runel U

niversity, W
iley O

nline L
ibrary on [04/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



contribute to advancing the field of edge computing in
healthcare systems, opening avenues for further exploration
and optimisation in this domain.

7 | CONCLUSION

The primary motivation of s‐health is to contribute to reducing
hospitalisation rates, while providing affordable telehealth ser-
vices to remote patients. By integrating s‐health with edge/fog
computing, additional benefits, such as reduced delay and po-
wer consumption, network bandwidth savings, as well as
improved security and data privacy can be achieved. However, a
key challenge lies in determining the optimal placement of edge‐
servers in a cost‐effective manner while ensuring full coverage
for all patients with minimal latency. In this paper, two algo-
rithms have been proposed with the aim of providing an effi-
cient priority offloading/processing mechanism and solving the
edge‐server placement problem. The simulation results have
shown that the two proposed algorithms are highly promising.
The priority mechanism algorithm successfully classified pa-
tients based on the severity of their disease and prioritised their
services accordingly. On the other hand, the Optimal Edge‐
Server Placement (OESP) algorithm effectively identified
optimal locations for deploying edge‐servers, achieving objec-
tives such as cost reduction with minimal delay. Although the
proposed algorithms showcased promising results in improving
the efficiency and effectiveness of edge‐server placement and
priority offloading/processing, further research is needed to
address areas such as load balancing and resource allocation for
fully optimising network performance. In summary, the com-
bination of s‐health, edge/fog computing, and the proposed
algorithms offers a comprehensive solution for delivering cost‐
effective and efficient telehealth services. This research opens
up new avenues for improving healthcare accessibility, reducing
costs, and enhancing patient care through advanced technolo-
gies and intelligent algorithms.

AUTHOR CONTRIBUTIONS
Ahmed M. Jasim: Conceptualisation; data curation; formal
analysis; methodology; resources; software; validation;
visualisation; writing – original draft preparation. Hamed Al‐
Raweshidy: Funding Acquisition; investigation; project

administration; resources; supervision; validation; writing – re-
view & editing.

ACKNOWLEDGEMENTS
Brunel University London.

CONFLICT OF INTEREST STATEMENT
The authors confirm that there is no conflict of interest related
to this work.

DATA AVAILABILITY STATEMENT
Data is available on request from the authors.

ORCID
Ahmed M. Jasim https://orcid.org/0000-0001-9276-577X

REFERENCES
1. Yang, Z., Liang, B., Ji, W.: An intelligent end–edge–cloud architecture for

visual IoT‐assisted healthcare systems. IEEE Internet Things J. 8(23),
16779–16786 (2021). https://doi.org/10.1109/JIOT.2021.3052778

2. Wu, F., et al.: Edge‐based hybrid system implementation for long‐range
safety and healthcare IoT applications. IEEE Internet Things J. 8(12),
9970–9980 (2021). https://doi.org/10.1109/JIOT.2021.3050445

3. Gutierrez‐Torre, A., et al.: Automatic distributed deep learning using
resource‐constrained edge devices. IEEE Internet Things J. 9(16),
15018–15029 (2022). https://doi.org/10.1109/JIOT.2021.3098973

4. Abdellatif, A.A., et al.: Edge computing for smart health, "Context‐
Aware approaches, opportunities, and challenges. In: IEEE Network,
vol. 33, pp. 196–203 (2019). https://doi.org/10.1109/MNET.2019.
1800083

5. Jasim, A.M., Al‐Raweshidy, H.: Towards a cooperative hierarchical
healthcare architecture using the HMAN offloading scenarios and SRT
calculation algorithm. In: IET Netw, pp. 1–18 (2022). https://doi.org/
10.1049/ntw2.12064

6. Wu, Q., et al.: Fedhome: cloud‐edge based personalized federated
learning for in‐home health monitoring. IEEE Trans. Mobile Comput.
21(8), 2818–2832 (2020). https://doi.org/10.1109/tmc.2020.3045266

7. Singh, A., Chatterjee, K.: Edge computing based secure health moni-
toring framework for electronic healthcare system. Cluster Comput.
26(2), 1–16 (2022). https://doi.org/10.1007/s10586‐022‐03717‐w

8. Rahman, M.A., Hossain, M.S.: An internet‐of‐medical‐things‐enabled
edge computing framework for tackling covid‐19. IEEE Internet
Things J. 8(21), 15847–15854 (2021). https://doi.org/10.1109/jiot.2021.
3051080

9. Alwan, O.S., Prahald Rao, K.: ‘Dedicated real‐time monitoring system for
health care using ZigBee. ’’ Healthcare Technol. Lett. 4(4), 142–144
(2017). https://doi.org/10.1049/htl.2017.0030

