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Abstract
As we enter the new age of the Internet of Things (IoT) and wearable gadgets, sensors, and embedded devices are

extensively used for data aggregation and its transmission. The extent of the data processed by IoT networks makes it

vulnerable to outside attacks. Therefore, it is important to design an intrusion detection system (IDS) that ensures the

security, integrity, and confidentiality of IoT networks and their data. State-of-the-art IDSs have poor detection capabilities

and incur high communication and device overhead, which is not ideal for IoT applications requiring secured and real-time

processing. This research presents a teaching-learning-based optimization enabled intrusion detection system (TLBO-IDS)

which effectively protects IoT networks from intrusion attacks and also ensures low overhead at the same time. The

proposed TLBO-IDS can detect analysis attacks, fuzzing attacks, shellcode attacks, worms, denial of service (Dos) attacks,

exploits, and backdoor intrusion attacks. TLBO-IDS is extensively tested and its performance is compared with state-of-

the-art algorithms. In particular, TLBO-IDS outperforms the bat algorithm and genetic algorithm (GA) by 22.2% and 40%

respectively.

Keywords Data security � Internet of Things � Intrusion detection � Machine learning � Teaching-learning-based
optimization

1 Introduction

The number of IoT devices has risen dramatically during

the last decade [1]. IoT has emerged as a leading tech-

nology in digital transformation, connecting tiny devices

such as smartphones and gadgets to the internet to enable

effective communication between people and things [2].

IoT and wearable devices, like embedded systems, are

equipped with a range of sensors and the capacity to con-

nect to a network, allowing them to relay data [3].

Everything from a user’s pulse to weather information can

be tracked using IoT sensors. IoT plays an important role in

domestic as well as corporate sectors. Visual sensors and

similar devices are commonly used to monitor and

safeguard private buildings, government offices, and

healthcare facilities. A large amount of heterogeneous

industrial data is sensed, processed, and aggregated using

an IoT network.

A majority of digital transformation technologies lack

security and privacy measures, jeopardizing the confiden-

tiality, reliability, and integrity of an IoT network [4].

Hackers are increasingly targeting IoT devices and gadgets

because of the abundance of useful data they collect.

Furthermore, IoT devices and gadgets become more vul-

nerable to malware attacks due to their always-on network

access. The security and privacy of IoT devices are either

ignored or considered an afterthought by the manufacturers

[4]. Time-to-market and lower retail costs are usually the

driving forces behind a device’s design and development.

Individuals who want to protect themselves adopt software-

level solutions like firmware signing and the execution of

signed binaries [5]. IoT and wearable devices have dif-

ferent use patterns than conventional embedded systems or

personal computers; therefore, these solutions may not be

suitable. In addition, because of the emphasis on software-
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based security, hardware is usually left vulnerable, opening

up new attack routes that may be exploited. Figure 1 shows

the possible attacks that different IoT layers can face. It is

evident from Fig. 1 that all IoT layers are prone to attacks

by an outside intruder. Hence, a security framework is

required which can protect IoT networks and their data

from outside intrusion attacks.

1.1 Major scientific contributions

The profound scientific contributions of this research are

the following.

• IoT intrusion detection and security algorithms could

increase communication and device overhead, which

are key performance parameters for an IoT network.

This research presents a teaching-learning-based opti-

mization enabled intrusion detection system (TLBO-

IDS) that protects IoT networks and data from intrusion

attacks owing to its excellent detection rate, while also

ensuring low communication and device overhead, and

optimal throughput at the same time.

• The proposed TLBO-IDS can detect a wide range of

intrusion attacks on IoT networks and associated data,

including analysis, fuzzing, shellcode, worms, DoS,

exploits, and backdoor intrusion attacks.

• This research employs the metaheuristic approach

TLBO for optimizing the functioning of the proposed

IDS [6]. Extensive experiments are conducted to

evaluate and compare the efficiency of TLBO-IDS

against state-of-the-art approaches, namely the bat

algorithm [7] and GA [8].

