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ABSTRACT
In recent years, many interpretable methods based on class activation maps (CAMs) have served as an
important judging basis for the predictions of convolutional neural networks (CNNs). However, these
methods still suffer from the problems of gradient noise, weight distortion, and perturbation deviation.
In this work, we present self-attention class activation map (SA-CAM) and shed light on how it uses
the self-attention mechanism to refine the existing CAM methods. In addition to generating basic
activation feature maps, SA-CAM adds an attention skip connection as a regularization item for each
feature map which further refines the focus area of an underlying CNN model. By introducing an
attention branch and constructing a new attention operator, SA-CAM greatly alleviates the limitations
of the CAM methods. The experimental results on the ImageNet dataset show that SA-CAM can not
only generate highly accurate and intuitive interpretation but also have robust stability in adversarial
comparison with the state-of-the-art CAM methods.

1. Introduction
The complexity of convolutional neural networks (CNNs)

in the training process has led to uncertainty and unreliabil-
ity ofmodel prediction, especially in sensitive realms such as
medical imaging [8] and autonomous driving [2]. With an
increasing demand for transparency in CNNs, many inter-
pretable works [19, 22, 16] have been published. Existing
interpretable work on CNN can be divided into data-driven
and model-driven interpretable methods. A data-driven in-
terpretable method employs perturbation data to compare
the prediction results generated by the same CNNmodel and
extracts the content that needs to be explained in the CNN
model. A model-driven interpretable method evaluates the
gradients in CNN and selects data points with higher ex-
planatory power through threshold division to generate an
interpretation [13].

As one of the influential model-driven methods, the core
idea of CAM [25] is the accumulation of weights dot product
feature maps. Through the cumulative heating maps pro-
vided by the weights dot product feature maps, CAM can
obtain the key information learned by a CNN model during
the training process. However, CAM uses the global pool-
ing layer to extract feature information which requires proper
modification of the original model structure.

Grad-CAM [19] uses the gradient of the last convolu-
tional layer to assign weights to each feature map to visual-
ize CNNs of any structure without modifications. To further
solve the gradient-based limitations of Grad-CAM, Score-
CAM [22] and its acceleration method Group-CAM [24] use
data-drivenmethods to generate CAM interpretations. Score-
CAM extracts feature maps from the last convolutional layer,
and generates corresponding prediction scores through per-

∗Corresponding authors
maozhen.li@brunel.ac.uk (M. Li)

ORCID(s): 0000-0002-5095-4131 (Y. Liang)

turbation data instead of the weights generated by gradients.

(a) Grad-CAM (b) Score-CAM (c) SA-CAM 
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Figure 1: Heatmap visualized by SA-CAM, Score-CAM and
Grad-CAM using CAM-toolbox [9].

Although Score-CAM can reduce weight distortion, it
still introduces perturbation-based errors. The perturbation-
based method usually uses different mask types to cover the
up-sampling feature maps for re-prediction. The interfer-
ence information brought by the mask may cause new er-
rors in the model. To address these limitations, there are two
ideas worth trying. The first is to make gradient-based meth-
ods and perturbation-based methods supervise each other to
focus on key information of common concern. The other is
to perform a perturbation-based method without introducing
a new redundant mask.

In this paper, we revisit the self-attentionmechanism and
propose a self-attention mechanism-based CAM generation
architecture called SA-CAM. SA-CAM improves the calcu-
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lation method of perturbation-based scores by removing re-
dundant masks and introduces a self-attention gradient term
which provides an error correction for the original perturbation-
based weights to focus on key information of common con-
cern. It can be observed from the three examples visualized
in Figure 1 that the interpretations generated by SA-CAM
are more robust and more in line with human intuition than
the existing Score- CAM and Grad-CAM methods. Specifi-
cally, our contributions are as follows:
(1) We propose a CAM framework based on the self-attention

mechanism. This framework alleviates the weight dis-
tortion and perturbation deviation problem by intro-
ducing a gradient-based skip connection to effectively
limit the perturbation-based weights and make the in-
terpretation focus on key information of common con-
cern. This framework is suitable for most deep neural
network models with convolutional layer structure as
the core and does not require additional components.