10. Aceto, G., Persico, V., Pescapé, A.: The role of information and
communication technologies in healthcare: taxonomies, perspectives, and
challenges. J. Netw. Comput. Appl. 107, 125–154 (2018). https://doi.
org/10.1016/j.jnca.2018.02.008

11. Pham, M., et al.: Delivering home healthcare through a cloud‐based
smart home environment (CoSHE). Future Generat. Comput. Syst. 81,
129–140 (2018). https://doi.org/10.1016/j.future.2017.10.040

12. Uddin, M.Z.: A wearable sensor‐based activity prediction system to
facilitate edge computing in smart healthcare system. J. Parallel Distr.
Comput. 123, 46–53 (2019). https://doi.org/10.1016/j.jpdc.2018.08.010

13. Abdellatif, A.A., et al.: Edge computing for smart health: context‐aware
approaches, opportunities, and challenges. IEEE Netw. 33(3), 196–203
(2019). https://doi.org/10.1109/mnet.2019.1800083

14. Al‐Anbagi, H.N., Vertat, I.: Collaborative network of ground stations
with a virtual platform to perform diversity combining. In: 2022 Inter-
national Conference on Applied Electronics (AE), pp. 1–6. Pilsen, Czech
Republic (2022). https://doi.org/10.1109/AE54730.2022.9920037

TABLE 5 A comparison between HMAN and optimal edge‐servers
placement (OESP) cost.

noMCs
No. of edge‐server
nodes in HMAN

No. of edge‐server
nodes in OESP

Deployment
cost

3 3 3 0

5 5 3 −40%

10 10 3–5 −(50–70)%

15 15 5–7 −(53–66)%

20 20 5–9 −(55–75)%

30 30 5–12 −(60–83)%

14 - JASIM and AL‐RAWESHIDY

 20474962, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ntw

2.12097 by B
runel U

niversity, W
iley O

nline L
ibrary on [04/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-9276-577X
https://orcid.org/0000-0001-9276-577X
https://doi.org/10.1109/JIOT.2021.3052778
https://doi.org/10.1109/JIOT.2021.3050445
https://doi.org/10.1109/JIOT.2021.3098973
https://doi.org/10.1109/MNET.2019.1800083
https://doi.org/10.1109/MNET.2019.1800083
https://doi.org/10.1049/ntw2.12064
https://doi.org/10.1049/ntw2.12064
https://doi.org/10.1109/tmc.2020.3045266
https://doi.org/10.1007/s10586-022-03717-w
https://doi.org/10.1109/jiot.2021.3051080
https://doi.org/10.1109/jiot.2021.3051080
https://doi.org/10.1049/htl.2017.0030
https://doi.org/10.1016/j.jnca.2018.02.008
https://doi.org/10.1016/j.jnca.2018.02.008
https://doi.org/10.1016/j.future.2017.10.040
https://doi.org/10.1016/j.jpdc.2018.08.010
https://doi.org/10.1109/mnet.2019.1800083
https://doi.org/10.1109/AE54730.2022.9920037
https://orcid.org/0000-0001-9276-577X


15. Yan, H., et al.: Edge server deployment for health monitoring with
reinforcement learning in internet of medical things. In: IEEE Trans-
actions on Computational Social Systems, pp. 1–11 (2022). https://doi.
org/10.1109/tcss.2022.3161996

16. Jia, M., Cao, J., Liang, W.: Optimal cloudlet placement and user to
cloudlet allocation in wireless metropolitan area networks. IEEE Trans.
Cloud Comput. 5(4), 725–737 (2017). https://doi.org/10.1109/tcc.2015.
2449834

17. Zhao, L., et al.: Optimal placement of cloudlets for access delay mini-
mization in SDN‐based Internet of Things networks. IEEE Internet
Things J. 5(2), 1334–1344 (2018). https://doi.org/10.1109/jiot.2018.
2811808

18. Xu, Z., et al.: Efficient algorithms for capacitated cloudlet placements.
IEEE Trans. Parallel Distr. Syst. 27(10), 2866–2880 (2016). https://doi.
org/10.1109/TPDS.2015.2510638

19. Fan, Q., Ansari, N.: Cost Aware cloudlet Placement for big data pro-
cessing at the edge. In: 2017 IEEE International Conference on Com-
munications (ICC), pp. 1–6 (2017). https://doi.org/10.1109/ICC.2017.
7996722

20. Meng, J., et al.: Cloudlet placement and minimum‐delay routing in
cloudlet computing. In: 2017 3rd International Conference on Big Data
Computing and Communications (BIGCOM), pp. 297–304 (2017).
https://doi.org/10.1109/BIGCOM.2017.58

21. Yao, H., et al.: Heterogeneous cloudlet deployment and user‐cloudlet
association toward cost effective fog computing. Concurrency Comput.
Pract. Ex. 29(16), e3975 (2017). https://doi.org/10.1002/cpe.3975