The rest of the paper is structured as follows. Related

work is explained in Sect. 2. IoT design flow practices are

explained in Sect. 3. Proposed algorithm is described in

Sect. 4. Experimental results and conclusion are discussed

in Sects. 5 and 6 respectively.

2 Related work

The security of IoT devices has received minimal attention

in the literature [9, 10]. According to an early poll [11], IoT

security and privacy issues must be solved before IoT

devices are widely deployed. Network protocols are used to

secure IoT devices, while encrypted communication is

regarded as the most efficient way of protecting private

data. IoT network security risks and their possible solutions

have been summarised by the authors in [12–19], but these

threat models are mostly focused on network security.

Different IoT topologies were explored by the authors in

[5] in an attempt to overcome the problem of IoT security,

such as central and distributed designs. Again, network-

based solutions emphasize high-level designs without

considering whether the resources available on IoT devices

Fig. 1 Possible attacks on different IoT layers
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can support these topologies. Industry researchers have

also sought to build secure processor/System-on-Chip

(SoC) designs for IoT protection. SoC designers can

choose from a large range of components that can perform

certain tasks in the security environment thanks to Trust-

Zone technology [20]. Intel proposed the concept of

enclaves, where hardware-enforced access control regula-

tions protect data, code, and the stack inside an enclave.

Protective design is a priority for Samsung KNOX as well

[23]. KNOX contains sensitive data such as business con-

tacts and emails, and it provides a safe execution envi-

ronment as long as the user is authenticated.

Authors in [24] proposed the concept of artificial

immunity for intrusion detection. They implemented cloud,

edge, and fog layers in their work. Authors in [25] focused

on a lightweight IDS. They incorporated IDS on the

application layer, and hence it applied only to small IoT

networks. A voting-based IDS was proposed by [26]. For

each IoT node, one of the three pre-trained models was

selected for intrusion detection. Authors in [27] presented a

dual intrusion detection algorithm where the IDS was

applied to each node in the same layer of an IoT system to

identify and detect malicious attacks. Although it detected

each node twice, it lost accuracy. Authors in [28] proposed

an IoT anomaly detection approach using decision trees

(DT), naı̈ve bayes (NB), and an artificial neural network.

Authors in [29] employed neural networks to monitor and

detect wireless networks to safeguard small factories and

smart homes in the IoT. Authors in [30] proposed the use of

a calibration curve to examine and evaluate the perfor-

mance of various classifier methods such as k-nearest

neighbour (KNN), NB, and support vector machine (SVM)

to detect BotNet attacks. Authors in [31] employed a DT

classifier to train an IDS using a layered approach. Authors

in [32] employed fuzzy rule interpolation to present a

detection model for an IoT-BotNet attack. The developed

approach was applied to open-source IoT-Bot data.

Authors in [33] presented a machine learning-based

approach for the detection of distributed denial of service

in cloud computing. They implemented KNN, random

forest (RF), and NB in their approach. Authors in [7]

employed machine learning for intrusion detection in

industrial IoT. They used bat algorithm, particle swarm

optimization (PSO), and machine learning approach RF for

effective intrusion detection. After comparisons, their

research concluded that bat algorithm has a better perfor-

mance than PSO. Authors in [8] employed multiple clas-

sification models such as RF, NB, DT, and extra-trees for

intrusion detection in industrial IoT. Their research used

GA to enhance the feature selection in their research.

Authors in [34] employed a combination of deep learning

approaches to present an IDS. They used convolutional

neural network for feature extraction and long short-term

memory for classification. Authors in [35] proposed a

cloud-based approach for ensuring data integrity and con-

cluded that RF performs better than other machine learning

approaches such as NB, SVM, and KNN. Authors in [36]

proposed an IDS based on pattern recognition. They used

two different layers for classifying network connections

according to the user service and type of attack. Authors in

[37, 38] presented a quantum secure cryptography frame-

work that protects IoT devices and data from quantum

attacks. They presented algorithms for public as well as

private key encryption. Authors in [39] presented a cloud-

based IDS to enhance the security of cloud data. They

implemented feature engineering and RF in their approach.

Authors in [40] proposed an enhanced IDS by customizing

four state-of-the-art deep learning approaches. They trained

the model on the cloud server before using it for

classification.

Many hardware, as well as software-based IoT security

solutions, are proposed in the literature. The passive nature

of hardware-based security systems means that they cannot

detect or mitigate threats. Furthermore, IoT security and

intrusion detection algorithms can lead to performance

issues such as increased overhead and low throughput. A

majority of the software-based state-of-the-art IoT security

solutions do not focus on the above-mentioned perfor-

mance issues. The proposed TLBO-IDS safeguards IoT

systems and data against analysis, fuzzing, shellcode,

worms, DoS, exploits, and backdoor intrusion attacks,

ensuring a low overhead at the same time.

3 IoT design flow practices

This section discusses IoT design flow practices. Open and

closed software, cryptographic systems, debug interfaces,

and hardware components of an IoT system are examined

for security vulnerabilities.

3.1 Open versus closed source software

It is difficult to determine whether open-source or closed-

source software is better for security. An attacker just hunts

for bugs in the source code to discover a way to attack the

device using open-source software. Linux-based stacks are

widely used at the device firmware level, while some

devices use FreeRTOS [41] or other open-source software

to build Linux atop. Many other companies, such as Wind

River and Blackberry, use their own proprietary software,

such as VxWorks [42] and QNX [43]. In open-source

software, manufacturers don’t have to depend on system

vendors for patching bugs, allowing for a quicker reaction

time to the problem. A quick reaction to a bug also makes it

difficult for an attacker to reverse engineer user interfaces
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in search of software faults. In closed-loop software, the

manufacturers must depend on the suppliers after vulner-

abilities are discovered. It is thus necessary to consider

design needs, the availability of support, and the level of

security provided by the stack.

3.2 Weak or bad cryptographic implementations

The security software must be able to verify the integrity

and authenticity of the downloaded data to remotely update

a device. Cryptographic algorithms are used for this pur-

pose. Many vulnerabilities have been identified in security

software and cryptography algorithms because of the

complexity of the mathematics involved and implementa-

tion mistakes [44]. These flaws demonstrate how an inad-

equately built cryptographic system may be circumvented

by an attacker, allowing a remote attack on the device.

Remote exploitation of a device is possible through these

vulnerabilities, where an attacker takes advantage of secure

sockets layer (SSL) flaws to enable the installation of

malicious firmware over the network via a fake distribution

server.

3.3 Debug interfaces on production runs

A device must be functionally tested before going into

mass production. A circuit board must include program-

ming and testing points for all the components it contains.

Even though these interfaces are typically unlabelled, they

are not deleted after testing. Using these interfaces, an

attacker may modify a unit’s functionality or infect it with

malicious code. In software components, compilers may

output binaries with debugging symbols, which represent

the source that generated a given block of machine code.

This allows an attacker to recreate the source code and

exploit vulnerabilities.

3.4 Hardware threats

IoT security might be jeopardized by hardware Trojans. If

an integrated circuit is tampered with, it may leak sensitive

information to an attacker, cause a device to function

outside of set limits, or make the device completely futile.

Hardware trojans are harder to detect; therefore, standard

testing methods are ineffective in catching them, necessi-

tating the use of more costly specialist procedures. Fur-

thermore, a hostile attacker might use the cryptographic

core of an IoT device’s SoC to install a hardware Trojan.

Random number generators can be affected by this Trojan

when it is activated. As a result, an attacker would need a

far smaller amount of processing power to decode the data.

4 Proposed algorithm

The proposed TLBO-IDS comprises data collection, data

pre-processing, feature extraction using the metaheuristic

approach TLBO, and model training and testing. This

section explains the stepwise implementation of TLBO-

IDS.

4.1 TLBO

The TLBO algorithm is based on the teaching–learning

process. It is derived from the classroom practice of

teaching and learning, where students first learn from a

teacher and subsequently from each other [6]. TLBO is a

population-based approach where a group of students form

the population. As a result, a student in the class is a fea-

sible solution. The subjects taught in the class are referred

to as the design variables of the optimization problem, and

the student’s result is considered as the fitness function of

the feasible solution. TBLO is divided into two stages,

which are explained below.

4.1.1 Teacher phase

The teacher phase involves students learning from the

teacher. Generally, the most learned and knowledgeable

person in the society is considered as a teacher. The teacher

is responsible for educating the students and ensuring that

they get good marks. On the other hand, students acquire

knowledge and obtain marks based on the quality of

teaching. Let us assume that there are n subjects (design

variables j ¼ 1; 2; 3. . .. . .nÞ allotted to Np students. During

a teaching–learning process (iteration k ¼ 1; 2; 3; 4. . .::n),

Mk
j is the mean student result in a subject ‘j’. As we know

that teacher is the most educated person in the society. To

simulate this, we consider the best student (feasible solu-

tion) in the population as a teacher. Let Xk
T is the most

feasible solution at kth learning iteration and Xk
Tj is the jth

design variable in the best feasible solution. The difference

between the teacher’s result and the student’s mean result

in jth subject is given by Eq. (1).

Dk
j ¼ r Xk

Tj � TFM
k
j

� �
ð1Þ

where TF denotes the teaching factor that determines the

mean value to be changed. r is a random number that has a

value between [0,1].

In this process, the feasible solutions (students) are

iteratively improved by moving them toward the best fea-

sible solution (teacher), while considering the current mean

value of the feasible solutions. The ith feasible solution at

kth learning cycle is updated as per Eq. (2).
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Xk
new;i;j ¼ Xk

old;i;j þ Dk
j ð2Þ

Xk
new;i is accepted only if it is better than Xk

old;i, other-

wise, it is rejected. The accepted feasible solutions act as

input to the student phase.

4.1.2 Student phase

Students gain expertise and knowledge by randomly

interacting with each other. A student (a) learns from

another student (b) in the class if student (b) has more

knowledge than student (a). Hence, student (a) is moved

towards student (b) if student (b) is better than the student

(a). Otherwise, the student (a) would be moved away from

the student (b). Two feasible solutions, Xk
a, X

k
b are selected

randomly from the class, where a and b are random inte-

gers in the range [1, Np] and a is not equal to b.

IfFðXk
aÞ[FðXk

bÞ

Xk
new SP;a;j

¼ Xk
a;j þ r Xk

a;j � Xk
b;j

� �
ð3Þ

Else

Xk
new SP;a;j

¼ Xk
a;j þ r Xk

b;j � Xk
a;j

� �
ð4Þ

Endif

where FðXÞ is the fitness function of the feasible solution,

Xk
new SP;a;j

denotes the jth design variable of the modified

feasible solution in the student phase at kth teaching–

learning cycle.

Afterward, the fitness value of Xk
new SP;a

is calculated.