(2) We design a new score function for the perturbation-
based framework, which can further alleviate pertur-
bation deviationwithout introducing a newmask. Since
the perturbation-based self-attentionmechanism is only
used to limit theweight provided by the gradient-based
score in SA-CAM, it can minimize perturbation-based
errors and improve robustness through this score func-
tion.

(3) We qualitatively evaluate the effectiveness of SA-CAM
on visualization and adversarial interpretation based
on the ImageNet dataset. The results show that SA-
CAM does not incur both gradient and perturbation
based errors, and can generate more robust interpre-
tations. In multi-target tasks and adversarial interpre-
tation tasks, SA-CAM performs well due to its robust
interpretation.

The remainder of this work is organized as follows. Sec-
tion 2 reviews related work on CAMs. Section 3 presents
the design of the SA-CAM framework. Section 4 conducts
comprehensive experiments and validates the performance
of SA-CAM in comparisonwith state-of-the-art results. Sec-
tion 5 concludes the paper and points out some future work.

2. Related Work
This section reviews related work from the aspects of

gradient-based CAM and perturbation-based CAM.
2.1. Gradient-based CAM

CAM is a visualization method first proposed in [25].
This method displays its decision-making basis in the form
of a heatmap. For the training process of a CNN model,
the last convolutional layer has the most abundant spatial
and semantic information after multiple iterations of con-
volution and pooling operations. However, this information
contained in the last convolutional layer is difficult for human
beings to understand and display in a visual way. Therefore,

in order for the CNN to give a reasonable explanation for
its classification results, it is necessary to make full use of
the last convolutional layer. To explain why the result of the
classification is c, we take all the weights wc corresponding
to the c and find the weighted sum of their corresponding
feature maps.

Let functionF cl (I) be a CNN training processwhich takes
an input I ∈ ℝ and F be a CNN model, f (I) represents the
predicted probability of image I in F cl (I)andAl(I) representsfeature maps in the layer l of a CNN. For a class of interest c,
the CAM explanation, written as CAMc can be defined as:

CAMc = ReLU

(

∑

n
wclA

l(I)

)

(1)

where
• wcl represents theweight of each neuron in layer l based

on category c.
• n represents the number of channels in l.
Eq. (1) calculates each featuremap and generates a heatmap

from the final weighted sum. Since the size and feature map
of this result is consistent, we only need to upsample it and
overlay it on the original image to get a complete class acti-
vation map.

However, the CAM method proposed in [25] is limited
in that it requires modification of the structure of the original
model, which leads to the need to re-train the model. As an
improvement of CAM, Grad-CAM [19] can be applied to
many types of CNN models without modifying the original
model structure.

TheGrad-CAM is aCAM interpretationmethod that uses
the global average of the gradient to calculate the weights.
For a class of interest c, the CAM interpretation, written as
CAMc

Grad can be defined as:

CAMc
Grad = ReLU

(

∑

n
mean(

)yc

)Al(I)
)Al(I)

)

(2)

where
• mean(⋅) is an averaging function which represents the

global pooling operation.
• yc is the value before SoftMax function.

2.2. Perturbation-based CAM
Mask perturbation refers to an interpretation that changes

the original data by masking the part of input data and sys-
tematically analyzes the contrast result. Most of the perturbation-
based methods [23, 6, 4, 21] are all based on the smallest
sufficient region (SSR) or the small destroying region (SDR)
proposed in [4] which suffers from the shortcomings of the
perturbation-based methods.

The SSRwritten as Issr is the smallest region of I that al-
lows the max(P) where P = f (Issr) represents the classifica-tion accuracy of Issr in category c. The SDR written as Isdr
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is the smallest region of I that allows the max(P) where P =
f (I − Isdr) represents the classification accuracy of I − Isdrin category c.

Based on the principles of SSR and SDR, Score-CAM
provides mask perturbation for the feature maps of the last
layer of CAM and thus gives up the weights provided by
the gradient. For each feature map, Score-CAM first per-
forms an up-sampling operation and masks some areas in
the up-sampled image through mask perturbation. Through
the probability prediction of the masked up-sampled image,
Score-CAMgenerates a corresponding score as the newweight
of each up-samplingmap. For a class of interest c, the Score-
CAM interpretation written as CAMc

Score can be defined as:

CAMc
Score = ReLU

(

∑

n
S(Al(Umask))Al(I)

)

(3)

where
Umask =Mask ∗ I + (1 −Mask) ∗ � (4)

• S(⋅) is the SoftMax function.
• U is the up-sampling of feature maps.
• Mask is a mask with a value between 0 and 1.
• � is an average colour.
Group-CAM [24] is a lightweightmethod of Score-CAM.

Its essence is to group preprocessed feature maps to calcu-
late scores and perform the same accumulation operation as
Score-CAM.
2.3. Discussions

The Score-CAM methods are completely different from
gradient-based CAMmethods. The core differences of these
methods are mainly reflected in the calculation methods of
weights after upsampling feature maps which directly leads
to the difference in the form of expression of CAM.

Gradient-basedCAMmethods accumulate the up-sampled
feature maps based on the weights generated by gradients.
However, due to the existence of nonlinear activation func-
tions such as ReLU, a gradient-basedCAM is prone to errors.
Take Grad-CAM in Figure 1 as an example, Grad-CAMmay
focus on some background that has nothing to do with the
target. As an improvement of the Grad-CAM, Score-CAM
does not rely on gradient generation. Score-CAM is more
close to the data-driven interpretation method but uses the
feature maps in the last layer of the model to replace the orig-
inal image as an input.

Perturbation-driven interpretation methods suffer from
the introduction of redundant information when masking a
part of the image, which may distort the prediction result.
Figure 2 shows multiple examples of misleading the CNN
model to make incorrect judgments through a single pixel
perturbation. Figure 2 (a) and Figure 2 (b) respectively show
the original example based on the ImageNet validation dataset

and the result after black pixel perturbation. Figure 2(c)
shows the prediction results of the perturbed image after white
pixel perturbation on the Cifar10 [12]. We can find from
Figure 2 that just after introducing a point or pixel, the pre-
diction results of the model have changed. Therefore, when
introducing a large-scale perturbation mask, there is also a
high probability that the model will misjudge and cause er-
rors.

Model:

ResNet-50

Category:

Ferret

Prediction: 

Ferret

Accuracy:

44%

Model:

ResNet-50

Category:

Ferret

Prediction:

Polecat

Accuracy:

42%

Model: VGG

Category: SHIP

Pred. : AIRPLANE

Acc. : 88.2%

Model: VGG

Label: BIRD

Pred. : FROG

Acc. : 86.5%

Model: VGG

Label: DEER

Pred. : AIRPLANE

Acc. : 85.3%

(b) Perturbated image in ImageNet (c) Perturbated images in Cifar10

(a) Original image in ImageNet

Figure 2: Misleading the CNN model to make incorrect judg-
ments through a single pixel perturbation.

By comparing perturbation-based and gradient-basedCAM
methods as shown in Figure 1, 2, 4 and 7, we observe that
these two types of methods are susceptible to gradient and
perturbation errors respectively, which are not conducive to
generating robust interpretations. How to alleviate the prob-
lems of perturbation-based and gradient-based CAM has be-
come the key to further improvement.

3. The Design of SA-CAM
In this section, we present SA-CAM which combines

perturbation-based and gradient-based CAM methods by a
self-attention regularization term to generate a more robust
interpretation.

To alleviate the limitations mentioned in Section 2.3, a
more reasonable idea is to allow the gradient-based and perturbation-
based methods mutually supervised to avoid respective de-
fects. Based on this idea, we propose a self-attention in-
terpretation CAMmethod that combines gradient-based and
perturbation-based CAM methods. Specifically, for a class
of interest c, the self-attention interpretationwritten asCAMc

SAcan be defined as:

CAMc
SA = ReLU

(

∑

n
S(⋅)⊙K(⋅)Al(I)

)

(5)

• S(⋅) represents the score generated by Score-CAM.
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• K(⋅) represents the self-attentionweight generated from
the internal gradient of CNN.

K(⋅) performs the mean operation of the gradient for the
feature maps in the last layer of a CNN and provides amutual
supervision weight for S(⋅) by K(⋅). Eq. (5) enables SA-
CAM to focus on the common concern areas of gradient-
based and perturbation-based CAMmethods while ignoring
the errors provided by K(⋅) and S(⋅) respectively.

Since Eq. (5) only provides a corresponding weight for
each feature map and does not calculate the priority of each
upsampled pixel, we further propose a vector Q(⋅) to repre-
sent the priority of each pixel in the feature maps which can
be defined in Eq. (6).

CAMc
SA = ReLU

(

∑

n
S(⋅)⊙K(⋅)⊙Q(⋅)Al(I)

)

(6)

• Q(⋅) represents the priority of each pixel in the feature
maps.

Eq. (6) provides a more robust weight and refines the
weight of each pixel to make the interpretation extremely
accurate.

Although Eq. (6) alleviates the errors of perturbation-
based and gradient-based CAMmethods through mutual su-
pervisionmechanism, this continuous dotmultiplicationmech-
anism can easily lead to new problems of weight attenuation.

The reason for weight attenuation is that after the CAM
method completes the dot multiplication of the weight and
activation values, it will re-normalize through Eq. (7) which
leads to the values of S(⋅), K(⋅) and Q(⋅) varying between 0
and 1. If ∑

n
S(⋅) ⊙ K(⋅) ⊙ Q(⋅) is used as the correspond-

ing weights, Eq. (7) may generate a small gap between the
value Max(Al(I) ⊙ wcl )) and Min(Al(I) ⊙ wcl )) that may
make the interpretation lose discernment when we expand it
to a multiple of 255 colour gamut. Therefore, the operators
provided by Eq.(6) are not suitable for nesting into a unified
CAM framework to generate more robust interpretations, we
have to carry out a formal transformation to the Eq.(6) cal-
culation method.

CAMnormal =
Al(I)⊙wcl −Min(Al(I)⊙wcl )

Max(Al(I)⊙wcl )
(7)

To better focus on the areas that both gradient-based and
perturbation-based CAMs pay attention to while avoiding
the risk of weight attenuation, we can approximate the ma-
trix dot multiplication paradigm to matrix addition. For nor-
malized S(⋅) and K(⋅), the accumulation of S(⋅) and K(⋅)
not only produces an effect similar to S(⋅) ⊙ K(⋅) but also
avoids weight attenuation.

We use the attention weight generated by the gradient as
a Skip Connection in Score-CAM to accumulatively gener-
ate the explanation. For a class of interest c, the CAMc

SA

can be re-defined as Eq. (8):

CAMc
SA = ReLU

(

∑

n
(S(⋅) +K(⋅))⊙Q(⋅)Al(I)

)

(8)

Eq. (8) overcomes the shortcomings in Eq. (6) while
retaining the advantages of S(⋅) and K(⋅), and the weight of
Q(⋅) further reduces the error in each feature map.

Based on the closed-loop of the SA-CAM and the sim-
plicity of expression, we further re-write Eq. (8) and only
introduce a single regularization term SA(I) as shown in
Eq. (9).

CAMc
SA = ReLU

(

∑

n
(S(⋅) + SA(⋅))Al(I)

)

(9)

The SA(I) can be expressed as:

SA(I) = �1K(I) + �2Q(I)

=
a
∑

i

b
∑

j

(

�1
i × j

)yc

)Al(I)
+ �cijReLU (

)yc

)Al(I)
)
) (10)

where

�cij =
�2 ⋅

)2yc

()Alij )
2

2 )2yc

()Alij )
2 +

∑

a
∑

b A
l
ab

{

)3yc

(Alij )
3

} (11)

• � is the impact factor of regularization.
• (i, j) are the length and height of Al
• (i, j) and (a, b) are iterators over the same activation

map Al.
Based on Eq. (9), we can get the overall framework of

SA-CAM. As shown in Figure 3, the process of generating a
heatmap in SA-CAM consists of two parts in total. The first
part is the accumulation of the score function-Score(FP+M)
which represents the S(⋅) part in Eq. (9). The second part
is Attention(input) which gets the attention value through
extracting SA(⋅) in the last convolutional layer of the CNN
model and adding the results of the first part point by point.

For the calculation method of the score function, we also
provide corresponding solutions to overcome the limitations
of the work [22]. As mentioned in Section 2, most of the
existing calculation methods for the score function are to
add additional masks to highlight the core area in the up-
sampling maps. But we can find from Figure 2 that adding
additional masks may bring additional judgment evidence to
themodel which leads to deviations in the results of the score
function.
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Figure 3: The pipeline of SA-CAM.

To alleviate this problem, we first extract the key areas
in the up-sampling maps using image segmentation to di-
rect prediction without introducing any masks. Let the orig-
inal up-sampling map beUorg , the heat maps of feature maps
be Uℎeat and the segmented maps be Useg . Useg is the seg-mentation result based on the heat map generated by feature
maps, and Useg can be obtained through Algorithm 1.

Algorithm 1 : The key area extraction algorithm (KAE).
Input:

The original up-sampling mapUorg , the heat mapsUℎeat
Output:

The key areas in the up-sampling maps Useg
1: FOR (i, j), range(Uℎeat.sℎape[∶]) DO;
2: px = Uℎeat[i, j]
3: IF px[0] > tℎresℎold ∶
4: Uorg[i, j] = [255, 255, 255]
5: FOR (x, y), range(Uorg .sℎape[∶]) DO;
6: IF pixdata[x, y][∶] > 240 ∶
7: pixdata[x, y] = (255, 255, 255, 0)
8: Useg ← Uorg

By using Useg , a reliable score can be generated withoutintroducing a mask, but Useg will change in the transforma-
tion process due to its irregularities. To further reduce the
error of score, we also combine perturbation operators in [6]

and Useg as a restricted mask-based score (1 + f (Uℎeat) tomitigate the transformation errors. Since the value of Uℎeatis less than 1, (1+f (Uℎeat) has little effect on the final scorecompared withUseg , but it can improve the robustness of the
final score.

Score =

⎧

⎪

⎨

⎪

⎩

f (Useg) ∗ (1 + f (Uconstant))
f (Useg) ∗ (1 + f (Unoise)
f (Useg) ∗ (1 + f (Ublur))

(12)

where
⎧

⎪

⎨

⎪

⎩

Uconstant = m ⊙ Uorg + (1 − m)⊙ �0
Unoise = m ⊙ Uorg + (1 − m)⊙ �(u)
Ublur = ∫ g�0m(u)(v − u)Uorg(v)dv

(13)

• m ∶ Λ→ [0, 1] represents a mask.
• u represents a pixel point in Uorg
• �0 is the maximum isotropic standard deviation of the

Gaussian blur kernel g� .
The complete detail of the implementation is described in
Algorithm 2. In lines 1-3, we initialize the heat map that
SA-CAM needs to generate through up-sampling and Eq.
(7). Lines 4-9 execute a for loop which extracts the Usegand Uconstant involved in Eq. (12). Line 10 and 11 respec-
tively calculate the score based on Eq. (12) and Eq. (9). Line
12 provides the normalization of the weights and Line 13 is
used to generate the interpretation provided by SA-CAM.
Algorithm 2 : SA-CAM algorithm.
Input:

Image I , Model F(I), class c, target layer l, the number
of channels n

Output:
CAMc

SA−CAM
1: Uorg ← [U1l , ..., U

n
l ]

2: Uℎeat[⋅]← tℎe ℎeat map of Uorg
3: Umask[⋅]← tℎe masked of Uorg
4: FOR i in (0,n) DO;
5: U i

l ← Upsample(F cl (I))
6: U i

ℎeat ← Normalization(Uiorg)
7: U i

mask = U i
l ⊙Uiℎeat

8: Ublur, Uconstant ← blur(Uimask) or constant(U i
mask)

9: Useg ← KAE(Uimask)
10: Scorec= F (Useg) ∗ (1 + F (Ublur)
11: SAc = Scorec + �1K(I) + �2Q(I)
12: wci ←

exp(SAci )
∑n
i=1 exp(SA

c
i )

13: CAMc
SA−CAM ← ReLU (

∑n
i=1(w

c
i ⊙ F

c
l (I)))

4. Experimental Results
In this section, we verify the effectiveness of the pro-

posed SA-CAM method. In the following experiments, we
Yu Liang et al.: Preprint submitted to Elsevier Page 5 of 11
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Grad-CAM Grad-CAM++ Score-CAM SA-CAMAblation-CAM Layer-CAMXGrad-CAMInput

(a
)

(b
)

(c)
(d

)
(e)

Figure 4: Demonstration of seven CAM-based methods on ResNet101.

employed VGGNet [20], ResNet [10] and MobileNet [18]
as the baseline network from the Pytorch pre-trained model.
Publicly available dataset ImageNet [5] and CAM tool py-
torchcam [9] were also used in our experiments. For the
input images, we resized them to (224 × 224 × 3), trans-
formed them to the range [0, 1], and then normalized them
using wildly accepted mean vector [0.485, 0.456, 0.406] and
standardized deviation vector [0.229, 0.224, 0.225].
4.1. Visualization

This section provides a visual evaluation of SA-CAM on
saliency maps in comparison with six CAMmethods [3, 19,
7, 11, 22, 15] as shown in Figure 4. In this experiment, all
other methods are gradient-based methods except for SA-
CAM and Score-CAM. For the fairness of comparison, SA-
CAM used the samemask strategy as Score-CAM to process
the same input data. We tested five images which were ex-
tracted from the ImageNet validation dataset. The labels of
Figure 4 (a-e) are "husky", "ridgeback dog", "green snake",
"maltese dog" and "haliaeetus leucocephalus" respectively.

Figure 4 (a) shows the interpretation results of CAMmeth-
ods for "husky". The interpretations provided by the gradient-
based methods provide an accurate positioning which all fo-
cus on the critical part of the head in the image. However,
the interpretation provided by Score-CAM does not focus on
the head but the texture part. Through the correction of the
weight by SA(⋅), SA-CAM not only focuses on head area

of "husky" compared with Score-CAM but also focuses on
more texture features than the gradient-based methods.

Figure 4 (b) shows the interpretation results of sevenCAM
methods for "ridgeback dog". Compared with Score-CAM
and gradient-based CAMs, SA-CAM pays more attention to
the head area and lower limb area which provides a more
reliable interpretation. Figure 4 (c) and Figure 4 (d) respec-
tively show the interpretations of CAM methods for "green
snake" and "maltese dog". We can find that the gradient-
based methods cover a wider range, but do not pay attention
to the complete head. Score-CAM focuses more on the head
area, but does not provide a wider coverage. SA-CAM cov-
ers a wider range while focusing on the head area.

Figure 4 (e) shows the interpretation results of CAMmeth-
ods for "haliaeetus leucocephalus". The performance of gradient-
based methods is not as good as that of Score-CAM and SA-
CAM. Intuitively speaking from the above five test results,
SA-CAM has high robustness and accuracy in that it allevi-
ates the noises incurred in other methods.
4.2. Multi-Model Testing

In Section 4.1, we showed CAM-based interpretations
on ResNet101. Since the interpretation of CAM changes
with different types of CNN models, we have further com-
pared the aforementioned sevenmethods under differentmod-
els to verify the robustness of SA-CAM which can be ob-
served in Figure 5.

Yu Liang et al.: Preprint submitted to Elsevier Page 6 of 11
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Figure 5: Demonstration of seven CAM-based methods on
CNN models.

Figure 5 shows an image that contains two labels and the
labels are related to each other. The correct label is "mouse
trap". We fed this image into ResNet18,MobileNet, ResNet101
and VGG19 respectively and used seven methods for com-
parative analysis. We can find that the interpretations given
byCAMs under differentmodels are not the same. OnResNet18
and MobileNet, all the CAM methods did not produce the
satisfactory interpretation in that they focusmore on the "mouse"
rather than the "mouse trap".

However, all the CAMmethods onResNet101 andVGG19
produced better results. On ResNet101 ,all the CAM meth-
ods recognized relationship between the mouse trap and the
mouse. Among the best performers are SA-CAM and Score-
CAM which payed attention directly to the mouse trap.
4.3. Multi-Target Positioning

Figure 6 shows an example in which an input image con-
tains a cat and dog. It can be observed that the SA-CAM
accurately locks the cat’s head and neck areas when we set
the corresponding prediction label to "Tiger Cat". When we
set the corresponding prediction label to “Bull Mastiff”, SA-

CAM accurately locks the dog’s head and body parts.

Label: tiger cat Label: bull mastiffInput

（a） （b） （c）

Figure 6: An example of multi-target positioning.

In addition to positioning test, we also tested the posi-
tioning effect of multiple targets of the same class. As shown
in Figure 7, we show the positioning effect of multiple tar-
gets of the same class.

Score-CAM SA-CAMGrad-CAMInput

（a） （b） （c） （d）

Figure 7: A comparison of Grad-CAM, Score-CAM and SA-
CAM on multi-target positioning of the same class.

Figure 7(a) shows the image labeled "drake". In this im-
age, there are multiple objects of the same category. As
shown in Figure 7(b) to Figure 7(d), we can find that al-
though both Grad-CAM and Score-CAM can lock a target
for the same model, neither of these two methods can lock
multiple identical targets whereas the SA-CAM does.
4.4. Sanity Check

The work in [1] emphasized that relying only on visual
assessment can be misleading, certain interpretability meth-
ods generate explanations that can be independent of models
and data. Following [1], we designed parameter randomiza-
tion test to compare the up-sampling of SA-CAM on the pre-
trained VGG16model with the up-sampling of the randomly
initialized untrained network of the same architecture.

As shown in Figure 8, SA-CAM passed the sanity check
like Grad-CAM and Score-CAM. The first column is the in-
terpretation generated by the three methods. The following
columns respectively show the results of the 21th - 28th layer
randomization on VGG16. The results of SA-CAM are sen-
sitive to model parameters reflecting the good quality of the
model.
4.5. Deletion and Insertion

Following [14, 22], we performed deletion and insertion
tests on the Grad-CAM, Score-CAM, and SA-CAM meth-
ods based on the ImageNet validation set. The purpose of
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Grad-CAM

Score-CAM

SA-CAM

Result Logit Conv28 Conv26 Conv24 Conv21

Cascading randomization from top to bottom layers

Figure 8: Sanity check results through randomization.

the tests was to test the corresponding accuracy of the three
CAM methods when fading out and fading in the red mark
part of an input image. Figure 9 shows two examples of dele-
tion and insertion experiments.

SA-CAM: 0.961

Grad-CAM: 0.924

Score-CAM: 0.959

SA-CAM: 0.055

Grad-CAM: 0.132

Score-CAM: 0.039

0.448

SA-CAM: 0.028

Grad-CAM: 0.041

Score-CAM: 0.032

Grad-CAM: 0.349

Score-CAM: 0.321

In
p
u

t
In

p
u

t

SA

Figure 9: The fade-in and fade-out test curves of Grad-CAM,
Score-CAM and SA-CAM.

Figure 9 shows the curves and AUC values generated
by Grad-CAM, Score-CAM, and SA-CAM based on fade-in
and fade-out tests. For the the deletion curve, a better per-
formances on interpretation is that the AUC curves should
be expected to fall fast and the AUC values should be small.
However, for the insertion curve, the growth is expected to
be fast and the AUC value should be large. The overall AUC
value is the difference between the insertion AUC and the
deletion AUC which reflects the quality of CAM methods.

For comparison fairly, we divided the images extracted
from the ImageNet validation set into five groups. Table 1,
Table 2 and Table 3 show the five sets of AUC scores for

Table 1
The AUC results of the insertion (fade-in) curves.

Grad-CAM Score-CAM SA-CAM

Group-1 0.342 0.357 0.362

Group-2 0.43 0.467 0.462

Group-3 0.426 0.441 0.447

Group-4 0.429 0.442 0.445

Group-5 0.297 0.294 0.319

Total 1.924 2.001 2.035

Table 2
The AUC results of the deletion (fade-out) curves.

Grad-CAM Score-CAM SA-CAM

Group-1 0.077 0.043 0.051

Group-2 0.101 0.056 0.064

Group-3 0.128 0.052 0.066

Group-4 0.096 0.057 0.058

Group-5 0.062 0.061 0.062

Total 0.464 0.269 0.301

fade-in, fade-out and overall tests respectively.
From Table 1, it can be found that the AUC score of SA-

CAM are more advantageous. From Table 2, we can observe
that SA-CAM performs very closely to the Score-CAM. It is
worth noting in Table 3 that SA-CAMachieves the best score
of 1.734 when performing the deduction on the two sets of
AUC scores.

