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A B S T R A C T

This paper describes code for a published article that can assist researchers with multiclass classification
problems and analyse the performances of various machine learning models. Further, feature importance,
feature correlation, variable clustering, confusion matrix and kernel density estimation were also implemented.
The original study was published in Expert Systems with Applications, and this paper explains the code and
workflow. Administrative healthcare data has been used as an example to run the code. The results and insights
can assist healthcare stakeholders and policymakers reduce the negative impact of illness comorbidity and
multimorbidity.

Code metadata

Current code version V1.0
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2022-108
Permanent link to reproducible capsule https://codeocean.com/capsule/3697326/tree/v1
Legal code license MIT License
Code versioning system used
Software code languages, tools and services used Python
Compilation requirements, operating environments and dependencies Pandas, Keras, scikit-learn, TensorFlow, NumPy, matplotlib, seaborn, XGboost
If available, link to developer documentation/manual
Support email for questions shahadat.uddin@sydney.edu.au

1. Introduction

Data has fundamentally altered how people live and conduct busi-
ness in the 21st century. Data have been used in many sectors to address
practical problems, including predicting disease in healthcare [1–3],
assisting policymakers in making decisions [4], and predicting corpo-
rate bankruptcy [5]. Chronic diseases are becoming more prevalent
throughout the world, various disease burdens are rising, and the social
and economic consequences will have an impact on people’s quality
of life. In many circumstances, the existence of one chronic disease
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leads to the development of one or more other chronic disorders, which
significantly strains global healthcare systems.

This paper describes the models developed by Uddin et al. [6] and
how these models can be applied to new datasets related to disease
comorbidity or multimorbidity. Disease comorbidity is described as
the presence of many diseases simultaneously. An individual who has
more than two comorbidities is referred to as multimorbid. Obtaining
good quality prediction performance is a key and critical factor when
determining whether a patient will be diagnosed with comorbidity or
multimorbidity. However, we intend to delve into deeper detail in our
https://doi.org/10.1016/j.simpa.2022.100383
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code on the interpretation of the machine learning (ML) model findings
since it gives additional insight into how practitioners may better treat
patients and learn about important features.

The code was created in Python and Jupyter notebook [7] and can
be used as a template for future ML applications. In the Code Ocean
capsule, we included the Jupyter notebook and a Python script so that
others could reproduce the same results as in the original research.
There are two parts to the software. The first part implements the
five ML models (Logistic regression (LR), k-nearest neighbours (KNN),
Naïve Bayes (NB), Random forest (RF) and eXtreme Gradient Boosting
(XGBoost)). Two deep learning models (Multilayer perceptrons (MLP)
and Convolutional neural networks (CNN)) were implemented in the
second part. The performance of these models are compared with ac-
curacy, precision, recall and F1-score. Afterwards, feature importance,
feature correlation, variable clustering, confusion matrix and kernel
density estimation (KDE) for the best-performed model are explored.

2. Functionalities

Firstly, this software tool loads all the Python libraries and mod-
ules used by this ML application. Three functions (i.e., index_to_label,
label_to_index and plot_confusion_matrix) were defined at the begin-
ning of the notebook to accomplish frequently repeated tasks. These
functions can be easily modified or reused for any other multiple
classification problems. While this study aimed to solve a multiclass
classification problem, the code can be generalised to any multiclass
classification process, including binary classification. Any dataset can
be used in this software if it is conformed to these three requirements
for each row: (a) has an identifier (or otherwise use the row index
number); (b) has a number of non-nullable features; and (c) has a label.

For any considered ML model, this software tool utilises the Scikit-
learn pipeline constructor to encapsulate a sequence transformation
and ML steps. Then, Scikit-learn’s GridSearchCV function is used to find
the best hyperparameter value combination from a predefined param-
eter dictionary for each model. Each model will then employ the best
hyperparameter value combination to perform the model evaluation for
training and testing the dataset.

After the best model is selected, in our case, it is XGBoost, a confu-
sion matrix is generated to visually evaluate the model performance.
The further feature selection process is conducted based on feature
importance score and feature clustering. With the help of a dendrogram
hierarchical cluster chart and pairwise feature correlation map, a subset
of the most important features is selected for the final model training.
Our study shows that, after eliminating those collineated features,
the model performance has slightly improved. Finally, a new feature
importance score is evaluated on the selected feature subset, and kernel
density estimation (KDE) plots are generated for the top 4 features to
demonstrate the distribution dissimilarities across the labelled classes.
The software flow chart for the current version is presented in Fig. 1.

2.1. Data processing

Since the dataset used in this software has been shaped into a tidy
format, any data tidying, reshaping and/or missing data treatment etc.,
are not part of this application. The main purpose of data processing
is to split the dataset into training and testing sets. The Scikit-learn’s
train_test_split function is used for data splitting. Before we utilise this
function, it is necessary to make sure that the unique row identifier
should not be included in the feature or label dataset. The proportion of
test data size was set at 20 percent, which can be altered to a different
fraction if needed.

2.2. Feature transformation

A StandardScaler transformation is applied to all features for all ML
models. ML algorithms do not perform well when numeric features

Fig. 1. Software workflow.

have very different scales [8]. Standardisation subtracts off the mean
value of a feature and then divides it by the standard deviation. There-
fore, a standardised feature always has 0 as mean and 1 as standard
deviation.