IfF Xk
new

SP
;a

� �
[FðXk

new:aÞ

Xk
new:a ¼ Xk

new SP;a
ð5Þ

Else

Xk
new:a ¼ Xk

new:a ð6Þ

Endif

4.2 Data collection and pre-processing

This research uses the UNSW-NB15 dataset. A total of 42

labelled features are generated, which are then divided into

six categories, namely flow features, time features, content

features, connection features, general purpose features, and

labelled features. Apart from the normal data, this research

considers seven types of attacks, namely analysis, fuzzing,

shellcode, worms, DoS, exploits, and backdoor intrusion

attacks. This research uses 174,160 records for the training

set and 74,640 records for the testing set from the UNSW-

NB15 dataset. Data pre-processing can minimize the size

of raw data and speed up the model training process. Data

quality is primarily determined by correctness, integrity,

and consistency. But in the real world, databases, and data

warehouses are filled with erroneous, incomplete, and

inconsistent data. Following the data collection, the pro-

posed research pre-processes the raw data to turn it into a

structured form. As a part of data pre-processing, data is

partitioned into training and testing sets. The proposed

research uses 70% of the data for training and 30% of the

data for testing. It is where the duplication and overlapping

issues start appearing in the data. Data duplication corre-

sponds to a situation when a data sequence occurs multiple

times in a set. On the other hand, data overlapping is a

condition when a data sequence appears in both sets. Data

duplication and overlapping can result in an unreliable

evaluation model. If the data pool comprises overlapped

sequences, the same sequence could exist in both the

training and testing set, compromising the model’s overall

performance. To mitigate this issue, the proposed model

uses data cleaning and ensures that no duplicate or over-

lapping data sequence exists. Clean training and clean

testing data sets are stored separately from the original

uncleaned data.

4.3 Feature extraction and TLBO optimization

Feature extraction is the process of extracting important

features from the dataset. This is an important step because

it increases the calculation speed, preserves storage space,

and avoids redundant features of the data. The process of

feature selection involves the selection of an appropriate

0/1 string, where 1 represents the selection of a particular

feature and 0 shows that the feature is not selected. The

string length is the same as the number of features present

in the dataset. The pre-processed data from Sect. 4.2 is

input into TLBO for feature optimization. The TLBO

optimization works as per Sect. 4.1.

4.4 Training and testing

The main purpose of an IDS is to place incoming traffic

into normal and intrusive categories. TLBO-IDS is trained

distinguish between normal and abnormal data. Figure 2

not only presents the architecture of TLBO-IDS but also

depicts the training and testing processes involved. As

shown in Fig. 2, the UNSW-NB15 dataset is pre-processed

and feature extraction is done using TLBO. The pre-pro-

cessing step includes splitting of data into training and test

sets, and data cleaning. The model is then trained using the

training data set and machine learning classification algo-

rithm RF. The accuracy of the trained model is tested for

intrusion detection using a test data set. Normal outcome

indicates no intrusion whereas abnormal output shows that
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there is an intrusion detected. TLBO-IDS uses RF for

training purposes. RF is a bagging classifier that involves

the use of numerous DTs. Each DT is fed with input by row

and column sampling. One of the major drawbacks of DT

is its low bias and big variance. This means that the tree

will perform better in the training phase but it will have a

poor performance in the testing phase. The proposed

approach applies a voting strategy using RF which lowers

the variance from high to low because the decision in the

voting strategy is based on numerous trees rather than a

single tree [7].

5 Experimental results

This section evaluates and compares the performance of

the proposed TLBO-IDS with the state-of-the-art approa-

ches, namely the bat algorithm [7] and GA [8]. The IDS

performance parameters are formulated in Sect. 5.1 and the

output with analysis is presented in Sect. 5.2.

5.1 Evaluation metrics

For intrusion detection, the prediction of data comprises

four cases, which are discussed below.

True positive (TP). When both the actual and predicted

labels are positive.

False negative (FN). When the actual label is positive

and the predicted label is negative.

True negative (TN). When both actual and predicted

labels are negative.

False positive (FP). When the actual label is negative

and the predicted label is positive.

The parameters for testing the effectiveness of an IDS

are calculated in Eqs. 7 and 8.

1. Detection rate. It is the ability of an IDS to effectively

detect an intrusion.

Detectionrate ¼ TP

TPþ FN
ð7Þ

2. Accuracy. It is measured as the proportion of correct

prediction results out of the total number of samples.

Accuracy ¼ TPþ TN

TPþ FN þ TN þ FP
ð8Þ

5.2 Output and analysis

The experimental environment configuration for obtaining

the output in TLBO-IDS is shown in Table 1. Figure 3

shows the detection rate of TLBO-IDS on normal and

seven types of attack data, compared with the bat algorithm

[7] and GA [8]. The detection rate is calculated as per

Eq. (7). As seen in Fig. 3, TLBO-IDS has an excellent

detection rate for the detection of analysis, fuzzing, shell-

code, worms, DoS, exploits, and backdoor intrusion

attacks. In particular, TLBO-IDS outperforms the bat

Fig. 2 TLBO-IDS architecture

Table 1 Experimental environment configuration of TLBO-IDS

Name Value

Training set 170,254 records

Testing set 78,547 records

No. of labelled features 42

TLBO iterations 1000

RAM during implementation 8 gigabytes

Disk capacity 1 terabyte

Processor i5
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algorithm [7] and GA [8] by 7.1% and 11.4% respectively,

in terms of detection rate.

