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Abstract 

Dementia denotes the condition that affects people suffering from cognitive and behavioral impairments 
due to brain damage. Common causes of dementia include Alzheimer’s disease, vascular dementia, or 
frontotemporal dementia, among others. The onset of these pathologies often occurs at least a decade 
before any clinical symptoms are perceived. Several biomarkers have been developed to gain a better insight 
into disease progression, both in the prodromal and the symptomatic phases. Those markers are commonly 
derived from genetic information, biofluid, medical images, or clinical and cognitive assessments. Informa-
tion is nowadays also captured using smart devices to further understand how patients are affected. In the 
last two to three decades, the research community has made a great effort to capture and share for research a 
large amount of data from many sources. As a result, many approaches using machine learning have been 
proposed in the scientific literature. Those include dedicated tools for data harmonization, extraction of 
biomarkers that act as disease progression proxy, classification tools, or creation of focused modeling tools 
that mimic and help predict disease progression. To date, however, very few methods have been translated 
to clinical care, and many challenges still need addressing. 
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1 Introduction 

Dementia is a progressive condition which affects over 55 million 
people worldwide, with nearly 10 million new cases every year 
[1]. The term “dementia” indicates not a single disease, but rather 
a spectrum of different conditions with different clinical pheno-
types, which can be caused by a multitude of pathologies that cause 
changes in the structure and chemistry of the brain. While the most 
common cause of dementia-related symptoms is a neurodegenera-
tive disease, other causes do exist (e.g., chronic inflammatory dis-
ease, alcoholism. . .). The exact pathological cascade of events which 
causes the development of symptoms is still unknown, but overall it
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is thought that a combination of genetic and environmental factors 
results in the abnormal accumulation of misfolded, toxic proteins in 
the brain, which then triggers both chemical imbalance and neuro-
nal loss in the brain (a process called atrophy), ultimately leading to 
the hallmark clinical symptoms that eventually impair the daily 
functioning of affected individuals. An important distinction to 
make is between the concept of “dementia” as a collection of 
clinical syndromes and as qualitative and quantitative clinical 
expressions of the disease, and “disease” as the underlying patho-
physiological processes of the syndromes.

808 Marc Modat et al.

Thanks to the increased insight into disease pathophysiology, 
there has been a revision of the clinical diagnostic criteria, moving 
from considering the observable clinical signs and symptoms and 
implying a close and consistent correspondence between clinical 
symptoms and the underlying pathology, to including biomarkers 
of the underlying disease state in the clinical diagnosis. For exam-
ple, the 1984 NINCDS-ADRDA1 criteria were the benchmark for 
a clinical diagnosis of Alzheimer’s disease, which was defined as “a 
progressive, dementing disorder, usually of middle or late life” 
[2]. These criteria were revised in 2011 [3], to include biomarkers 
to support the clinical diagnosis and to account for the “pre-
dementia” stages and the slow pathological changes occurring 
over many years before the manifestation of clinical symptoms [4]. 

Despite different pathological origins, many forms of dementia 
can have similar symptoms, which typically include memory loss, 
language difficulties, disorientation, and behavioral changes. How-
ever, at an individual level, the symptoms can vary with regard to 
their nature, presentation, rate of progression, and severity. Such 
heterogeneity between and within forms of dementia is typically 
related to the area (or areas) of the brain affected by the underlying 
pathology and by the etiological cause of the disease itself. 

1.1 Alzheimer’s 

Disease (AD) 

AD is the most common form of dementia, accounting for 60–65% 
of all cases. It typically presents in individuals aged 65 or older, with 
the initial and most prominent cognitive deficits being memory 
loss, with additional cognitive impairments in the language, visuo-
spatial, and executive functions [3]. The distinguishing feature of 
AD is the buildup of amyloid-β plaques and neurofibrillary tangles 
of tau proteins. The amyloid plaques tend to be diffuse throughout 
the brain, while tau pathology tends to start in the mediotemporal 
lobe, and in particular in the hippocampus and entorhinal cortex, 
and spread to prefrontal and temporoparietal cortex in the moder-
ate stages of the disease. There are numerous genetic factors that 
have different levels of risk and prevalence in the population. The
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greatest risk comes from the nearly fully penetrant autosomal dom-
inant mutations in the amyloid precursor protein (APP), presenilin 
1 (PSEN1), or presenilin 2 (PSEN2) genes. However, the preva-
lence of these mutations is extremely low, comprising less than 0.5% 
of all AD cases. The age at onset of autosomal dominant AD is 
relatively similar between generations [5] and within individual 
mutations [6], typically resulting in an early-onset form of AD 
(below the age of 60 years). The most prominent risk factor gene 
in terms of both hazard and prevalence is apolipoprotein E 
(APOE). Carriers of a single copy (roughly 25% of the population) 
of the E4 allele are roughly two to three times more likely to develop 
AD [7], and they tend to have an earlier age of disease onset. 
Homozygotic E4 carriers represent 2–3% of the general population, 
with a dose-dependent increase in risk. There have been some 
suggestions that carrying an E2 form of APOE can infer some 
protection to individuals compared to the most common E3 allele 
[7, 8].
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Besides the typical presentations of AD in which episodic mem-
ory deficits are prominent, there are other variants with atypical 
presentations. Posterior cortical atrophy (PCA) [9] is characterized 
by visual and spatial impairments, but memory and language abil-
ities are preserved in the early stages, with atrophy localized in the 
parietal and occipital lobe. Logopenic variant of the primary pro-
gressive aphasia (lvPPA), also called logopenic progressive aphasia 
(LPA), is characterized by impairments in the language domain 
(i.e., word-finding difficulty, impaired repetition of sentences and 
phrases) and atrophy in the left temporoparietal junction 
[10]. Despite presenting with different symptoms and neuroana-
tomical features, both PCA and lvPPA typically share the same 
forms of pathology, amyloid plaques, and neurofibrillary tangles, 
with the typical forms of AD. Besides these pathological hallmarks, 
accumulation of the TAR DNA-binding protein 43 (TDP-43) [11] 
is another form of pathology often observed in AD, particularly in 
cases with older onset of symptoms, resulting in increased rates of 
atrophy. The limbic-predominant age-related TDP-43 encephalop-
athy dementia (LATE) is a related condition found in older elderly 
adults (above 80 years of age), presenting with a slow progression 
of amnestic symptoms and hippocampal sclerosis. 

1.2 Vascular 

Dementia (VaD) 

As the second most common form of dementia (accounting for 
10–15% of all dementia cases), VaD is an umbrella term for a 
number of syndromes due to a clear primary cause: the decreased 
blood flow due to damage in the blood supply (large or small 
vessels), which leads to brain tissue damage. The vascular origin is 
clearly seen on magnetic resonance imaging (MRI) as the presence 
of extensive periventricular white matter lesions, or multiple 
lacunes in the basal ganglia and/or white matter [12]. Symptoms 
tend to accumulate in a step-wise fashion, rather than gradually



worsening, and they greatly vary based on which vessel is involved: 
ranging from memory loss, and difficulties in executive functions, 
to language and motor impairments. Different syndromes include 
multi-infarct dementia (or vascular cognitive impairment), when a 
series of small strokes damage multiple areas of the brain, typically 
in the cortex; strategic infarct dementia, when symptoms are caused 
by a focal ischemic lesion; subcortical vascular dementia 
(or subcortical leukoencephalopathy), caused by occlusions in 
small vessels, resulting in multiple lacunes in the subcortical struc-
tures; and mixed dementia, when symptoms of both vascular 
dementia and AD are present. 
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Generally, strategic infarct dementia and multi-infarct dementia 
involving the cortex are due to occlusion in one of the major 
cerebral arteries, and therefore the insult in the brain usually results 
in a large area affected; they have a definable time of onset and 
specific deficits related to the region affected. When the occlusion 
involves small vessels, the dementia symptoms have a more insidi-
ous onset and less defined deficits in the executive function domain. 