2.3. Principal component analysis

Principal component analysis (PCA) is the best-known unsupervised
dimensionality reduction technique [9]. PCA uses an orthogonal trans-
formation to convert a set of possible multicollinear features into a
set of linearly uncorrelated variables and reduces dimensionality while
retaining most of the information [10].

2.4. Model process pipeline

The pipeline is to assemble several steps that can be cross-validated
together while setting different parameters [11]. Our code utilised
Scikit-learn’s pipeline to streamline a number of routine and repeated
processes by encapsulating a sequence of steps involved in the feature
transformation and model training. The pipeline is a logical, convenient
and efficient way to manage and automate a ML workflow [12].

2.5. Hyperparameter tuning and model performance evaluation

Hyperparameters are specific to a ML algorithm, and they are not
from the training data. Hyperparameter tuning is an essential part of
any ML process, and it is acknowledged and utilised to achieve bet-
ter model performance [13,14]. Two commonly used hyperparameter
2
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tuning techniques are grid search and random search. Grid search is
a brute-force tuning method. It evaluates the Cartesian product of a
pre-supplied finite set of values for each hyperparameter. In contrast,
the random search randomly chooses values or sample value combi-
nations from a predefined value range for each hyperparameter. Grid
search will find the best combination of hyperparameters from the
supplied value set. The random search seeks the best combination of
hyperparameters at random until a certain budget for the search is
exhausted [15]. In this study, we used grid search with 5-fold cross-
validation to find the best hyperparameter value combinations. A grid
search performance evaluation needs a scoring metric. We used the
area under the receiver operating characteristic (ROC) curve (AUC) as
a performance measure in our research.

After the grid search found the best hyperparameter value com-
bination for each model, the value set is used to fit the training
dataset with 5-fold cross-validation. The overall average accuracy value
and standard deviation are computed to assess each model’s training
performance. The performance of the testing dataset was evaluated
through accuracy, precision, recall, and F1-score. Accuracy is the total
number of correctly predicted instances divided by the total instances
of the testing dataset. Precision refers to the number of true-positive
divided by the number of all positive predictions for the class. Recall is
the ratio of correctly predicted true instances out of the total instances
of a label. F1-score is the harmonic mean of precision and recall. A
model with the best testing accuracy and F1 score is selected as the
best performing model in this study, which is XGBoost. A confusion
matrix is a much nicer way to visualise model performance. While
it has no single code to plot a confusion matrix chart, a function is
created in our code at the beginning for an easier confusion matrix
plot. As a rule of thumb, a row in the confusion matrix represents the
actual value, and a column represents the predicted value. A binary
class confusion matrix can be represented by four values: true-positive,
false-positive, false-negative and true-negative. A multiclass confusion
matrix is much more complex than binary class one. However, the
general principle to interpret a multiple class confusion matrix is the
same as the binary one, where the diagonal box in a confusion matrix
is always the correctly classified one. For any label, while the diagonal
box is true-positive, from the row-wise, all other boxes add up together
is the false-negative value. From the column-wise, all other boxes add
up together is the false-positive value.

2.6. Feature importance and feature selection

Feature engineering is an important part of the ML process. The
more features a model has, the more likely they could be collineated
and the more complex the model could be. Eliminating the weak or
collineated features could reduce the training overhead and improve
the common overfitting issue. A common approach to dropping weak
features is to check the feature importance score. Many models provide
an intrinsic function to obtain the underlying feature importance value,
for example, RF and XGBoost. Since our final best-performing model
is XGBoost, we used XGBoost’s plot_importance function to visualise
the ten top important features. One drawback of a feature importance
score is that it does not inform the presence of the correlation between
a pair of features. A pairwise feature correlation map is a great way
to visualise the feature collinearity and subjectively select one feature
from the correlated ones. In our study, we first performed hierarchical
clustering on the Spearman correlation to find the feature cluster and
then used the distance criteria to keep the most important feature from
each cluster.

2.7. Kernel density estimation (KDE)

KDE is a non-parametric way to estimate the probability density
function of a random variable. KDE is a technique for enabling a user
to better analyse the studied probability distribution than when using
a traditional histogram. Unlike the histogram, the kernel technique

uses all sample points’ locations and more convincingly suggests mul-
timodality [16]. In our study, we presented the corresponding KDE
analysis for our model’s four most important features.

3. Impact

This study utilised and combined a set of commonly exercised
ML process techniques to perform feature scaling, model processing,
hyperparameter tuning, model selection, performance evaluation and
feature evaluation and reduction. The code presented in this notebook
can be reused or served as a template to tackle any classification prob-
lems. This could save some researchers a lot of time searching through
different code sources to find a similar code. It is noteworthy that the
novel approach used in this research to combine the augment network
features and patient medical record features has yielded relatively high
prediction accuracy. A software tool can be further developed for other
purposes based on our study’s design, analysis, and findings. Such
software tools could have a long-run impact on preventing chronic
disease comorbidity progression and save spending on healthcare costs.

4. Future improvements

While this application focuses on the multiclass classification to
predict if a patient currently has 0, 1 or 2 and more comorbidity
and multimorbidity based on their existing medical records, it will be
very interesting if we can introduce the time dimension to turn this
classification into a temporal classification. We will also continue to
streamline our code to make it much easier to reuse.
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