It should be point out that the evaluations of fade-out and
fade-in operations highly depend on data perturbation. As a
result this evaluation can only be considered as an auxiliary
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Table 3
The overall AUC results..

Grad-CAM Score-CAM SA-CAM

Insertion AUC 1.924 2.001 2.035

Deletion AUC 0.464 0.269 0.301

Overall AUC 1.46 1.732 1.734

element because it is in favor of perturbation-based interpre-
tation methods. In addition, this evaluations is too sensitive
to the underlying CNN models which leads to inconsistent
result as shown in Figure 10.

SA-CAM: 0.103

Grad-CAM: 0.104

Score-CAM: 0.102 Score-CAM: 0.058

Grad-CAM: 0.084

SA-CAM: 0.071

: 0.461

: 0.479

: 0.415

SA-CAM: 0.085

Grad-CAM: 0.209

Score-CAM: 0.073

Model: VGG19

Model: ResNet101

In
p

u
t

In
p

u
t

Figure 10: An example of inconsistent performance of Grad-
CAM, Score-CAM and SA-CAM on ResNet101 and VGG19.

4.6. Adversarial Verification
To further evaluate the robustness of SA-CAM, we con-

ducted adversarial tests onGrad-CAM, Score-CAM, and SA-
CAM inmultiple scenarios based on [17] and the adversarial
examples in Figure 2. The changes in the overall environ-
ment of an image have an impact on the results of the un-
derlying CNN model. In this section, we further verify the
robustness of SA-CAM in adversarial verification. Table 3
compares the accuracy result of three adversarial images us-
ing VGG19.

Figure 11 shows the pipeline of adversarial verification.
We first extracted the core interpretation area and randomly
embed it into multiple adversarial images to test the accu-
racy. The evaluation index of adversarial detection is the
comprehensive expectation of multiple adversarial images.
We conducted adversarial verification onGrad-CAM, Score-
CAM and SA-CAM based on the images in the ImageNet
validation set. The experimental results of accuracy in Ta-
ble 4 show the accuracy results that SA-CAM is more robust
than both the Grad-CAM and Score-CAM methods.

We also discussed the fading rate of the three methods
in adversarial verification to further prove the robustness of
SA-CAM. The fading rate mainly describes the degradation
degree of the original image after it is substituted into the
adversarial environment. In the experiment, we use the three

Accuracy-1

Adversarial

Case-1

CAM 

Interpretation

CNN

Model

Accuracy-nOutput

Input

Adversarial

Case-n

Figure 11: The pipeline of an adversarial verification.

Table 4
A comparison of adversarial results on accuracy (%).

Grad-CAM Score-CAM SA-CAM

Case-1 18.40 22.31 22.35

Case-2 21.59 24.18 29.26

Case-3 29.73 28.11 34.67

adversarial cases in Table 4 to test the fading rate. Facedwith
large amounts of data, The lower the fading rate, the better
the performance. The experimental results of fading rate in
Table 5 also show the accuracy results that SA-CAM is more
robust than both the Grad-CAM and Score-CAM methods.
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Table 5
A comparison of adversarial results on fading rate(%).

Grad-CAM Score-CAM SA-CAM

Case-1 75.56 70.37 70.31

Case-2 71.32 67.88 61.14

Case-3 60.51 62.66 53.95

5. Conclusion
In this paper, we have presented SA-CAM, a novel CAM

method building on the self-attentionmechanism. Compared
with the state-of-the-art results, SA-CAM generates more
robust interpretations on CNN models and performs well in
multi-target category positioning, fade in-out testing and ad-
versarial testing.

SA-CAM can be used to interpret the decision making
process of multiple computer vision tasks such as target de-
tection and monocular depth estimation. It can also be used
to enhance the interpretability of CNN models on medical
imaging and autonomous driving, which has a very wide
range of uses.

One immediate future work will be to deploy SA-CAM
on weak-supervised localization improvement and to further
introduce SA-CAM into a deep Bayesian neural network for
enhancement of trustiness in machine learning.
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