Risk factors typically include age, hypertension, high choles-
terol, obesity, smoking, and other cardiovascular diseases (family 
history of stroke, heart disease, or diabetes). Mutations in the 
Notch3 gene have been associated to the cerebral autosomal domi-
nant arteriopathy with subcortical infarcts and leukoencephalopa-
thy (CADASIL), which is a genetic disorder showing recurrent 
stroke, resulting in lacunar infarcts [13]. 

1.3 Frontotemporal 

Dementia (FTD) 

FTD describes a very heterogeneous group of neurodegenerative 
disorders with multiple genetic and pathological causes. However, 
there is sufficient overlap in terms of both clinical (behavioral 
and/or language symptoms) and anatomical presentation (frontal 
and temporal lobe atrophy and hypometabolism) that the condi-
tions are commonly considered together as one group. While 
representing 5–10% of all dementia cases, the FTD disorders con-
stitute a more common cause of early onset dementia, approxi-
mately equal in frequency to AD in people under the age of 65. 
The only confirmed risk factors are genetic, and about a 30–50% of 
cases are due to an autosomal dominant mutation, primarily found 
in the microtubule-associated protein tau (MAPT), progranulin 
(GRN), or chromosome 9 open reading frame 72 (C9orf72) 
genes [14]. The age at onset is extremely variable within and 
between genetic forms, including within families, and therefore 
hard to predict [15]. 

Clinically, behavioral variant FTD (bvFTD) is the most com-
mon presentation, with impaired social conduct and personality 
changes, often misdiagnosed as psychiatric illness at the onset 
[16]. It could be caused by tau, TDP-43, or fused-in-sarcoma 
pathology [17, 18] and associated with extremely variable pattern



1.4 Dementia with

Lewy Bodies (DLB)

of atrophy between patients, with a predominant involvement of 
the frontal and temporal cortex (often asymmetrical), but also 
insula, anterior cingulate, and subcortical structures [19–21]. 
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Less frequently, patients present with progressive decline in 
speech and language functions, a collection of disorders and var-
iants referred to as primary progressive aphasia, PPA. There are 
multiple variants of PPA, with different language deficits and 
brain regions involved. These are semantic variant (svPPA), with a 
breakdown of semantic memory, and associated atrophy in the left 
antero-inferior temporal lobe [22, 23]; non-fluent variant 
(nfvPPA), characterized by agrammatism and speech apraxia, and 
associated atrophy in the left inferior frontal, superior temporal, 
and insular cortex [22]; and lvPPA, though as mentioned previ-
ously is more often linked with AD pathology [10]. 

Around 15% of people on the FTD spectrum can also develop 
motor features consistent with either amyotrophic lateral sclerosis 
(ALS) (or motor neurone disease, MND) or parkinsonism (includ-
ing progressive supranuclear palsy, PSP, or corticobasal syndrome, 
CBS) [24]. 

There is a distinct differential brain involvement across the 
genetic forms of FTD, evident up to 15 years before the estimated 
symptoms onset [25, 26]: MAPT mutations cause focal symmetric 
atrophy in the anterior temporal and orbitofrontal cortex, includ-
ing hippocampus and amygdala; GRN mutations usually cause 
asymmetric atrophy in the temporal, inferior frontal, and inferior 
parietal lobes and striatum; while C9orf72 repeated expansions 
showed wider symmetric atrophy, predominantly involving the 
dorsolateral and medial frontal and orbitofrontal cortex, as well as 
the thalamus and cerebellum [25, 27, 28]. Despite these common 
patterns, there is still large variability even within the same genetic 
group, potentially due to the specific mutations, clinical presenta-
tions, or genetic and environmental factors [29, 30]. 

Around 10–15% of dementia cases have a diagnosis of DLB 
[31]. Symptoms tend to have an insidious onset, usually at the 
age of 65 years or older, and disease duration has an average of 
5 to 8 years from diagnosis, but it can range from 2 to 20 years. 
Symptoms change greatly from person to person but typically 
include fluctuating cognition, pronounced alterations in attention, 
alertness and executive functions, visual hallucinations, and motor 
features of parkinsonism. Early signs also include rapid eye move-
ment (REM) sleep behavior disorder, while memory and hippo-
campal volume are relatively preserved in the initial stages, but they 
become impaired later during the course of the disease. Alongside 
relatively preserved mediotemporal lobe volumes, typical biomar-
kers are reduced dopamine transporter (DAT) uptake in the basal 
ganglia on single-photon emission computed tomography 
(SPECT) or positron emission tomography (PET) imaging, and 
polysomnographic recordings, showing REM sleep without atonia.
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DLB is considered a sporadic disease; however, mutations in 
genes encoding α-synuclein (SNCA) and β-synuclein (SNCB) pro-
teins have been associated with DLB [32]. 

Pathologically, DLB is characterized by the presence of α-synu-
clein proteins which abnormally aggregate in the brain to form 
Lewy bodies. 

Lewy bodies are also found in the brain of individuals affected 
by Parkinson’s disease and Parkinson’s disease dementia (PDD). 
DLB and PDD are often difficult to distinguish, and the “1-year 
rule” is used for differential diagnosis: if the parkinsonian motor 
symptoms are experienced for a year or more before the onset of the 
cognitive impairments, then the condition of PDD is diagnosed, 
while if the cognitive problems start before or within 1 year after 
the movement difficulties, then a diagnosis of DLB is likely to be 
given. 

Box 1: Different Diseases Causing Dementia 
Dementia is not a disease but a spectrum of disorders defined 
by different pathologies, the most common being the 
following.

• Alzheimer’s disease is the most prevalent, with hallmark 
pathologies of amyloid-β and neurofibrillary tau tangles. 
Memory is the most common symptom, but there are visual, 
language, and behavioral variants.

• Vascular dementia is caused by various types of vascular 
insults.

• Frontotemporal dementia is more common in those with 
younger ages of onset and is more associated with behavioral 
and language forms.

• Dementia with Lewy bodies (DLB) shares pathology with 
parkinsonian disorders and often has visual fluctuations and 
hallucinations as symptoms. 

2 Features and Markers of Dementia 

As previously mentioned, the most prevalent forms of dementia are 
multi-factorial processes that typically occur over a very long time 
period, from the silent buildup of pathology through to the onset 
and progression of the clinical syndrome. As such, there will be 
numerous types of assessment that can help identify individuals at 
risk, underlying pathology burden, and severity of the disease. 
These range from classic clinical workups, cognitive assessments 
of memory and other brain functions, fluid-based biomarkers, and



medical imaging-based assessments. The utility and sensitivity of 
these investigations will highly depend on the stage of the disease 
that the patient is experiencing. 
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2.1 Genetic Markers Despite the numerous forms of pathology that can ultimately lead 
to dementia, many genetic risk factors have been identified for AD 
and related disorders; the overall heritability of AD has been char-
acterized to be between 60 and 80% [33]. This risk of heritability 
however is spread out over a wide range of locations that vary in 
terms of prevalence and impact. Identifying genetic risk factors and 
the associated pathways that these genes are involved in have led to 
a better understanding of various forms of dementia [34]. 

As mentioned in Subheading 1, the genetic variants with the 
strongest penetrance are the autosomal dominant forms of demen-
tia. What these rare autosomal dominant forms provide is an oppor-
tunity to study a “purer” form of dementia, as the age of disease 
onset tends to be in the 30s through 50s, when there should be a far 
lower likelihood of commodities. It also provides a chance to study 
pre-symptomatic changes in individuals who are nearly certain to 
become affected by the disease. Thus, these cohorts are an ideal 
population for clinical trials of new therapies, in part to prove that 
the target engagement is successful and whether it provides any 
evidence that supports the underlying hypothesis around the dis-
ease start and spread. 

Outside of the autosomal dominant mutations, the gene most 
linked with risk for AD is APOE. There is not an equivalent gene in 
terms of risk and prevalence to APOE yet discovered for other 
forms of dementia, in part because these forms of dementia are 
rarer and it is thus more difficult to include the number of subjects 
needed for a well-powered GWAS (genome-wide association 
study). However, there are some suggestions, such as the TREM2 
variant in FTD [35]. 

Rather than trying to identify single target genes and their 
associated risks, many researchers have looked to generate a poly-
genic risk score, i.e., a sum of the risks conferred by each associated 
variant across the genome. Polygenic risk scores (PRS) have been 
developed for multiple diseases to better account for the amalga-
mated risk that the entire genetic profile provides [36]. For AD, 
however, APOE confers a far greater risk to individuals, with the 
PRS scores able to slightly improve predictive accuracy and explain 
additional risks beyond APOE [37, 38]. 

2.2 Clinical and 

Cognitive Assessment 

Given that various forms of dementia have historically been defined 
by their clinical phenotype, and that clinical and cognitive assess-
ments tend to be the cheapest and most widely available, they often 
are paramount in terms of initial diagnostic workup of an individ-
ual, as well as their subsequent patient management.
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Clinical vital signs, such as blood pressure [39, 40] and body 
mass index (BMI) [41], may suggest causes of cognitive 
impairment other than a neurodegenerative disorder or indications 
of an at-risk profile that would result in a more aggressive disease. 
The Clinical Dementia Rating (CDR) [42] is a semi-structured 
interview that examines several aspects of physical and mental 
well-being which is summarized under six subdomains. For each 
subdomain, a score of 0 (no impairment), 0.5 (mild/questionable 
impairment), 1, 2, or 3 is given. Both the sum of these subdomains, 
referred to as the CDR Sum of Boxes (CDR-SB), and a global 
summary score are often used, with CDR-SB now commonly 
used as a primary endpoint in trials. Other clinical workups may 
help identify non-memory symptoms that would not be picked up 
via cognitive assessments, such as anxiety, depression, and quality of 
daily activities. 

Cognitive assessments look at numerous domains of brain 
function, including executive function, language, visuospatial func-
tions, and behavior. However, given that memory is the most 
common primary complaint from individuals with AD, assessments 
of various aspects of an individual’s memory is one of the most 
important and typically included in both clinical and research set-
tings. Numerous tests have been developed and validated for use in 
the clinic as well, and they often serve as a primary outcome 
measure in clinical trials of subjects with mild to moderate 
AD. Standard clinical and cognitive assessments include the Mini 
Mental State Exam (MMSE) [43], the Alzheimer’s Disease Assess-
ment Scale-Cognitive Subscale (ADAS-COG) [44], and the Mon-
treal Cognitive Assessment (MoCA) [45]. 

While cheap and readily available, these assessments do come 
with some disadvantages. These are often pencil and paper tests 
which are administered and scored by a trained rater. As such, there 
is a level of subjectivity in many of these assessments that tend to 
result in high variability. Often these tests repeat the same questions 
and tasks over and over again, which leads to practice effects. It also 
is often difficult to build these assessments such that their dynamic 
range can simultaneously cover both the early subtle signs of 
dementia pre-symptomatically and the full decline once the indivi-
duals have experienced symptoms. This results in some tests having 
substantial ceiling effects (i.e., being easy enough that there is 
limited distinction between healthy individuals and those experien-
cing the subtle initial symptoms) and floor effects (i.e., the tests are 
so difficult that many with a cognitive impairment cannot perform 
them). There are also the cultural and lingual artifacts that may 
produce bias when translating one of these tests over from one 
language to another. As a result, there is a trend to formulate 
cognitive assessments in a more objective, computational format 
to reduce issues around subjectivity, language differences, and 
learning effects. They may reduce the variability compared to



standard paper and pen tests, which may be of key benefit in 
assessing therapeutic effects in clinical trials [46, 47]. This includes 
multiple trials of the test run during a single assessment and collec-
tion of dense information about the task in addition to more 
summary metrics as number of items correct or mean reaction 
time. The rich set of detailed, repeated measures is ideal for further 
exploration with machine learning algorithms. 
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2.3 Biofluid 

Assessments 

The most widely studied fluid-based biomarkers in AD and related 
disorders come from samples of cerebrospinal fluid extracted from 
an individual’s spine. Measures of primary AD-related pathology 
(Aβ1-42, tau, p-tau) can be obtained from these samples, as well as 
peripheral information on downstream mechanisms, such as neu-
roinflammation, synaptic dysfunction, and neuronal injury 
[48]. Fluid-based biomarkers are very effective in terms of being a 
“state” biomarker, i.e., whether an individual has a normal or 
abnormal level. They are often much cheaper than imaging assess-
ments in providing this status and thus are more likely to be used 
for screening of individuals at risk for dementia. At the same time, 
their ability to track change in the disease over time is currently 
limited. They are in general more noisy measurements, likely due to 
a number of factors including consistency of extraction, storage, 
and analysis methods [49]. Even when these have been held 
extremely consistent, their variability is still much higher in terms 
of measurement of change over time compared to cognitive and 
imaging measures [50]. Despite the procedure being very safe and 
continuing to improve, there is still a set of individuals who will not 
wish to participate in studies involving these assessments. A far less 
invasive and cheaper procedure is to extract similar measures from 
the plasma. While plasma-based biomarkers have been actively 
pursued for a lengthy time, it is only very recently that they have 
produced the level of accuracy and precision needed to compete in 
terms of performance to other established measurements 
[51, 52]. There have been plasma-based assessments of amyloid-
β, different tau isoforms, and nonspecific markers of neurodegen-
eration (such as levels of the neurofilament light chain, NfL) which 
show promise for detecting changes in the preclinical stage of 
AD [53]. 

2.4 Imaging 

Dementia 

The primary use of brain imaging in clinical settings is to exclude 
non-neurodegenerative causes, such as normal pressure hydroceph-
alus, tumors, and chronic hemorrhages, together with absence of 
atrophy, all features that can be visualized on T1-weighted MRI or 
computerized tomography (CT) scans. Nevertheless, three-
dimensional tomographic medical imaging modalities, particularly 
PET and MR imaging, provide high-precision measurements of 
spatiotemporal patterns of disease burden that have proven 
extremely valuable for research and also currently contribute to 
the positive diagnosis.
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These modalities have been employed primarily in clinical 
research settings, where longer advanced imaging protocols and 
novel radiotracers can be implemented. Due to costs, time, and 
availability of imaging resources, they have been slow to translate to 
the clinical setting itself, but they are beginning to make impact 
there as well. 

2.4.1 Imaging Primary 

Pathology 

Radiotracers that preferentially bind to the primary pathologies 
associated with AD allow the detection and tracking of the slow 
progressive buildup of the amyloid plaques and neurofibrillary 
tangles, which can occur decades before the onset of symptoms 
[54, 55]. The original amyloid tracer was 11 C Pittsburgh Com-
pound B [PIB], and it identified individuals who were amyloid 
positive but showed no symptoms [56]. These individuals tended 
to progress to mild cognitive impairment and subsequently AD at 
much higher rates than those who were amyloid negative 
[57]. Since the introduction of PIB, there have been numerous 
18 F tracers which have been developed and approved for use in 
humans [58, 59]. As 18 F-based tracers have a longer half-life than 
11 C, it has enabled a much larger group of research centers access to 
this technology. Tracers specifically related to tau-based pathology 
have come much later. The most widely used has been flortaucipir, 
with second-generation tracers now available that have overcome 
some of the challenges of imaging with the early tau tracers 
[60]. Findings from tau PET studies suggest that the landmark 
postmortem staging of tau pathology seeding and spread according 
to Braak [61] is the most common spatiotemporal pattern observed 
in individuals [62, 63]. However, other subtypes of different dis-
tributions have been observed [64, 65]. Elevated tau PET uptake 
often happens much later than elevation of amyloid PET [66], 
especially in autosomal dominant cases of AD [67, 68]. Tau PET 
is also far more strongly linked regionally with subsequent evidence 
of neurodegeneration, while amyloid PET tends to elevate in a 
similar manner across multiple regions at the same time [69]. Exam-
ples of amyloid and tau PET images from both patients with various 
forms of AD and controls can be seen in Fig. 1. Despite many forms 
of FTD being some form of tauopathy, the available PET tracers 
have been primarily optimized to the specific form of tau pathology 
that is primarily observed in AD, namely, the mix of 3-Repeat/4-
Repeat species observed in neurofibrillary tangles. Since there are 
many different forms of tau pathology within FTD, the level of tau 
PET uptake in these individuals is varied [70–72]. In other forms of 
dementia, amyloid PET can be used to rule out AD pathology if an 
individual with symptoms has an amyloid negative scan2 and tau

2 https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202008_Florbetapir_Orig1s000TOC.cfm.

https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202008_Florbetapir_Orig1s000TOC.cfm


PET has now been approved to estimate the density and distribu-
tion of neurofibrillary tangles in individuals.3
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Fig. 1 Example amyloid (left column) and tau (right column) PET scans from controls and patients with different 
forms of dementia (AD and PCA). PET images are presented as standardized uptake value ratio (SUVR) images, 
where the amyloid PET have been normalized to subcortical WM, an area of high nonspecific binding (mainly in 
myelin) for both healthy controls and patients with Alzheimer’s disease. The tau PET images have been 
normalized to inferior cerebellar gray matter. While amyloid PET tends to show diffuse cortical uptake across 
the brain, tau PET tends to be more focal in the areas where neurodegeneration is occurring 

2.4.2 Imaging 

Neurodegeneration 

As the pathology continues to build over time during the 
pre-symptomatic period, it often leads to an insidious process of 
neuronal dysfunction and ultimately to degeneration in all forms of 
dementia. This is evidenced by atrophy visible in the structural 
T1-weighted MRI scans (Fig. 2) and decreased metabolism on 
fluorodeoxyglucose (FDG)-PET (Fig. 3). These forms of imaging 
start to be altered around the time when tau pathology is present 
and then provide close tracking with disease severity as symptoms 
become apparent. These modalities often tend to be the most 
widely available of imaging techniques within research settings, 
with MRI tending to be less costly than PET. Structural imaging, 
due to its high resolution (1 mm), signal-to-noise ratio, and con-
trast between tissues, lends itself to high-precision measurements of 
change over time. The spatial pattern of the neurodegeneration, 
whether it is hypometabolism or atrophy, can provide useful infor-
mation for differential diagnosis between different dementia [73– 
75]. Parallel to neurodegeneration, changes in the white matter of 
individuals with dementia also show evidence of disease-related

3 https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212123s000lbl.pdf.

https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212123s000lbl.pdf


insult. White matter lesions, suggestive of damage due to vascular
insult/insufficiency or demyelination, are visible as hypointensities
on T1-weighted imaging, while they present as hyperintense on
other forms of structural MRI imaging known as T2-weighted or
fluid attenuated inversion recovery (FLAIR) (Fig. ). Other forms
of changes in the WM observed in dementia include microbleeds,

4
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Fig. 2 Example T1-weighted MRI scans from a healthy control and individuals 
with different variants of Alzheimer’s disease. For each variant, atrophy can be 
observed in areas of cortical GM which are known to cause the cognitive deficits 
typically linked to the clinical phenotype (see white arrows)



lacunes, and perivascular spaces [76]. Whether these are separate 
processes or linked to the underlying disease cascade is actively 
being researched [77, 78]. There is evidence that they contribute 
equally and additively in individuals where no obvious impairment 
is present. In addition, individuals with heavy white matter burden 
tend to have more aggressive forms of the disease than those with 
limited or no signal of change in the white matter.
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Fig. 3 Example FDG PET scans from a healthy control and multiple variants of 
Alzheimer’s disease. For each variant, hypometabolism (denoted by cooler 
colors) observed in areas of cortical GM which are known to cause the 
cognitive deficits typically linked to the clinical phenotype. Red arrows have 
been added to highlight focal areas of hypometabolism in each variant 

Advanced forms of MRI acquisitions are leading to better 
understanding of the diseases at different scales, from inferences 
made of the underlying tissue microstructure to how these forms of 
dementia disrupt the natural networks of the brain. Diffusion-



weighted imaging (DWI) provides measurements of both the mag-
nitude and direction of the movement of water within a voxel. In 
white matter, the tissue consists of long fiber bundles that restrict 
the motion primarily along the direction of the fibers. In the cases 
of dementia, the integrity of these white matter bundles, whether 
through demyelination or some other form of neuronal dysfunc-
tion, tends to be less restrictive of water crossing boundaries, 
suggesting loss of microstructural integrity [79–82]. 
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Fig. 4 Example T1-weighted (left column) and FLAIR (right column) images of minimal, moderate, and 
prevalent lesions in the white matter, often referred to as white matter hyperintensities (WMH), as they 
appear bright on FLAIR acquisitions. These lesions also often show up hypointense on T1-weighted scans, but 
FLAIR tends to be more sensitive and provide more contrast, particularly around deep gray matter areas
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On a larger scale, connected brain networks can be identified 
with these techniques, either by tracing the diffusion profiles from 
one gray matter region to another using diffusion weighted imag-
ing or by observing correlating patterns of deoxygenation of hemo-
globin in the brain regions using functional MRI (fMRI) as a proxy 
for brain activity. These networks can become disrupted, primarily 
in regard to within network communication [83]. The direction of 
this disruption may depend on the stage of the disease. There is 
more evidence that the later stages of disease cause reduced con-
nectivity and a disconnection from key seed regions to other areas. 
However, there may be an earlier stage where subjects compensate 
for increased pathology burden with hyperconnectivity [84, 85]. 

2.5 Advances in 

Novel Biomarkers 

Novel assessments and biomarkers for all forms of dementia are 
highly active areas of research, from new fluid-based biomarkers to 
better computerized psychometric batteries to new imaging tracers 
and MR sequences to track additional aspects of the disease. While 
big data for machine learning in dementia has often meant assessing 
a large number of individuals, each with a small handful of mea-
sures, there are new forms of data collection that provide a rich set 
of data on single individuals. This could include not only the new 
epigenetic markers like single-cell RNA sequencing [86, 87] but 
also wearable devices that produce lots of data about individuals’ 
daily activities and spatial navigation. 

3 Challenges for Machine Learning 

Researchers are nowadays focusing on two main aspects when it 
comes to AD and other forms of dementia. First, they aim to gain a 
better understanding of the disease process, including why indivi-
duals with similar underlying primary pathology result in different 
areas of the brain being affected, and thus have different clinical 
presentations. This is currently being investigated using many 
approaches ranging from molecular biology studies in wet labs to 
large epidemiological studies involving several thousands of parti-
cipants. Second, they are developing tools to better assist clinicians 
with treatment management at the level of an individual. This 
includes, for example, the design of effective computational pipe-
lines dedicated to patient diagnosis and prognosis. 

Any research relying on machine learning methodologies must 
address the specific challenges presented by the disease. The first 
challenge comes from the large variability of diseases that makes it 
difficult to differentiate them, especially in the early stages. Addi-
tionally, mixed dementia, where patients have several diseases, is 
quite common. Indeed, the AD phenotype often coexists with 
vascular dementia or DLB. To partially address this issue, data 
from individuals with autosomal dominant forms of these diseases



are collected by international multicenter studies, as they often have 
earlier onset and usually “purer” forms of the disease. The Domi-
nantly Inherited Alzheimer Network (DIAN)4 and the Genetic 
Frontotemporal Dementia Initiative (GENFI)5 are two studies 
collecting data from patients and relatives with familial AD and 
genetic FTD, respectively. While these studies have many benefits 
(see Subheading 2.1), there can be substantial differences between 
the genetic and the more widespread sporadic forms of these dis-
eases, the most notable being younger disease onset and fewer 
comorbidities. Thus, there is a crucial need for ML methods that 
can disentangle the full complexity of sporadic forms of dementia. 
Finally, the variability comes not only from the presentation of the 
disease and comorbidities but also from the age at which the disease 
starts and the pace at which it progresses. 
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The second challenge is related to the duration of the disease, 
which often spans two decades and includes a yearslong prodromal 
phase. This makes it difficult to acquire data from individual 
patients that cover the full disease duration, especially as it is 
extremely challenging to identify with certainty who will develop 
the disease in the general population. While the previously men-
tioned studies of autosomal dominant forms of dementia can 
address this issue, it is not yet clear how much their findings can 
be translated to the far more common sporadic forms of these 
diseases. The Alzheimer’s Disease Neuroimaging Initiative 
(ADNI)6 is a large multicenter study that focuses on the acquisition 
of data from elderly individuals, consisting of those that are cogni-
tively normal, those labeled as having mild cognitive impairment 
(MCI), and individuals diagnosed with probable AD [88]. These 
individuals are followed over several years, providing extremely 
valuable information for researchers. UK Biobank7 is another rele-
vant initiative, as it aims to acquire in-depth phenotyping of half a 
million UK participants. Due to the large prevalence of AD and 
other related diseases in the population, it is anticipated that many 
individuals are in the pre-symptomatic phase of the diseases. 

As aforementioned in the previous section, many markers of 
dementia are used to track the diseases, some being more relevant 
than others at specific times in the illness progression. For example, 
while amyloid PET-derived imaging biomarkers are valuable in the 
early stages of the disease, they are unable to quantify the progres-
sion toward the final stages. On the opposite end, clinical assess-
ments, while being ineffective prior to symptomatic onset, enable 
monitoring of symptomatic evolution over time. This is a challenge

4 https://dian.wustl.edu/. 
5 https://www.genfi.org/. 
6 https://adni.loni.usc.edu. 
7 https://www.ukbiobank.ac.uk.
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as it requires to use the most relevant marker for the correct stage. 
In practice, this often leads to the use of complex models to handle 
large amount of multimodal data (imaging, clinical, genetic, demo-
graphic, . . .). Additionally, each marker often suffers from its own 
variability, which can be intra-patient, inter-patient, and inter-
center. For example, clinical assessments potentially differ based 
on the rater. MRI acquisitions will differ due to pulse sequence 
properties or scanner characteristics, as well as normal physiological 
variance such as hydration and caffeine intake, among others.
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4 Machine Learning Developments 

Machine learning has been used in multiple applications related to 
Alzheimer’s disease and related dementia. As mentioned in the 
above section, dementia research has leveraged worldwide, multi-
center studies in order to obtain enough data to characterize early 
changes and heterogeneity within the disease process. This has, in 
turn, propelled the development of dementia-focused ML applica-
tions. In this section, we review four main tasks in which extensive 
ML research has been performed. 

Biomarker extraction from imaging data was originally done 
with manual assessments, which were time-consuming and subject 
to high inter-rater variability. Machine learning approaches that 
recreate these measurements with reduced time and variability 
have been a large effort that has served not only ADRD but many 
neurological disorders and neurodegenerative diseases. Given the 
numerous measurements that are now available on the datasets and 
the different aspects of the phenotype that they reflect, disease 
classification and prediction techniques have been used to identify 
consistent multivariate signatures between both healthy and disease 
groups, for differential diagnosis and for predicting the future state 
of patients. Disease progression models have been developed to 
determine the ordering of how markers go from normal to abnor-
mal and to reconstruct the trajectories followed by these biomar-
kers, leading to advances in disease understanding and 
prognostication. Data harmonization to characterize variation 
caused by changes in scanning equipment and software across 
sites must be accounted for in order to obtain more accurate 
estimates of the biological changes. 

4.1 Machine 

Learning-Derived 

Biomarkers 

The largest area of machine learning research in relation to Alzhei-
mer’s disease and related disorders is to extract measurements from 
the different datasets. These biomarkers tend to reflect an aspect of 
function or integrity of the individual that will gain a better under-
standing of a disease. Changes in these biomarkers from normal 
values to abnormal provide a proxy for disease progression. Note 
that most of this research can usually be useful for other brain 
disorders.
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Medical imaging provides valuable insights into an individual’s 
brain and is key to noninvasively assessing phenotypes due to the 
neurodegeneration process. Structural imaging, especially 
T1-weighted MRI, is commonly acquired in neurodegenerative 
studies as it enables quantifying key information such as atrophy 
in particular brain regions and thinning of the cortex or localized 
brain lesions. These features are often used as imaging biomarkers 
of disease progression, and many approaches relying on machine 
learning have been developed to extract them in the last three 
decades. 

Brain segmentation and parcellation relate respectively to the 
classification of voxel into tissue types (e.g., gray matter, white 
matter, CSF) and the delineation of identified brain regions (e.g., 
whole brain, hippocampus, . . .). 

The most popular open-source implementation (FSL8 [89], 
SPM9 [90]) for tissue segmentation relied on Gaussian mixture 
model optimized using expectation maximization [91, 92]. They 
enable to classify voxels based on their intensity but as well to 
accommodate with intensity inhomogeneity as well as noise via 
explicit modeling of the intensity bias field [91] and the use of 
Markov random field regularization, respectively [92]. With the 
advance of deep learning in the last decade, many techniques 
using convolutional neural networks have been proposed. Kumar 
et al. presented a U-Net based approach achieving close to 90% 
average Dice score coefficient on the segmentation for gray matter, 
white matter, and CSF on their dataset [93]. 

Classical approaches for brain parcellation rely on the concept 
of segmentation propagation and label fusion. In short, a set of 
template images, consisting of original images and associated labels, 
are aligned through medical image registration to a new image. The 
template labels are then warped into the shape of the new image’s 
brain and fused into a consensus segmentation. Popular approaches 
are HAMMER10 [94], FreeSurfer11 [95], or Geodesic Information 
Flows (GIF) [96], among others. Using neural networks, de 
Brébisson et al. proposed a dedicated architecture concurrently 
using 2D and 3D patches and used iteratively to refine their results 
[97]. More recently, FastSurfer [98] was introduced, which is a 
deep learning-based method that aims to reproduce FreeSurfer’s 
results while considerably reducing processing time. While it is 
rapidly attracting users, further validation is needed to ensure that

8 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki. 
9 https://www.fil.ion.ucl.ac.uk/spm/. 
10 https://www.nitrc.org/projects/hammer/. 
11 https://surfer.nmr.mgh.harvard.edu/.
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it is as robust as FreeSurfer across all disease types and severities. 
Finally, a current trend is to train from vast amounts of synthetic 
data with the hope of easing generalization to other sequences 
and/or resolutions. This is, for example, the approach taken in 
SynthSeg [99].
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Other approaches have been proposed to segment individual 
regions of the brain that are particularly relevant to the study of 
dementia. For example, hippocampal segmentation has been an 
active area of research, with many studies including extensive vali-
dation in AD [100–104]. In the past years, the focus has turned to 
the segmentation of hippocampal subfields rather than the whole 
hippocampus [105, 106]. In particular, Manjon et al. used a U-Net 
approach combined with a deep supervision approach for training 
where their loss function optimizes segmentation accuracy at dif-
ferent image scales [107]. 

The identification of abnormalities (in particular those of vas-
cular origin) is also a key step in the study of dementia and particu-
larly for differential diagnosis. These abnormalities include hyper-
or hypo-intensity lesions, micro-bleeds, perivascular spaces, or 
lacunes. Various approaches to segment T2/FLAIR white matter 
hyperintensities have been proposed (see [108] for a comparison of 
seven of them), while there have been fewer works on micro-bleeds 
or lacunes. Sudre et al. proposed a Gaussian mixture model 
approach with automated detection of classes number to accurately 
segment brain tissue classes, as well as abnormalities [109]. More 
recently, deep learning approaches have also been developed. For 
example, Boutinaud et al. used a U-Net, which parameters were 
pre-trained using an autoencoder, to automatically segment peri-
vascular spaces from T1-weighted MRI scans [110]. Wu et al. also 
used a U-Net architecture for segmentation hyperintensities from 
T1-weighted and FLAIR MR images [111]. 

4.2 Disease 

Classification and 

Prediction 

Machine learning is a powerful tool when it comes to disease 
diagnosis and prognosis. As a result, many approaches have been 
proposed for disease classifications, to identify the current stage of a 
disease within an individual or to predict their future state (e.g., 
transition to dementia in patients with MCI). 

For over a decade, dozens (if not hundreds) of papers have 
proposed classification techniques to distinguish patients diagnosed 
with AD versus age-matched controls (e.g., [112–119]) or patients 
suffering from mild cognitive impairment who are staying stable in 
time versus those who will progress to a diagnosis of AD (e.g., 
[115, 117–124]). The latter task can contribute to prognosis 
which, when it comes to dementia-related diseases, often consists 
of classifying patients who are likely going to convert from mild 
cognitive impairment to symptomatic AD within a given time



interval, typically 3 years,12 from those who are going to stay stable. 
Several literature reviews on dementia classification and prediction 
have been published [125–130]. In particular, recent reviews by Jo 
et al. [126] and Ansart et al. [130] have covered the topic of 
prognosis. 
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The proposed methodologies have been extremely varied not 
only in terms of ML algorithms but also of input modalities and 
extracted features. Initial ML methods often used support vector 
machines (e.g., [112, 114]), while subsequent works used more 
recent techniques such as random forest [117] and Gaussian pro-
cesses [121, 131]. Many recent works have used deep learning 
classification techniques [127, 129]. However, so far, deep learning 
has not outperformed classical ML for AD classification and pre-
diction [129, 130, 132]. Furthermore, a review on convolutional 
neural networks for AD diagnosis from T1-weighted MRI [129] 
has identified that more than half of these deep learning studies may 
have been contaminated by data leakage, which is particularly wor-
risome. In terms of features, some studies use the whole brain as 
input, either using directly the raw image or computing voxel-wise 
(or vertex-wise when considering the cortical surface) measures 
[125]. Others parcellate the brain into regions of interest, within 
which features are computed. In particular, researchers have com-
bined segmentation approaches with disease classification techni-
ques. This has the advantage of limiting the search space of the 
machine learning approach via the use of prior knowledge. For 
example, Coupe et al. used a patch-based approach to classify voxels 
from the hippocampus as it is known to be a vulnerable structure in 
patients with dementia [116]. The input modalities have also been 
extremely varied. While earlier works often focused on 
T1-weighted MRI only [112–114], subsequent studies have 
included other imaging modalities, in particular FDG-PET 
[121, 123] Other researchers have combined tailored features 
extracted from images and non-images features such as fluid bio-
markers [121], cognitive tests [124, 133], APOE genotype [121], 
or genome-wide genotyping data [134, 135]. Through deep 
learning, researchers are avoiding the need to craft features and 
can use traditional deep learning approaches to directly infer disease 
status from raw data: imaging or non-imaging. However, to date, 
there has been less interest in this area than in biomarker extraction, 
and thus fewer innovative solutions have been proposed. Popular 
architectures include conventional neural network, autoencoder, 
and recurrent neural networks, among others [127]. Training stra-
tegies mostly relied on supervised approaches, where some groups 
have relied on pre-trained networks to compensate for relatively

12 While 3 years is certainly a relevant time frame to provide useful information to patients and relatives, it is likely 
that the focus of research on such time frame was largely driven by the typical follow-up which is available for most 
patients in large publicly available databases such as ADNI.



small training databases. However, as mentioned above, it has not 
been demonstrated so far that deep learning outperforms conven-
tional ML for dementia classification.

Machine Learning in ADRD 827

A large portion of the literature has relied on the ADNI data-
base. While having such a rich and large database has propelled the 
development of algorithms, one can wonder if the proposed 
method will generalize well to other datasets, a problem which 
has less often been addressed. Another worrisome aspect is that 
many of the papers based on ADNI are difficult to reproduce 
because they lack a description of the subjects used and because 
the code is not often available [136]. They are also difficult to 
compare. In particular, since different preprocessing tools are 
used, it is often difficult to know whether improvements in perfor-
mance come from the innovation in ML or from the preprocessing. 
Standardized datasets have been created in ADNI [137] to address 
the former issue. Whenever possible, one of these datasets should 
be used, or authors should provide a list of subjects/scans included 
in the study for the purpose of reproducibility. 

Researchers have organized challenges that can provide an 
objective comparison of algorithms. One can cite in particular the 
CADDementia challenge for classification [138] and the TAD-
POLE challenge for prognosis [132]. Such challenges provide 
very important and useful information on the respective merits of 
different approaches. However, more challenges, in particular 
using more diverse data, would be needed. 

To a lesser extent, differential diagnosis has also been 
addressed. Earlier works focused on classifying patients diagnosed 
with AD versus patients diagnosed with frontotemporal dementia 
[112, 139]. More recent studies have considered classifying 
between various types of dementia [140, 141]. 

Overall, there has been considerable research in AD classification 
and prediction. The easiest task, which is the classification of patients 
diagnosed with AD versus normal controls, can be considered as 
solved with accuracy typically above 90%, at least when using data 
which quality is comparable to that of research studies. However, this 
task has little clinical utility. For the more interesting task of predic-
tion progression to AD in MCI patients, the performance has 
increased over the years, with AUC now above 80% [130]. Interest-
ingly, it has been shown that studies which include cognitive tests and 
FDG-PET tend to have better results than those using T1-weighted 
MRI only [130]. It is particularly noteworthy that cognitive tests 
tend to be overlooked, given that they are relatively cheap to perform 
and widely available. This probably reflects the fact that much of these 
works have arisen in the medical image computing community. 
Finally, other tasks are still short of becoming clinically useful, such 
as the development of a multi-pathology differential diagnostic clas-
sifier. This is possibly due to the lack of tailored methodologies 
leveraging all available information. This will be further discussed in 
the conclusions of this chapter.
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4.3 Disease 

Progression Modeling 

Following the release of a hypothetical model of disease progres-
sion by Jack et al. [142], researchers have tried to create data-driven 
models that would accurately describe the various components of 
the underlying disease process. These so-called disease progression 
models have been developed to understand the ordering of pheno-
typic events (such as a marker becoming abnormal), to model the 
variability of ordering or trajectories within a population and to be 
able to distinguish between different disease subtypes. The reader 
may refer to Chap. 17 for a detailed description of the methodology 
underlying data-driven disease progression models. Event-based 
models (EBM) [143] have been created to learn from a curated 
population and across different modalities the different hidden 
states of a disease. EBMs are able to order all input features from 
the one that will most likely become abnormal first to the one that 
becomes abnormal last [143]. The application of EBM in dementia 
has been very successful, including studies in familial AD 
[143, 144], sporadic AD [145, 146], posterior cortical atrophy 
[147], and genetic FTD [148]. An extended approach called Sub-
type and Stage Inference (SuStaIn) was developed by Young et al., 
which incorporates clustering to characterize disease subtypes. In 
particular, it allowed uncovering the symptomatic profiles of differ-
ent variants of genetic FTD as well as AD subtypes [29]. EBMs 
have the advantage of being applicable to cross-sectional data but 
only provide an ordering of events with no temporal scale as to 
when they become abnormal. In most EBMs, there is also an 
assumption of a monotonic biomarker trajectory, an assumption 
which has been questioned in the early stages of AD [149]. Other 
works have leveraged longitudinal data to build continuous trajec-
tories. Jedynak et al. used a disease progression model to derive a 
progression score on a linear scale for every individual in AD 
[150]. Schiratti et al. proposed a general nonlinear mixed effects 
model that can handle not only scalar biomarker data but also 
images or shapes [151]. Applied to AD, the approach uncovered 
trajectories of progression for different variables, including cogni-
tive tests, PET-derived hypometabolism, and local hippocampal 
atrophy [152]. In 2021, Wijeratne and Alexander proposed an 
approach that can, using longitudinal data, infer both discrete 
event ordering (as in EBMs) and continuous trajectories 
[153]. Lastly, Abi Nader et al. proposed SimulAD, which enables 
the setup of in silico interventional trial, where patient prognosis 
can be assessed against several possible therapies (drug type or 
timing of intervention) [154]. 