22. Santoyo‐González, A., Cervelló‐Pastor, C.: Network‐aware placement
optimization for edge computing infrastructure under 5G. IEEE Ac-
cess 8, 56015–56028 (2020). https://doi.org/10.1109/ACCESS.2020.
2982241

23. Li, D., et al.: Towards optimal system deployment for edge computing: a
preliminary study. In: 2020 29th International Conference on Computer

Communications and Networks (ICCCN), pp. 1–6 (2020). https://doi.
org/10.1109/ICCCN49398.2020.9209754

24. Li, Y., Wang, S.: An energy‐aware edge server placement algorithm in
mobile edge computing. In: 2018 IEEE International Conference on
Edge Computing (EDGE), pp. 66–73 (2018). https://doi.org/10.1109/
EDGE.2018.00016

25. Lähderanta, T., et al.: Edge computing server placement with capacitated
location allocation. J. Parallel Distr. Comput. 2021(153), 130–149 (2021).
https://doi.org/10.1016/j.jpdc.2021.03.007

26. Lovén, L., et al.: Scaling up an edge server deployment. In: 2020 IEEE
International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), pp. 1–7 (2020). https://doi.org/10.
1109/PerComWorkshops48775.2020.9156204

27. Bhatta, D., Mashayekhy, L.: A bifactor approximation algorithm for
cloudlet placement in edge computing. IEEE Trans. Parallel Distr.
Syst. 33(8), 1787–1798 (2022). https://doi.org/10.1109/TPDS.2021.
3126256

28. Wang, Z., Gao, F., Jin, X.: Optimal deployment of cloudlets based on
cost and latency in Internet of Things networks. Wireless Network 26(8),
6077–6093 (2020). https://doi.org/10.1007/s11276‐020‐02418‐9

29. Zeng, F., et al.: Cost‐effective edge server placement in wireless metro-
politan area networks. Sensors 19(1), 32 (2018). https://doi.org/10.
3390/s19010032

How to cite this article: Jasim, A.M., Al‐Raweshidy,
H.: Optimal intelligent edge‐servers placement in the
healthcare field. IET Netw. 1–15 (2023). https://doi.
org/10.1049/ntw2.12097

JASIM and AL‐RAWESHIDY - 15

 20474962, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ntw

2.12097 by B
runel U

niversity, W
iley O

nline L
ibrary on [04/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1109/tcss.2022.3161996
https://doi.org/10.1109/tcss.2022.3161996
https://doi.org/10.1109/tcc.2015.2449834
https://doi.org/10.1109/tcc.2015.2449834
https://doi.org/10.1109/jiot.2018.2811808
https://doi.org/10.1109/jiot.2018.2811808
https://doi.org/10.1109/TPDS.2015.2510638
https://doi.org/10.1109/TPDS.2015.2510638
https://doi.org/10.1109/ICC.2017.7996722
https://doi.org/10.1109/ICC.2017.7996722
https://doi.org/10.1109/BIGCOM.2017.58
https://doi.org/10.1002/cpe.3975
https://doi.org/10.1109/ACCESS.2020.2982241
https://doi.org/10.1109/ACCESS.2020.2982241
https://doi.org/10.1109/ICCCN49398.2020.9209754
https://doi.org/10.1109/ICCCN49398.2020.9209754
https://doi.org/10.1109/EDGE.2018.00016
https://doi.org/10.1109/EDGE.2018.00016
https://doi.org/10.1016/j.jpdc.2021.03.007
https://doi.org/10.1109/PerComWorkshops48775.2020.9156204
https://doi.org/10.1109/PerComWorkshops48775.2020.9156204
https://doi.org/10.1109/TPDS.2021.3126256
https://doi.org/10.1109/TPDS.2021.3126256
https://doi.org/10.1007/s11276-020-02418-9
https://doi.org/10.3390/s19010032
https://doi.org/10.3390/s19010032
https://doi.org/10.1049/ntw2.12097
https://doi.org/10.1049/ntw2.12097

	Optimal intelligent edge‐servers placement in the healthcare field
	1 | INTRODUCTION
	1.1 | Paper organisation

	2 | RELATED WORK
	2.1 | Priority mechanism approach
	2.2 | Edge‐servers placement approach

	3 | PRIORITY MECHANISM BASED ON ARTIFICIAL INTELLIGENCE
	4 | OPTIMAL EDGE‐SERVERS PROBLEM FORMULATION
	5 | OPTIMAL EDGE‐SERVERS PLACEMENT (OSEP)
	6 | RESULTS
	6.1 | Priority mechanism based on artificial intelligence
	6.2 | Optimal edge‐servers placement algorithm

	7 | CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT


