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1.       Introduction 

Consider  the  general  problem  of  finding  u ∈U  such  that 

Au  = A-1 f                                           (1.1) 

where  f  ∈  F  and  A  is  an  operator  from  the  space  U  to  the  space  F. 

If A-1      exists  then  the  formal  solution  of the  problem  is 

u  =  A-1f  .                                            (1.2) 

In  practice  A-1      is  not,  in  general,  known  and  the  solution  u  of 

(1.1)  is  usually  approximated by  one  of  the   following   two  methods: 

(a) The  operator A  is  approximated by  some  other   operator  A , 

which   is   easier   to   invert  than  A,  and  the  solution  u  of 

(1.1)  is  approximated  by A--1     f(e.g.  descrete  methods  are 

of  this  type). 

(b) The  right  hand  side  f  of  ( 1 . 1 )   is  approximated  by  some  f  
for  which  f1A−  is  known,  and the  solution  u  =  A-1    f  is 
approximated  by .f1Au −=  

We  shall  refer  to  method  (b )   as  an  expansion   method   since   usually 

u is  taken  to  be  of  the  form .jujα
n

1j
u ∑

=
=  

 
Intuitively  one   expects  an  expansion  method  to  be  more  efficient 

since,  in  this  case,  the  operator  A  in  (1.1)  is  preserved.    Also, 

usually  much  more  is  known  about  approximations  in  the spaces U 

and  F  than  about  approximations  of  operators from  U  to F.   However, 

in  practice  the   expansion   approximations  are  not   very   successful. 

The  common  approach  in  an  expansion  method  is  to  obtain  the 

approximation  to  ū by  making  f  =  Aū  a  good  approximation  to f = Au 

in  some  sense  (or  norm)  in  F.    This  approach  usually  neglects 

completely  the  important  role   played  by A-1  in   transforming   the 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abstract 

Expansion  approximations  are  considered  for  the  solution  of 

Fredholm  integral  equations  of  the  second  kind,  of  two-point 

boundary  value  problems  and  of  harmonic  mixed  boundary  value 

problems.     In  each  of  these  three  cases  the  relation   between 

the  expansion  approximations  and  the  approximation  of   a 

certain  integral  is  investigated.      This   relation   leads   to 

definitions  of  pointwise  and  of  global  "near-best"  approxima- 

tions  whose  errors  are  given  in  terms  of  the  error  functional 

of  a  "best" quadrature  formula. 
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approximation  from  the  space  F  to  the  space  U, and  that  seems  to  be 
the  weakness   in  the  expansion  method.     In  general  A-1   is  not 
considered  simply  because  it  is  not  known.     However,   in  many  problems 

 
the  formal  form  of  A-1  is  known  and  some  of  its  properties  can  be 
found  directly  from A.     In  many  cases  this  might  help  in  choosing 

the  type  of  approximation  f  to  f  that  provides  some   'best' 

approximation ū   to  u. 

In  this  work  we  try  to  include  available  information  about  A       into 

the  choice  of  the  best  desirable  type  of  approximation  f  to  f.     We 

show  that  in  most  cases  we  cannot  find  a  single  approximation  f   to  f 

that  will  yield  a   'best'   approximation  to  u  unless  we  add  some 

correction  term  to  ū.     This  correction  term  seems   to   be   crucial   to 

the  success  of  the  expansion  method. 

We  describe  this  approach  by  considering   the   solution   of 

Fredholm  integral  equations of the  second  kind.   We  then  apply  it 

to  two-point  boundary  value  problems  and  to  harmonic  mixed  boundary 

value  problems.     For  each  case  we  obtain  the  appropriate  correction 

term  and  perform  some  numerical  example  using  the  corrected 

expansion  approximation. 

The  theoretical  motivation  to  the  new  approach  is  based  on  the  simple 

approximation  theorem  presented  in  the  following  section. 

2.     A  simple  approximation  theorem 

Let  H  be  the  set  of  the  integrable  functions   in  some  given  continuity 

class  of  functions  on  [a,b],  and  consider  the  quadrature  and 

expansion  methods for  approximating  the  integral 

                                        .Hh,h(t)dt
b

a
∈∫                                                (2.1)

Here  the  expansion  method  consists  of  approximating  h(t),  t  ∈  [a,b], 
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by  a  linear  combination (t)jhjα
n

1j
(t)h ∑

=
=  of  functions  hj  ∈    II 

j  =   1,  2,   ...,  n  whose  integrals, ,(t)dtjh
b

a
ja ∫=  are  known.     The 

nth  order  expansion  approximation  to   ( 2 . 1 )    is  then  defined  as .jajα
n

1j
∑
=

We  are  interested  in  the  relation  between  the  nth  order  expansion 

approximation  and  the  nth  order  quadrature  approximation 

(2.1)of)ih(tiw
n

1i
∑
=

In  particular,  we  are  interested  in  the 

relation  between  the  best  nth  order   approximations   of  each  type. 

Definition  2.1.   An  approximation  which  is  exact  on  a  subset  Φ 

of  H  is  called  a  best-Φ  approximation. 

Best  quadrature  approximations  are  usually  obtained  by  choosing 

special  wights   and  abscissae    such  that  the  quadrature  rule *iw *it

 integrates  exactly  2n  basis  functions  φ1.  ,   φ2   ,   . . . ,   φ2n )*ih(t*iw
n

1i
∑
=

in   H.     This   quadrature  approximation  is  then  a   best-Φ  approximation 

where  Φ  =  span{ φ1.  ,   φ2   ,   . . . ,   φ2n }. 

 

Theorem  2.1     Given    a  best-Φ  nth  order  quadrature   approximation, 

)*ih(t*iw
n

1i
∑
=

and  n  functions  h , h 2 , … , h n  ∈  Φ,   such  that   for 

any  h Î    H  there  exists  ,   ,   …,      that  satisfy *
1α *

2α *
nα

                                        i  =   1 ,  2,   ...,  n   ,              (2.2) ,)*i(th)*i(tjh*jα
n

1j
=∑

=

then  the  nth  order  expansion  approximation   (2.1)to(t)dtih
b

a
*jα

n

1j
∫∑

=

is  identical  to  the  best-Φ  nth  order  quadrature  approximation. 
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i . e. 

                                                     (2.3) .Hh,)*ih(t*iw
n

1i
(t)dtjh

b

a
*jα

n

1j
∈∑

=
=∫∑

=

Proof .        The   proof   is   straightforward.      However,   for   later   use , 
we   present   it   by   considering  the   error 

                                                                                (2.4) (t)dtjh
b

a
*jα

n

1j
h(t)dt

b

a
E(h) ∫∑

=
−∫≡

of  the  expansion  approximation. 

Application  of  the  best-Φ  quadrature  formula  to  the  integrals  in 

(2.4)   gives 

                                  (2.5) )jh*
jα

n

1j
(he])*

jh(t*
jα

n

1j
)*

ih(t[*
iw

n

1j
E(h) ∑

=
−+∑

=
−∑

=
=

where )*if(t*iw
n

1i
(t)dtf

b

a
(f)e ∑

=
−∫≡   is the error of the best -Φ

 
quadrature  approximation. 

The   first  term  on  the  right  hand  side  of   (2 .5)    vanishes  by   (2.2), 
and  the  second  reduces  to  e(h)   since   e(hj)   =   0     j   =   1,  2,   ...,   n.  Q.E.D. 

Thus,  with  independent  basis   functions  hj  ∈ Φ   one    can,   in  general, 
use   (2.2)   to  obtain  a  best-Φ   approximation.     For  a  general  set   of 
independent   functions  h1.,  h2   ,  ...,  hn   ∈   H  we  use  the  same  definition 
of  the  aj*'s  to  define  a  near-best  approximation. 

Definition  2.2.       Given  a  best  nth  order  quadrature  formula    )*ih(t*iw
n

1i
∑
=

and  n  independent  functions,  h1   ,  h2   , ….  hn ∈ H,  the  near-best  nth 

order  expansion  approximation  to   (2.1)   is  defined  by  (t)dtjh
b

a
*jα

n

1j
∫∑

=
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where  the are  chosen  such  that        collocates  h    at  the .  s*'
jα jh*jα

n

1j
∑
=

s*'
jt

Corollary  2.1.       Let  e  be  the  error  functional  of  a  best  nth  order 

quadrature  formula,  and  let  E  be  the  error  functional  of  the 

associated  near-best  expansion  approximation,  then 

                                                                               (2.6) .)jh*
j

n

1j
h(e)h(E α

=
−= ∑

The  proof  follows  using  expression  (2 .5)   of  E ( h ) .  

The  above   discussion   seems  to  have  no  useful  application  to  the 

problem  of  approximating  integrals   of   given  functions.    However, 

as  we  show  in  the  following  sections ,  it  can  be  very  useful  when 

considering  expansion  approximations  in  general. 

3.     Integral  equations  of  the  second  kind 

3.1    Connection  between  expansion  approximation  and the  resolvent 

function. 

Consider  the  integral  equation  of  the  second  kind 

                        f(x)dtt)u(t)K(x,
b

a
λu(x) =∫−

or ,  in  operator  form,            (3.1) 

                                  Lu  =  u  - λ Ku  =  f  . 

  

For  any  λwhich  is  not  an  eigenvalue  of K equation  (3.1)  has 

a  unique  solution which  can  be  represented  in  terms  of  the 

resolvent  function  Γ of  K  as 
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λ)f(t)dtt;Γ(x,
b

a
u(x) ∫=

or,   in  operator  form,   as 

u = Γf. 

(3.2) 

 
The  problem  of  approximating  u(x)   is  therefore  equivalent to  the 

problem  of  approximating  the  integral  ΓUsually.(t)dtfλ)t;Γ(x,
b

a
∫

is not known and for this reason this integral cannot be approximated 

directly by a quadrature approximation. However, we might be able to 

approximate   it   by   the   expansion   approximation  of   the   previous  section. 

Let  f  belong  to  some  continuity  class  F  on  [a,b]  and, for  a  given x, 

let  Hx   be  the  set  of  all  the  functions  h(t) =  r(x,t ;λ)Φ(t)  with Φ  ∈  F. 

The  application  of  the  expansion  method,  for   approximating  xHh,h(t)dt
b

a
∈∫

requires  a  set  of  functions  hj.   ∈  Hx    for  which  the  integrals 

h(t)dt
b

a
∫ are   known.  In   general,   it   is   not   difficult   to   find   functions 

ujsuch  that  fj  =  Luj=  uj   -  lKu. ∈ F.  Then, the functions 

hj  ≡  r(x,-;l)f.∈  Hx  ,and  their  integrals are simply 

                                                        (3.3) .(x)ju(t)dtjλ)ft;Γ(x,
b

a
(t)dtjh

b

a
=∫=∫

Thus,  the  expansion  method  for  approximating  u(x)  from  (3.2)  consists 

of  determining  an  approximation  of the  form f(t) λ)t;Γ(x,h(t)to(t)jhjα
n

1j
≡∑

=

t  ∈  [a,b],  and  then  of  approximating  the  integral  of  h  by 
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.(t)dtjh
b

a
jα

n

1j
λ)f(t)t;Γ(x,

b

a
∫∑

=
≈∫                                (3.4)

But  the  approximation reduces  to  the  approximation (t)jhjα
n

1j
h(t) ∑

=
≈

.(x)jujα
n

1j
f(t) ∑

=
≈ after  removing  the  common  factor  r ( x , t ; l ) ,    and 

the  approximation   (3.4)   reduces  by   (3.3)   to 
 

                                                                                          .(x)*jujα
n

1j
u(x) ∑

=
≈

(3.5) 

Therefore,   the  expansion  method  for  approximating ish(t)dt
b

a
∫

equivalent  to  the  expansion  method  for  approximating  the  solution 

of   (3-1),   as  defined  in  the  introduction,with jfjα
n

1j
f ∑

=
= and 

.f1Ljujα
n

1j
u −=∑

=
=  

Although   G   is  not   known,   it   is   possible,   in  many   cases,   to  classify 

its   continuity  properties  and  thus  to  find  Hx   .     Therefore,   in 

general,   it   is  possible  to  find   an   appropriate   best    quadrature 

Formula, for  approximating It  is ,)*
ih(t*

iw
n

1i
∑
=

.xHh,dth(t)
b

a
∈∫

unlikely  that  this  best   quadrature  approximation   is   exact   for   the 

hj's  used  in  the  above  expansion  method.     Thus  it   is  not  possible 

to  make   full  use  of  the  approximation  theorem  2.1   and  obtain  a 

best   expansion  approximation.     However,we  can  use  definition   2.2 

and  obtain  a  near-best  approximation 

 

                                                                             (3.6),(t)dtjh
b

a
jα

n

1j
h(t)dt

b

a
∫∑

=
≈∫
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choosing  the  aj's   so  that 

,)*ih(t)*i(tjhjα
n

1j
=∑

=
            i  =   1,   2,   . . . ,  n   .            (3.7) 

In  terms   of  the  approximation  to  the   solution   of   the  integral 
equation   (3-1)   this   is   equivalent  to  the  approximation   (3.5) 
with  the   αj.'s   chosen  so  that 

                 i  =   1 ,   2,    ...,   n                                  (3.8),)*if(t)*i(tjfjα
n

1j
=∑

=

Definition  3.1.        A  near-best  nth  order  expansion  approximation, 

,(x)jujα
n

1j
(x)u ∑

=
= to  the   solution  u(x)   of   the    integral  equation 

(3.1)   at   a  given  x  is  that  which  collocates  the    integral   equation 
at  the  abscissae ,     i   =   1,   2,    ...,   n,   of  a  best  nth  order *

it
quad rature   formula  on  Hx   . 

Theorem  3.1-        The  error  in  the  near-best  nth  order   expansion 

approximation ū (x)  to  u(x)   is  given  by 

                          )jhjα
n

1j
(hxe(x)uu(x) ∑

=
−=−                                         (3.9) 

where  ex     is  the  error  functional  of  the  associated  best  nth  order 

quadrature   formula  on  Hx   . 

The  proof   follows   at   once   from  corollary  2.1   applied  to  the   near-best 

approximation  to .(x)udth(t)
b

a
=∫  

The  major  shortcoming  of  the  above  near-best  expansion  approximation 

is  that,   in  general,  due  to  the  singularities  of  T,   the  class  Hx 
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depends   strongly  on  x  (e.g. Hx    can  be  the  class  of  infinitely  smooth 
functions  on  [a,b]  apart   from  jump  discontinuity,   or  a  logarithmic 
singularity,   at  t   =  x).     Such  a  situation  implies  that   for 
different   values   of  x  there  are   different  best   nth  order   quadrature 
formulae.     Therefore,   a  near-best   expansion   approximation  to u(x) 
for   some   given  x,   is,   in  general,   expected  to  lose  a  great   deal  of 
its   efficiency  when  used   for  other  values   of  x. 

We  remark  that   similar  arguments  hold  for  expansion  approximations 
to  the   solution  of  operator  equations   in  general. 

3.2       A  global  near-best  approximation. 

It   is  of  course  possible  to  obtain  near-best   approximations  to  u(x), 
for  particular  values   of  x,   provided  that  the   continuity   properties 
of  r(x,t;1) are known.   However,  as  we  show  below,  a global  near-best 
approximation  to  u  over   [a,b]   is  attainable  provided  that   the 
dominant   singularities  of    can  be  removed  in  the  following  way. 

Assume  that   Γ  can  be  expressed  as  the   sum  of  a   'singular'   part   S 

and  a   'smooth'   remainder  R,   i.e.   in  the  form 

r ( x , t ; λ )    =  S ( x , t ; λ )    +  R ( x , t ; λ )   ,            (3-10) 

and  let   H  be  the   set   of  all  the   functions  h ( t )    =  R(x,t ;λ )  φ( t ) , 
t   ∈   [a,b],   φ   ∈   F.      In   order  to   obtain   an  nth   order  global  near-best 
approximation  to  u  we   require  that   S   is    a   known   function,    and   that 

there  exists  a  best  nth  order  quadrature  formula, ,)*ih(t*iw
n

1i
∑
=

 

independent  of  x,  approximating H.h,dth(t)
b

a
∈∫ A method for 

determining  an  appropriate  S  is   described  in  the  next   section.      Here 
we  assume  that  S is  known.   We  also assume  that   for  any f ∈ F  the 

candt(t)fλ)t;S(x,
b

a
integral ∫ be  approximated  to  any  desired  accuracy. 
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Then  the  problem  of  approximating 

                           dt(t)fλ)t;Γ(x,
b

a
u(x) ∫=

 
is  reduced  to  the  problem   of  approximating 

                         .dt(t)fλ)t;R(x,
b

a
(x)Ru ∫≡

 

We  apply  the  expansion  method  for  the  approximation  of Hh,dth(t)
b

a
∈∫  

by  taking  hj(t)   =  R(x,t; λ ) f j ( t )   where,   as   in  the  previous  section, 
  

fj   =  uj   -  λKuj   and  the  integrals  

         ,dt(t)jfλ)t;S(x,
b

a
(x)ju(t)jfλ)t;R(x,

b

a
(t)jh

b

a
∫−=∫=∫             (3.11)

of  the   oasis  functions,   are  assumed  to  be  known. 

By  definition  2.2  the  near-best  nth  order  expansion  approximation 

satisfys'jαthewheredt(t)jh
b

a
jα

n

1j
is(x)Ruto ∫∑

= 

                                 i  =   1,   2,   ...,   n   , ,)*ih(t)*i(tjhjα
n

1j
=∑

=

vhere  h(t) =R(x,t;λ ) f ( t ) ,   or  equivalently, 

                                i    =1,   2,…, n  .                              (3.12)            ,)*if(t)*i(tjfjα
n

1j
=∑

=

The 's  in   (3.12)  are  the  abscissae  of  the  best  nth  order  quadrature *
it

formula  on  H  and  thus,  by  assumption,  they  are  independent  of  x.     Hence, 

using  the  near-best  expansion  approximation  to  UR (X)   and  (3.11)  we 

can  define  a  global  near-best  approximation  to   u   as   follows: 
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Definition   3.2.        An  nth  order  global  near-best   approximation  ūc 

to   the   solution   u  of  the   integral   equation   3.1   is   defined  as 
 

     dt](t)jfjα
n

1j
(t)[fλ)t;S(x,

b

a
(x)jujα

n

1j
(x)cu ∑

=
−∫+∑

=
=                      (3.13) 

where  the  aj-'s   are  determined  by   (3 .12) ,    i.e.   the  expansion 

approximation     collocates   the    integral   equation   at , jujα
n

1j
∑
=

*
it

i  =   1,   2,   ...,   n,   the  abscissae  of  the   best    nth   order   quadrature 
formula  on  H. 

We  also  refer  to  ūc     as  the  corrected  expansion  approximation  and 

dt](t)jfjα
n

1j
[f(t)λ)t;S(x,

b

a
to ∑

=
−∫   as   the   correction  term  of  the 

expansion  approximation. 

Theorem  3.2.        The  error  in  the  corrected  expansion  approximation 

ūc    to  u  is  given  by 

)jhjα
n

1j
e(h(x)cuu(x) ∑

=
−=−                        (3.14) 

where  e   is  the   error  functional  of  the   best   nth   order   quadrature 
formula  on  H. 

The  proof  follows  by  applying  corollary  2.1   to  the  near-best 

approximation  to  uR(x). 

Usually,  the  best  nth  order  quadrature  approximation on  H  is  more 
accurate  than  the  best   nth  order   quadrature  approximation  on  Hx 

of  section  3.1.     Comparing  results   3.9  and  3 .14 ,   this    indicates 
another  possible  advantage  of  the  global  near-best  approximation 
ūc  over  the  near-best   expansion   approximation  ū. 
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We  note  that  the  same  correction  terra  is  expected  to  also   'correct' 

other  expansion  approximations  to  u(x)   (e.g.   those  obtained  by  the 
least  squares  method  or  the  Galerkin  method).    However, when  the 

s*'it ti*'s  can  be   found, it   is   simpler  and  usually  better  to  work  with  the 
above   corrected  collocation   approximation     ūc. 

3.3       The  singularities  of  Γ. 

In  order  to  apply  the  above  approximations  we  have  to  be  able  to 

analyse  the  continuity  properties  of  the   resolvent   kernel  r(x,t;λ). 

In  operator  form  we  have  the  relations  u  -  λ Ku  =  f  and  u  =  Γf. 

Hence 

Γf   =  u 

=  f  + λ  Ku 

=  f  +  λ K(f  +  λ Ku) 
. 
. 
. 

                      =  f  +  λ  Kf  +  λ 2K2  f +   ...   + λ mKmf  +  λ m+1Km+1 u   . 

Replacing  u  by  Γ f   in   the  last  term   of   the   above   expression   we 

obtain   the   operator   identity 

  Γ =   Ι   +  λK  +  λ2  K2  +   ...   + λmKm  +  λm+1Km+1 Γ (3-15) 

for  Γ.     In   (3.15)   the  product   of  two  operators  A  and  B,   with  kernels 
A(x,t)   and  B(x,t)   respectively,   is  the  operator  AB  with  the  kernel 

                        ,dyt)B(y,y)A(x,
b

a
t)C(x, ∫=                                                              (3.16) 

and  I  is  the  identity  operator. 
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Integral   operators   are   smoothing  operators,   and  thus,   in   general, 
Kj+1 (x,t)   is  smoother  than  K j ( x , t ) .    Therefore,   the  most   severe 
singularities   of   r ( x , t ; λ )    are   imbeded  in  the   first  terms  of  the 
expression   (3.15).      The   identity  operator   I    contributes   a   δ(x-t) 
singularity  to  r(x,t;λ )   where  δ    is   the   Dirac-δ    function. 

We   consider  the   important   class   of  kernels     K(x,t)   which  can   be 
represented  as 

                       !j
jt)(x(1)

jk
0j

t)H(xt)(x,1Kt)K(x, −
∑
∞

=
−+=                        (3.17) 

where   K1   ∈     C ∞ ( [a,b]x[a,b] ),   H   is   the   Heaviside   step   function  and 

k       is   the   jump   in  the   jth  derivative   of  K,   i.e. )1(
j

                        .t)'(tjx
Kjt)'(tjx

Kj(1)
jk −

∂

∂−+
∂

∂=                                             (3.18) 

Using  the   equality 

1)!(k
1kt)(xt)H(xdy

!
t)(yt)H(y

k!
ky)(xy)H(x

b

a ++

++−−=−−−−∫ l

l

l

l
        (3.19) 

it   can  be   proved,   by   induction  on  n,   that  the  kernel   of  the 
operator   Kn     can  be   represented  as 

!j
jt)(x(n)

jk
1nj

t)H(xt)(x,nKt)(x,nK −
∑
∞

−=
−+=                          ( 3 . 2 0 )  

where  Kn  ∈    C∞ ( [a,b]x[a,b] )   and  the  kj
(n)      ' s   are  obtained  recursively 

  
from  the  kj(1)      's,   by 

                                                 (3.21)

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−≥−
−−∑

−

=
=

−<=

1mj1)(m
1ijk(1)

ik
1j

1i
(m)
jk

1mj0(m)
jk
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From  the  expression  (3 .15)   of  G  and  the  relations   (3.20)   it  can 
be  shown  that  r(x,t;λ)   is  infinitely  smooth  on  [a,b]x[a,b]  apart 
from  a  d(x-t)   singularity   and  jump   discontinuities   on   t  =  x. 

The  near-best   expansion  approximation  ū(x)   is  defined  by  means  of 
a  best  quadrature  formula  on  Hx   ,  where  Hx    is  the  set  of  all  the  
functions  h(t)  =  G(x,t; l ) f ( t ) ,  t  ∈  [a,b],  f  ∈   F.     Let  F  =  C∞[a,b], 
thus  Hx    is  the  class  of  infinitely  smooth  functions  on  [a,b]  apart 
from  a  δ(x-t)   discontinuity  and  jump  discontinuities   at  t  =  x.     A 
best  nth  order  quadrature  formula  on  this  Hx  can  be obtained  by a 
combination  of  two  Gaussian  quadrature  formulae,  one on [a,x] and 
the  other  on   [x,b],   of  combined  order  n-1,  together  with  a  special 
treatment  for  the  point  t  =  x  to  take  care  of  the  δ(x-t)   singularity. 
 
Let  ek [c,d]          denote  the  error  functional  of  the  kth  order  Gaussian 
quadrature  formula  ( G . q . f . )   on  [c,d].     Then,   for  a  given  x  we  compose 
the  best  nth  order  quadrature  formula  on  Hx    by  means  of  a  kx  th  order 
G.q.f.   on  [a,x]  and  an   (n-kx  - l ) th   order  G.q . f .    on  [x,b],  where  kx 
is  chosen  so  that   The near-best  expansion .)(h)b][x,

1xknO(e(h)x][a,
xke −−≈

approximation  is  then  defined  by  collocation  at  the  kx    Gaussian  points 
in  [a,x],   at  x,   and  at  the  n-kx  -1   Gaussian  points  in  [x,b]. 
 
Corollary  3.1.   The  error  of  the  near-best  expansion  approximation 

(x)jujα
n

1j
(x)u ∑

=
=  to   the   solution   u(x)   of  the  integral  equation  3.1. 

with  a  kernel  of  the  form  (3.17) and  f  ∈  C∞  [a,b]  is 
 

              )jhjα
n

1j
(hb][x,

1xkne)jhjα
n

1j
(hx][a,

xke(x)uu(x) ∑
=

−−−+∑
=

−=−      (3.22) 

where  h  and  the  h j ' s   are  as  defined  in  section  3.1. 

For  a  global  near—best  approximation  we  need  to  find  a  suitable 

'singular1   part  S,   of  G,   as  defined  in  section   3.2.      A   possible  S 

can  be  induced  from (3.15),   by  taking  the  kernel  of  the  operator 
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Sm     =  Ι  +  λΚ  + λ2Κ2  +   .. .   +  λmKm   (3.23) 

where  m    can  be  chosen  so  that  the   'remainder' 

                            Rm   =  λm+1Km+1Γ                                                        (3.24) 

has  a  sufficiently  smooth  kernel.      For   kernels   of   the   form   (3.17) 
we  can  use   (3.20)  to  show  that  the  kernel  of  R    has  at  least  m-1 
continuous  derivatives.     However,   for  kernels   of   the   form   (3.17), 
a  more  practical  S  than  (3.23)  can  be  obtained   as   follows:      the 
kernel  of  each Kn   in   (3.23)   is  replaced  by  its  representation   (3 .20) ,  
and  only  the  terms  which  contribute  to  the  jump  discontinuities 

in  the  derivatives ,1m...,0,1,j
,jx

jS −=
∂

∂ are  retained  to  give 

                   !j

jt)(x(i)jkiλ
m

1i

1m

0j
t)(xHt)δ(xλ)t;(x,mS −

∑
=

∑
−

=
−+−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
        (3.25) 

Thisis mS   far  easier  to  compute  than  the  kernel  of  Sm   ,  and  the 
kernel  of  its   'remainder' ,mSmR −Γ≡ like  that  of  Rm  ,  has  at 

 
least  m-1   continuous  derivatives. 

The  set  H  associated  with  a   'remainder'   R  is   defined  in  the  previous 
section  as  the  set  of  the  functions  h(t)   =  R(x,t;λ ) f (t),  t  ∈   [a,b], 
f  ∈  F.     It   follows  that   if  F  =  C  ∞ [a,b],  then  for  both  R  =  R  and mRR =  
H   ⊆ C(m-1)        [a,b].     For  an  nth  order  global  near-best  approximation 
we  take  m  =  2n.     Then,   H   ⊆ C2n-1[a,b]  and  as  a  best  nth  order  quadrature 
formula  on  H  we  take  the  nth  order  G.q.f.   on  [a,b].     The  global 
near-best  approximation  .ūc    is  then  defined  as 

    ,dt(t)jfjα
n

1j
[f(t)λ)t;(x,2nS

b

a
(x)jujα

n

1j
(x)cu ∑

=
−∫+∑

=
=        (3.26) 

where  the  aj ' s  are  determined  by  (3.12)  with  the s  taken   as *'
it

the  n  Gaussian  points  in  [a,b], 



-   16  - 

The  choice  of  Gaussian  points  as  collocation  points  is  also 
suggested  in  other  works;     see  e.g.   Pruess  [ 5  ].     However,  the 

motivation  there  is  based  on  the  attempt  of  making  jfjα
n

1j
f ∑

=
−

nearly  orthogonal  to  all  polynomials  of  degree  <  n.     The  motivation 

used  in  the  present  paper  for  collocation   at   Gaussian   points   reveals 

the  necessity  of  the  extra  correction   term   to   the   collocation 

approximation.     With  this  correction  term,  we  have  the  following 

promising  result: 

Corollary  3.2.       The   error   in   the   global   near-best   approximation 

ūc    to  u  is  given  by 

                           )jhjα
n

1j
(hb][a,

ne(x)cuu(x) ∑
=

−=−                                (3.27) 

where  h,  h1   ,  h2   ,   ...,  hn  ∈  C(2n-1)[a,b]  and  en [a,b] ' is  the  error 
functional  of  the  nth  order  G.q..f.   on  [a,b].  

The  main  contribution  of  the  correction  term  is 

(x)jfjα
n

1j
f(x)dt(t)jfjα

n

1j
[f(t)t)δ(x

b

a
∑
=

−=∑
=

−−∫

 

due  to  the  first  term  in 2nS .     The  approximation 

   (x)jfjα
n

1j
f(x)(x)jujα

n

1j
∑
=

−+∑
=

 

can  be  interpreted  as  a  one  stage  Neumann  iteration  from  the   'point' 

jujα
n

1j
∑
=

 . It  is  mentioned  in  Baker  [ 1  ]   that   this   simple   correction 

frequently  improves  an  expansion  approximation. 
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If  in   (3.26)   the 2nS is  replaced  by  the  kernel  of  Sm  of  (3 .23)  
 

then   ūc   is  simply  the  mth  Neumann  iterate  starting  from  the   'point' 

 .Itis  important  to  notice  the  difference  between  the jujα
n

1j
∑
=

present   motivation   of  obtaining  this  approximation  and  the   simpler 
motivation  based  on  Neumann  iterations.     Thus,  the  motivation  used 
here  for  obtaining  the  corrected  approximation  is  based  only  upon 
the  fact  that  the  kernel  KJ+1     (x,t)   is  smoother  than  the  kernel  KJ(x,t) 
and  does  not  require  the  convergence  of  the  Neumann  series. 

It  can  be  shown  that  corollary  3.2  holds  for  the  2nth  Neumann  iterate 

for  .Therefore,   even  for  a  divergent  Neumann  series  we jujα
n

1j
∑
=

expect  the  first  2n  iterations  to  improve  the  collocation  approximation 

jujα
n

1j
∑
=

,although  further  iterations  might  destroy  this  improvement. 

Repeated  Neumann  iterations  are  not  commonly  used  because  of  the 
numerical  complexity  involved  in  computing  the  kernels  k j  (x,t). 
However,   for  kernels  of  the  form  (3 .17)    a  corrected  approximation, 
using  the  computationally  simple  function 2nS ,   plays   the   same   role 
as  the  2nth  Neumann  iterate.     For  other   classes   of   kernels   it 
might  be  more  difficult  to  find  a  computationally  simple  form  for  S. 
However,  the  results  obtained with  the  kernels  of   the   form   (3.17) 
indicate  that  the  study  of   other   classes   of   kernels   deserves   strong 
consideration. 
 

3.4       Numerical  example  -  Integral  equations  of  the  second  kind. 

We  consider  the  Fredholm  equation   (3 .1 )   with  f  ∈  C ∞ [a,b]  and  with 
kernel 

                     K(x,t)  =                      
⎪
⎩

⎪
⎨

⎧

===

===

1     x    t   0          x)-t(1

1     t    x   0          t)-x(1
   (3-28) 
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This  kernel  can  he  rewritten  as 

K(x,t)   =  x(1-t)   -   (x-t)H(x-t)   ,                           (3.29) 

i.e.   in  the  form  (3.17)   with  K  (x,t)   =  x(l-t),   k0 (1)   =  0,  k1
(1)   =  -1 

    
and  ki

 (1)      =0     i ≥  2.    Hence  we  can  use   (3.21)   and  (3.25)  to  compute 
the   'singular'   part mS of  G. 

To  demonstrate  the  power  of  the  corrected  expansion  approximation 
we  consider  corrections  to  a  low  order  expansion  approximation, 
in  this  case  4th  order.     The    expansion   approximation  ū  is  taken 
as  the  third  degree  polynomial  which  collocates  the  integral 
equation  at  the  4  Gaussian  points  on   [a,b].     In  the  corrected  expansion 
approximation  ūc  ,   defined  by   (3.26),  the  computation  of  the  fj's  is 
performed  analytically  and  the  correction  term  is  approximated   by 

using  Simpson's  rule  with .100
abh −=  

To  investigate  the  influence  of  particular  singularities  of  Γ (x,t;λ) 
on  the  correction  term  we  compute  a  sequence  of  approximations, 
ū-m       ,m=0,   1,2,    ...,           corresponding  to   correction  terms  with 

λ)t;(x,mS  Then  ūc
(m)  takes  care  of  the  jump  discontinuities    in   the 

first  m-1   derivatives  of  Γ(x,t;λ).     We  note  that  only  k1
(1)      0  and 

.(2i)cu1)(2icuand2iS12iSthus =+=+ 

Consider  the  particular  case  of  λ =   1   and  f(x)   =  x  of   (3.1),   i.e.   the 
equation 

                                                                                       (3.30) ,xdt(t)ut)K(x,
1

0
u(x) =∫−

which  has  the  exact  solution  u(x)   =  sinx/sinl. 

In  Table  3.1  we  give  results  at  the  points  x  =  0.0   (0.2)1.0  computed 
from  the  collocation  approximation  (x)   and  the  corrected  approximations 
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ūc
(0)       (x),  ūc

(2)       (x)   and   ūc
(4)    (x).  These are compared  with  values  computed 

from  the  analytic  solution  u(x). 

Table  3-1 

X 0.0 0.2 0.4 0.6 0.8 

ū(x) -0.000271694 0.236219378 0.462707145 0.670937092 0.852654706 

ū (x) 
(0)
c 0.000000000 0.236098504 O.462781577 0.671017224 0.852503761 

ū (x) 
(2)
c 0.000000000 0.236097644 0.462782799 0.6710l8304 0.852502461 

ū (x)  
(4)
c 0.000000000 0.236097651 O.462782835 0.671018328 0.852502439 

u(x) 0.000000000 0.237097660 O.462782852 0.671018352 0.8525021467 

x 1.0     

ū(x) 0.999605471     

ū (x) 
(0)
c 1.000000000     

ū (x) 
(2)
c 1.000000000     

ū (x)
(4)
c 0.999999967     

u(x) 1.000000000     

We  note  that  the  basis  for  obtaining  the  near-best  approximations  is 
the  representation  (3.2)   of  the  solution  of  (3.1).     In   fact,  similar 
near-best  approximations  can  be  defined  for  any  problem  whose  solution 
has  a  representation  of  the  form  (3.2).     Two  such  problems  are 
considered  in  the  following  chapters. 
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4.     Two-point  boundary  value  problem 

4.1      Expansion  approximations  and  the  Green's  function 

In  this   section  we  consider  expansion  approximations  to  the  solution 
of  the  rath  order  linear  differential  equation 

,b][a,x

,f(x)(x)u(x)mp...(x)1)(m(x)u
1

p(x)(m)(x)u
0

pLu(x)

∈

=++−+=     (4.1)

 

where  pj   ∈  C  (n-j)    [a,b]  and  P0(x)   does  not  vanish  on  [a,b], subject 
to  the  m  homogeneous,  lineary  independent,  boundary  conditions 

 

               .m,...1,2,i0(b)1)(juijb
m

1j
(a)1)(juija

m

1j
==−∑

=
+−∑

=
          (4.2) 

The  solution  of  this  boundary  value  problem  can  be  expressed  by 
means  of  the  Green's  function  G(x,t)   of   the   problem   (4.1)  -  (4.2) 
as 

                                                               (4.3) .t)f(t)dtG(x,
b

a
u(x) ∫=

This  representation  is  similar  to  the  representation  (3.2)   of  the 
solution  of  the  integral  equation  (3.1).     Hence,  by  replacing  Γ(x,t; λ ) 
by  G(x,t),  the  results  obtained  in  sections  3.1  and  3.2  can  be 
adapted  to  deal  with  expansion  approximations  to  the  solution  of 
two-point  boundary  value  problems. 

Let  f  belong  to  a  continuity  class  F  on  [a,b],  and  consider 

expansion  approximations, , to   the   solution  u  of  the  problem jujα
n

1j
∑
=

(4.1)  -   (4.2),  with  uj's  such  that  fj    =   Luj    ∈   F,   j  =  1,   2,   ...,  n. 
Here,  for  a  given  x,  we  define   Hx    as   the   set   of  the  functions 
h(t)   =  G(x,t) φ (t)  with  φ  ∈  F. 
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Definition  4.1 .      A  near-best   (m+n)th  order  expansion  approximation, 
m

,(x)jujα
n

1j
(x)u ∑

+

=
= t.o   the   nolution  u(x)   of  the   boundary   value   problem 

(4.1) - ( 4 . 2 ) ,  at a given x ∈ [a,b], is that which satisfies the m  
boundary conditions ( 4 . 2 )  and collocates the differential equation 
(4.1)   at  the  abscissae 

 
i  =   1,   2,   . ..,   n,   of  a  best  nth  order ,*

it

quadrature   formula  for  approximating .xHh,dth(t)
b

a
∈∫

Theorem  4.1.       The  error  in  the  near-best  expansion  approximation 
u(x)   to  u(x)   is   given  by 

                                        )jhjα
nm

1j
(hxe(x)uu(x) ∑

+

=
−=−                                        (4.4) 

where 

h(t)   =  G(x,t)f(t)   ∈  Hx     , 
 

h . ( t )    =  G ( x , t ) f - ( t )    ∈  Hx     , 

and  ex     is  the   error  functional  of  the  best  nth  order  quadrature 

formula  on  Hx   . 
 

We  note  that  definition  4.1   can  be  used  to  define  a  near-best 
approximation  ū(x)   even  when  the  conditions   ( 4 . 2 )    are  replaced  by 
non-homogeneous  linear  two-point  boundary  conditions.   Theorem  4.1 
then  holds   for  the  case  of  non-homogeneous  linear  boundary  conditions. 

Typically  the  Green's  function  for  an  mth  order  boundary  value  problem 

has  the  form 

                  
!j

jt)(x
jg

1mj
t)H(xt)(x,1Gt)G(x, −

∑
∞

−=
−+=                           (4.5) 

where  G1    ∈  C ∞  ([a,b]x[a,b]) .   Therefore,  as  in  the  case  of  integral 
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equations,  the  class Hx   depends strongly  on  x  and,  in  general,  a 

particular  near-best  expansion  approximation ū (x)  has  the   'near-best' 

property  (4.4)  only  for  that  particular  x  for  which   it   is   defined. 

For  example,  if  F =  C∞[a,b] and G is of  the form ( 4 . 5 ) ,  then Hx 

is  the  class  of  infinitely  smooth  functions  on  [a,b]  apart   from   a 

jump  discontinuity  in  the   (m-l)th  derivative  at  t  -  x.     Thus, 

as  in  section  3.3,     a  best  nth  order     quadrature  formula  on  Hx 

can  be composed  of  a  kx  th  order  G.q.f.  on [a,x] and  an (n-kx  -1) th 

order  G.q.f.   on  Cx,b].     The  corresponding  near-best  expansion 

approximation  then  has  an  error  of  the  form  (3 .22) .  

One  way  of  making  a  single  expansion  approximation  efficient  for 

several  values,   x   ,  x   ,   ...,  x,  ,  of  x  is  by   replacing   the   class   Hx   , 

in   definition   4.1,   by   a   wider   class  H (x0,x1....,xk )   such  that 

Hxi   ≤    H(x0,x1...xk ).   i  =  0 ,  1 , . . . , k .      For   example,   in  the  case 

F  =  C ∞ [a,b]  and G of  the form ( 4 . 5 ) , H ( x 0 , x 1 , . . . x k )  may be taken as 

the  class  of  infinitely  smooth   functions  with  only  jump  discontinuities 

at  x0  ,  x1  ,   ...,   xk,    in  the   (m-1)th  and  higher  order  derivatives.   For 

equidistant   points,  ,k,...,10,i,
k

abiaix =−+=  a  best    (km) th 

order  quadrature  formula  on  H(x0,x1,......,xk ) can  be  composed of  k  nth 

order  G.q.f.'s  on  [xi,xi+1],   i  =  0,   1,   ...,  k-1.     The  corresponding 

(kn+m )      order   near-best  approximation, juj
mkn

1j
ku α

+

=
= ∑ is  that  which 

satisfies  the  m  boundary  conditions  and  collocates  the  differential 

equation  at  the  n  Gaussian  points  at  each  of  the  k   intervals   [xi,xi +1 ] , 

i  = 0,   1,   ...,  k-1.     It  can be   shown  that 

                      )jhjα
mkn

1j
(h]1rx,r[xne

1k

0r
)i(xku)iu(x ∑

+

=
−+∑

−

=
=−            (4.6) 

where  h(t)  =  G(x.,t)f(t)  and  h.(t)  =  G(x.,t)fj(t}. 
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The  result   (4.6)   is  supported  by  a  result  of  De-Boor  and  Swartz  [2] 
for  the  more  general  case  of  collocation  approximation  to  the 
solution  of  mth  order  nonlinear  ordinary  differential  equations 
with  m  linear  side  conditions  using   piecewise  polynomials.   Their 
result,  applied  to  the  simpler  linear  case   ( 4 . 1 )    can  be  stated  as 
follows: 

"If  ūk  ∈   C(2n+m) [a,b]  satisfies  the  m  boundary  conditions   (4.2)  and 

collocates  the  differential  equation  ( 4 . 1 )   at  the  n   Gaussian   points 

in  each  of  the  intervals  [xi ,x i + 1]  ,   i  =  0,   1, ...,  k-1  then, 

 

                                 )mn(Δ0(x)kuu(x) +=−                                            (4.7) 

where  A  = 
1ki0

max
−≤≤

 ( x i + 1 - x i ) .  Furthermore,     

                        ,)n2(0)ix()j(
ku)ix()j(u Δ=−  j  =  0, 1,   ...,  m-1 ,    (4.8) 

1.=  0, 1, …k”.     

It  is  suggested  in  [2]  that  a  global  approximation  of  order  2n 
can  be  obtained  by  interpolation  from  the values ūk, ( x i ) ,  i = 0, 1,  ...,k  
Here,   as   in   chapter   3,  a  global  near-best  approximation  to  the 
solution  of  the  linear  boundary  value  problem  ( 4 . 1 )   -   (4.2)   is 
obtained  by  correcting  the  expansion  approximation. 

4.2      A  global  near-best  approximation 

If  throughout  section  3.2  the  integral  operator  L  =  u  -  λKu 
and  the  resolvent  r(x,t;λ)  are   replaced   respectively   by   the   differential 
operator  L of  (4.1)  and the Green's  function G ( x , t ) ,  it  becomes 
clear  that  a  global  near-best  approximation  to  the  solution  u  of 
(4.1)   -   (4.2)   can  be  obtained  provided  that  the  dominant  singularities 

of  G(x,t)   can  be  removed.     The  singularities  of  the  Green's  function 

are  in  general  easier  to  establish  than  those  of  the   resolvent 

kernel T.     This  is  due  to  the  fact  that  the  Green's  function  is 

actually  defined  by  its  singularities.     Thus,  regarded  as  a  function 

of  x  with  t  fixed  G(x,t)  is defined  as  follows: 
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(i)     LG(x,t)   =  0 for x ≠   t. 

 (ii)     G  satisfies  the  homogeneous  boundary  conditions   (4.2) 

⎪
⎩

⎪
⎨

⎧

−=

−=
=−

∂

∂−+
∂

∂
.1mjfor

(t)op
1

2m0,1,...,jfor0
t),G(tjx

j
t),(tGjx

j

(iii)

(4.9)

From  (4.9)  we  see  that  G  has  m-2  continuous  derivatives.     Therefore, 
the  effect  of  the   singularities  of  G,  upon  expansion  approximations 
to  the  solution  of  the  problem  ( 4 . 1 )   -  ( 4 . 2 ) ,   is  reduced  as  the 
order  m  of  the  problem  increases.     This  fact  can  be  concluded  from 
the  result   (4.7). 

If  p0   ,   p1   ,   ,..,   pm  ∈   C   [a,b]  then  G ( . , t )    ∈  C ∞  ([a,t)u(t,b])   and  the 
jump   discontinuities   in   the   derivatives   of   G   can  be  obtained 
recursively  as  follows :  

Let 

                          t),G(tjx

j
t),G(tjx

j
(t)jg −

∂

∂−+
∂

∂=                                 (4.10) 

From  the  definition  of  G  we  have  that 

,0
tx
t)(x,G(x)mp...t)G(x,1mx

1m
(x)1pt)G(x,mx

m
(x)0p =

≠
++

−∂

−∂+
∂
∂ (4.11) 

Hence 

                   p0(t)gm(t)  + pl(t)gm_1(t)  +  ...  + pm(t)g0(t)  =  0  , 

and,  using   (4.9),  we  have  that 

                                            .
(t)2

0p

(t)
1

p
(t)mg

−
=                                             (4.12) 

 



-   25   - 

When j ≥ m + 1  the values  of  g.(t)  can  be  found,  in a similar  way, 

by  using  the  relations  obtained  by  differentiating  equation   (4.11). 

 

In   fact  we  are   interested  in  the   singularities   of  G(x,t)   as   a 

function  of  t .  However,   removal  of  the   jump  discontinuities of 

ensures, in general , the   continuity of jx
Gj

∂

∂ ,k....,,1mj,jx
Gj −=

∂

∂

j  = m-1 , ...,   k . 

The   function 

                                j!
jt)(x(t)jg

k

1mj
t)(xHt)(x,kS −

∑
−=

−≡                         (4.13)

has  the   same  jump  discontinuity  in  its   jth  derivative,   0   ≤  j   ≤  k, 
with  respect  to  x  as  G(x,t).     Hence  the   'remainder' 

Rk(x,.t)   ≡   G(x,t)   -  Sk(xst)                             (4.14) 

has  at  least  k  continuous  derivatives  with  respect  to  both  x  
and  t. 

In  order  te  obtain  a  global  near-best   approximation  we  deal,   as   in 

section  3.2 „   with  expansion  approximations  ,Hhfor,dth(t)
b

a
to ∈∫

where 

H  =   {h      h(t)   =  Rk(x,t)φ(t),   φ ∈   F}      . 

That  is,  we  choose  k  large  enough  so  that  there  exists  a  best  nth 

order  quadrature  formula  independent  of  x,   approximating ,)*ih(t*Iw
n

1i
∑
=

,Hh,dth(t)
b

a
∈∫ and  define     the  global   (m+n)th  order  near-best 
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approximation  as  follows: 

Definition k.2.       An   (m+n)th  order  global  near-best  approximation 

ūc  to  the  solution  u  of  the  problem  ( 4 . 1 )  -  ( 4 2 )  is  defined  as 

      ,dt](t)jαjf
nm

1j
[f(t)t)(x,kS

b

a
(x)jujα

nm

1j
(x)cu ∑

+

=
−∫+∑

+

=
=                     (415) 

where  the  expansion  approximation jujα
nm

1j
∑
+

=
 satisfies  the  m  boundary 

conditions   (4.2)   and   collocates   the   differential   equation    (4.1)   at 

the  abscissae i  =   1,   2, . . . , n   o f   the  best  nth  order  quadrature ,*it

formula  on  H. 

The  expression  for  the  error  of  this  global  near-best  approximation 

is  identical  to  that  given  in   (3.14)   for  the  global  near-best 

approximation  to  the  solution  of  the  integral  equation.     That  is, 

corresponding  to  Theorem  3.2  we  have: 

Theorem k.2.       The  error  in  the   (m+n)th  order  global  near-best 

approximation  ūc    to  u  is  given  by 

                            )jhjα
nm

1j
(he(x)cuu(x) ∑

+

=
−=−                                     (4.16) 

where  h(t)  =  Rk (x,t)f (t)  ∈  H,  h j ( t )  =  Rk(x,t)fj(t)  ∈  H,  j  =  1,  2,...,m+n 

and  e  is  the  error  functional  of  the  best  nth  order  quadrature  formula 
on  H. 

  
For  the  case  F  =  C ∞ [a,b]  and  k  =  2n-1   it  follows  that  H ≤ c (2n-1)[a,b]. 

Thus,  the  collocation  points  in  definition  4.2,may  be  chosen  as ,*it

the  n  Gaussian  points  in  [a,b].     The  error  in  the  resulting 

approximation is  therefore  given by ( 4 . 1 6 )   with e =  en
[a,b] ,  the 

error  functional  of  the  nth  order  G.q.f .    on  [a,b], 
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It   is   interesting  to  observe  that   collocation  at   Gaussian  points 
is   in   fact   performed  when   solving  two-point  boundary  value  problems 
by  the  T-method  of  Lanczos   [3 ] ,    using  a  basis  of  Legendre  polynomials. 

4.3        Numerical   example   —  Two-point  boundary  value  problem 

We  consldex  the  second  order  boundary  value  problem 

u"     +  u  =  2x(l-x)eX   ;     u(1)   =  u(2)   =   0                  (4.17) 

which  has   the  exact   solution  u(x)   =   (x-1) (x-2)e   . 

We take  ū to be the fifth degree polynomial which satisfies the 
boundary conditions and collocates the differential equation at 
the  4   Caussian  points   in   [1,2]. 

Using  the  procedure  described  in  section   4.2  we  find  that  the   jumps 
in  the   derivatives   of  G(x, t)   are  g0(t)   =  0,   g 1 ( t )    =   1,   g2(t)   =  0 , 
g3(t)   =  1,    g4  (t)  =  0,   g5(t)   =   1,   g6(t)   =   0,   g7(t)   =  -1   etc.     Thus, 
we  use   ( 4 . 1 3 )    and   ( 4 . 1 5 )    with  k  =  7  to  obtain  a  global  near-best 

approxima.tion   ūc   whose  error   is  given  by   ( 4 . 1 6 )    with  e  =  e4
[1,2]  . 

 

To   demonstrate   the   effect   of  the   singularities   of  G ( x , t )    upon 

expansion   approximations  to  u  we  compare  in  Table  4.1   the  results 

obtained  from  ū  with  those  obtained  from  the  corresponding  corrected 

approximations   ūc   ,      The   integral   in  the   definition(4. 15)of  ūc    is 

approximated  by  using  Simpson's   rule  with  .h  =  0.01. 

Table   4.1 

6th  order  expansion  approximation  ū  ( x )    and  the  corresponding  corrected 
approximation  ūc(x)   compared  with  the  exact   solution  u(x)   of   (4.17) 
x  =  0 .2 (0 .2 )0 .8 .  

x 
ū(x) 
ūC(x) 
ū(x) 

        0.2 
-0.5314406 

-0.5312215 
-0.5312187 

         0.4 
-0.9729560 
-0.9732502 
-0.9732480 

        0.6 
-1.1884627 
-1.1887293 
-1.1887278 

        0.8 
-0.9682479 

-0.9679444 
-0.9679436 
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We  no-be  that  the  improvement  obtained  by  the  corrected  approximation 
is  less   impressive   for  two-point  boundary  value  problems  than  for 
integral  equations.     This   is  due  to  the   fact  that  the   singularities 
of  G(x,t)   are  usually  less   severe   than   those   of  Γ (x,t ; λ). 

5.    Harmonic boundary value problems 

5.1        Expansion  approximations  and  the  Green's   function 

Let Ω R2   be a simply-connected domain with boundary ∂⊆ Ω and 
consider the two-dimensional boundary value problem in which 
the  function  u(x,y)   satisfies  Laplace's  equation 

                         Δ(x,y)   =  0           ,         (x,y)  ∈    Ω                                     (5.1) 

and  mixed  boundary  conditions  of  the  form 

                     
⎪
⎩

⎪
⎨

⎧

∂∈=
∂
∂

∂∈=

.2Ωy)(x,,y)g(x,y)(x,un

1Ωy)(x,,y)(x,fy)u(x,
                                    (5.2) 

In   (5.-2) 
nandΦ1Ω,Ω2Ω1Ω ∂
∂≠∂∂=∂∪∂   denotes  the   derivative 

in  the   direction  of  the  outward  normal  to  the  boundary. 

Near-best   approximations   to  the   solution  of  this   problem  may 
be   obtained  in  much  the   same  way  as   for  the  two  previous 
problems,    by   using   the    Green's    function   representation   of 
the  solution.     The   Green's   function  of   the   problem   (5.1) - (5.2) 
is   defined  as 

                          y)(x,hrlog2π
1)0y,0xy;G(x, +−=                                   (5.3) 

where     r  =   C(x-x   )2  +   (y-y   )2]2   ,   h(x,y)   is   a  regular  harmonic 
function  on Ω,   and  G  satisfies  the  homogeneous  boundary  conditions 

     

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∂∈=
∂
∂

∂∈=

  .2Ω    y)(x,   0   )   0y,   0xy;G(x, 

1 Ω    y)(x,  0  )0y  , 0xy;G(x,

n

                                (5.4)
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The  solution  of  the  problem  ( 5 . 1 )   - ( 5 . 2 )    is  then  given  by 

y)ds)g(x,0y,0xy;G(x,
2Ω

dsy)f(x,)0y,0xy;(x,G
n

1Ω
)0y,0u(x ∫

∂
+

∂
∂

∫
∂

−=  

                                                (5.5)
Let  f  belong  to  a  continuity  class  F  on  1Ω∂  and  let  g  belong 

to  a  continuity  class  G  on .     We  consider  expansion 2Ω∂

approximations  Sa j u j   to  u where  u j ,  j = 1 , 2 , . . .  are  harmonic 

functions such that .G

2Ω
n
ju

jgand
1Ωjujf ∈

∂
∂

∂
≡∈∂≡  

For  a  given   (xo   ,yo   )   ∈  W   we  define  the  set  of  functions H(x0 ,y0 ) 
on   Ω  as 

H(x0,y0 = 
⎪
⎪
⎩

⎪⎪
⎨

⎧

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∂∈∈

∂∈∈
∂
∂

=
2Ωy)(x,,Fψ,y))ψψ(x0y,0xy;G(x,

1Ωy)(x,,Fφ,y))φφ(x0y,0xy;G(x,ny)h(x,h

and,   in  complete  analogy  to  the  two previous      cases,  we  define  a 

near-best  approximation  to  u(x0   ,y0   ) by  means of  the  abscissae  of 

a  best   quadrature   formula.     In  this case  the   quadrature   formula  is 

for  approximating ).0y,0(xHh,dsy)h(x,
Ω

∈∫
∂

)*i(th*iw
n

1i
Let ∑

=
be  a  best  nth  order  quadrature  formula  on 

)0y,0(xH  ,  and  let     be  the  error  functional  of  this   formula. )0y,0(xe

  
Then  we  have: 
Definition  5-1.     A  near-best  nth   order   expansion   approximation, 

),0y,0(xjujα
n

1j
)0y,0(xu ∑

=
= to  the  solution  u(xo   ,yo   )   of  the  harmonic 

boundary  value  problem  (5.1)  -(5.2)   at  a  given  point   (x   ,y   ) ∈   Ω 

is  that  which  matches  the  boundary  conditions   (5.2)   at  the  abscissae 
*it  ,   i  =    1,2,   . . .   n. 

Theorem  5.1.     The  error  in  the  near-best  expansion  approximation 

u   (x0   ,y 0  )   to  u(x0   ,y0   )   is  given  by 

        )jhjα
n

1j
(h)0y,0(xe)0y,0(xu)0y,0u(x ∑

=
−=−                               (5.6) 
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where 

)0y,0H(x

2Ωy)(x,y)g(x,)0y,0xy;G(x,
1Ωy)(x,y)f(x,)0y,0xy;G(x,n

.

y)h(x, ∈
∂

∂
∂
∂

=

⎪
⎪
⎩

⎪⎪
⎨

⎧

and 

)0y,0H(x

2Ωy)(x,y)(x,jg)0y,0xy;(x,G
1Ωy)(x,y)(x,jf)0y,0xy;G(x,n

.

y)(x,jh ∈
∂

∂
∂
∂

=

⎪
⎪
⎩

⎪⎪
⎨

⎧

5.2.        The  singularities  of  the  Green's  function  of  harmonic  problems. 

The  application  of  the  near-best  approximation,   of  definition  5.1, 
at  a  given  point   (x0  ,y0 )   requires  knowledge  of  the  set  H (x0  ,y0 ),  i.e. 
it  requires  knowledge  of  the  behaviour  of )0y,0xy;G(x,n∂

∂
 
on  ∈ Ω   and 

of  G(x,y;x  ,y  )   on  ∂Ω2.     ln  general  the  problem  of  finding  G  is  in 

itself  as  difficult  as  that  of  finding  u.     However,  in  many  cases, 

sufficient   information  about  G  is  available  to  permit  the  determination 
of  the  set   and,  in  some  cases,  to  provide  a  global  near-test )0y,0(xH

approximation  to  u. 

We  recall  that  G(x,y;x0  ,y0  )   is  defined  as  a  harmonic  function  with  a 
logarithmic  singularity  at   (x0  ,y0    ).     This  singularity  is,  in  general, 
the  main  source  of  the  singularities  of  G  and

n
G

∂
∂  

 
near  the  boundary 

∂Ω.     We  shall  not  discuss  here  other  singularities  that  may  occur  due 
to  a  special  geometry  of  ∂Ω  . 

In  general,  apart  from  the  singularity  at   (x0  ,y0  )  there  is  also  at 

least  one  singular  point  of  G  and
n∂
G∂ outside  ft,   at  a   'mirror-image' 

of  (x0  ,y0)  with  respect  to ∂Ω .  For  example,  the  Green's  function  of 
the  Dirichlet  problem  in  the  half  plane  y  ≥  0  is 

.}2
1

]2)0y(y2)0x(x[log2
1

]2)0y(y2)0xx[log{2π
1)0y,0xy;G(x, ++−−−+−−=

                                                                                                                           (5.7)
Hence, 

n
G

∂
∂ is  singular  at   (x0  ,y0  )   and  also  at  its  image  (x0  ,-y0  ). 
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Another  classical  example  is  the  Green's  function  of  the  Dirichlet 
problem  in  the  disc  x2 + y2 ≤ R2  ,   which  is  given  by 

,}2
1

])2r
0Y2R(y2)2r

0x2R(x[logr{log2π
1)0y,0xy;G(x, −+−−−=

 
      (5.8) 

where  r  =   [(x-x   )2 +(y-y   )2]½.     In  this   case,  
n
G

∂
∂ has   a  singularity  

at  the  point )2r
0y2R,2r

0x2R(  which  is  the  image  of  (x0,y0)  with 

respect  to  the  circle  x2 +y2 =   R2. 
The  method  of  images   can  be  used  to  investigate  the   singularities 
G  and

n
G

∂
∂  for  some  problems  defined in  domains whos of  e boundaries 

are  composed  of  straight  line   segments  and  circular  arcs.      To  illustrate 
this  we  consider  the  simple,  yet   non-trivial,   case  of  the  Dirichlet 
problem  in  the   unit   square  Ω  =   {{x,y)|0  <x,  y<  1  }. 

Reflecting   (x   ,y   )  ∂Ω   ,   with  respect  to  the   four  sides  of  the  square 
as  mirrors,   and  assigning  appropriate  signs  to  the  images   so  that 
their  combined  contribution  vanishes   on   ∂Ω. 

Figure   5.1 

The  singularities   of  the  Green's   function  of  the  Dirichlet  problem  in 
the  unit   square. 
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We  obtain  the  representation 

]22j)0y(y22i)0x(x[log{
n

ji,4π
1)0yy;G(x, +−++−∑

∞−=
=                    (5.9) 

-  log [(x+x0 +2i)2 + (y-y0+2j)2 ] 
 -  log  [(x-x0  +2i)2  + (y+y0  +2j)2] 

+ log  [(x+x  +2i)2  +  (y+y  +2j)2]}  , 
 
for  the  Green's  function.     Although  this  representation  is  not 
convenient  for  the  actual  computation  of  G, it can be  used  to 
investigate   the   singularities  of

n
G

∂
∂  

 
near  ∂Ω.  In   fact  G can 

be  written  as 

G(x,y;x0,yo)  = S(x,y;x0,yo)  + R(x,y;x0,yo) 

where                                                                                                              (5.10) 

 
    S(x,y;x0 ,y0 = 

π4
1   {  log [(x-x0 )2 + (y-y 0 ) 2 ]  -log t(x+x 0)2+(y-y 0)2]    (5.11) 

-  log [(x-x0 )2+(y+y0)23 + log [(x+x0 )2+(y+y0  )2] 

-  log  C(x+xo-2)2+(y-yo)2] + log  [(x+x -2)2+(y+y0)2] 

-  log [(x-x0 )2 +(y+y0 -2)2]+ log[(x+x0 )2+(y+y0 -2)2] 

+ log [(x+x0 -2)2+ ( y+y0 -2)2], 

and
n∂

∂  R ( x , y ; x 0   ,y0   )  is  regular  in  the  neighbourhood  of  -1 ≤x,y≤ 2  of  . 

The  above  example  may  serve  as  a  model  for  the  qualitative  nature 

of  the  class  H(x 0   ,y0)     Thus,  apart  from  a  singularity  at   (x 0 ,y0  ), 

which  can  always  be  removed,  there  are  also  additional  singularities 

located  outside Ω,  which  approach  ∂Ω as (x 0   ,y0  )   approaches ∂Ω  . 

These  singularities  play  the  same  role  as  that  of  the  discontinuities 

of  Γ ( x , t ; λ)  and  G(x,t)  discussed  in  chapters 3  and  4.  That  is, 

their  presence  makes  the  best quadrature  rules on H(X0,Y0)  depend 
strongly  upon  (x0,y0 )  and  for  this  reason,   the    'near-best'   property 

(5.6)   of  the  near-best  approximation  ū  holds  only  in  a  small 

neighbourhood  of  the  point   (x0  ,y0 )  for  which  it  is  defined. 



-  33  - 

5.3      A  global  near-best  approximation 

A  global  near-best  approximation  to  the  solution  of  the  harmonic 

boundary  value  problem  (5.1) -(5.2)  can  be  obtained,  provided  that 

all  the  singularities  of  the  Green's  function  of  the  problem,  in 

a  sufficiently  large  neighbourhood  of  W,  are  known.     Then,  as  in 

the  cases  of  integral  equations  and  of  two-point  boundary  value 

problems,  the  singularities  can  be  used  to   'correct'   the   expansion 

approximation. 

Let  the  Green's  function  of  the  harmonic  boundary  value  problem 

(5.1)  -(5.2)  be  given  in  the  form  (5 .10)  and,   associated   with   the 

function  R,   define  a  set  of  functions  H  on   W  by, 

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∂∈∈

∂∈∈
∂
∂

==
2Ωy)(x,Gψ,y))ψψ(x0y,0xy;R(x,
1Ωy)(x,Fφ,y))φφ(x0y,0xy;R(x,ny)h(x,hH   (5.12)

In  order  to  define  an  nth  order  global  near-best  approximation  to  u 

we  require  that  S  in  (5•10)   is  a  known  function,  and  that  there 

exists  a  best  nth  order  quadrature  formula, ,)*ih(t*iw
n

1i
∑
=

 independent 

of  (x 0 ,y0  ),  approximating .Hh,dsy)h(x,
Ω

∈∫
∂

 The  last  condition   is 

in  fact  equivalent  to  the  assumption  that  R(x ,y ;x 0   ,y0   )   is  regular 
in  a  sufficiently  large  neighbourhood  of   W ,   independent  of   (x 0   ,y0   ). 

Definition  5.2.     An  nth  order  global  near-best  approximation,  ūc  , 

to  the  solution  u  of  the  harmonic  boundary  value  problem 

(5.1)  -   (5.2)   is  defined  as 

              )0y,0(xjujα
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)0y,0(xcu ∑

=
=                                                       (5.13) 
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where  the  expansion  approximation  matches  the  boundary jujα
n

1j
∑
=

condition:;   (5. 2 )    at ,   i = 1 ,2 ,. . . ,n,   the  abscissae of  the  best  nth *it

order  quadrature   formula  on  H.  The  two  integrals  in  (5.13)  constitute 

the  correction  term  of  the  collocation  approximation  jujα
n

1j
∑
=

Theorem  5.2.     The  error  in  the  global  near-best  approximation  (5.13) 

to  u  is   given  by 

                           )jhjα
n

1j
(he)0y,0(xcu)0y,0u(x ∑

=
−=−                           (5.14) 

where    e     is  the  error  functional  of  the  best  nth  order  quadrature 
formula  on  H, 
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5.4       Numerical  example  -  Harmonic  problems 

We   consider  the   Dirichlet   problem 
 
                           Δu(x,y)  =  0    (x,y)   ∈ Ω   
                    (5.15) 
                u(x,0)  =   φ!(x)  , u(1,y)  = φ2(y),u(x,1) = φ 3 ( x ) , u ( 0 , y )   = φ4(y) 

where   W    is  the  unit  square  and  φi  ∈  C∞  [0,1]  ,i = 1,4. 

The  singular  part    S      of  the  Green's  function  of  this  problem, 

as  given  by  (5.11),   satisfies  the  conditions  required  to  provide 

a  global  near-best  approximations   in  definition     5.2   .     Best 

quadrature  formulae,  on  the  corresponding  set  H  defined  by  (5.12), 
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can  be  composed  of  four  Gaussian  formulae  on  the  four  sides  of 

the  square.     Hence,  a  (4m)th  order  global  near-best  approxima- 

tion  may  be  defined  by   (5.13) using  the  m  Gaussian  points  on 

each  of  the  sides  of  the  square  as   collocation  points.     The   error 

in  the  resulting  approximation  may  then  be  expressed  as 

                           )([0,1]
me)0y,0(xcu)0y,0u(x φ=−

 
where  φ  ∈   C ∞  [0,1]   has  no  singularities  near  [0,1]. 

We  consider  16th  order  approximations  using  the  sixteen  harmonic 

polynomials   1,   Re(x+iy)Jj=1,...,8,  Im(x+iy)Jj=2,...,8.   The  function 

y  is  omitted  since  the  system  of  equations  for  the  aj.'s   in  (5.13) 

becomes  singular  if  both    x    and    y    are  included).     The  collocation 

points   in  definition  5.2  are  taken  as  the  four  Gaussian  points  on 

each  of  the  sides  of  the  square,   and  the  correction  term 

ds]y)(x,jfjα
16

1j
y)(x,[f)0y,0xy;S(x,nΩ

∑
=

−
∂
∂

∫
∂

   is  approximated  by  using 

Simpson's  rule  with  h =   0.01   on  each  side  of  the   square.   The 
singularities  of  S  present  some  difficulties  in  the  numerical  computation 
of  the  correction  term  when  (x0  ,y0  )  is  near   W.     However,  the  effect 
of  these  singularities  can  be  easily  removed  when   (x0,y0 ) ∈ ∂Ω  using 

the  fact  that  on      W  the  Green's   function  reproduces  the   boundary 
conditions.       Since  ūc    is  a  harmonic  function,  we  obtain  bounds  for 

          Ωy)
cuumax

∈
−

  (x,
by  evaluating  the  maximum  error  on  ∂Ω. 

To  demonstrate  the  importance  of  including  the  correction  term  we 
examine  two  cases  in  which  polynomial  approximations  do  not  perform  well. 
Case   1.     Problem  ( 5 - 1 5 )    with  φ1(x) =  sin5x ,  φ2(y)  =sin5e5y  , 
φ3 (x)   =   sin5xe5      and  φ4(y) =0 .     The  solution  of  this  is  u(x,y) = sin5xe5y 

 
Collocation  at  the  four  Gaussian  points  on  each  side  of  the  square 
gives  a  maximum  error  of  ~  1.55.     Addition  of  the  correction  term 
reduces  the  maximum  error  to  ~ 0.0073. 
Case  2.     Problem  (5.15)  with  (φ1 = φ2 = φ4 = 0     and φ3 = 1. 
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In   this   case  the  boundary   conditions   are  not   continuous   at  the 

corners   (0,1)  and  (1,1)   of  the   square.    Hence,  any  polynomial 

approximation   has  a maximum  error of  at  least   0.5.    However, 

the   16th  order  corrected  approximation  ūc  gives  maximum  error 

of  ~ 0.00125. 

It   turns   out   that   the   correction  term  cancels  the   oscillatory 

nature  of  the   error  in  the   collocation  approximation-   For  example, 

in  case  2,   although  the  boundary  conditions   are  discontinuous   at 

the   corners   (0,1)   and   (1 ,1  ),   the  error   in  ūc   is  positive,  non- 

oscillatory   on  the   four   sides   of  the   square  and  continuous   at  the 

corners;   see   figure   5-2.  

Figure   5.2 

The  error  in  the  approximation  ūc    for  the  solution  of  the  example 
in   case   2. 

 

This   behaviour  of  the  error  in  ūc    on  the  boundary  suggests  that 
a  good  approximation  to  this   error  might  be   obtained  by   collocatior 
with  harmonic  polynomials.     In  fact  this  has  been  found  to  be  very 
effective,  e.g.   an  approximation  to  the  error  in  the   16th  order 
approximation  ūc     for  case  2,   obtained  by  collocating  with  the 
above  harmonic  polynomials   at  the  four  Gaussian  points  on  each 
side   of   the   square,   reduces   the   error  to  ~   10-6. 

We  note  that   global  near-best  approximations  have  also  been  found 

to  be  very  efficient   in  dealing  with  some  mixed  boundary  value 

problems  in  rectangular  domains.     For  details   see   [4]. 
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