4.4 Data 

Harmonization 

Data heterogeneity inducing bias arises from many sources, includ-
ing differences in acquisition protocols, acquisition devices, or 
populations under study. This is true in large multicenter studies 
such as ADNI, DIAN, and GENFI. However, such research studies 
use harmonized protocols for data acquisition and perform strict

https://doi.org/10.1007/978-1-0716-3195-9_17


quality control. It becomes even worse when one is using clinical 
routine data which is not acquired with harmonized protocols and 
can be of extremely varied quality. 
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Data heterogeneity may have various impacts on ML algo-
rithms. For example, for any classification task, one wants to ensure 
the model focuses on the diseases’ features rather than on any 
differences caused by the acquisition sites. The ability to harmonize 
data from any origin is also critical to translate any analytical tool in 
clinical practice where acquisition protocols are rarely standardized. 

This is especially true for imaging biomarkers where scans often 
contain so-called scanner signatures. As a result, images are often 
preprocessed prior to being used with machine learning algorithms. 
The preprocessing steps involve intensity normalization in the 
shape of image filtering, for denoising, or intensity histogram nor-
malization. For example, Erus et al. [155] proposed a framework to 
achieve consistent segmentation of brain structures across multiple 
sites. Their approach relies on the creation of site-specific atlases 
while ensuring consistency between all available atlases. Their eval-
uation shows that they reduce the variability associated with sites on 
volumetric measurements, key to track the process of brain atrophy, 
derived from structural images. Another example is the work of Jog 
et al. [156], who used image synthesis via contrast learning to 
harmonize images acquired with different pulse sequences. The 
Removal of Artificial Voxel Effect by Linear regression (RAVEL) 
approach by Fortin et al. [157] is another exemplar application of 
data harmonization. It consists of a voxel-wise intensity normaliza-
tion technique, where they apply singular value decomposition 
(SVD) of the control voxels to estimate factors of unwanted varia-
tion. The control voxels are those unaffected by the pathology, such 
as those in the cerebrospinal fluid (CSF). The unwanted factors are 
then estimated using linear regression for every voxel of the brain, 
and the residuals are taken as the RAVEL-corrected intensities. This 
model has then been further extended [158] to include the model-
ing of site-specific scaling factors on summary measures derived 
from the images. Using empirical Bayes to improve the estimation 
of the site, this model can be used to correct several imaging 
modalities while associating relevant clinical and demographic 
information. It was originally developed to correct gene expression 
microarray data [159], being later extended to correct DTI maps 
[158], cortical thickness measurements [160], or structural MRI 
[161]. Additional extensions include longitudinal data [162], site 
effects due to covariance [163], and a generalized additive model in 
order to handle nonlinear trajectories over the life span 
[164]. Prado et al. [165] proposed Dementia ConnEEGtom to 
harmonize neurophysiological data. They propose a whole analyti-
cal pipeline involving many steps, including denoising, artifact 
removal, and spatial normalization, to promote a standardized



processing of EEG data, thereby enabling their use in machine 
learning while minimizing the bias that could be induced by varia-
bility in data handling across sites. 
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Acquired clinical scales also need to be standardized and har-
monized between centers, especially when used jointly in a single 
machine learning approach. Costa et al. [166] provide recommen-
dations on how this should be achieved and which scales should be 
acquired for the neuropsychological assessment in neurodegenera-
tive diseases. Even when using the same scales across different 
multicenter studies, it is important to understand that the prove-
nance and contextual information of each study must be consid-
ered, since that might introduce bias in the training of the 
models [167]. 

5 What Is Next? 

This chapter has illustrated that dementia is a complex, multifacto-
rial, heterogeneous set of pathologies and syndromes, sometimes 
occurring in parallel. As a result, a wide variety of clinical, genetic, 
cognitive, imaging, and biofluid data have been collected to char-
acterize these disease processes over a large number of different 
cohorts, from both those individuals suffering from various forms 
of dementia, as well as those at risk of developing a form of demen-
tia due to their genetic/environmental/pathophysiological risk 
profile. Despite the wealth of data on dementia that is available to 
machine learning researchers, there are still limitations, both in 
terms of the data available and in the current thinking about how 
to apply machine learning, that must be addressed in order for 
machine learning to reach its true potential in terms of making an 
impact on these conditions. Key to this validation will be open 
science initiatives that allow for reproducibility and replication of 
results, so that the value can be demonstrated in independent 
cohorts. 

Careful thought must be given to how to incorporate the 
myriad different data types that are available to researchers. Despite 
the wealth of multimodality information and big data available, 
much of the machine learning-based research in dementia has 
only considered a subset of the available information. This is the 
case even within a single community such as the imaging one where 
each modality or pulse sequence is most often analyzed individually. 
Machine learning approaches are however able to extract highly 
nonlinear information, which should enable the development of 
truly multi-data frameworks able to capture the complexity of the 
diseases. At the same time, when multiple features across different 
data acquisition domains are combined into a single analysis, par-
ticularly in those individuals who already show evidence of 
impairment, there is a higher likelihood of missing or corrupted



information. The simplest solution to the problem of missing data, 
and often the most implemented, is to perform complete case 
analyses, discarding any observations where any of the variables 
are missing. This practice results in the time donated by patients, 
carers, and volunteers willing to support research efforts through 
extensive and often onerous data collection being squandered and 
the full potential of the resulting data not being realized. While it is 
common to have 30% of data being discarded in some large studies, 
we could benefit hugely from further research in this direction. 
Multiple imputation techniques could be used to address this 
issue and ensure all available data can be used. 
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A related question is how to address the limitations of cross-
sectional snapshots of data in a decades-long disease process and 
how best to use relatively short-term follow-up data. While infer-
ence on cross-sectional measures would be ideal in terms of 
providing information expediently to a patient, there are many 
confounds and covariates that can contribute to added variability, 
making classification tasks, particularly in the early stages of the 
disease, less accurate. Longitudinal data, particularly in imaging 
modalities, tends to reduce the influence of these confounds, and 
the within-subject change can be more sensitive to identifying the 
prognosis of individual trajectories. However, requiring longitudi-
nal data for a classification task is undesirable for patients, who 
would be provided with no information until they come back for 
additional testing in a year or two. Thus, machine learning 
approaches could investigate whether a hybrid approach might be 
more powerful: triaging first with the cross-sectional data and only 
requiring longitudinal data in cases where inference cannot be 
made at the baseline assessment with a high degree of confidence. 

A second challenge is to extend machine learning approaches to 
datasets that are more reflective of standard clinical settings. This 
refers not only to the type of data that is collected but also to the 
conditions under which the data is collected and to the populations 
within which data is acquired. Clinical research studies conducted 
at research institutions often include advanced data acquisitions 
that are costly and time-consuming, making them intractable for 
translation into wider communities and developing countries. 
There is thus a mismatch between the quality of the data acquired 
in research settings compared to the data acquired in day-to-day 
clinical environments. For example, only a subset of the patients 
suspected of having dementia undergo medical imaging and from 
this subset only a fraction of these individuals are offered MRI 
scans. In the majority of cases, CT are acquired, and they are mostly 
used to rule out other causes for impairment, such as space-
occupying lesions. As a result, a large amount of CT scans are 
collected, and they could potentially be an important resource to 
develop computer-assisted tools able to reach a larger population 
[168]. Even when the same data type is acquired in clinical and



research settings, there can be a considerable mismatch in terms of 
data quality and homogeneity. For instance, clinical routine MRI is 
of extremely variable quality and usually acquired using 
non-harmonized protocols. Similarly, with the current democrati-
zation of wearable and smartphone collection data which is prime 
to be processed with machine learning, there are opportunities to 
develop novel frameworks assisting patients, carers, and clini-
cians.13,14 Another aspect of this challenge to improve widespread 
translation is that clinical research studies typically involve a dispro-
portionate amount of affluent Caucasian individuals of European 
descent, meaning that we do not yet have enough data to fully 
quantify the heterogeneity that is observed in other ethnic groups. 
While large-scale cohort studies are looking to address this issue, 
focusing on assembling appropriate testing and training sets to 
represent the diversity of the population will be an important 
element for improving machine learning performance in the future. 