Apart from the detection rate, accuracy is an important

metric for measuring the effectiveness of an IDS. There-

fore, the performance of the proposed research is evaluated

and compared with state-of-the-art research for accuracy.

Figure 4 shows that the proposed TLBO-IDS approach

performs better than the bat algorithm [7] and GA [8] in

terms of accuracy. TLBO-IDS shows the best accuracy

compared to the existing approaches, while GA has the

worst output.

System throughput is a key parameter for IoT perfor-

mance and is calculated as packets per second. In this

research, we compare the performance of the proposed

TLBO-IDS with state-of-the-art research for system

throughput. Figure 5 shows the throughput performance of

TLBO-IDS in comparison with the bat algorithm [7] and

GA [8]. The proposed approach has a better throughput

Fig. 3 Comparison of TLBO-

IDS with state-of-the-art

approaches for detection rate

Fig. 4 TLBO-IDS compared with state-of-the-art approaches for

accuracy

Fig. 5 Comparison of TLBO-IDS with state-of-the-art approaches for

throughput (packets/second)
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than the state-of-the-art approaches. In particular, TLBO-

IDS performs better than the bat algorithm [7] and GA [8]

by 32.1% and 74.7% respectively in terms of system

throughput.

The implementation of an IDS must not increase device

or communication overhead. The proposed TLBO-IDS

framework employs the metaheuristic approach TLBO,

which optimizes the operational parameters and perfor-

mance of the IDS, minimizing the overhead caused. Fig-

ure 6 compares the TLBO-IDS approach with the bat

algorithm [7] and GA [8] for device overhead. As seen in

Fig. 6, TLBO-IDS has a low overhead in comparison to

state-of-the-art research. In particular, the TLBO-IDS

approach has 16.6% and 52.7% less overhead than the bat

algorithm [7] and GA [8] respectively.

Communication overhead is generally caused due to

excessive number of transmission packets in an IoT net-

work. Communication overhead impacts the overall net-

work performance. This research compares the

performance of the proposed approach with the state-of-

the-art algorithms in terms of communication overhead.

Figure 7 shows a comparison of TLBO-IDS with the bat

algorithm [7] and GA [8] for communication overhead. It

could be seen from Fig. 7 that TLBO-IDS has low com-

munication overhead as compared to the state-of-the-art

approaches. In particular, TLBO-IDS performs better than

the bat algorithm [7] and GA [8] by 22.2% and 40%

respectively in terms of communication overhead.

6 Conclusion

This research proposed a teaching–learning-based opti-

mization enabled intrusion detection system to detect

intrusion attacks on IoT networks, ensuring low overhead

at the same time. Data from the UNSW-NB15 dataset was

pre-processed, and features were extracted using TLBO.

The machine learning classification algorithm RF was used

to train the model. The proposed framework could detect

analysis, fuzzing, shellcode, worms, DoS, exploits, and

backdoor intrusion attacks. Extensive experiments were

carried out, and the performance of TLBO-IDS was tested

in terms of detection rate, accuracy, throughput, device

overhead, and communication overhead. TLBO-IDS was

compared with state-of-the-art algorithms, namely the bat

algorithm and GA. The proposed approach had excellent

accuracy and detection rate. In particular, TLBO-IDS

outperformed the bat algorithm and GA by 22.2% and

40%, respectively. TLBO-IDS can distinguish between

normal and intrusive network traffic and has applications in

both domestic and industrial sectors where the security of

IoT data is paramount. Future works include enhancing the

applicability and utility of the proposed approach by

incorporating various encryption standards.
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