832 Marc Modat et al.

Effective partnerships with the clinicians who are using the data 
are another key challenge in terms of incorporating machine 
learning in a wider clinical setting [169, 170]. Clinicians must 
believe in the added value that novel machine learning approaches 
can provide in order to incorporate them as part of their clinical 
workup and decision-making. One approach to achieving this 
buy-in from clinicians is a push toward “explainable AI,” such 
that the results from machine learning algorithms make intuitive 
sense and that the clinician can better understand how the algo-
rithm came to that decision. While there are certainly concerns 
around the opaqueness of some algorithms that could lead to over-
fitting or spurious results, an insistence on explainable AI may also 
restrict the development of better algorithms that can provide more 
value, and in some cases, it may result in reducing a complex 
multivariate pattern down to a summary measure that can be 
understood, throwing away valuable information in the process. 
What is likely more important is that best practices are followed in 
terms of training, testing, model development, and validation of 
the algorithm such that clinicians may not necessarily understand 
how the algorithm achieved a specific result but that they are 
convinced by the evidence of the value it provides. 

The final, and likely most significant, challenge is how best to 
characterize heterogeneity and mixed pathology. Classification of 
well-characterized cohorts of clear cases of AD and normal controls 
provides little benefit, in particular given the rise of accurate and 
increasingly cheaper and accessible plasma tests. Dementia covers a 
wide range of symptoms caused by a myriad of pathologies and 
etiologies occurring in a decades-long process, and correctly

13 https://edon-initiative.org. 
14 https://www.ftdtalk.org/research/our-projects/digital/.

https://edon-initiative.org
https://www.ftdtalk.org/research/our-projects/digital/


identifying the underlying disease will be critical for treatment plans 
as disease-modifying therapies become available. There is a natural 
inclination to thus subdivide and characterize a number of distinct 
and discrete disorders, which has led to a focus on machine learning 
algorithms to aid in tasks of differential diagnosis. However, there 
are often no clear boundaries between the phenotypic profiles of 
these disorders, and mixed pathologies are common. Therefore, 
there should be a shift in machine learning away from classifying 
between normal aging and a single disease or differential diagnosis 
task with the goal of dichotomizing between two or more disorders 
but rather a probabilistic framework that allows for multiple pathol-
ogies to coexist. With the advance of big data analysis, access to 
clinical care data, and innovative machine learning, all is in place for 
this shift to be achieved.
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6 Conclusion 

Dementia of all forms is going to be one of the biggest global 
health challenges around the globe over the coming decades. 
Improving the ability to characterize the disease at an early stage 
and providing an accurate prognosis that allows doctors to provide 
effective treatment plans and individuals to make informed deci-
sions about how to manage their affairs are going to be critical in 
order to reduce the distress and burden experienced by people 
suffering from these diseases and their families. Machine learning 
will need to play a key role in achieving these targets. 
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122. Coupé P, Fonov VS, Bernard C, Zandifar A, 
Eskildsen SF, Helmer C, Manjón J  
Amieva H, Dartigues JF, Allard M, et al 
(2015) Detection of alzheimer’s disease sig-
nature in mr images seven years before con-
version to dementia: toward an early 
individual prognosis. Hum Brain Mapp 
36(12):4758–4770 

123. Jie B, Zhang D, Cheng B, Shen D, Initiative 
ADN (2015) Manifold regularized multitask 
feature learning for multimodality disease 
classification. Hum Brain Mapp 36(2): 
489–507 

124. Moradi E, Pepe A, Gaser C, Huttunen H, 
Tohka J, Initiative ADN et al (2015) Machine 
learning framework for early MRI-based Alz-
heimer’s conversion prediction in MCI sub-
jects. Neuroimage 104:398–412 

125. Rathore S, Habes M, Iftikhar MA, 
Shacklett A, Davatzikos C (2017) A review 
on neuroimaging-based classification studies 
and associated feature extraction methods for 
Alzheimer’s disease and its prodromal stages. 
Neuroimage 155:530–548 

126. Jo T, Nho K, Saykin AJ (2019) Deep learning 
in Alzheimer’s disease: diagnostic classifica-
tion and prognostic prediction using

https://doi.org/10.1109/TMI.2015.2419072
https://doi.org/10.1109/TMI.2015.2419072
https://doi.org/10.3389/FNINF.2021.641600
https://doi.org/10.3389/FNINF.2021.641600
https://doi.org/10.1109/ACCESS.2019.2948476
https://doi.org/10.1109/ACCESS.2019.2948476
https://doi.org/10.1093/brain/awm319
https://doi.org/10.1093/brain/awm319
https://doi.org/10.1016/J.NEUROIMAGE.2011.10.080
https://doi.org/10.1016/J.NEUROIMAGE.2011.10.080
https://doi.org/https://doi.org/10.1016/j.neuroimage.2012.09.065
https://doi.org/https://doi.org/10.1016/j.neuroimage.2012.09.065
https://doi.org/https://doi.org/10.1016/j.neuroimage.2012.09.065
https://doi.org/https://doi.org/10.1016/j.neurobiolaging.2010.05.023
https://doi.org/https://doi.org/10.1016/j.neurobiolaging.2010.05.023


Machine Learning in ADRD 843

neuroimaging data. Front Aging Neurosci 
11:220. https://doi.org/10.3389/fnagi. 
2019.00220 

127. Ebrahimighahnavieh MA, Luo S, Chiong R 
(2020) Deep learning to detect Alzheimer’s 
disease from neuroimaging: a systematic liter-
ature review. Comput Methods Program 
Biomed 187:105242. https://doi.org/ 
https://doi.org/10.1016/j.cmpb.2019.10 
5242 

128. Tanveer M, Richhariya B, Khan RU, Rashid 
AH, Khanna P, Prasad M, Lin CT (2020) 
Machine learning techniques for the diagnosis 
of Alzheimer’s disease: a review. ACM Trans 
Multimedia Comput Commun Appl 16(1s). 
https://doi.org/10.1145/3344998 

129. Wen J, Thibeau-Sutre E, Diaz-Melo M, Sam-
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Bône A, Bottani S, Cattai T, Couronné R, 
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Tagliazucchi E, Ibáñez A (2022) Dementia 
ConnEEGtome: towards multicentric harmo-
nization of EEG connectivity in neurodegen-
eration. Int J Psychophysiol 172:24–38. 
h t t p s : //  d o  i . o r g / 1 0  . 1 0 1  6 / J .  
IJPSYCHO.2021.12.008 

166. Costa A, Bak T, Caffarra P, Caltagirone C, 
Ceccaldi M, Collette F, Crutch S, Sala SD, 
Démonet JF, Dubois B, Duzel E, Nestor P, 
Papageorgiou SG, Salmon E, Sikkes S, 
Tiraboschi P, Flier WMVD, Visser PJ, Cappa 
SF (2017) The need for harmonisation and 
innovation of neuropsychological assessment 
in neurodegenerative dementias in Europe: 
consensus document of the Joint Program 
for Neurodegenerative Diseases Working 
Group. Alzheimer’s Res Therapy 9:1–15,. 
https://doi.org/10.1186/S13195-017-02 
54-X 

167. Brodaty H, Woolf C, Andersen S, Barzilai N, 
Brayne C, Cheung KSL, Corrada MM, Craw-
ford JD, Daly C, Gondo Y, Hagberg B, 
Hirose N, Holstege H, Kawas C, Kaye J, 
Kochan NA, Lau BHP, Lucca U, Marcon G, 
Martin P, Poon LW, Richmond R, Robine 
JM, Skoog I, Slavin MJ, Szewieczek J, 
Tettamanti M, Vi˜a J, Perls T, Sachdev PS 
(2016) ICC-dementia (International Cente-
narian Consortium—dementia): an interna-
tional consortium to determine the 
prevalence and incidence of dementia in cen-
tenarians across diverse ethnoracial and socio-
cultural groups. BMC Neurol 16:1–10. 
https://doi.org/10.1186/S12883-016-0 
569-4/TABLES/2 

168. Srikrishna M, Pereira JB, Heckemann RA, 
Volpe G, van Westen D, Zettergren A, 
Kern S, Wahlund LO, Westman E, Skoog I, 
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